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Preface

The contents of this book have evolved as the result of many years of research
concerning the design of control and safety systems for industrial process plants.
The focus of this research has been the analysis of risk and reliability, particularly
as related to the nuclear power and chemical process industries. In the early
1960s, we realized from analyses of industrial accidents the need for an integrated
approach to the design of human—machine systems. However, we very rapidly
encountered great difficulties in our efforts to bridge the gap between the meth-
odology and concepts of control engineering and those from various branches
of psychology. Because of its kinship to classical experimental psychology and
its behavioristic claim for the exclusive use of objective data representing overt
activity, the traditional human factors field had very little to offer.

Modern industrial control systems use advanced information technology for
support of human decision making during supervisory control tasks and emergency
management. Models of human information-processing abilities and limitations
are prerequisites for the basic conceptual design of such systems. The experience
with the early process computer installations—old boys in the trade will remember
the discussions around the experimental system at the ‘“‘Little Gipsy"’ power
plant—clearly indicated the pressing need for analysis of operators’ cognitive
tasks and guidelines for interface design. Because of the slow transition in psy-
chological research away from behaviorism and the preoccupation of the early
research in artificial intelligence with games and theorem proving, we found it
impossible to wait for guidelines from such sources. It appeared to be necessary
to start our own selective research program to find models useful for engineering
design. From analysis of many hours of verbal protocols recorded during real
work situations in workshops and control rooms and of hundreds of incident
reports (in particular, from nuclear power plants), we developed a conceptual
frame of reference that served us well in formulating our problems in concepts
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that could be related to control system design. This framework is the topic of
the book. Furthermore, the conceptual framework that we developed turned out
to be very useful for relating our system design problems to discussions in the
scientific literature in general, not only in the now rapidly evolving field of
cognitive psychology, but also in linguistics, semiotics, biology, and philosophy.
Thus, throughout this book are comments and references to key books and papers
in these related areas.

The aim of this work is not to propose specific design methods or solutions
for human—machine systems in a particular technical field. Technological de-
velopment would rapidly outdate such a proposal. Instead, the book presents an
analysis of the concepts and domains of description that can be used as a structure
for the formulation of problems and development of design guidelines in the
individual fields of application. 1 hope that the book will be useful both as a
guide for control engineers and human-machine system designers, as well as a
demonstration for researchers in several humanistic disciplines of the needs and
problems in modern system design.

Writing in an interdisciplinary field raises many questions of terminology,
particularly when not using one’s native language. Most of the important concepts
used in the book, such as knowledge, sign, and model, will have very specific
but different connotations, depending on the individual reader’s professional
background. Consequently, I have tried to use terms in their commonsense and
neutral meanings, hoping that the intended meaning will appear from the context
irrespective of the individual reader’s background. The various topics and concepts
are approached several times from different points of view in a way that is intended
to be convenient for those readers who are interested only in reading parts of
the text.
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Chapter 1
Introduction

Two major trends in technological development have influenced the problems
that are faced by designers of the human-machine interfaces of major modern
systems. One is a general trend toward larger and more complex systems with
centralized control. Very often, large systéms imply large concentrations of data,
of energy, or of hazardous material, and maloperation can therefore have serious
consequences not only for the system itself and its users, but frequently also for
the environment and the general public. In spite of the introduction of automatic
safety systems, industrial accidents do occur, and analyses after the fact typically
find significant contribution from errors by operators. Recently, a number of
major incidents, such as at Three Mile Island and Bhopal, have caused general
concern for the operators' role and the efforts to support them during complex
disturbances. In centralized and automated systems, the problem is that quite
normal and to-be-expected human flaws may cause drastic losses. For a secretary,
a slip may result in a lost manuscript on a floppy disk rather than in merely a
typing error. In Michigan in 1973, an otherwise reasonable improvisation for red
bags that were out of stock in a chemical company supplying cattle feed to
stores resulted in widespread contamination by PBB and the need for large-scale
killing of poisoned cattle.

The other major trend is the rapid development of modern information
technology based on inexpensive but powerful computers. Computer-based
control systems and interfaces for human-machine communication in centralized
management decision systems and industrial production installations will change
the work situation of decision makers and system operators in several different
ways. The allocation of tasks to people and to automatic systems will change.
Automation does niot remove humans from the system; basically it moves them
from the immediate control of system operation to higher-level supervisory tasks
and to longer-term maintenance and planning tasks. That is, automation affects
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the general work organization. In general, this also changes the requirements for
operator training, partly because the task is changed to supervisory decision
making in potentially risky situations, but also because the requirements for
know-how during such situations may not be met by the skill developed during
more normal operating periods. Furthermore, computer-based interface systems

Introduction 3

In Chapter 2, a framework for cognitive task analysis will be discussed.
Traditionally, task analysis is discussed in terms of the external activities
required by the system. This may be due partly to a behavioristic point of view
in which only descriptions in terms of observable events are professionally
acceptable; and partly to the limited need for description of mental activities in

result in new ways of preprocessing measured data and of interactive decision
making that can be matched to various situations and different operator tasks.
These affect the design and administration of operating instructions and manuals.

In this way, extensive use of computer-based information affects several

relation to systems of moderate levels of automation that are based mostly on
presentation of basic data. What is needed is a framework for cognitive task
analysis that enables the description of a decision task in terms of the necessary
information processes. This framework or model must represent human |

aspects of system design that are typically considered separately, by different
persons and at different phases of system design. However, these aspects are so
intimately related that it is difficult to envisage their being introduced gradually
and independently in an optimal way. Introducing new technology, which affects
several basic factors in system design, is a kind of multidimensional
optimization process in a multipeaked landscape in which the different summits
represent designs based on different basic concepts. Considering that the
traditional technology~for instance, the one-sensor-one-indicator technology in
industrial control rooms—has been subject to designers' experiments with
improvements for half a century or more, it may be assumed that an optimum
has been reached. This optimum is probably rather flat, owing to the adaptability
of humans and the opportunities left them for adaptation in the traditional
systems. An extensive use of information technology will, it is hoped, create a
new and higher peak, which will very probably be more narrow because of a
higher system complexity and more intricate human-machine interaction.

Unfortunately, this peak cannot be reached in an optimal way by cautious
changes of the traditional design along one dimension at a time, but only by a
jump in all dimensions simultaneously. Furthermore, we can expect to hit the
peak within a reasonable vicinity of the top only if we know where to look for it
from the outset, i.e., if we have a conceptual framework to guide the jump.

The objective of this book is a discussion in some detail of such a framework
related to analysis and description of human-machine interaction and design of
interface systems. Use of computer-based information technology to support
decision making in supervisory systems control necessarily implies an attempt
to match the information processes of the computer to the mental decision
processes of an operator. This approach does not imply that computers should
process information in the same way as humans would. On the contrary, the
processes used by computers and humans will have to match different resource
characteristics. However, to support human decision making and supervisory
control, the results of computer processing must be communicated at appropriate
steps of the decision sequence and in a form that is compatible with the human

" decision strategy. Therefore, the designer has to predict, in one way or another, .

which decision strategy an operator will choose. If the designer succeeds in this
prediction, a very effective human-machine cooperation may result; if not, the
operator may be worse off with the new support than he or she was in the
traditional system; hence, the narrow peak in the ona:nnuaoz.

performance in various situations and at different levels of training. Such a task |
analysis in information processing terms can also be used to characterize
information processing by computers.

In Chapter 3, the framework will be used to relate the decision task to the
control requirements of the system during various situations in order to identify
the content of the information processes required. In particular, the diagnostic
task in industrial process control will be considered in detail as an example.

For system design, we are not necessarily looking for predictive models of the
detailed information processes, as they will emerge in a specific situation.
Rather, we need predictive models of categories of information processes that
enable the prediction of that category that will be activated by a particular
interface configuration and its display formats. The model will then support the
choice of an interface design that can activate that category of behavior that has
limiting properties compatible with the functions allocated the human operator,
and for which the design has been optimized.

Two aspects of such a categorical model of the information processes are
discussed in detail with reference to the diagnostic task. In Chapter 4, the
knowledge of the functional or causal properties of a physical system that is
necessary for making control decisions is discussed in terms of an abstraction
hierarchy, similar to the hierarchies used for organization of data bases for
CAD/CAM (computer-aided design/manufacturing) systems. In Chapter S, the
different strategies that can be used for state identification and diagnosis in
systems control are discussed, together with their requirements for system
knowledge and processing capacity.

In order to predict the strategy that an operator will choose in a specific
situation, it is necessary to know his or her subjective goals and performance
criteria. This aspect is discussed in Chapter 6 with reference to analysis of the
performance of technicians in a real-life task, based on verbal protocols.

In Chapter 7, the use of the conceptual framework for systems design is
considered. The design is formalized in a sequence of decisions, and how the
implementation-independent formulation of the information processes obtained
in the cognitive task analysis is used for human-computer task allocation is
discussed. This task allocation depends on a systematic demand-resource
matching, which results in a cooperative decision making in which the designer,
the system user, and the computer are sharing roles.

The task allocation based on demand-resource matching depends on models of
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human resources for information processing that are discussed in the remaining
part of the book. In Chapter 8, the scope of the model of a human information
processor viewed as a system component is discussed and reference to selected
trends in psychological research is made. In Chapter 9, aspects of human
information processing of particular importance for the decision making implied
in systems control are considered in more detail. Different domains of human
behavior are identified with respect to the internal control, and the semiotic
interpretations of information and actions exchanged across the human-machine
interface are considered. ,

In Chapter 10, the abstraction hierarchy that was used for cognitive task
analysis and for normative task design in Chapter 4 is reconsidered as a
framework for describing the actual content of mental models during problem
solving. In addition, the form of mental models in terms of commonsense causal
reasoning and formal networks of relations are considered.

Consideration of human errors is important; successful simulation of the
performance of well-trained personnel is no proof of the quality of a model. Only
acceptable simulation of improper performance when requirements are increased
beyond capability limits will qualify a model for use in system design. In
Chapter 11, human errors are discussed in some detail. A discussion of their
definition leads to the view that human errors are the manifestation of human
variability, which is a basic part of adaptation and learning. Therefore, human
errors should be met by a design of "friendly systems" rather than by attempts to
avoid them by "better" training and instruction. As a basis for system design, the
mechanisms behind different categories of errors are discussed with reference to
the categories of internal control of behavior considered in Chapter 9.

Human performance during stress is an important problem for system design
because stress can drastically influence the resources for rational thinking and,
hence, the likelihood of error. A phenomenon called "tunnel vision" is often used
to explain human errors during accident conditions. However, a high degree of
stress is normally correlated with unfamiliar tasks that call for more selective
attention. Therefore, a section is included in Chapter 9 in which the influence of
unfamiliarity of tasks and of arousal owing to stress is discussed and briefly
related to current research on the relation between emotion and cognition.

Different kinds of models of human information processing are suited for
representations of behavior depending upon the internal mode of control. In
Chapter 12, a number of available models are reviewed, ranging from
mathematical models of sensorimotor behavior of highly trained people in
manual control tasks, to artificial-intelligence-type models of problem-solving
performance.

Chapter 2

A Framework for
Cognitive Task Analysis

The design of human-machine interface systems based on modern information
technology should be based on a generic model of the information processes
implied in the decisions to be taken by the controller. To be generally
applicable, this model must be expressed in terms independent of the specific
system and its immediate control requirements. Unfortunately, in spite of a long
tradition of research in management decision making, a generic model of the
information processes implied does not exist. At best, the existing models can
be considered normative models suited for initialization of novices (Dreyfus and
Dreyfus, 1980; Mintzberg, 1973). In the present context, we have therefore
chosen to benefit from the clear and well-structured nature of industrial process
systems, in basing our discussion on models of supervisory control decisions for
such systems. .

For control of a physical system such as an industrial process plant, a
normative model of the necessary decision phases can be suggested. This
sequence has been developed from analysis of decision making in a power plant
control room and includes the following phases. First, the decision maker has to
detect the need for intervention and has to look around and to observe some
important data in order to have direction for subsequent activities. He or she then
has to analyze the evidence available in order to identify the present state of
affairs, and to evaluate their possible consequences with reference to the
established operational goals and company policies. Based on the evaluation, a
target state into which the system should be transferred is chosen, and the rask
that the decision maker has to perform is selected from a review of the resources
available to reach the target state; examples of such target states and related tasks
will be discussedin the following chapter. When the task has thus been
identified, the proper procedure, i.e., how to do it, must be planned and execured,

It will be noticed that the nature of the information processes changes during
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the sequence. In the beginning, it is an analysis of the situation to identify the
problem, then a prediction and value judgment and, finally, a selection and
planning of the proper control actions. Depending upon the context in which the
control decisions have to be made, in particular whether it is control of a
physical system governed by causal physical laws, or a social system governed
by human intentions, the breakdown of the decision task may result in different
elementary phases. Those used here have been chosen in order to have a flexible
framework for description of the decision making found in verbal protocols from
actual operation of a physical system, i.e., an industrial process plant
(Rasmussen, 1976).

The protocols were recorded in an attempt to analyze the operators' information
processes during plant operation. The scene was the control room of a fossile
fuel power plant during a start-up by a team of highly skilled operators. As it
turned out, the protocols did not, in general, reflect the operators’ information
processes, but a sequence of "states of knowledge” representing what the
operators knew about the operating conditions of the plant and about their task
performance. These states of knowledge appeared as standardized nodes between
the information processes shown in Figure 2.1. The information processes
themselves were only reflected by the protocols when the operators had to cope
with less familiar situations. This is to be expected with a highly skilled team
during a familiar situation.

The existence of break points in the information processes at standardized
nodes between subroutines like those of Figure 2.1 appears to be very efficient
for a variety of reasons:

The information processes of the different phases have different structures in
that they are related to analysis, evaluation, and planning in various
functional frameworks, i.e., they are based on different information-
processing models. Therefore, a standardized "state of knowledge" that
separates them serves for recoding, by being the output state of the
preceding process and serving as the input state for the following process.

Break points at standardized nodes make it possible to generate a sequence for
special situations by chaining subroutines of general applicability and using
solutions from prior experience. This is extensively done by skilled
operators, leading to a great repertoire of shortcuts and bypasses in the
decision process, as illustrated in Figure 2.1.

Finally, standardized nodes are likely to be developed for easy communication
among several operators sharing information and experience and cooperating
in execution of the control tasks.

In addition to being a framework for representing the decision making of
process plant operators, the "decision ladder” of Figure 2.1 is well suited for
man-machine interface design. The identification of the standardized nodes
linking the elementary information processes also makes it possible to plan in a
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systematic way the human-machine interaction in Em:_w.wcﬁoaﬁmn systems
where system designers, operators, and process ooB.vEma will have to cooperate
intimately in the control decision during complex Qm::g_..nwm. The background
knowledge and data needed vary considerably for the different Emwmmm of .Sn
decision sequence. So do the capacity requirements mon memory and .Smunawcom
processing. Therefore, the designer's prior analysis, %m operator’s on-line
decisions, and the support functions of the computer will have different roles
during the different phases. Proper allocation of decision tasks mro:E. vo. c.wmmm
on demand-resource matching, considering the requirements of the individual
decision subroutines and the capabilities of the designer, operator, and .846.:5.
Tt is therefore important to investigate the conditions under on: the individual
subroutines of the decision sequence can be formulated generically and separated
from the overall decision sequence. In other words, it is important to find out
whether the subroutines have some invariant structure across OCCUITENCES.
Because the identification or diagnosis of system state is a difficult task &mﬁ., in
particular, depends upon the actual conditions, this task is chosen for detailed
discussion in the next chapter.

Chapter 3
The Diagnostic Task

In order to formulate this problem in more detail, we will consider the function
of state identification in differernt situations during plant operation with reference
to the decision ladder of Figure 2.1. It is important to note that "system state” is
used here in a broader sense than that of mathematical state-space representations.
It also includes the status of system configuration, such as "valving and
switching states,” as well as "failed states" of equipment.

The simplest situation is the identification of the states related to those control
actions during the normal plant conditions that have been considered during
design of the automatic control system. In such cases, analysis has identified the
relevant state-action associations, which are then implemented in the control
system. At the lowest levels in the control hierarchy, this is done in the form of
dedicated feedback loops where deviation between a measured variable and its set-
point value leads to compensation through adjustment of a predetermined
parameter. At higher-level sequence control, predetermined patterns of plant
variables are used as templates to test whether conditions for some planned
actions on the plant are satisfied. In such cases, all higher-level functions of the
decision ladder have been considered only by the system designer; during on-line
decision making, they are bypassed by stereotyped links between a pattern of
observations and a set of actions. Similar state identification is used to protect
the plant in case of disturbances and faults involving consequences that occur too
rapidly or are too drastic in nature to be considered suitable for on-line human
decision making. Again, stereotyped links can be implemented in an automatic
safety system acting on a predetermined pattern of state variables. An important
feature of this state identification mode is that identification takes place with
reference to data pattern templates and relates directly to actions specific for each
case.

The differentiated control actions necessary in response to faults and
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disturbances depend on more flexible identification of individual disturbances, and
on-line decision making will include higher-level processes. The extent to which
this occurs will, however, depend on the actual circumstances. Consider first the
state identification or diagnosis involved in maintenance and repair. By
definition, the target state of repair activities is the normal, physical
configuration; the fault has to be removed by replacement of the damaged part.
This task and the related procedure are well determined, and diagnosis simply
means location of the faulty part, i.e., identification with reference to the
normal, physical state as iltustrated in Figure 3.1.

mos.\m,\mn. repair cannot be the first control response to a fault during plant
operation. For the initial control response, the target state is not given a priori.
m<2._ the goal, relative to which control strategies must be planned, will often be
ambiguous--priority judgment must be made whether control actions should be
nrommz. to maintain production, to protect equipment or people, or to minimize
downtime in case of plant shutdown. In this situation, it is not possible to
separate one well-defined diagnostic task from the overall decision sequence; the
content of the task is not simply an identification of the primary cause in terms
of equipment faults. Before attention is paid to this problem, the main concern
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will probably be to see whether the primary mass or energy balances have been
disturbed and may lead to major risks, which necessitates a search for deviations
from normal in terms of major flow paths in the system. In order to evaluate
resources for a compensation of such a disturbance, in terms of heat sinks for
improved cooling, for instance, the disturbance must be considered with reference
to the actual anatomic configuration of the system and to possible
reconfigurations.

In the case of disturbances of an industrial process plant, therefore, the
diagnostic task implied in supervisory control may very likely require an
iteration between consideration of the functional properties of the system at
various levels of abstraction. The implications of the actual plant state and of
possible corrective actions must be evaluated against the overall operational
goals and constraints; the functional relationships in the actual state should be
considered with reference to the normal function; and the possible alternative
resources in terms of equipment and supplies that can be used to counteract the
disturbance must be reviewed. This process is intrinsically circular inasmuch as
the priority ranking of goals depends upon the nature of the disturbance and, at
the same time, the level of state identification will depend on the goal being
pursued.

From this circularity it follows that an iteration back and forth between the
various steps in the ladder will be required in any task context where multiple
goals and multiple causes have to be considered. Consequently, the decision
ladder is not a model of the decision process of real-time decision making but,
instead, a framework representing the informationally logical relationships
among states of knowledge and, as such, useful as a map upon which the
decision process can be represented (see Chapter 8, Figure 8.4).

The conclusion of this discussion is that in order to generalize a description of
the diagnostic task, it is advantageous to consider two aspects separately. The
first is the search strategy that is applied in order to locate the disturbance. The
second is the problem space, i.e., the description of the physical system, in
which the search is performed.

Other phases of the decision process also depend on a description of the system
at different levels. Counteracting a fault in the system during operation depends
upon a redundancy in the purpose/function/equipment relationships of the
system, and an analysis of these relationships is also an important part of
planning phases of supervisory decision making. That is, a systematic
description of the system to be controlled in terms of multilevel framework, a
functional abstraction hierarchy, is an important basis for design of supervisory
control systems.

Chapter 4
Abstraction Hierarchy

The ammnavnos of a man-made physical system in terms of a functional
ucmqm.o:o: hierarchy will be discussed in some detail because it appears to be an
effective n.%_,mwnssﬂmo: ‘of the context in which supervisory decisions are made

m.:mm_.im.oa, control decisions based on functional analysis, i.e. ao:a“o_
amn_.m_onm in unfamiliar situations for which “know-how" short oEm. are not
feasible, depend on a prediction of the responses of the system to the intended
control .unaou. Such predictions are based on knowledge about the functional
properties of the system, e.g., knowledge about the relationships among
Ed.ﬁo& variables, about the possible use of components, and about the ways in
which events will propagate through the system.

H.:..w way in which the functional properties of a system are perceived by a
decision maker very much depends upon the goals and intentions of the person
In general, objects in the environment in fact only exist isolated from Em
background 5. the mind of a human, and the properties they are allocated depend
on the mo.aa intentions. A stone may disappear unrecognized into the general
scenery; it may be recognized as a stone, maybe even a geologic specimeny; it
may be considered an item suitable to scare away a threatening dog; or it may .am
a imm_: weight that prevents manuscript sheets from being carried away by the
f:a.wwz depending upon the needs or interests of a human subject. Each person
has his own world, depending on his immediate needs. A classic discussion of
the relativity of the environment depending on the perceiving organism is given
from a biologic point of view by von Uexkiill and Kriszat (1934).

>. m.qco::oa representation of a physical system as it appears to a supervisory
amn_ﬁ.o: _.su_Sn will be important for a framework suitable to describe human-
me:._sm interactions. The decision will be dynamic, and the perceptions of a
decision maker will change through time, even within the same task sequence
because several different categories of relationship among concepts wiil be cmma.
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for different purposes. The most typical categories that we have met in protocols
and interviews are mentioned here to illustrate the context of the functional
abstraction hierarchy that will be considered in detail.

Set membership relations of a generic hierarchy will be used to label or name
objects in order to answer questions such as "What is this?" This kind of
category will be familiar from biologic classification; a technical example could
be: process plant component -> pump -> centrifugal pump > specific type of
pump. To discuss the composition of a given piece of equipment, consideration
is structured according to whole-part relationships in a decomposition hierarchy,
such as: diesel generator -> oil supply system —> injection pump -> pump
bearing. Variation along the whole-part dimension is necessary for control of the
span of attention and continuously changes the definition of "objects" to
consider. In order to identify or describe objects or concepts, categories in terms
of descriptive attributes are used, frequently represented, however, by prototype
members. To predict the course of events during interaction with a physical
system, cause-and-effect relationships are used to predict the propagation of
changes through a system. It should be mentioned here that relationships are
frequently found that cut across these more formal categories, such as episodic
relationships that refer to the context of prior experience.

For supervisory control decisions, we have found very useful a description of
the functional properties of a system according to goals-means or means-ends
relationships in a functional abstraction hierarchy. Such a hierarchy describes
bottom-up what components and functions can be used for, how they may serve
higher level purposes, and, top-down, how purposes can be implemented by
functions and components. Various forms of functional abstraction hierarchies
including means-ends relationships have typically been used for design activities.

Descriptions of man-made systems in terms of a multilevel abstraction
hierarchy are well known in architectural design (Alexander, 1964). They have
been extensively used for organizing data bases for computer-aided design and
manufacturing (CAD/CAM) (Eastman, 1978). From a philosophic point of
view, they have been discussed by Polanyi (1958, 1967).

During system design and supervisory control, the description of a physical
system will typically be varied in at least two ways. The description can be
varied independently along the abstract-concrete dimension, representing means-
end relationships, and the dimension representing whole-parts relationships; the
first dimension relates to the concepts used for description; the second relates to
the level of detail chosen for description. It will be seen later that changes along
the two dimensions are very often made simultaneously, but can in fact be done
separately. In the organization of abstraction hierarchies for design, there has
traditionally been no major effort to distinguish between aggregation and

abstraction. In the present approach, however, this distinction is found to be
important and will be maintained throughout the discussion. The resolution ofa
description is controlled by aggregation-decomposition of the elements used to
represent system properties. For example, a system can be considered as a
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Abstraction Hierarchy

Functional purpose

Production flow models,
system objectives, constraints, etc.

Abstract function

ﬂmcmww structure: mass, energy, and
information flow topology, etc.

goals and requirements

Generalized functions

-} Reasons for proper function

#standard" functions and processes:
feedback loops, heat transfer, etc.

Purpose basis;

Physical functions

Electrical, mechanical, chemical
processes of components and equipment
Physical fornm

Physical appearance and anatomy;
material and form; locations, etc.
i

Physical basis; capabilities, resources
causes of malfunction ————p

Figure4.1. A means-ends abstraction hierarchy used for representation ol
functional properties of a technical system. {[Reproduced from Rasmussen (1983,
with permission from IEEE.}

hierarchy of parts, ranging from elementary components such as nuts and bolts,
through equipment such as pumps and motors, to the complete plant. In the
abstract-concrete dimension, the functional properties of the system are
represented by concepts that belong to several levels of abstraction, from the
physical form of equipment, through processes and functions, to aspects o
purpose. The number of levels of abstraction to consider depends on the kind o
system in question and the purpose of the description. For representation of the
functional properties of a physical system, the levels shown in Figure 4.1 ar
found to be useful (Rasmussen, 1979b, 1983).

The space between the immediate physical appearance of the system and th
functional purpose is bridged by five levels of description. Abstraction, in th
present context, does not simply mean the removal of concrete detail as it ma:
in a purely generic hierarchy. When moving from one level of description to the
next higher level, information representing the physical implementation i
discarded, but at the same time information related to the general cofunction o
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elements is added which, for man-made systems, means information related to
the purpose of the system, i.e., the reason for the actual configuration. The
different levels represent the various more or less standardized languages and
concepts used by professionals in typical work situations during
conceptualization, design, and operation of a system. The number of levels in
use may therefore very well depend on the professional field.

The Level of Physical Form

The lowest, most concrete level of abstraction is the representation of physical
form, i.e., the physical appearance and configuration of the system and its parts.
This level includes descriptions such as pictures, perspective drawings, maps of
territories, and locations of equipment as well as scale models. Even at this
level, the representation is not neutral or objective. The purpose of the system
considered will very clearly control what is selected for representation, how the
physical environment is structured in components and parts, and the :w.moEncs
that has been chosen for description (consider, for instance, city maps intended
for various planning and sightseeing purposes). Descriptions at this level are
vital for interaction with a system in order to find one's way and to identify parts
and components to manipulate. The relationship with higher levels is very often
reflected in the labels and names attached to the physical items, reflecting their
functions and reason for their presence in the physical map. Labels like pumps,
valves, switches, and meters refer to the physical function of the components,
and not to their form or appearance. This level is clearly the one of most
importance for control of activities during plant construction, in the form of
architectural drawings, piping diagrams, and component inventory lists.

The Level of Physical Function

The level of description related to physical function represents the physical (i.e.,
the mechanical, electrical, or chemical) processes of the system or its parts. At
this level, the description of functional properties is tightly related to the
physical implements, which will very often be by means of standardized
technical components of widespread use. The description is focused on n.a
specific physical equipment and the physical variables used to characterize its
functional states. As examples, consider diesel engines with their processes of
combustion cycles and mechanical transmissions; transistors and their
characteristic electrical relations in the form of signal matrices or graphic data
sheets; centrifugal pumps with pump characteristics and limiting properties.
This is the level of general professional knowledge about typical components
and their properties. The properties of the physical items that are included in the
descriptions are very clearly determined by their typical functions, i.e., the reason
for their use and their limiting properties. The level of detail, the resolution of
the description, depends upon the task and profession of the people interacting
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with a technical system. For a power plant staff, a diesel electric generator will
probably be a physical component, whereas a repair technician will consider an
exhaust valve a component. This is one of the reasons for keeping the level of
abstraction and the level of decomposition separate in the formal framework.,

The level of physical function is the level at which physically limiting
properties are represented and at which causes of malfunctions are typically
identified. Physical changes in components have functional consequences that
propagate up through the levels of abstraction. The level of decomposition at
which the fault is defined depends on circumstances. A power plant operator may
locate the cause in a pump and from this make his decisions, whereas the
repairman has to identify the broken bearing seal.

The Level of Generalized Function

The description at the level of physical function is based on concepts and
relations characteristic of the physical process of the related components. At the
next higher level of generalized function, the tie to the physical implementation
is cut, and the concepts and language used for description are related to functional
relationships that are found for a variety of physical configurations and have
general, but typical properties. Examples are feedback loops, which have very
characteristic properties, independent of their implementation in the form of
mechanical, pneumatic, or electrical systems; properties of "cooling functions”
can be established independently of the techniques used for pumps and heat
exchange; the characteristics of an intermediate frequency amplifier of a radio
receiver can be stated in terms of gain and selectivity curves without reflecting
the design in terms of tuned circuits or ceramic vibrators. Typically, the
generalized functions will represent the cofunction of equipment or components
based on different physical functions, and represent the functional structure of a
system at a level of decomposition that is above the level of standard
components. There is normally no one-to-one relationship between the physical
function of a component and its potential role in a generic function. In general,
there is a potential many-to-many mapping that represents the functional
redundancy that is necessary for the freedom of operators to compensate for the
effect of disturbances. Braking your car generally depends on the physical
function of the brakes; if, however, they fade going down a mountain road, you
try to brake by means of putting the engine in low gear.

There is usually a clear distinction between the properties of a system that are
represented at the levels of physical and of generalized functions. Descriptions of
physical functions are oriented toward the functioning of physical components
and equipment, i.e., models are structured according to available components.
Descriptions at the generalized level deal with functional relationships that are
widely found independent of material manifestations, This means that generalized
functions are structured according to available models of functional relationships,
i.e., the tools for analysis.
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Generalized functions are typically the subjects of theoretical studies in
classical branches of engineering, and descriptions are based on laws of nature,
characteristic of the various professions such as Newton's laws in mechanics,
Kirchoff's laws in electrical engineering, etc., and their specific practical
derivations. Generalized functions are, for instance, power supply, heat transfer,
feedback control, and nuclear fission. Descriptions at the lower level of physical
function are typically found in equipment manuals, component specification
sheets, and textbooks for technicians and equipment designers. Descriptions at
the level of physical functions clearly reflect the purpose of a system and the
reason for the presence of the physical components. Description of a physical
item like a pump presupposes pipes and fluids and therefore its purpose. In the
same way, descriptions of generalized functions reflect the cofunction of various
physical processes and, therefore, the reasons behind system design.

At the levels discussed so far, the functional properties of a system are
represented in terms of the interaction among a set of typical processes,
functions, or physical parts. To represent the overall function of a particular
system or type of system by a consistent model, it may be necessary to move up
in abstraction to a level that is independent of the actual physical and functional
properties, but more tightly related to the intended, proper functional state of the
system and its coupling to the environment.

The Level of Abstract Function

At the level of abstract function, the overall function of a system can be
represented by a generalized causal network, e.g., in terms of information,
energy, or mass flow structures reflecting the intended operational state or, more
specifically, in terms of flow of products, commodities, or monetary value
through the system. Here we are in the domain of information theory and the
domain of laws of conservation of energy and mass. The laws and symbols at
this level form a consistent structure that is device- and process-independent and
satisfied by the system design. In his discussion of substance versus function,
Cassirer (1923) characterizes the concept of energy as follows: "Energy is able to
institute an order among the totality of phenomena, because it itself is on the
plane with none of them; because lacking concrete existence, energy only
expresses a pure relation of mutual dependency.” Correspondingly, a consistent
formal model of the functional properties of a system in device- and function-
independent terms can be developed in the form of a mass and energy flow map.
Such a consistent model is very well suited for identification of control
requirements and for automatic diagnosis (Lind, 1981, 1982).

At this level of overall functioning of a system, a model only has meaning
when considering a working system, in that the actual "mutual dependency” is
determined by the cofunctioning of all the elements of the system, and upon the
actual couplings to the environment such as inputs and power supplies.
Therefore, representation at this level depends on knowledge about the purpose of
the entire system and about the reasons for the actual structure.
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.?w transition from the level of generalized function to that of abstract
function is probably most evident when considering information-processing
systems. Here, a set of coding conventions relates the actual functioning of the
system at the physical and generalized levels to the abstract function in terms of
5335&0: processes. The abstract function represents the semantic content of
Pm physical signals and, hence, the overall organizing principle. Consider, for
instance, the relation between the logic functions of an information process and
the underlying generalized functions of a digital system, a relation that is based
on a set of coding conventions. Also for energy producing or converting
systems, the overall function of such systems is conveniently described at this
level of abstraction in the form of the intended patterns of energy flows.

Abstract representation of organizing principles for complex systems is also
well known from the natural sciences for which they act as a kind of "reason”
from which system properties can be derived: the first and second law of
thermodynamics, the "survival value" of Darwin's theory, the principles of "least
work" of Hamilton's theory, etc.

The Level of System Purpose

At the highest level of abstraction, the purpose (i.e., the intended functional
effect of the system upon its environment) is described. This can be done in
terms of simple, quantitative input-output spegifications or in terms of the
environmental, functional relationships of which the system is a part. Very
&89 however, the operational state is not totally specified and the ambiguities
in the possible states of operation have to be determined by the control system
by optimization from general criteria related to, for example, economy and
conservation of resources.

,mop, many kinds of systems, the ultimate purpose is related to the lower level
of abstraction: for instance, the purpose of mechanical manufacturing plants and
of treatment plants, such as washing machines, will clearly be related to the
~m<£.oﬂ physical function. Even there, however, the use of higher-level
descriptions may be necessary to be able to consider system organization and
performance, for instance, with respect to energy consumption and resource
conservation. Examples of the functional properties of specific systems related to
the various levels of abstraction are shown in Table 4.1.

Use of the Abstraction Hierarchy

At the lower levels of functional abstraction, elements in the description match
the component configuration of the physical implementation. When moving
from one 5.<m~ to the next higher level, the change in system properties
Evnmm.amsﬁ_ is not merely removal of details of information on the physical or
Bwﬁﬂa properties. More fundamentally, information is added on higher-level
principles governing the cofunction of the various elements identified at the
lower level. In man-made systems, these higher level principles are naturally



20

Table 4.1. Examples of Descriptions in the Mean:
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s-Ends Abstraction Hierarchy.

Washing machine

Manufacturing plant

Computer system

Purpose
Washing specifications
Energy waste requirements

Abstract function
Energy, water, and
detergent flow topology

Generic function

Washing, draining, drying

Heating, temperature
control

Physical function

Mechanical drum drive

Pump and valve function

Electrical/gas heating
circuit

Physical form

Configuration and weight,
size

“Style” and color

Market relations
Supply sources
Energy and waste
constraints
Safety requirements

Flow of energy and mass,
products, monetary
values

Mass, energy balances

Information flow structure in
system and organization

Production, assembly,
maintenance

Heat removal, combustion,
power supply

Feedback loops

Physical functioning of
equipment and machinery

Equipment specifications
and characteristics

Office and workshop
activities

Form, weight, color of
parts and components

Their location and
anatomical relation

Building layout and
appearance

Decision flow graphs in
problem terms

Information flow

Operations in boolean logic
terms, truth tables

Symbolic algebraic
functions and operations

Memories and registers
Amplification, analog inte-
gration and summation

Feedback loops, power

supply

Electrical function of
circuitry

Mechanical function of
input-output equipment

Physical anatomy
Form and location of
components

derived from the purpose of the system (i. ison:
configurations at the level considered). Change of level of abstraction _=<o~<mm.u
for representation as well as a change in
the state of the function or operation at the
on. Thus, a decision maker will ask different questions
ystem, depending upon the level of abstraction

shift in concepts and structure
information suitable to characterize
various levels of abstracti
regarding the state of a physical s

e., from the reasons for the

that is most suited to formulate the actual control task.
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At low levels of abstraction, models are related to a specific physical world
that serves several purposes. Models at higher levels of abstraction are closely
related to a specific purpose that can be met by several physical arrangements.
The functional abstraction hierarchy is therefore useful for a systematic
representation of the many-to-many mapping in the purpose/function/equipment
relationship, which is the context of supervisory decision making. For a process
at any level of the hierarchy, information on proper function is obtained from the
level above, and information about available resources and their limitations is
obtained from the level below (Rasmussen and Lind, 1981).

In the present context, an important use of the abstraction hierarchy is as a
framework for description of the control tasks required to maintain satisfactory
system operation. States can only be defined as errors or faults with reference to
the intended functional purpose. Causes of improper functions depend upon
changes in the physical or material world. Thus, they are explained "bottom-up"
in the levels of abstraction. In contrast, reasons for proper function are derived
"top-down" from the functional purpose. This distinction is illustrated in Figure
4.1.

During system operation, the task of the control system (which includes the
automatic control system as well as human operators) will be, by proper actions
on the system, to ensure that the actual state of the system matches the target
state specified by the intended mode of operation. This task can be formulated at
any of the different levels of abstraction. During system start-up, for instance,
the task moves bottom-up through the hierarchy. In order to have an orderly
synthesis of the overall system function during start-up, it is necessary to
establish a number of autonomous functional units at one level before they can
be connected to one unit at the higher level. This definition of autonomous
functional units at several levels is likewise important for orderly breakdown of
system functions for shutdown and for reconfiguration during periods of
malfunction. For such considerations there will typically be a tight coupling
between the concrete-abstract and the part-whole dimension.

During emergency and major disturbances, an important control decision is to
set up priorities by selecting the level of abstraction at which the task should be
initially considered. In general, the highest priority will be related to the highest
level of abstraction. First, judge overall consequences of the disturbances for the
system function and safety in order to see whether the mode of operation should
be switched to a safer state (e.g., standby or emergency shutdown). Next,
consider whether the situation can be counteracted by reconfiguration to use
alternative functions and resources. This is a judgment at a lower level of
function and equipment. Finally, the root cause of the disturbance is sought to
determine how it can be corrected. This involves a search at the level of physical
functioning of parts and components. Generally, this search for the physical
disturbance is of lowest priority (in aviation, keep flying—don't look for the lost
light bulb!).

When a disturbance has been identified and the control task located at a level of
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Purpose
{"Why" level)

4

Requirements Consult to judge effects of

goals and consequences

disturbances and to prioritize

Process representation
{"What" level)

Structural information:
* Functional model and
causal relations

Data required:

* Actual states and target states
of processes

* Critical variables and limits for

supporting systems and resources

Implementation Consult to find causes of

{"How" level} changes, to select alternaive

resources and means for

Capabilities and limitations ‘ action
of resources in terms of:

* Processes and sub-functions

* Supplics of material and energy

* Conditioning systems

'

Figure4.2. Schematic illustration of the relationships among the three levels

of abstraction to be considered for a control task.

abstraction as required by the situation, the supervisory control task Em—cumm the
determination of the target state derived top-down for the chosen operating Boan
In addition, the available resources for reconfiguration and limits of capabilities

must be derived from levels below. .

A decision task in a particular situation can, as has been &mocmmoa, be
formulated with reference to a process at any level of the abstraction hierarchy.
For the task, the operator will typically need information from the level
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Functional purpose

value structures, intentions
Myths, religions

Abstract function

Information
processing

Generaliged functions

-~} rReasons for proper function

Psychological mechanisms,
cognitive, affective

Purpose basis; goals and requirements

Physical functions
Physiologic
functions

Physical form

Anatomic structure,
"sculptures"

3.

Causes of malfunction i

Physical basis; capabilities, resources

Figure 4.3. The abstraction hierarchy used for description of human functional
properties. [Reproduced from Rasmussen (1983) with permission from IEEE.]

considered, representing the functional structure and state of this process, i.e.,
regarding what is controlled. But the operator will also need information from
the level above, which is related to the immediate purpose of the control
decision—i.e., why it is made—as well as from the level below—i.e., how a
decision can be implemented (see Figure 4.2). In a particular situation, a decision
maker will not be aware of the multilevel structure of the representation he is
using of the entire system. In making a decision, he will only have a certain part
of the system within his span of attention. To the decision maker, this part is
"the system" to be represented in the actual situation, and the rest of the system
is part of the "environment.” In considering only this more restricted "system" in
a decision, only the three levels of what (process), why (purpose), and how
(implementation) will be involved. However, when the focus changes in
accordance with the requirements of changing work situations, these three levels
of abstraction will generate the full abstraction hierarchy of Figure 4.1 by
recursion as the attention shifts, as it was discussed for diagnosis during
disturbance analysis.

Frequently, other persons will be part of the environment with which a
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particular person interacts, and for which he or she has to use Em:ﬁ Boa.m_m in
order to cope with unfamiliar situations. In order to prepare for the Emncmao:. of
models of humans, it should only be noted here that various levels of abstraction
can also be used to model human "functional” properties, and an w:.&omv. of the
levels discussed in Figure 4.1 is drawn for "models of man" in Figure 4.3. A
more detailed discussion can be found in Chapter 8.

In conclusion, the functional abstraction hierarchy representing Bmmnm-mma
relationships serves the purpose of a systematic description of the o@imﬁ in
which supervisory decisions are made. The other basic aspect to be considered is
the information processing strategies humans can use for the 93%9: m:mm.am of
the decision sequence and the performance criteria that noznou. their Q.,o_om in the
actual situation. In the next chapter, these aspects of a diagnostic task are
discussed from analysis of "real-life" performance, based on verbal protocols.

Chapter 5

Analysis of Strategies for
Diagnosis and Performance Criteria
in Real-Life Tasks |

In this chapter, the information process related to diagnosis will be considered.
The most complex data processing takes place when diagnosis is required during
disturbances of system operation. Today, this task depends on the performance of
human operators, but the trend is to use the data-processing capacity of
computers to support the task. To reach a propeshuman-computer cooperation,
it will therefore be necessary to study the diagnostic strategies that are actually
used by operators in different situations. From this result, one can generalize and
formulate a set of formal strategies that can be used as a basis for system design.
Furthermore, it is very important to analyze the subjective preferences and
performance criteria that guide an operator's choice of strategy in a specific
situation. Unless these criteria are known, it will not be possible to predict the
strategy that an operator will choose, faced with a specific interface design.

This implies the study of mental procedures used during real-life work
conditions for which the use of interviews and verbal protocols are suitable
tools. During the high season of behaviorism in psychology, there were serious
objections to the use of introspection and verbal statements. However, use of
verbal protocols to identify data-processing strategies during performance is not
based on introspection; one is not asking the person to turn his attention away
from the actual tasks toward his internal processes. One is just asking him to
express his intentions, thoughts, and needs (i.e., to externalize the internal
verbalization that he may use anyway).

The quality of the protocols that one can obtain depends very much on the
work conditions and the nature of the task. The diagnostic task aimed at repair
has a much more well-defined nature than the diagnostic phase of supervisory
control (see Chapter 3). Furthermore, it is very difficult to obtain a reasonable
number of good protocols from diagnosis in real-life plant operation due to the
stochastic and infrequent occurrence of the related events. It was therefore decided
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to perform the basic study of diagnostic strategies in an electronic instrument
repair shop (Rasmussen and Jensen, 1973, 1974). The usefulness of the
generalized results was later confirmed by an analysis of protocols from
diagnosis in computer systems and process plants, together with an analysis of
error reports from power plants.

The situation in the electronic maintenance group of the Risd National
Laboratory was deemed to be very suitable because there was a close personal
contact and working relationship between the people conducting the experiments
and the repairmen, and there was the natural interest of the maintenance group of
a scientific institute to be directly involved in a research program related to its
own professional methodology.

An Example

A discussion of the results of one analysis from a simplified example based upon
the main features of one of the actual cases will be used to illustrate the
approach. The case considered is one where a digital scaler displays two digits
simultaneously in one decade, but otherwise functions normally. Now the task is
to obtain a reference to the location of the faulty component from the response
of the system and by appropriate measurements.

In the present case, there is a close relation between the faulty parameter of the
system response (i.e., the fault in display of the second decade) and a well-defined
part of the system. The technician's interest will then be quite naturally limited
to the circuitry connected with the second decade. Further reference to the
location of the fault may now be obtained in different ways. It may be based
upon detailed observations of the actual faulty response and consideration of the
internal anatomy and functioning of the system. In the case under consideration,
a design engineer localized the fault to a specific resistor in the decoder directly
from the response, using his knowledge of the digital code and a diagram of the
circuitry of the decoder. This method can, of course, also be chosen by a trained
maintenance technician and, judging from textbooks for the training of such
personnel, some authors consider it to be the "intelligent” method, i.e., to take a
few, carefully chosen measurements and use the observations in careful reasoning
based upon functional understanding of the system.

Our observations indicate that a trained technician is most likely to choose
another method, i.e., that of scanning through the faulty decade by a rapid
sequence of good/bad checks of the actual signals against normal signals, which
are measured in one of the other decades, or which are found on the circuit
diagram. In this way, the fault may rapidly be localized to the decoding circuit.
In the circuit diagram, this circuit is seen to contain less than half a dozen
resistors. Therefore, rather than evaluate their function, it may be preferred to
scan through the resistors by good/bad checks with an ohmmeter. Thus, an open
circuit resistor is found.
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General Features of Diagnostic Performance

Although very simplified, this example illustrates some of the general features
of the procedures found in the data collected:

1. The basic feature of routines used may vary greatly in several respects. In
the example given above, the designer used only a few observations, but
employed complex data processing in his decision procedure. His
procedure is related to the anatomy and internal functioning of the specific
system and to the actual faulty condition. He treats several observations
simultaneously, and his procedure is informationally economic.

The trained technician uses many observations in a sequence of simple
decisions. His method is a general search procedure that is not dependent
upon the actual system or specific fault. He treats the observations
individually in a stream of good/bad judgment that is informationally
uneconomic, but fast.

2. The technician defines his task primarily as a search to find where the
faulty component is located in the system. He does not consider it to be a
problem-solving task, which involves explaining why the system has the
observed faulty response and understanding the actual functioning of the
failed system.

3. The procedures are organized as a mm&n:gm:ocm: a system that is viewed
as a hierarchy of units. The system is composed of a number of
subsystems: amplifiers, scalers, deflection generators, etc. Each subsystem
has easily identifiable units such as amplifier stages, flip-flops, and
oscillators, and these units have components, e.g., transistors, capacitors,
and resistors.

4. The general structure of the search can be broken down into a sequence of
search routines, which are used to identify the appropriate subsystem,
stage, or component. The structure illustrates how the technician attempts
to limit sequentially his current field of attention. He is constantly asking
the question of where to look next and thus tries to extract topographic
references from his observations.

S. A topographic reference from the observations is typically obtained in
three different ways depending on very different depths in the consideration
of the internal anatomy and functioning of the system.

Analysis of the protocols identified a number of such diagnostic subroutines that
can be distinguished by the type of information that refers the technician toward
the location of the fault. The strategies are discussed in detail in the following
sections.
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The Functional Search

In the functional search, the topographic reference is obtained from the normal
functional relationship between a feature in the system response and a specific
part of the system. A good example is troubleshooting in a TV receiver. The
repairman will scan the features of the picture in a stream of good/bad judgments
and turn his interest to the subsystem related to the faulty feature. If the picture
is too low, he will perform a search in the vertical deflection generator. The
functional search is quite naturally the opening move in complex systems
having subsystems with specific functions that are individually recognizable in
the overall system response. However, the routine may also be used later in the
procedure when the technician is faced with more complex data patterns such as
wave forms on oscilloscopes. .

The search is a special type of the topographic search discussed in the next
section. The information pattern is scanned and familiar features are judged
individually in a stream of good/bad judgments, and only results of judgments
are normally used to control the next activity. If a response feature is judged
faulty, attention is typically turned immediately toward the subsystem related to
that function, and a routine search is then performed in the subsystem.
Information related to the observed mode of failure of the function is used in a
very Cursory manner.

In not a few cases, the technician studies the faulty response in great detail,
but the information is not used to any large extent to control the search that
follows. Sometimes the information is recalled later in the record to confirm a
hypothesis found by routine search, and perhaps accompanied by a remark
indicating a "eureka feeling" when the hypothesis appears.

Faced with a multiparameter pattern of information, the technician normally
has a good opportunity to deduce not only rather precisely what is the cause of
the faulty response and where the fault is to be found, but also what sort of
search procedure will be the most efficient. However, one of the clear indications
found in these experiments is that information available is not used efficiently in
that way, even when faults were simulated to invite the use of shortcut methods
by functional reasoning and evaluation,

The Topographic Search

In the topographic search, reference to the location of the fault is obtained from
the topographic location of a measuring point. The system is scanned by a
sequence of measurements, and the observations are subject to simple, individual
good/bad judgments.

The search is normally a test of performance along a main signal path in the
relevant subsystem, The circuitry along the route is seen as a row of familiar
units (e.g., amplifier stages), and by a sequence of rapid judgments the stage is
localized in which the signal disappears or a faulty signal appears.
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When turning to a subsystem to perform a topographic search, normally very
little information from previous observations (e.g., the nature of the fault) is
carried over to assist in planning the search, The choice of the parameter to be
used in the search is very dependent upon those norms for judgments that are
immediately available. In some cases, the parameters chosen for the search
cannot lead to the location of the fault, and information clearly indicating this
may actually have been recorded by the troubleshooter prior to the decision to
start the search. However, the decision about where to look is often the only
connection with the previous search. This may seem very inefficient, but still it
should be remembered that a simple search of typically 5-10 measurements in a
very rapid sequence may very often prove successful. Therefore, in the long run
it may pay to take a chance and not consider every decision carefully.

In the records collected, it was found that the selection of the route and the
steps of the search sequence are generally based upon the wiring diagram in a
manual of the system. For this application, the diagram is not viewed as a
functional description of the system, but solely as a topographic map, showing
the information highways. Measuring points are chosen along the route of search
at locations where convenient norms for judgments are available (e.g., where the
diagram gives good reference data such as bias voltages or signal wave forms).
The search is performed as a rapid scan along the route chosen and no judgments
as to whether some of the steps will be informationally redundant seem to be
made. )

Literally speaking, all data collected a:&:m the search sequence are
immediately judged good or bad individually. For these judgments, the technician
needs some model or description of the normal state of the system that supplies
him with reference norms for each observation. The presence of a set of
convenient reference norms is often directly stated in the record as the reason for
the choice of the route and parameter used for the search.

If reference standards for the judgments are not otherwise available, the
technician has to work them out himself by deduction from his understanding of
the normal function of the circuitry, a task that is normally supported by the
wiring diagram, If he also has to plan the route for search from a functional
understanding of the circuit, he has to maintain mental models at two different
functional levels of the abstraction hierarchy simultaneously, which is a
considerable task. A model at one level is necessary to control the route of
search; this model has to be related to the signal or information flow and thus to
the function of the entire subsystem at the level of abstract function. Models at
the other level of physical function are needed to supply reference norms for the
individual judgments and thus have to be related to the detailed functioning of the
subunits along the search route. In that case, the procedure is slow and
hesitating, probably due to the considerable difficulty in maintaining models at
different levels simultaneously.

If the necessary reference data for the judgments are hard to find, the measuring
point or even the route may be discarded. Switching of attention to another route
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or field of search is often preferred to the effort needed to establish reference
norms by functional reasoning.

Search by Evaluation

Search by evaluation of the fault is used when the technician derives the
topographic reference from the actual faulty response. This derivation implies an
analysis of the information observed with respect to the specific instrument and
its actual state of operation. The progression in this transformation may be
illustrated as:

1. Observation (i.e., data observed describing the failed state).

2. Cause (i.e., what is changed in internal signals or functions).

3. Location (i.e., where the faulty component is that results in the specific
malfunction).

To be able to make such transformations, the troubleshooter has to use mental
models of the system, relating changes in internal signals, parts, or components
to the changes observed in system response. Clearly, such transformations will
be much more varied in their individual appearance than are the routine search
procedures. Also, the complexity of the transformations varies greatly from rapid
statements based upon recognition from previous cases to more complex
deductions based upon several parameters and careful consideration of the internal
system functioning and anatomy.

Such statements are generally expressed as recognition. The transformations
based upon conscious reasoning related to internal functioning of the system are
complex and difficult to keep pace with during verbalization, and the records
indicate only the surface of the activity. This fact, combined with the low
number of cases, allows only very general and subjective attempts at classifying
behavior, but at least two groups of procedures seem to be used.

In one type, the technician seems to use a hypothesis-and-test search. He is
working from inside the system outwards to the response in a way that could be
illustrated as: (a) Establish, by examination of diagrams or by memorizing, a
mental model of the normal system anatomy, its signals, and functioning. (b)
Then make a guess as to which signal or components might be involved in the
faulty response. (c) Modify the model accordingly and (d) evaluate the resulting
response pattern. (¢) Compare with the data observed to judge the relevance of
the guess. This sort of procedure is most clearly expressed when the hypothesis
is not a guess, but when the fault is found by another search procedure and the
result is tested against system response by functional reasoning.

In other cases, the troubleshooter is working from response data into the
interior of the system. The procedure looks like a mental topographic search:
from the response pattern and an understanding of the system, the absence of a
normal signal or system state along a chosen search route is deduced by
functional reasoning. The main difference from the normal topographic search
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is that the am,&, which are subject to individual judgment, are not measured
directly, but deduced from the system response.

Generality of Procedures and Depth of Supporting
System Knowledge

The mental data handling necessary in a cooperative human-machine endeavor
implies that the human has available some sort of mental model of the system
and a strategy to use this model to process observed data. The mental model as
well as the strategy may be supported by external means such as diagrams,
drawings, instructions, and rules.

The previous discussion indicates that the mental strategies used in
troubleshooting vary greatly with respect to the depth of system knowledge
needed as support. At one extreme, technicians have strategies that are based
upon only very general professional training and experience; at the other, they
have strategies that call for very detailed knowledge of the specific system and
the laws controlling its internal functioning. The experiment discussed here
demonstrates the technicians’ great ability to get around their search problem by
means of a sequence of general routines mostly depending upon their general
professional experience and background.

In the preferred version of the topographic search, the search procedure
consisting of a sequence of good/bad judgments is of very general applicability.
The model of the system used for the search has only to supply an appropriate
route for search and reference data for the technician's judgments. If a circuit
diagram is available that clearly indicates the main signal path and gives
sufficient data for normal bias voltages and signals, the mental model needed has
only to support the topographic correlation between the diagram and the system.
The model need only be based upon professional experience with the visual
appearance of typical components and circuits and with the normal layout of the
circuitry.

The records also show a clear ability to base a functional search upon very
general mental models of the system. The technician will scan familiar features
in the response by a sequence of good/bad judgments. If a faulty response feature
is found, a general "block-diagram understanding” of the system can refer to the
related subsystem. If this is a topographically well-defined part of the system,
attention will immediately switch to this system in order to perform a routine
search. Even when such faults were simulated so that the system response, as
judged by the planners of the experiments, clearly indicated possible shortcut
methods if the internal functioning of the system was considered, the technicians
normally used their general search routines.

Also, in the search by evaluation of the actual fault mode, the records show a
pronounced preference for the use of transformation models that are not closely
related to the specific system, but based upon general experience. Thus, an
interesting feature of the procedures found is the pronounced ability demonstrated
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by the technicians to produce overall strategies based on general search routines
that are not closely related to the specific instrument. Scanning a high number of
observations by simple procedures is clearly preferred to the preparation of
specific procedures worked out by studying or memorizing the internal
functioning of the system.

Redundant Observations, Impulsive Decisions, and
Mental Load

Other fundamental aspects of the procedures quite naturally follow the preference
for general methods not closely related to the specific system or its actual fault.
A general procedure cannot, of course, be based upon very detailed information
found in the observations or measurements. In particular, general methods
cannot take advantage of information contained in specific relationships between
several observations. This is clearly indicated by other features of the procedures
found in the protocols.

The functional and the topographic searches appear as functional or
topographic good/bad mappings of the system. Practically speaking, all
observations are immediately judged to be good or bad, and only the results of
the judgments normally control the next activity. In some cases, the parameters
chosen for a topographic search cannot locate the fault, and information clearly
indicating this may be mentioned by the technician prior to his decision to turn
to that particular search. Often, only the decision about where to look connects
the routine to the previous search, During the search routines, no attention is
paid to whether a measuring point will be informationally redundant or not.

The dependence of the procedures upon individual observations and judgments
corresponds to a general tendency found in the protocols. Instead of making
overall plans for the search, the tendency is to use rapid or impulsive decisions
all along the search, based only upon the information observed at the moment.
"This gives, of course, a very individual pattern to the different overall procedures
found in the different cases. A main rule for the structuring of the procedures
seems to be to follow "the way of least resistance.” As soon as an indication is
found that a familiar, general search routine may be applied, this is chosen
without considering a possible, more efficient ad hoc procedure. There seems to
be a "point of no return" in the attention of the troubleshooter the moment he
makes such a decision, as discussed by Barlett (1958). Although more
information indicating possible shortcut methods or important hints for the next
search is clearly available from the observation and is mentioned by the
technician, the decision prevents any influence from such information; hence, the
next search is a routine, starting from scratch.

The basic difference in the amount of data needed for the different search
strategies, and in the complexity of the mental data handling task they impose
upon the technician, constitutes important features of the various strategies
available to the techncian. There is a complementary relation between these
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aspects of the routines. The very general procedures are based upon a stream of
good/bad judgments, and call for a large number of observations that are treated
individually and then left behind. The system is mapped in a rather systematic
way by such judgments, and this seems to be a convenient way of remembering
the results of past activities. A general impression is that during his search the
technician is well aware of his previous judgments. However, the originally
observed data are discarded without subsequent recall, although in some cases
they seem to build up—unconsciously—a sort of "feeling"; later in the procedure
this feeling can initiate hyotheses that appear as "good ideas." The very specific
procedures based upon system anatomy and functioning require only a few
observations, but the information handling is complex, and simultaneous
treatment of several observations and a considerable carry-over of information
may be needed in the short-term memory between the individual steps of the
procedure. :

This discussion focuses the attention upon the mental load on the technician
during the task. As discussed thoroughly by Bruner et al. (1966), the mental
strategies chosen by the technician may be strongly influenced by the constraints
he meets in his limited capacity for short-term memory and inference. The
multiple task nature of troubleshooting may make this an important constraint.
On a time-sharing basis, the technician has to formulate the route for search
through the system by use of a diagram or by reasoning, to locate the route in
the real system, to manipulate measuring dgvices, to establish norms for his
judgments from diagrams, experience, or functional reasoning, and to keep track
of his overall search.

Several indications of high cognitive strain are found in the data. A good
example is a topographic search in a digital system performing logic operations,
in cases where the technician has to plan the route and produce reference standards
for judgments by deduction from an understanding of the functioning of the
circuitry. As discussed earlier, he then simultaneously has to maintain mental
models at different functional levels, and this is a considerable task. In this case,
the procedure becomes slow and hesitating, and in observation the person seems
to be very insensitive to hints that would normally be familiar to him.

The records give several indications that difficulties in one of the subtasks tend
to cause simpler procedures to be used in others. This should be taken into
careful consideration when generalizing from clearcut laboratory experiments
with special equipment that eliminates all secondary subtasks.

Fixations in Routine Search Procedures

The records indicate that technicians have a great deal of confidence that the
general search routines will ultimately lead them to the fault. If, for instance, a
topographic search turns out to be unsuccessful and fails to result in a local
search (which occurs in more than half of the attempts), the preferred decision is
to repeat the search by another parameter. If this search proves unsuccessful too,
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there is a pronounced tendency to return to a search performed earlier. This
seems, however, to be a repetition with careful judgments of the observations
rather than a more careful evaluation of the actual faulty function. It should be
stated that this is not necessarily due to inadequate ability to use functional
reasoning, but more likely to the fact that these methods are inherently attractive
inasmuch as they consist of fast sequences, which are normally successful in the
end. The behavior may be compared with that of most car drivers who prefer,
when moving around in a big city, to drive along familiar main streets rather
than preparing individual shortcut routes by means of a city map.

If the general search routines ultimately turn out to be unsuccessful in special
cases, the technician often seems to "be in trouble.” When in trouble, there is a
tendency to rely on "good ideas” that admittedly seem to appear in most cases
after a break or a period of confusion that serve to break fixations. Such good
ideas are difficult to trace. Sometimes, the technician returns to deviations met in
a previous search, but passed over without further consideration; sometimes he
expresses "a feeling that something is wrong around here"—a feeling that has
grown from slight indications during earlier search sequences. In some cases,
important information has been recorded several times during routine search
without triggering his attention until a period of confusion sets in.

When in trouble, there seems to be no tendency to consider it worthwhile
studying the functioning of the circuitry in greater detail by means of manuals or
diagrams. During a discussion of the strategies found in the experiment, the
technicians stated that as a rule they found the general search routines successful.
Apart from the need to obtain "block-diagram understanding” of the system, it
was not considered worthwhile studying the internal functioning of the circuitry.
"If you run into trouble, betier take a break, wait until the next day, or discuss
the problem with a colleague.” Asked if they could suggest types of cases for
which they would find it worthwhile studying the internal functioning of the
system in detail, the technicians said that it would be the case if measurements
of manipulations could have serious consequences, as in live warning systems—
"when a siren is at the end of the wire" or if the working conditions on site are
unpleasant, e.g., owing to foul odors as in chemical plants. In other words, it
would be the case if "costs" related to observation were high. A later test case in
connection with the level control system in a radioactive waste tank system in
fact resulted in a very "rational" procedure based upon a careful functional
evaluation of the system response in advance and very few measurements on site.

It was also suggested to the technicians that they should use functional
reasoning when in trouble in the normal repair shop environment. This did not,

however, cause any significant changes in the procedures used in the records
made thereafter. The procedures seem to be so highly ingrained that they are
difficult to change by suggestion of better procedures. When a troubleshooting
task is running, a skilled technician seems to be completely absorbed in the task,
and he does not "remember” the suggestion when difficulties arise. The test case
with the waste tank system may indicate that, to change a procedure, the
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technician has to perceive the task in advance as one calling for a special search
strategy.

Subjective Formulation of Task and
Performance Criteria

Important aspects to consider are the subjective formulation of the task and the
R_‘.mo::msoa criteria in the choice among the various search strategies available.
This aspect is especially important because the formulation of the trained
technicians may be basically different from that of a design engineer, who is,
after all, very often responsible for preparing the working conditions for
technicians in the form of layouts of systems, instructions, and operating
manuals and diagrams.

The experiment discussed here clearly indicates that the task is defined by the
technicians primarily as a search to find where the fault originates in the system.
They are faced with a system that they suppose has been working properly, and
they are searching for the location of the discrepancy between normal and
mmmmnmé states. They do not see the task as a more general problem solving task
in order to understand the actual functioning of the failed system and thus to
Q.GEE why the system has the observed faulty response. On the other hand, in
Em normal work in a development laboratory, a design engineer does not think
in terms of standards for normal operation, but cgnsiders it his task to understand
the basic functioning of the system and to test observations made during his
experiments against his conceptual intentions.

Are the procedures found in the protocols rational? What is rational depends
upon the performance criteria adopted by the person. Normally, a reasonable
criterion for a maintenance technician is to locate the fault as quickly as
Bmm.mzm. and only in special circumstances will his criterion be that of
B_E_ENEm the number of measurements as discussed above. From this point of
view, the procedures found in our records are rational because in most cases the
faults were found within very reasonable time. (A good demonstration of the
difference in troubleshooting time involved in the normal routine cases and
nwEmm for more elaborate methods is given in Wohl's (1981) analysis of time
Bmﬁ.&ccaos in field repair data.) With his theoretical background, the system
designer may quite naturally value as rational the "elegant” deductive procedure,
which is informationally very efficient and based upon a few observations, but
this criterion is not the appropriate one on the basis of which performances in
real-life maintenance work can be judged.

In E.a present context of supervisory control, this analysis of troubleshooting
strategies serves to identify several diagnostic strategies that have very different
requirements with respect to information and processing resources. It also
illustrates the kind of subjective performance criteria that may control the choice
of strategy in the actual situation.



Chapter 6

Generalized Strategies for State
Identification and Diagnosis

Based on the results of this study of mental strategies in real-life diagnosis, it is
now possible to generalize, and to propose a set of possible strategies that can be
used for design of operator support systems in process plant control. In this
section, the typology of such a set of possible strategies will be developed
(Rasmussen, 1981). i

As discussed in the previous chapter, the object of the diagnostic search in a
supervisory control task may vary: to protect the plant, the search may
concentrate on patterns of critical variables related to stereotyped safety actions;
to compensate for the effects of the change, search for alternative functional
paths bypassing the effect of the change will be appropriate; to restore the
normal state, search in terms of the initiating physical change is necessary. In
consequence, the diagnostic task implies a complex mental process that very
much depends on details of the actual situation as well as the operators’ skill and
subjective preferences.

Fortunately, to support systems design, it is not necessary to have detailed
process models of the mental activities that are used by the operators. System
design can be based upon higher-level structural models of the mental activities
that the operators can use and their characteristics with respect to human
limitations and preferences. If such a design is successful, operators can adapt
individually and develop effective data processes.

In the system design context, a description of mental activities in information
processing concepts is preferable because it is compatible with the concepts used
for design of the control equipment and of the information processing and
display. For this purpose, the human data processes can be described in terms of
data, models, and strategies. Data are the mental representations of information
describing the system state that can be represented on several levels of
abstraction, which in turn specify the appropriate information coding for the data



38 Information Processing and Human—Machine Interaction

presentation. Models are the mental representation of the anatomic or functional
structure of the system at the level of the search. The model can be directly
related to the appropriate display formats. Strategies are here taken as the higher-
level structures of the mental processes, and they identify the set of models, data,
and tactical process rules that together may serve a particular task.

Within this framework, the operators' actual performance can be described in
terms of tactical rules used to control the detailed processes within a formal
strategy, together with the rules representing the shifts between the formal
strategies that take place. During real-life performance, such shifts frequently
occur when difficulties are met in the current strategy, or when information is
observed that indicates immediate results from another strategy. Because the
shifts are controlled by detailed person- and situation-dependent aspects, they
result in the very individual course and impulsive appearance of the mental
processes that were discussed in the previous chapter.

Typology of Diagnostic Search Strategies

In general, the diagnostic task implied in supervisory systems control is a search
to identify a change from normal or planned system operation in terms that can
refer the controller to the appropriate control actions. Such a diagnostic search
can be performed in two basically different ways.

A set of observations representing the abnormal state of the system-—a set of
symptoms—can be used as a search template to find a matching set in a library of
symptoms related to different abnormal system conditions. This kind of search
will be called symptomatic search. On the other hand, the search can be
performed in the actual, maloperating system with reference to a template
representing normal or planned operation. The change will then be found as a
mismatch and identified by its location in the system. Consequently, this kind of
search strategy was called topographic search in the previous chapter.

The difference between the two kinds of search strategies is related to a basic
difference in the use of the observed information. Every observation implies
identification of an information source and reading of the content of the message.
By symptomatic search, reference to the identity of system state is obtained from
the message read; by topographic search, reference is taken from the topographic
location of the source, whereas the messages are subject only to good/bad
judgments that are used for tactical control of the search.

Symptomatic Search

The topographic search is performed by a good/bad mapping of the system
through which the extent of the potentially "bad" field is gradually narrowed
down until the location of the change is determined with sufficient resolution to
allow selection of an appropriate action. The domain or level in the abstraction
hierarchy in which the search is performed will vary. The search can be
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performed directly in the physical domain but, in most cases, the search is a
Bmsm& operation at a level of abstraction that depends upon the immediate goal
and intention of the controller and upon the form of the reference map or model
available. Also, the resolution needed for the final location depends upon the
actual circumstances.

The topographic strategy is illustrated by the information flow graph of Figure
6.1. The main elements of the strategy, which will be considered in more detail,
are the model of the system used to structure the search; the kind of data used to
represent the actual, failed plant state and the normal, reference state; and finally,
the tactical process rules used to control the search sequence.

dﬁ topographic search is performed as a good/bad mapping of the system,
which results in a stepwise limitation of the field of attention within which
?nrm.n search is to be considered. The search depends on a map of the system
that gives information on the location of potential sources of information for
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which reference information is available for judgments. The map is a model that
identifies the potential sources of observations relative to the topology of the
physical system itself.

The search sequence is based on a set of typically heuristic rules serving to
limit the necessary field of attention. If different external functions can be related
to separate internal parts or subsystems, a good/bad scan of external functions
effectively identifies the internal field for further search. If a faulty input/output
relation is found, the related causal route should be searched, e.g., by the half-
split heuristic. In the pure form, the tactical search decisions are exclusively
based on the one bit of information obtained from the good/bad judgment of the
individual observations.

The information available in observations is used rather uneconomically by
topographic strategies because they depend only upon good/bad judgments.
Furthermore, they do not take into account previously experienced faults and
disturbances. Therefore, switching to other strategies may be necessary to reach
an acceptable resolution of the search or to acquire good tactical guidance during
the search. However, the topographic search is advantageous because of its
dependence upon a model of normal plant operation, which can be derived during
design or obtained by data collection during normal operation. Consistency and
correctness of the strategy can therefore be verified and, because the model does
not depend on models of malfunction, it will be less disturbed by multiple or
"unknown" disturbances than strategies based on symptoms.

Symptomatic Search

Symptomatic search strategies are based on the information content of
observations to obtain identification of system state, instead of the location of
the information source. The search decisions are derived from the internal
relationship in data sets and not from the topological structure of system
properties. In principle, a search is made through a library of abnormal data sets—
"symptoms” ~to find the set that matches the actual observed pattern of system
behavior. The reference patterns can be collected empirically from system
maloperation or derived by analysis or simulation of the response of the system
to postulated disturbances. Furthermore, reference patterns can be generated on-
line if the diagnostician has a functional model available that can be modified to
match a current hypothesis about the disturbance.

When the diagnosis is performed in the data domain by a search through a
library of symptom patterns, it has no logical relation to system function. The
result is directly the label of the matching symptom pattern, which may be in
terms of cause, effect, location, or the appropriate control action itself.
Depending upon the structure of the controller and its memory, the search can be
a parallel, data-driven pattern recognition, or a sequential decision-table search, as
illustrated in Figure 6.2.
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Pattern recognition plays an important role in human diagnosis; it can
effectively identify familiar system states and disturbances directly, but it is also
frequently ‘used during topographic search to guide tactical decisions.
Recognitions are then typically based on more fuzzy or general reference
symptoms in terms of generic fault patterns referring to types of function or
physical part, such as noise characteristics, instability, or forms of nonlinearity.

Decision-table search depends upon a set of tactical rules to guide the search
that can be based on probability of occurrence, a hierarchical structuring of the
attributes (like Linné's generic system for botanical identification as used in field
guides), or functional relations, stored as fault trees, etc. Human diagnosticians
would probably use a kind of mental decision table search for verification of
more ambiguous recognitions,
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Rasmussen (1981) with permission from Plenum Publishing Corp.]

If a search is based on reference patterns generated on-line by modification of a
functional model in correspondence with a hypothetical disturbance, the strategy
can be called search by hypothesis and test, as illustrated in Figure 6.3. ,_.,:m
efficiency of this type of search depends upon the tactics of generating
hypotheses. Typically, in human diagnosis, hypotheses result from uncertain
topographic search or fuzzy recognitions. . . :

Symptomatic search is advantageous from the point of view opw information
economy, and a precise identification can frequently be obtained in a one-shot
decision. One serious limitation will be that a reference pattern of the actual
abnormal state of operation must be available, and multiple faults and
disturbances may be difficult to take into account. Reference sets must be
prepared by analysis or recorded from prior occurrences, or the reference sets can
be generated on-line by means of a functional model of the system that can be
modified on occasion to simulate the abnormal system state in accordance with
the current hypothesis.
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Resource Requirements of the Diagnostic Strategies

The information flow maps of the diagnostic strategies shown in Figures 6.1-6.3
represent the structure of strategies only, together with information about
necessary data-processing models. Because they do not contain information on
the particular data-processing sequence that will be used in a specific situation,
they can be used to represent a whole family of diagnostic processes typical of
classes of diagnostic situations. This means that they are well suited to serve as
the basis for interface design and human-computer task allocation. Task
allocation implies the matching of the resource requirements from the different
strategies with the resources available to the system designer, the human
operator, and a process control computer for coping with the diagnostic task
during different situations. In this section, the resource requirements of the
different strategies will be discussed in some detail in order to illustrate the kind
of design decision that must be made.

Consider first the topographic search, which is basically a good/bad mapping
with reference to a topographic map of the system supplying reference data for
judgment. The proper level of topological representation and hence the nature of
reference data and observations depend on the immediate control task. For overall
control of coolant inventory and energy flow in a power plant, a representation
of the mass and energy flow topology will serve the purpose of state
identification in terms of deviations from specified operational state. For fault
location in a system, a topological representition at the level of physical
function identifying components and their individual function is necessary. With
respect to resource requirements, an important feature is that the search is based
on a model of the normal functional topology and state, which is independent of
the actual situation, although, as we have seen, different representations of the
topology may be appropriate for different situations. However, a proper set of
reference models can be prepared in advance by the systems designer, either
analytically or by simulation, or it can be developed by measurement upon the
operating plant itself. Using the process computer for data collection and
analysis can lead to a currently updated reference model of normal state, not only
serving as a reference during acute diagnostic situations, but also for detecting
gradual changes in performance.

The key process of the diagnostic search is the judgment of discrepancy
between the actual state and the target, i.e., the normal state, at the relevant level
of functional representation. The judgment itself is a simple process. However,
preparing information for the search implies information processes posing a high
demand on processing and memory capacity: the proper reference model must be
selected and updated from information about the operational regime and the actual
system configuration with respect to switching and valving. Then, measured data
from the system should be integrated with information that can be used for the
good/bad judgments of the relevant levels of topological representations. This
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means that the physical variables measured in the system are only directly useful
at the lowest levels of physical function. For search implied in supervisory
control of process plants at, for instance, the level of mass and energy topology,
all the available data from the system should be used to derive information about
flows and levels in the mass/energy flow structures and balances. In a similar
way, equipment that makes it possible to trace information flow, rather than
signal flow, through an information processing system, is useful for
troubleshooting purposes. The reference for judgment can, for instance, be
recorded "signatures,” i.e., normal information patterns, along the paths. Since
this preparation of information for topographic search implies well-structured
processes with considerable requirements for processing and memory capacity,
the task is well suited for computers.

The topographic search can be based on various search tactics that will lead to
different resource requirements. The search can be based on judgment of the
magnitude of state variables directly. If judgments along a flow path of
information, energy, etc., are used, the search is similar to the topographic
search used for electronic troubleshooting discussed earlier. If judgments of sets
of variables related to specific functions or parts in the system are used, the
search is similar to the functional search discussed for troubleshooting. Given a
proper topological map and proper reference data, this search can be very efficient
with human judges. In complex process systems, proper topological displays
with data arranged for immediate visual comparison can be generated by
computers, leading to low resource requirements on the part of the human
operator. However, search by direct judgment of the magnitude of variables can
lead to difficulties, for instance, in case of feedback loop effects, and it can be
difficult to distinguish between disturbed and disturbing functions. Therefore,
more elaborate search tactics should be considered, in particular when computer
support is possible.

Very effective strategies can be developed if they are based on relationships
among variables that are invariant with the detailed operational state and,
therefore, with the magnitude of the individual variable. A simple case of search
based on state-invariant relationships has been mentioned in Chapter 5; a
technician used an ohmmeter to find a faulty resistor. Search by relationships is
more complex if a topographic search in a flow topology is based on
conservation laws by checking mass or energy balances rather than flow
variables. Lind (1981) has proposed a systematic search strategy based on
inferences in the flow topology and has used programs inspired by artificial
intelligence (AI), such as PROLOG, for computer-based diagnosis. Because his
approach aims at identification of changes at a high level of abstraction in terms
of deviations from normal flow topology, dynamic properties of the system have
not been considered. A systematic topographic search at the level of physical
function and based on a reference in the form of the normal dynamic properties of
equipment or functions has been proposed by Sheridan. This approach is,
however, only aimed at identification of the location of the initial disturbance
(Sheridan, 1981; Sheridan et al., 1982).
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In the case of diagnosis of a system that is not in operation, a very effective
topographic search can be performed by forcing the system through a sequence of
properly chosen operational states, test states, which affect various functions of
the system in different ways and in properly selected combinations, and for
which reference models can be prepared. Administration and evaluation of the test
results then depend on logical, combinatorial arguments. Computer-based
support for such diagnosis in complex systems like the Apollo space system has
been used (Furth et al., 1967; Wohl, 1981).

All the topographic strategies depend on search with reference to a model of
normal function and are therefore well suited for identification of disturbances
that are not empirically known or that the designer has not foreseen. However,
some of the more elaborate search procedures are based on evaluation of
quantitative relationships in sets of variables and/or logical combinatorial
arguments for which human operators have only limited resources. Computer-
assisted topographic diagnosis therefore seems to be a promising area for further
development.

The symptomatic search strategies are, in general, very information-economic,
but they can only be applied when a library of symptom procedures is at one's
disposal. Depending upon the source of reference patterns available, the
wwamsamao search takes different forms with very different resource
requirements,

State identification and diagnosis by data-drivea pattern recognition represents,
in particular, the human operator's perceptive recognition of familiar patterns,
and will be the normal way to associate a situation to the related human
activities. The requirement for conscious data processing is low, provided the
necessary data are available in a format suited for immediate perceptual
recognition. In automatic equipment, data-driven recognition is used in the
traditional, hard-wired safety system, which releases protective actions when a
predetermined set of measured variables exceeds the trip limits.

Decision-table search depends on the availability of a library of symptoms that
are used as templates in a search for a match with the observed data. In the table,
the symptoms are entries to information related to the identified state. This
information can be in terms of the root cause of a disturbance, statements of the
task to pursue, or directly in terms of the procedure to follow. The decision table
can be present as a kind of association matrix in the memory of a human
operator or as a proper decision table in a process computer.

Whether the output from the table takes the form of a state identification, a
task prescription, or a procedure directly depends on experience from the
operator's previous cases or the control designer's ability to predict the state and
make decisions on the proper response. That is, the decision table will be a
record of the results of previous decisions by the operator himself or by the
designer. How much of the decision sequence of Figure 2.1 the designer can
prepare in advance depends on the invariance across occurrences of the class of
situations considered, and on the designer's ability to foresee the relevant
conditions for decisions. What is not included in the designer's decisions, and
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hence in the decision table, must be left to the operator's decision during the
actual situation. This can lead to rather a complex cooperation between designer,
computer, and operator, such as shown in Figures 6.4 and 6.5. Furthermore, if
the designer does not have a well-structured approach, the role of the operator and
a computer may vary considerably with the plant situation, and the question of
responsibility will be very difficult to settle.

The requirements for processing and memory capacity for decision-table
storage and use is very high because of the need to represent a high number of
special cases. Therefore, only for situations in which operators meet regularly
during work or at training simulators is it possible to rely on human memory
and know-how. Less frequent but well-structured situations can only be covered
if external support is available for information storage and retrieval.
Traditionally, operators in process plants have been supported by event-related,
written procedures that leave the event identification to the operators themselves.
However, in some industries like nuclear power, a trend is found toward support
in the form of symptom-based procedures including the diagnostic phase.
Likewise, several attempts have been made to automate state identification by
means of computers that store the designer's analysis of fault patterns in
decision-table format (Lees and Andow, 1981). However, it is difficult to
evaluate the response of such systems to complex situations. For major
disturbances of system operation, it is generally a problem for a designer to
generate proper reference symptoms, because this requires analysis or simulation
of the system outside the normal operating ranges and configurations.

A functional model for analysis or simulation of abnormal function is also a
major requirement of the search by hypothesis and test. A number of problems
are related to the development of a functional model for this purpose. First,the
model must represent the abnormal function of the system outside the operating
ranges and the configurations that are normally considered by the models used for
system design and control studies. Such models are structured as a network of
quantitative, mathematical relations among physical process variables, and these
relations must be known for all the relevant states of maloperation. For on-line
generation of symptom patterns during a disturbance, the model can be
implemented by a process computer and updated according to the actual
hypothesis. An advantage would be that the model could not only be useful for
hypothesis testing, but also to predict, in accelerated time, responses to intended
control actions. However, in addition to the problem of model range, it can be
difficult to update the model to correspond to the prevailing hypothesis, in that
there will generally be a very complex mapping from physical changes of the
system onto the corresponding changes in model structure and parameters. In
particular, this is the case when model updating reflects a hypothesis formulated
by a human operator, because this hypothesis will not be in terms compatible
with a quantitative computer model.

Functional reasoning by humans will not be based on a model in terms of
relations among variables, but in complementary terms of objects and

Strategies for State Identification and Diagnosis 51

components, as well as states and events, as discussed in Chapter 10. Mapping
of a hypothesis using this kind of model is much simpler, but the symptom
patterns supplied by human reasoning may be too uncertain and qualitative for a
reliable test against measured data. Ultimately, human operators may therefore
choose to test their hypothesis by correcting the systems accordingly. While this
may be an effective strategy in a workshop environment, it may lead to further
complication of the situation in process plant control if the hypothesis is wrong.

For human-computer cooperation in a task such as search by hypothesis and
test, the complementary nature of functional models suited for use by the two
parts should be considered, and the techniques used in Al for computer
implementation of qualitative reasoning (Brown and DeKleer, 1981; Williams et
al., 1982) may be useful for design of intelligent interfaces.

Training Requirements

In general, operator training is taken care of separately from systems design by
training specialists. This is most unfortunate, particularly in considering future
systems where interface and display formats are matched to specific tasks and
situations. To do this, the designer has to consider the mental strategies that will
be adopted by operators and the resources required in terms of background
knowledge. Such background knowledge must include the relevant models of
system properties, which very much depend on the strategy chosen for a given
task. Training can be considered a way to guide operators toward development of
the mental strategies and models chosen for interface design. Design of training
schemes must therefore be integrated with the other aspects of system design.

There has recently been a trend in this direction. Shepherd et al. (1977) have
studied the influence of the different content of training programs upon
diagnostic performance. They found that operators trained by the rules obtained
from experienced operators were superior in diagnosis of faults not previously
encountered compared with operators trained in plant theory. These in turn were
superior to operators trained by practicing diagnosis from symptom patterns.
These differences can be readily explained, inasmuch as the different training
methods support the use of different strategies (i.e., topographic search,
hypothesis and test, and recognition, respectively), which have different
characteristics with respect to identification of new fault types.

Topographic search in abstract flow structures is very similar to rule-based
search in "context-free" networks described by Rouse et al. (1980). It is
interesting to note the observation of Rouse that the rule-based model describes
the context-free strategies reasonably well but breaks down in context-dependent
experiments. This is probably because the context initiates shifts to
symptomatic strategies that are depending upon the individual subject's prior
experience. Rouse and coworkers have later (e.g., Rouse, 1983) defined expert
diagnosticians as those who know when it is time to leave the symptomatic
search in favor of topographic search in unfamiliar cases. An approach to
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training of general diagnostic skills, based on training in varying problem
contexts, which supports the use of topology-related rather than symptom-related
strategies, seems to be promising (Rouse, 1982a,b).

The conclusion here is that the design of training schemes for operators must
be based on identification of the mental models and strategies that will be
effective for the tasks the operators are supposed to perform. These models and
strategies must then be used for integrated design of communication interface and
training schemes. An illustrative review of the resource requirements of the
various diagnostic strategies is given in Table 6.1.

Table 6.1. Difference in Resource Requirements of the Various Diagnostic
Strategies Which Makes Possible a Resource-Demand Matching by Proper Choice
of Strategy. Features not filled in are either not typical, being dependent on
circumstances, or not relevant. [Reproduced from Rasmussen (1981) with
permission from Plenum Publishing Corp.]

Strategy
Topographic Decision Hypothesis

Performance factor search  Recognition table and test
Time spent — Low - -
Number of observations High Low - Low
Dependency on pattern perception — High - —
Load upon short-term memory Low Low High High
Complexity of cognitive processes Low Low — High
Complexity of functional model Low - - High
General applicability of tactical rules High — - Low
Dependency on malfunction experience Low High — Low
Dependency on malfunction preanalysis - — High -

Chapter 7

Design of Supervisory
Control Systems

The introduction of new technology such as computer-based information
processing necessitates a reconsideration of the basis for design of industrial
control systems. A gradual updating of previous design in response to
operational experience is very likely to lead to systems that are suboptimal and
unnecessarily complicated. As an example, the use of computers to analyze
alarm signals in process plant control rooms has been introduced to avoid
overload from the high number of alarms, which in turn are a result of the
traditional one-sensor-one-indicator technology with normal range monitoring of
measured variables individually.

A supervisory control system is basically a feedback system with the task to
monitor the actual operating state of the system and to keep it within the
specified target domain. As is the case for any feedback control system, the
design must be made without knowledge of the detailed nature of the disturbances
with which the system should cope. The design must be based on the
identification of the categories of disturbances and control tasks, and on
consideration of the functional resources necessary for the system to be able to
cope with these categories. This is particularly the case for systems with highly
adaptive features, such as supervisory control systems that include human
operators.

This section considers how the categories and models discussed in the previous
sections can be used to formulate the control requirements of the systems and
identify the possible strategies that can be used as control algorithms by the
supervisory control system. This kind of analysis is necessary to bridge the gap
between the traditional tools and methods of control system designers and the
recent results of research within cognitive science. Unless the control systems
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designer also identifies the set of information-processing strategies that will meet
the control requirements, he will not be able to ask meaningful questions of
cognitive science concerning human capabilities and preference for the interface
design. A possible way to structure such a systematic design process aiming at
introduction of advanced information technology is discussed in the following
pages.

During the design of the physical process system, the functions of the system
and their physical implementation are developed by iteratively considering the
properties of the system at the various levels of the abstraction hierarchy and in
increasing degree of detail, as shown in Figure 7.1. As the degree of physical
detail increases during design, so does the number of degrees of freedom in the
functional states. The constraints necessary to maintain operation within the
specified target domain must therefore be identified by the designer. In this
way, the desired states of functions and equipment will be identified
during design at different levels of abstraction, and the necessary control
constraints will be identified in terms of the conceptual framework related to the
individual levels. In general, a skilled designer will immediately be able to
identify suitable and familiar control system concepts. However, when new
technology is to be introduced for control implementation, it is necessary to
develop a consistent description of the total control system function in a
uniform, device-independent terminology. This means that the control
requirements identified at the different levels must be considered together in terms
of device-independent information processes.

The control requirements of the system are derived from the necessary relations
between the possible system states, the specified target states, and the actions
required to maintain control of the system. For a device-independent formulation
of the information processes involved in supervisory control, the decision
sequence of Figure 2.1 can be used. Depending upon the control task allocation,
the different phases of the decision sequence will be performed by the designer
himself, the system operator, or the process computer.

For well-structured situations, for instance, start-up and shutdown sequences,
the designer can carry through all the decision steps, except the execution itself,
and store the design in a decision table in a computer or in a set of operational
instructions for an operator. For many other situations, the designer may be able
to plan proper tasks and procedures, for instance, for system protection, but not
be able to foresee the related disturbed system states. In this case, diagnosis must
be performed on-line by operator and computer in various degrees of cooperation.
Finally, situations occur where all decision phases rely on the human operator,
but because the necessary information must be supplied to the operator, his
preferred strategies and related information needs must be considered when
designing the interface.

In all three cases, there will be an intimate cooperation between designer,
operator, and computer during supervisory decision making, as previously
illustrated in Figures 6.4 and 6.5. Even when the computer performs automated
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Figure 7.2.  Phases in a systematic design of supervisory control systems.

control actions based on the designer's analysis, the operator will have to
monitor performance. Therefore, he must be supplied with information about
system states and about the designers' intentions in order to be able to verify the
decisions taken by the computer, through use of his own preferred decision
strategy.

In conclusion, design of supervisory control systems based on advanced
information technology involves several distinct phases related to the concepts
discussed in the previous chapters and shown in Figure 7.2. This figure
illustrates a clear, well-ordered design sequence for sake of clarity. The real design
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task will, however, be a complex iteration back and forth between different
phases. Nevertheless, this will not affect the main lines of the present argument.

First, the control requirements of the system are identified in terms of target
states related to different operation regimes, together with the relevant categories
of possible normal and disturbed states. This identification must be performed at
each level of the abstraction hierarchy to develop the context of the control task,
including identification of task specification (why) from the level above, and of
the available resources (how) from the level below the particular task level.

Second, the decision task necessary to meet the control requirements is
analyzed in terms of a device-independent framework like the decision ladder of
Figure 2.1. During the analysis, the conditions for the different decision phases
are evaluated in the light of the manning and automation policy of the particular
operating organization and the safety requirements imposed. Then, one evaluates
the extent to which stereotyped bypasses in the decision sequence can be analyzed
and implemented as automatic functions in order to simplify the decision task
during actual operations for well-structured and foreseen situations. This phase
determines the functions to be taken care of by the automatic process control
system,

The third stage is a cognitive task analysis and design serving to identify and
describe the possible information-processing strategies that can be used for the
various phases of the decision sequence involved in the supervisory control task.

Although the automatic control system typically takes care of all the functions
during normal operation, routine start-up and shutdown sequence control, and
protective actions in the more stereotyped and foreseen disturbances, the
supervisory control is dependent on the operating staff, who monitor the
automatic control functions, adjust for optimal coordination, and take over
control when disturbances (or maintenance operations) can no longer be
adequately managed by the automatic system. To an increasing degree, computer-
based information systems will be used to support operators, and the supervisory
control task will lead to complex cooperation between computers and humans,
who will share the decision task itself, as well as functions for mutual support
and monitoring. In addition to these supervisory functions, the cooperation
between humans and computers may involve such functions as mutual
teaching/learning (Sheridan, 1982), which should be considered in the cognitive
task analysis.

For each phase of the analysis, evaluation, and planning stages of a
supervisory control decision, several information strategies will be possible,
both when involved in the control itself and when serving for monitoring and
support. As has been discussed in previous sections, these strategies will have
very different resource requirements that match computers and human operators
differently. Therefore, the roles of operators and computers as controller and
independent support and monitor are quite likely to vary during a decision task.

The fourth step in a systematic design will therefore be to evaluate the match
between the resources available for implementation by means of human
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operators and computers, and to perform a cognitive rask allocation. For this, a
set of models of human information capacity and limitations is necessary,
together with knowledge of the subjective task formulation and performance
criteria that are likely to control the choice of strategy in the actual situation.
The nature of these aspects has been illustrated for a troubleshooting task in
Chapter 5. The need is clearly not for one comprehensive model of human
operator performance, but for several different models related to different
traditional fields of psychological research.

This is also the case for the fifth phase, the design of an interface system , that
has the information coding and display formats that will serve to match human
preferences in a way that activates the proper strategies. During this phase, the
design of a training scheme matching the requirements of the cognitive tasks
must also be considered.

An important aspect of this approach is that only after considering the first
three phases will the system designer be able to pose questions to cognitive
psychology and training research. The cognitive task analysis is not a
psychological problem, but a question of identification of the data-processing
strategies that can serve the control requirements of the system. These strategies
must be formulated during control system design, but in system-independent
terms that make it possible to relate capability requirements to the resources
offered by humans and computers. Only then can system designers use the
models of human data processing emerging from cognitive science.



Chapter 8

The Human as a
System Component

A discussion of models of human behavior immediately raises the distinction
between qualitative and quantitative models. Among engineers, qualitative
models are frequently considered merely to be premature, descriptive models,
which after further work will develop into or be replaced by proper quantitative
models. However, this is not necessarily the case. In several respects, the two
kinds of models have different and equally important roles for analysis and
prediction of performance. This difference in significance is related to the
distinction between categories of behavior and the members of such categories,
i.e., the specific behavior in particular situations. Bateson (1979) discusses this
distinction in detail with reference to Whitehead and Russell's logical types:

... there is a deep gulf between statements about an identified individual and
statements about a class. Such statements are of different logical types, and
prediction from one to the other is always unsure. [Bateson, 1979, p. 46.]

The fact that "the generic we can know, but the specific eludes us" (Bateson,
1979, p. 45) has different implications depending upon the purpose of the
modeling effort. For systems design, qualitative models will serve important
purposes if they are able to predict the category of behavior that will be activated
by different possible interface configurations and display formats. The model will
then support the choice of an interface design that will activate a category of
behavior having limiting properties compatible with the functions allocated to
the human operator. In a way, research on human performance in order to
support system design should not focus on modeling actual performance in
existing environments, but possible performance in optimal, future systems, as
has been discussed by Sloman (1978) in a philosophic context. Qualitative
models identifying categories of behavior and the limiting properties of the
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related human resources will serve designers well in the design of systems that
allow humans to optimize their behavior within a proper category. Compare this
with Norman's (1981) arguments for the importance of considering the proper
mental image for design of "friendly" systems and the need for a profession he
calls "cognitive engineering.” The distinctions between models of categories and
of particulars have different implications depending also on the cognitive level of
behavior considered. At the level of sensorimotor behavior, we are considering
highly trained people, similar to experimental psychologists' "well-trained
subjects" who have adapted to the particular environment. In this domain,
models of optimal human performance are mainly models of the behavior of the
environment as seen through the human. Therefore, generic quantitative models
of human performance in well-structured tasks can be—and have been—developed
at this level of performance. At the level of improvisation and problem solving,
we are dealing with individual reactions to unfamiliar situations, and models will
be more a question of qualitative matching of categories of system requirements
with human resources. For unfamiliar tasks, these resources depend on a specific
person's subjective preferences, experience, and state of training. In this context,
training means supplying people with a proper repertoire of possible behaviors
for unexpected situations, and qualitative models matching categories will be
highly effective. Until recently, training of system operators has not been based
on models of human performance compatible with those used for systems
design. However, the explicit use of qualitative models for matching categories
of system requirements and human resources for planning of training programs
by Rouse and his coworkers (Rouse, 1982b) has turned out successfully and
proves the value of qualitative models.

To be useful, qualitative as well as quantitative models must reflect the
structure underlying the mental processes, i.e., the internal or mental models, the
kind of data dealt with by the processes, and the rules or strategies used to
control the processes. In addition, the models must reflect the limits of human
capabilities so that human "errors” also are modeled properly. .

This question of also modeling errors properly leads directly to the issue of
analog, parallel-processing models versus the sequential digital models of human
information processes of the AI community. Can holistic human perception, for
instance, be properly modeled by the sequential "production rule” systems? In the
present context of models for system design and evaluation, the fundamental
question appears not to be whether a model is implemented for experimental
evaluation by means of one or another physical information processing system,
but whether or not there exists a theoretical framework formulated independently
of the tools for experimental implementation. This framework must have a one-
to-one correspondence to human psychological mechanisms, their processing
limitations and error characteristics. If such a separation between model and
implementation was maintained, many of the arguments between psychologists
and Al researchers (Dreyfus, 1972) could be circumvented. An implication of this
point is that computer programs based, for instance, on the "production systems”
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of Newell and Simon (1972) cannot in general be accepted as theories unless
they adequately represent limiting properties and error characteristics of the
human processes. Proper representation of the failure properties of human
information processes will be difficult, for instance, if holistic perception is
modeled by sequential scene analysis. Therefore, proper evaluation of a model
requires analysis of instances when the model breaks down, rather than a search
for correspondence with human performance in successful instances. This is the
essence of Simon's statement (Simon, 1969):

A thinking human being is an adaptive system.... To the extent he is
effectively adaptive, his behavior will reflect characteristics largely of the
outer environment... and will reveal only a few limiting properties of his
inner environment....

Successful performance does not validate a model; only tests of its limits and
error-properties can do this.

Levels of Abstraction in Models of
Human-System Interaction

Models of humans can be developed at any level of the abstraction hierarchy
discussed in Chapter 4 (see Figure 4.3). Models at the various levels are useful
in different professional contexts, and an identification of the scope of the present
discussion of human capabilities will be appropriate. For design of decision
support and interface systems for supervisory control, the interest in modeling is
focused on human resources for information processing. Capabilities and
limitations are, however, influenced bottom-up in the hierarchy, and goals and
intentions are determined top-down. It is therefore necessary to define and
describe the interrelation between the information-processing models and the
models at the adjoining levels.

The interaction between a system and a human should be considered at all
levels, as illustrated in Figure 8.1. The figure shows how influence upon the
human at any of the lower levels can modify capabilities and limitations at the
abstract information-processing level. According to this view, an information
processing model should be considered in relation to a social system model at the
level above and a psychological model at the level below, as indicated in Figure
8.2. At the psychological level, we have the interaction between the system,
viewed as the human work environment, and the psychological human
properties, such as the dependency of capability upon interface ergonomics and
information coding, upon motivational factors related to boredom and fatigue,
and the dependencies of process and performance criteria upon workload,
Stressors, etc.

At the level of information processing, we may consider the interaction of the
actual task and the human considered as an information processing component in
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Figure 8.1. The diagram illustrates the complex interaction in a man-machine

system that controls the mismatch features in an error situation. [Reproduced from
Rasmussen (1982) with permission from Elsevier Science Publishing Co., Inc.]

the system. This is clearly a simplistic distinction, but it is necessary to have a
framework in which engineering and psychology can formulate a consistent
interface, the more so in that the research methodology at the two levels may
have distinct differences. Models of human information processes are typically
related to specific tasks and information processes and are based on functional
models, whereas psychological models of human cognitive and affective
properties and subjective preferences depend more on factor and scaling-type
analysis and emotional state models. Interface systems based on modern
information technology are necessarily designed from functional considerations
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Figure 8.2. For man-machine system design, a model of humans in terms of
information processes is useful. However, the definition of concepts interfacing
such a model to social, affective, as well ~as cognitive, psychological
mechanisms is important.

of the information processes they have to support. Whether the design chosen
will in fact match human preferences and therefore activate the intended
information processing mode depends on many more global and situational
features and, today, the question is typically solved empirically at a very late
stage in the life of the system. It will therefore be advantageous to formulate a
consistent set of concepts and parameters that defines and describes their
interaction.

To illustrate the kind of models we need, we will briefly reconsider some of
the discussion of mental strategies from the previous sections. In those sections,
the emphasis was on a framework for discussion of normative strategies that can
be used for design consideration. In the following section, the emphasis will be
on description of the strategies that humans actually use.

Description of Strategies in Real-Life Tasks

In order to study mental models and strategies, we have to refer to a specific task
scenario. In our context, however, the problem is to derive guidelines for the
design of human-machine interfaces suitable for a large repertoire of tasks related
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to a specific system. Therefore, reference can only be made to a generalized
description of typical task sequences. This description must be based on analyses
of the performance of skilled operators in their normal work situation. An
effective way to distinguish their internal processes in this situation is to obtain
and analyze verbal protocols supported by observations, interviews, etc. As
discussed in Chapter 5, the efficiency of skilled performance results from the
ability to compose the process needed for a specific task as a sequence of familiar
subroutines that are useful in different contexts. This implies the existence of
links in the sequence at standard key points, or "states of knowledge," which are
characteristic of the specific skill. The data process stops at such links, the mode
of processing, and frequently the level of abstraction change. To study and
identify the processes, a description of the activity must be structured according
to such key points. In familiar situations, the subroutines depend upon
subconscious or nonverbal processes, and verbal protocols from such situations
typically express a sequence of such states of knowledge without any indication
of the connecting data processes. However, the structure of the sequence of verbal
statements gives important information on the strategies used for control of
mental processes. Only in unfamiliar situations, when operators have to
improvise and generate new subroutines, will verbal protocols reflect data
processes at a more detailed level. The verbal statements of the task sequence
reflect "states of knowledge" in different categories representing plain
observations, properties of the environment, goal, plans, etc., i.e., knowledge at
different levels of abstraction and associated with different roles in task strategies.
1t follows that the type of data process needed to derive one state of knowledge
from the preceding one depends upon the categories of these states.

In a situation where the operator uses rational data processes based on
knowledge of the causal structure of the system being controlled, the different
states of knowledge follow each other in an apparently logical order, which has
been represented in Figure 8.3. In this figure, the steps of the basic sequence in a
way form a "ladder of abstraction."

To be able to predict the behavior of a system and its response to operator
actions, its internal state must be known to the operator. The process necessary
to derive this knowledge from the observations is basically one of abstraction
and of induction. In practice, this process can be a complex set of elementary
processes including search, hypothesis generation and test, model transformation,
performance evaluation, etc.; see the discussion of diagnostic tasks in Chapter 3.
The top of the ladder dealing with the determination of the target state for the
system from the present state and of the overall operational goal implies a
prediction of system behavior, performance evaluation, and value judgments. In
general, the operator will not climb to this level of abstraction. The goal will be
implicitly defined by the situation; the internal model will be controlled by the
subconscious value/goal system and a specific system state will immediately
associate to a target state or a task. When a target for the system state is chosen,
the operator must determine the task, i.e., the proper control actions to perform,
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knowledge. [Reproduced from Rasmussen (1980) with permission from Academic
Press, Inc.}

by a process of deduction. The operator now moves down from the higher levels
of abstraction to more specific technical details, identifying the possible changes
of the plant, such as switching, valve manipulation, or adjustments, that will
lead to the desired plant state.

In the basic sequence of mental processes based on knowledge of the causal
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structure of the system, the different states of knowledge may be expected to
follow each other in a logical sequence. This is not necessarily the case if the
data processes are stereotyped or proceduralized—if they follow "cookbook”
prescriptions, which may be the case in familiar or preplanned activities. Then
there may be no logical connection between subsequent states of knowledge, and
some of the higher-level processes of the basic sequence can be bypassed as
shown in Figure 8.3. Regardless of which of these two cases apply, the operator
must follow a sequential, conscious data process when a problem is recognized;

i.e., an uncertainty needs to be resolved. However, immediate associations may
lead directly from one state of knowledge to the next. Such direct association
between states of knowledge is the typical process in familiar situations and
leads to very efficient bypassing of low-capacity, higher-level processes. Such
associations do not follow logical rules; they are based on prior experience and
can connect all categories of "states of knowledge." Some typical examples of
the associative links found in verbal reports from skilled operations are given in
Figure 8.4.



70 Information Processing and Human—Machine Interaction

In considering the diagnostic task in Chapter 3, it was mentioned that the
circularity in the relationship between the determination of the level of diagnosis
to consider and the goal to pursue leads to the need for an iterative approach to
the decision process. This will be the case in any real-life problem with
\ potentially multiple causes and goals; consequently, the decision ladder is not a
model of the decision process itself, but rather a map useful to represent the
structure of such a model.

In supervisory control of a physical process, system dynamics will constrain
this iteration and the time spent. In less structured situations—for instance, in
managerial decision making—the iteration back and forth between data collection,
evaluation, and selection of criteria for the ultimate decision may be spread over
considerable time and involve many persons; see, for instance, the case studies of
Cyert and March (1963). The involvement of several persons with different
perceptions of goals may be a support for the necessary iteration. Research on
individual subjects' information seeking behavior in multiple-cause situations
indicates a pronounced tendency to focus on a single, linear causal relationship,
rather than to explore a more complex causal net (Shacklee and Fischhoff, 1982).
This is in good agreement with the tendency to use focusing strategies under the
influence of the law of least resistance for electronic diagnosis. Neither in our
nor in Shacklee and Fischhoff's experiments, however, were the subjects exposed
to the potential drive from multiple goals toward more thorough analysis that
generally is effective in managerial decision making.

In everyday tasks, evolution has fit the human for an efficient interaction with
a time-space environment where high-capacity parallel processes take care of the
lower functions of the ladder of abstraction. An abundance of redundant
information supports feature extraction and the formation and synchronization of
the internal world model. In process control, however, an operator controls a
physical process from which only preselected information is presented and
typically as symbolic representations of individual variables. Designers often
suppose that the operator uses rational, conscious processes—even in lower-level
tasks—that would lead to complex time-sharing between tasks at different process
levels. When studying process-operator performance, an important task is to
identify the repertoire of ingenious tricks developed by operators to avoid this
situation. For example, an operator’s interpretation of information will resemble
the focusing strategies discussed by Bruner et al. (1956) and will be based upon a
model of normal state, leading to separate judgments based on individual
observations (see Chapter 5). The operator relies on intuitive judgments and
expectations which, owing to the nature of the subconscious world model, may
be based on representativeness rather than on a rational foundation (Tversky and
Kahneman, 1974).

Human data processes in real-life tasks are extremely situation- and person-
dependent, and a detailed process description is difficult to obtain. This is even
the case when an unfamiliar situation forces the operator into a process of
detailed functional reasoning from which a good verbal protocol can be obtained.
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In most cases, several different strategies are available by which the operator may
solve the problem. These strategies may all be rational, but differ according to
different performance criteria. However, in actual work situations, these different
strategies are typically not followed systematically. As discussed in Chapter 5,
the mental processes seem to follow the law of least resistance, and a shift
between strategies will take place whenever a momentary difficulty is
encountered in the current strategy or special information is recognized that
makes another strategy look more promising. See Figure 8.5, which illustrates
how models of formal, systematic strategies can be used to describe the strategies
actually used.

Even when it is possible to obtain detailed verbal protocols from a single-task
sequence, it may be very difficult to identify general features of the data processes
because of such spontaneous shifts between different strategies, shifts that are
initiated by minute details in the situation. One cannot see the wood for the
trees. A simultaneous analysis of several process descriptions (e.g., from verbal
protocols) in terms of categories of data, models, and procedural rules supports a
more efficient identification of formal strategies; see Chapter 5. Another detailed
analysis of the individual case can then lead to identification of the leaps between
formal strategies. A description of what the operator will do in a specific
situation can then only be obtained in terms of a set of typical, systematic
strategies and the heuristic rules controlling the transitions between these
strategies. Such a model could be quantified in terms of a Markov process if
adequate data could be collected.

The discussion of models of humans as system components leads to the
following conclusion for the requirements of a model: the model should reflect
human behavior in various domains, including habitual sensorimotor acts,
know-how, and tricks of the trade, as well as rational decision making. It should
not necessarily predict the detailed mental processes in a given task, only the
categories of possible strategies and the human match to their resource

requirements, together with the performance criteria that humans adopt for choice
of strategy.

Outline of a Model of a Human Information Processor

The main emphasis of the present discussion, then, is to evaluate and interrelate
the available models of human information processing that are compatible with
the mmwnw of designers of cognitive systems. It is, however, also necessary to
consider models of human behavior at the psychological level of cognitive and
affective mechanisms in order to develop models at two levels that are
compatible and therefore can be the basis of demand-resource match
considerations.Some general commonsense considerations will demonstrate that
the model we need for design of real-life systems has to incorporate human
abilities that are normally studied within quite separate research paradigms.
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A Man Is Quite Simple=but in a Complex Way

In the discussion of the "sciences of the artificial,” which is very relevant in the
present context, Simon (1966) explores the hypothesis:

A man, viewed as a behaving system, is quite simple. The apparent
complexity of his behavior over time is largely a reflection of the complexity
of the environment in which he finds himself.... his behavior will reflect
characteristics largely of the outer environment (in the light of his goals) and
will reveal only a few limiting properties of his inner environment, of the
psychological machinery that enables him to think.

From this point of view, humans may be quite simple in some clearcut
laboratory tasks, but the simplicity rapidly evaporates, when considering the
models required for real-systems design. First of all, we are looking for models
that represent precisely the situations when adaptability breaks down and the
psychological machinery reveals itself. Furthermore, clear evidence exists that
humans have several basically different internal modes of information
processing, which are put into operation by different types of outer environment
and tasks. These different modes draw upon mechanisms with different resource
characteristics, such as processing capacity, speed, etc. Some simple
considerations demonstrate the span of the problem. The actual output of a
human interacting with a system is physical acts upon the system, and the
model must reflect the fact that sensorimotor performance enables a human to
drive a car through a town during rush hours at the same time as the conscious
mind is occupied by reconsidering the problems of the office hours. It must also
consider that humans may have difficulty remembering a telephone number from
the directory long enough to dial it properly; at the same time they can recognize
friends when met unexpectedly in a crowd, by features they are not able t0
describe verbally. A crucial feature to include in a model is that humans are not
only responding to "input." They actively seek relevant information; they
constantly orient their senses toward important features in the information
available, and they respond to information present as well as information
missing—they have expectations. The attitude behind the following discussion is
close to the view of Gibson (1966); humans are not processing the information
input from the environment—they are actively picking up the information that is
relevant in the context of their current needs and goals. This context is formed by
the general state of affairs in the environment and the individual person'’s role in
it. Effective control of this information pickup is only possible if the individual
has available an internal dynamic representation of the state of affairs, and an
active, internal dynamic world model is therefore central in a model of human
information processing.

Because an important coupling of the information processes to the
environment is through physical actions, modeling should include this internal
dynamic world model and its interaction with both perception and motor control.
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It is generally accepted that high-capacity, parallel-processing neural networks are
the mechanisms behind these functions that clearly take place below the level of
conscious awareness. They can be consciously controlled, but typically this is
done by conscious intentions that are not stated in terms of movements, but as
higher-level goals—shut the door, drink your tea, etc.

From a systems point of view, we are interested in a discussion of the various
human information-processing mechanisms and, in particular, their limiting
properties related to the information processes used. In this respect, the human
may be considered as a hierarchical system. The information processes necessary
to coordinate the body with a dynamic environment are taken care of by the
subconscious sensorimotor system, which can be viewed as a high-capacity,
parallel-processing, pulse-density-coded analog computer. The activities of this
system are subject to a higher-level control by a conscious, symbolic processor
that has features similar to a programmed, sequential computer. If a computer
metaphor should be used, humans -are not like a digital computer, but like a
complex computing center, interfaced to the dynamic world through a
multivariable, continuous control system. On the following pages, the
psychological mechanisms behind this metaphor will be discussed in more
detail. The intent is not to give a comprehensive review of the current
psychological research, but to discuss some key features in order to have a basis
for discussing the various modeling approaches, and the extent to which they
also adequately model the limits of human capabilities and the error
characteristics that are important in the human-machine system context.

The model will be a very crude sketch. A human is far more than a
mechanistic data processor, but in human-machine systems the designer has to
consider people as versatile but predictable data processors, and the designer has
to plan the data processing allocated to a human and to the instrumentation
system as one integrated system. The human-machine interface should therefore
be based upon compatible models of the data processing in humans and in
instruments, and a mode! of humans drawing heavily upon engineering analogies
may be fruitful in this respect. The general outline of the model is illustrated in
Figure 8.6 and comprises two basically different subsystems, One is a
programmable, sequential processor that operates consciously to the human. It
has a rather limited capacity and speed, and its main task is to take care of the
data handling in unique conditions calling for improvisations, rational
deductions, and symbolic reasoning. It functions as a high-level coordinator or
controller of the second part, the main data processor.

The main processor has many features of a distributed, parallel-processing
analog computer with high processing capacity. It functions mainly
subconsciously to the human, although the conscious processor may to some
extent monitor the effects of the data processing. The functions are distributed in
a highly interconnected network that is able to decode information from the
sensing receptors, and to extract higher-level features or patterns, These control
the external actions through several levels of coordinating functions in the motor
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“ system, which is an integral part of the processor. An important implicit
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Figure 8.6 is in no way intended as a representation of the organization of the
underlying neuropsychological functions, but only as a map of the relationship
among functions at the psychological level of Figure 8.1. The neurologic
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physiologic level.
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human ancestors during evolution. Survival has most probably been granted to
those individuals who were best—by direct pattern recognitions—at quickly
identifying cues in the environment related to immediate goals, such as
approach, escape, eat, and don't eat, and who had the most efficient control of
fast critical sequences during hunting, fighting, etc.

This dynamic interaction with the environment calls for a very efficient feature
extraction and classification and dynamic coordination of the motor system with
the environment. The receptors and the muscles of the body serve as input and
output systems of a complex multivariable control system having a high data-
processing capacity. The subconscious main processor may therefore be assumed
to have evolved into a data-processing system with particularly high capacity in
functions needed in the control of the body, i.e., when operating in a spatial,
temporal domain. Correspondingly, Heidbreder (1949) has put forward the
hypothesis that perception of concrete objects is the dominant mode of cognitive
reaction related to the phylogenetic priority of locomotive and manipulative
capabilities.

This function may be organized similarly in humans and in higher-order
mammals, and it has been proposed that evolution has resulted in a hierarchical
organization also of the neurologic structures in humans that are in essence
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Figure 8.6. Schematic map of the human data-processing functions that
illustrates the important role of the subconscious dynamic world model as part of a
complex loop of interactions in conjunction with the perception and goal
systems. The world model also forms the basis for a high-capacity, efficient feed-
forward control of physical actions and serves as a reference for the mismatch
detector that activates the conscious processor. [Reproduced from Rasmussen
(1980) with permission from Academic Press, Inc.]

Figure 8.6
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peculiar owing to the addition of a symbolic processor on top of three on.:ﬁ
neural levels we have in common with animals (Altman, 1978), i.e., the reptile,
the vertebrate, and the mammal brain.

The Front-End Function: Perception

The front-end function is the extraction of meaningful features from the wealth
of information available in the environment, which requires a processing system
of high capacity.

In the task of controlling the body in the dynamic environment, the most
important generalizations to be made from the input information will be to
isolate and identify spatial entities and their temporal characteristics. This means
to identify objects that are moving or are able to move and for which generic
dynamic models are present in the internal dynamic modeling system.
Furthermore, the generalizing function has to extract those generic features from
the background—the scenery in which the dynamic actions take place—that are
determining the behavior of the movable objects.

Research on visual perception has identified fixed programmed networks in
several animals that generalize the visual information into this kind of
dynamically determining feature. In the retina of a frog's eye, at least four types
of preprogrammed detectors have been found: edge, bug, dimming, and event
detectors (Lettvin et al., 1959). Similar detectors identifying form and
movements of objects against the background are also found in higher-order
vertebrates, although the feature extraction does not in all cases take place in the
retina, but in preprogrammed parts of the nerve tissue at a higher functional level
(visual cortex) (Hubel, 1963). A review of this research is given by Michael
(1969).

Although programming of the human nerve tissue may be more flexible,
Lashley (1942) expected to find similiarities. In his discussion of the cerebral
organization of vision he notes:

... there is some reason for believing that generalization is one of the
primitive, basic functions of organized nervous tissue... In spite of the
enormous differences in structural arrangement of the visual systems of
different animal classes, the functional activity seems essentially the same....
in the bird, the rodent and the man.... [From Lashley, 1969 edition, p. 236.]

This input-processing point of view has been continued in more recent cognitive
modeling in terms of sequential scene analysis; see, for example, Minsky
(1975). In these approaches, the information in the environment is analyzed in
order to identify known objects that are then allocated functional properties and
related to a propositional database. However, human perception seems to be a
more active and direct process. Michotte's (1963) experiments on perception
indicate a human ability to identify higher-level functional and causal
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relationships in dynamic light patterns that have no concrete object context.
Patterns of spots are perceived in terms of A strikes, withdraws from, or pursues
B, etc. Gibson (1966) has strongly advocated the view that perception is not
based on processing of sensory input information, but on direct sampling of
invariant features in information from the environment.

It should now be clear that the brain does not have to integrate successive
visual sensations in immediate memory. There is no necessary reason to
suppose that the fixations have to be retained. The invariance of perception
with varying samples of overlapping stimulation may be accounted for by
invariant information and by an attunement of the whole retino-neuro-
muscular system to invariant information. The development of this
attunement, or the education of attention, depends on past experience, but not
on the storage of past experience. [Gibson, 1966, p. 262.]

In reality, humans are probably able to use both "sequential scene analysis” and
“direct perception” and both should be considered in the modeling effort, in that
they will have quite different limiting properties and error characteristics.
Gibson's views support the present arguments for the importance of the "internal
dynamic world model,” which can be viewed as the functional manifestation of
the "retino-neuro-muscular attunement.”

The relationship at the functional level between the world model and
perception is sketched in Figure 8.6. An important feature to note is the loop
formed by the world model and perception. The expectations of the organism
represented by the world model will orient the sensory system visually,
auditorily, as well as tactilely, toward the location of that source of information
and that level of generalization where changes are expected or uncertainty in
modeling exists. The perceptual system, on the other hand, supplies the
information that serves to synchronize and update the model as well as the value
features that, in some kind of interaction with the immediate needs and goals of
the organism, activate the proper model.

The significance of the internal world model and its control of perception is
that the whole system is sensitive to, "attuned” to, those invariant features that
are essential to the actual goal in the context present. In fact, the environment is
a continuum of information sources, and to cope with this great variety, the
human information processor must be able to access this information in
manageable higher-level structures. This means that information pickup is an
active process that may be organized top-down in an abstraction hierarchy like
that of Figure 4.1. The information available can be sampled for invariant
features at a high abstraction level without having to perform a "bottom-up”
scene analysis to identify such features. From a systems point of view,
Pribram’s (1971) metaphor, based on holographic processing by excitation
pattern interference in a parallel processing neural network, proves such "top-
down" attunement to be perfectly possible.
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The Internal Dynamic World Model

The dynamic attunement of the organism from this point of view clearly plays a
very central role. The existence of such an internal world model cannot be
doubted, only the research model used to represent this attunement can be subject
to discussion, as well as the segregation of the function as a separately existing
dynamic model. A kind of dynamic world model is necessary in order to account
for control of responses to the environment that are too fast to allow control by
simple perceptual feedback. Often-cited examples are fast sequences in sport,
musical performance, etc., and the quick draw of western gunmen, which has
recently been used for military training (Amold, 1969). To serve this purpose, it
is necessary that the internal dynamic world model simulates not only the
behavior of the environment, but also of the body; i.e., it simulates the
interaction. The dynamic world model also manifests itself when humans
respond to events that do not happen or information that does not appear in a
familiar context. Operators in industrial process plants have a process feel that
enables feed-forward control of plants within a certain span of time constants
(Crossman and Cooke, 1962), and they may have complex responses which can
be released by very simple cues, for example, auditory warning signals.

The existence of an internal world model has important implications. An
operator cannot be considered merely as a data channel transforming input
information into actions. Instead, in a specific situation, the input information
synchronizes the internal model, and complex responses may be generated from
primitive inputs. In highly trained situations, it can be extremely difficult to
predict the information that is used to synchronize the internal model. Often it
can be secondary sources, utilizing such auditory information as relay clicks and
motor noises. Warning signals in process plant control rooms are generally
meant by the designer to be signals to alert the operator, who is then supposed
to consult the instruments to identify the cause. In case of rather frequent
warning signals that appear as a normal part of a work sequence, during plant
start-up for instance, the internal model of the operator apparently gives him a
"process feel," which continuously keeps him "set" for the proper action. He
often only needs to be triggered to take action. He "knows" from the general
behavior of the system and from his prior actions what has to be done without
consulting the instruments. He may even~without realizing it~correctly respond
differently to the same warning signal in different operational phases—for
instance, during start-up when the properties of a plant may change through
time,

The time span covered by the dynamic world model is demonstrated by the
experience which Pribram (1969) calls the "Bowery-E1 Phenomenon”;

... For many years there was an elevated railway line (the "el") on Third
Avenue in New York that made a fearful racket; when it was torn down, people
who had been living in apartments along the line awakened periodically out
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of a sound sleep to call the police about some strange occurrence they could
not properly define. Many such calls came at the times the trains had formerly
rumbled past. The strange occurrences were of course the deafening silence
that had replaced the expected noise...

This example also illustrates another important function, a mismatch detection
that alerts conscious control, if the state of affairs in the environment does not
behave according to the state of the internal model. This occurs when the internal
model loses synchronism or is not properly updated due to unexpected behavior
in the environment.

The Output System: Motor Functions

The output from the subconscious data-processing system is always a motor
function, a movement, or a speech act. The motor system consists of a great
number of muscles that are controlled and coordinated by a complex, highly
interconnected nerve system. It is generally accepted that this coordination and
control is hierarchically organized, and experiments show that the modeling
function of the subconscious data processing is also distributed in the different
levels of the motor system. This makes the motor system of the body an active
part of the human information processor.

The closely integrated nature of the entire system is also demonstrated by the
way the internal model and the generic features build up. The model and the
generalization are not the result of passive processing of the perceived
information, but a result of active, physical interplay with the environment.
This statement is supported by experiments; see for instance, the experiments by
Held and Hein (1963). These aspects are not only of academic interest but may
have important practical implications. The movements of the head that are
needed to read instruments in a control room may take part in the identification
of the source of the information. The physically well-defined data, such as
distance or speed, which are used as discrete data for inputs in a mathematical
treatment of a dynamic process, are not defined or used by the subconscious data
processing as separate parameters, but implicitly as part of a pattern having a
functional meaning. For instance, distance is not judged or measured by a two-
eye stereoscopic vision, but by the operational consequence experienced by
walking or reaching along it.

Like the perceptual function, the motor control is not based on stored behavior
patterns from prior encounters, but on a constructive process that generates the
proper patterns on demand (Bernstein, 1967). This is demonstrated by the fact
that the success of rapid movements is independent of the initial positions of
limbs and that movements can be transferred to other metric proportions and
limbs. This function must depend on schemata for generating complex
movements with reference to the internal dynamic world model. An important
ingredient in motor control is the dynamic feed-forward generation of patterns
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within this internal dynamic map, which is updated and aligned by the sensory
information.

Conscious Data Processing

Conscious control of the direct interaction with the environment is only
necessary when a mismatch with the behavior of the environment results in an
interrupt signal calling for immediate attention. T hus the high capacity of the
subconscious sensorimotor functions protects the low capacity of the higher-
level conscious cognitive. functions from overload in familiar routine tasks.
Conscious attention may be considered as a single-channel function that has to
be switched between different items, objects, or tasks. Therefore, the conscious
data processor may be thought of as a sequential processor that normally runs
different tasks on a time-sharing basis. The limiting properties of the conscious
data processor are related to the capacity of its short-term buffer memory, which
is generally taken, as a rule of thumb, to be between two and seven items of
information (Miller, 1956; Simon, 1969). The effectiveness of the conscious
processor, in spite of these limitations, is due to both its ability to operate on
efficient information codes at high levels of abstraction and to its large repertoire
of different data-processing models and strategies. The role of the conscious
processor in overall performance varies widely. It can be used for passive
monitoring of the performance of the subconscious processor in routine tasks.
When initiated by interrupts caused by less familiar situations, it can be used to
bridge mismatches of the subconscious processor by categorizing the input set
and adding verbal labels to situations, thereby switching states of the
subconscious processor. It can also perform problem solving in unique
situations by evaluating alternatives and by making decisions and plans based on
predictions, etc. During problem solving, the conscious data processor is capable
of operating in several basically different modes, which implies cooperation with
the subconscious processor at different levels. For example, it can simulate the
external world in the domain of the sensed information (e.g., make visual
experiments in which a visual imagination of a process is used to foresee the
response of the environment to planned manipulations), or it can process
symbolic data by following a prescribed plan, a sequential procedure (e.g., t0
make numerical calculations and abstract logical reasoning).

To be able to interact successfully with a physical system, the state of the
system and its response to the actions intended have to be identified from the
observations or data received from the system. Generally, the observations have
no meaning individually, only the interrelationships in a set of dawa will define
the state of the system and allow a prediction of future behavior. This
interrelationship is due to the constraints imposed upon the set by the internal
anatomy and processes of the system. The human data processing has to be based
upon a representation of such system-given constraints. This representation is a
data-processing or transformation model of the system and can be present as an
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ERB& representation (i.e., a mental model), or external models (i.e., drawings,
diagrams, etc.) can be used to support the data processing. The mental model is
not necessarily a visualization of the physical system, but can be a more abstract
data-processing model! in the engineering sense. Such models have already been
discussed by Craik (1943). Furthermore, a procedure is needed to use the model
for data processing. The conscious data processor has several different models and
procedures at its disposal, and the choice in a specific task depends upon different
characteristics of the tasks.

Examples

The problem is to judge the movement of a mechanical lever when another lever
is operated by hand (Sloman, 1971). The levers are connected internally in the
system by a mechanism of ropes and pulleys. This problem may be solved by an
internal visualization of the system or by a simple sketch on paper. Some
observers may be experienced enough to grasp the solution as a whole while
looking at the sketch; others may have to proceed through a series of
intermediate steps—if I move this lever this way, then..., and so forth. The
procedure will then be a stepwise tracing through the system of the flow of
movements, a stepwise visualization of the effects of a simulation. The model as
well as the procedure used has a close relation to the actual physical problem.
This sort of direct visual experiment is possible jf the physical system and the
relevant variables are directly visible; if not, some kind of visual analogy can be
used. For instance, this is done when a primary school teacher uses "water-pipe-
and-jar-explanations” to explain simple electrical circuits and when mechanical
Smmw-ga-mvnzm systems are used to visualize electrical resonance phenomena. In
this type of data handling, the model supplying the system constraints between
the individual observations is either the physical system itself or some kind of
m:«mmoa or visual analogy, and the procedure to obtain the desired resulting data
is a visual experiment, i.e., you visualize the process itself.

If the process or the system is too complicated, other types of models are
generally used. A model of the constraints often used in a design or research task
is the abstract or symbolic model constituted by mathematical equations. A
system of equations models the constraints between the individual variables or
observations. The characteristic feature of such a model is that it is generalized.
The data-handling problem has been transferred to a symbolic world where
neither the model itself nor the procedure by which it is used now has a clear
relation to the physical world. Several procedures are available and used to
process data by equations. One is a sequence of logical, symbolic decisions and
manipulations based upon a set of mathematical theorems. The written equations
are then a visual support for the symbolic mental operation on numbers, sets,
and relations. But the written equations live their own lives, and the procedures
used for treating familiar types of equations look more like direct visual
manipulation of the physical signs on the paper. You know how they behave
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when you move them around. Signs change when symbols are transferred from
one side of the equations to the other; d(x?)/dx changes almost by itself to 2x,
and so forth, The display aspect of solving algebraic equations has been discussed
by Myron Goldstein (1969). The power of the mathematical data processing is
due to the generality of the model and existence of a comprehensive system of
established procedures, which are only related to the formal model itself, not to
the physical problem. Other mental models related to the physical world are of
course needed to transform the problem to the formal domain. However, they do
not necessarily represent the total system, but only the behavior of the parts at
the level where the individual equations are formed.

Complex data processing by mathematical models and procedures is typically
used by system planners and designers rather than system users and operators. If
the data processing implied in system operation in a certain situation calls for a
complex data handling procedure—e.g., solving of mathematical equations—then
it has very reasonably been foreseen by the system designer. He will then
perform the data processing necessary to decide upon the appropriate sequence of
manipulations or actions by means of experiments in the laboratory, by
simulation using some sort of analogy—physical or mental—or by use of
mathematical equations. From the results of this data processing he can then
extract a set of operating instructions or operational procedures to be used by the
system operator. The data handling procedures of the operator are now simple: to
execute a stored sequence of predetermined actions. The system model supporting
the data processing now has to supply the operator with state-defining data sets,
to initiate the stored program, and to provide a description correlating the
prescribed actions with the manipulation surface of the system, i.e., some sort of
topographic map. The functional model of the interior of the system is now
found implicitly in the stored program. Whatever the nature of the
transformation model that has been in initial system operation, experienced
system operators develop work procedures or rules by storing sets of state-
defining observations and goal-directed procedures in a kind of decision matrix, as
discussed by Beishon (1966). Even when operating instructions have been issued
by the system designer, system operators often tend to form their work
procedures directly by an initial trial-and-error operation—i.e., to derive the
transformation model needed directly from the system behavior—rather than spend
the effort reading the manual,

These examples represent basically different ways to control the overall
behavior, which will be discussed more formally in Chapter 9.

The information necessary for the various categories of conscious processing
will be sampled from the environment by the perceptive front-end system. This
means that even conscious information processing depends on a properly updated
and synchronized world model to give the basic context, i.e., to guide
observation and define the proper level of probing invariant features. Or, the
other way round, the extent to which the subconscious dynamic world model
includes the behavioral properties of elements in the environment, which may be
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symbolic representations on paper, determines the level and efficiency of the
conscious strategies that are available.

There is an important difference between the internal models or representations
of the environment that are used by subconscious sensorimotor responses and
those of the higher-level cognitive processes, a difference that has a fundamental
influence upon the kind of research model that can be used to represent operator
behavior. Subconscious, sensorimotor responses appear to depend upon an
active, dynamic model that simulates the behavior of the environment. This
means that the data processes are determined by the structure and elements of the
models, conceptually in the same way as the processes of an analog computer are
determined by the laws of nature, not process rules, when it is initialized and
activated. In contrast, the sequential, conscious data processes are typically based
on stationary (static) mental models or representations of the functional
properties of the system to be controlled, in the form of cognitive, functional
maps. Process rules or strategies are therefore necessary to activate and control
the steps in a sequential data process.

In relation to the cooperation between the conscious and the subconscious
processing, it may be illustrative to consider the recent development of the
theories of imagery, which relates problem solving to the functions of
perception and the internal world model.

Imagery and Problem Solving

Visualization and imagery are having a renaissance as acceptable concepts
involved in human information processing. After having been discarded for a
long period during behavioristic dominance in psychology, the work of Gibson
(1966), Neisser (1972), and others has again made it acceptable to consider
imagery seriously. However, a change has taken place from considering imagery
as stored traces in terms of mental pictures from previously experienced sense
data toward the view of imagery—and memory-—as a more constructive process
depending upon the "attunement” of the neural system to invariant structures in
the array of sense data. Gibson (1966, p. 277) reacts to what he calls the "store
house” theory of memory, and Neisser (1972) continues: "What is relevant is the
notion that one normally perceives layouts, not pictures. If this is true, we
should stop talking about images as mental pictures and try to understand what a
mental layout may be." This brings the arguments close to the view that the
interactions of the body with a dynamic environment as well as manipulation of
objects and tools (and symbols) depend on an iniernal, dynamic world model that
has many features in common with a versatile analog model. A flexible analog
model can be structured from prototypical representations of objects and
environments and synchronized by "resonance" with invariant features in the
environment.

Because attention and memory—understood as attunement—depend upon the
function of the dynamic world model, it is to be expected that this model has a
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major role to play in higher-level cognitive functions such as reasoning and
problem solving as, for instance, based on imagery and visual thinking. This,
however, does not necessarily mean that introspection and imagery reveal the
mental processes. Thinking may heavily depend on subconscious processes
related to the structure of the model evoked, whereas imagery and verbal reports
are only the manifestations of the coupling of the processes to the conscious
attention and control. Imagery makes the structure or mental "layout" available
to conscious attention, and verbal expressions may be applied to control or
report on changes of the state of the model.

If both imagery and perception depend on the actual structure and content of
the internal, dynamic world model, various kinds of interferences should occur.
This has been studied experimentally by Brooks (1967, 1968) and Segal (1971),
who showed that visual imagery suffers when it is put into direct competition
with visual perception, while auditory/verbal imagery suffers from competition
with listening and speaking. They also found poorer performance in recall of
sentences, which referred to spatial layout, when sentences had to be read, than
when they were presented orally. A remark in passing: it should be noted that it
must be considered whether "mental layouts” can be found at higher levels of
abstraction than the visual representation of the concrete physical world.
Michotte's (1963) experiments of direct perception of causality seem to indicate
such higher-level mental layouts. And it should be considered whether
information processing at such levels can be effectively supported by forming
"concrete symbols” (graphs, drawings), i.e., by defining temporal-spatial
symbolic representations. Also, the danger of interference discussed by Brooks
should be carefully considered when graphic (i.e., spatial-temporal) or
alphanumeric (i.e., verbal) displays are used to support information processing.

Recently, several authors have argued that imagery and verbal formulations
have different roles in information processing and problem solving. (A review is
given by Kaufmann, 1979.) Horowitz (1967, 1970) regards thought as a process
that involves multiple cognitive systems, including enactive, iconic, and lexical,
where iconic includes imagery and lexical involves verbal expressions. Atwoods
(1971) studied interference between learning based on imagery and verbal learning
and concluded that imagery and verbal symbolic processes represent alternative
coding systems in cognition. Paivio (1971a,b) has studied imagery. He
conceives imagery to be related to concrete aspects of a situation, with the verbal
processes to be more functional as mediators in abstract situations. Imagery is
considered to be dynamic, to promote flexibility and transformational processes,
whereas verbal functions are considered more static, labeling functions. He also
characterizes imagery as visual, spatial representations suited for parallel
processing, whereas verbal processes are specialized for sequential processing.
This distinction appears to be too simplistic. Imagery may be suited for parallel
processing of variables in the sense data, but verbal processes can deal with
sequences of very complex state representations. This aspect will be discussed in
more detail later. Paivio also argues, as has been done above, that imagery need
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not be available to consciousness to be functional. The spatial structure makes
imagery very well suited to represent an overall problem situation, to give an
overview that serves to structure or restructure a problem in accordance with
previous experience, and to identify invariants in the same way as Gibson's direct
perception. The role of imagery in early phases of problem solving when
simultaneous consideration of several aspects is necessary has been mentioned by
several authors.

The French mathematician Hadamard (1945) resorted to imagery in his creative
efforts when matters grew complex "in order to have a simultaneous view of all
arguments, to hold them together to make a whole of them.”" Rugg (1963)
considers two phases in creative thinking. The first phase—discovery—involves a
transformation phase by imagery, while the second phase—verification—is
presumed to involve the more logical and direct verbal system. However, the
process of this initial discovery phase may not itself be imagery; the initial
phase may be due to subconscious processes related to the attunement of the
neural system, i.e., to the internal dynamic world model. Imagery may be a
possible, but not necessary, conscious manifestation of this process. However,
because it will even then be closely linked to the mechanisms behind perception,
the mechanisms of interference discussed above must still be taken into account,
for instance, in display designs.

The intuitive phase of problem solving involving subconscious, holistic
processes has been mentioned by several authors, frequently in relation to
imagery. Bruner et al. (1966, p. 57) distinguish between analytic and intuitive
thinking:

Analytic thinking proceeds a step at a time. Steps are explicit and can usually
be adequately reported by the thinker to another individual. Such thinking
proceeds with relatively full awareness of the information and the operations
involved. It may involve careful and deductive reasoning, often using
mathematics or logic and an explicit plan of attack. Or it may involve a step-
by-step process of induction and experiment. Intuitive thinking
characteristically does not advance in careful, well-planned stages. Indeed, it
tends to involve maneuvers based seemingly on our implicit perception of the
total problem. The thinker arrives at an answer, which may be right or wrong,
with little awareness of the process by which he reached it.

This description matches very well the situation when an analog representation
simulated a scenario without the need for "process rules.”

From this discussion it appears that intuitive thinking related to mechanisms
of perception and imagery is important for the initial problem formulation or
restructuring phase, for transformational purposes; whereas thinking related to
verbal symbolic processes is predominant in rational, sequential processes of
verification and planning. Berlyne (1965) argues that imagery, conceptualized as
internalized action, is of special importance in transformational thought, in
contrast to language, which is supposed to operate in situational thought, to



88 Information Processing and Human—Machine Interaction

have primarily labeling functions in thinking. Lately, Pylyshyn (1973, p. 10)
has argued that images may be especially useful in the process of creating new
information: "While picture-like entities are not stored in memory, they can be
constructed during processing, used to make new interpretations and then
discarded.”

In general, there seems to be too sharp a distinction between the role of
imagery and verbal symbolic processes, between intuitive and rational thinking.
Probably, both categories of processes play an important role in all thinking and
problem solving. From an information processing point of view, the basic
process in conscious problem solving can very likely be subconscious symbol
manipulation or transformation based on processes related to the "attunement”
behind perception. This process only appears as imagery if the integrated flow of
transformation stops, and the individual consciously starts a search to restructure
the problem situation by considering the symbolic mental layout that may
appear as "imagery." Verbal processes are used to activate or to label the state of
the subconscious attunement behind skilled symbol manipulation and to
consciously control a sequence of such processes when a familiar problem-
solving sequence is found applicable.

A key issue appears to be the relation between language and the mental
processes behind imagery and perception. A conceptualization of memory
organization, which is very compatible with the above view of the internal world
model as an analog representation within a parallel-processing neural network,
has been suggested by Norman and Bobrow (1975). They propose a network of
memory schemata with the following special features. They are active and can
communicate mutually—which are typical features of the elements of a
simulating, parallel-processing network. They are activated by "context-
dependent descriptions,” and the concept leads to a process of perception that
depends on data-driven, bottom-up processes, as well as concept-driven top-down
processes, which matches the model of Figure 8.6. Also, the role of the active
memory schemata in the subconscious problem solving as discussed by Norman
and Bobrow is basically similar to the view presented above.

The view that verbal processes serve to label situations and states in the
environment and to formulate intentions, and thereby to update or modify the
current internal dynamic world model, is compatible with the results of the work
of Vigotskii, Sokolov, and others; see Sokolov (1971). These studies analyze
the cognitive performance of persons with hindrance of internal speech by
secondary verbal tasks or with blocked speech organs, in order to find the role of
internal speech in mental processes. The general finding is that speech hindrances
greatly impede the comprehension of texts read to persons and their problem
solving, as, for instance, the solution of arithmetic problems. If internal speech
was hindered by a secondary verbal task, the quality of the primary task improved
as the secondary task became automated, and the verbal statements of the persons
indicated that they were now able to insert rapid key words articulated
soundlessly and thereby to control the primary task. Also, they reported the use
of visualizations as mnemonic signs.
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Visual images combined with reduced verbalization seem to be a frequently
observed phenomenon in such experiments. The internal speech in this situation
is

no longer merely soundless speech, but presents a considerably
transformed kind of the latter, especially adapted to the performance of the
thinking functions. In essence, that which is fixed in internal speech presents
only a "thinking model" or a "thinking plan” of the speech actions, which in
some cases may be greatly contracted like a telegraphic code, while in other
cases it may be more extended, turning into an “annotation of a statement” or
into an "internal monologue." Strictly speaking, the first, reduced form of
internal speech does not contain any words in their usual grammatical
meaning; the words are rather implied by being replaced with their kinesthetic
code, which only reminds one of an articulation of the key words. Numerous
examples of such speech reductions are cited by Vygotsky (1934); he
connected them with the semantic predicativity of internal speech, with the
predominance of predicates and the lack of subjects.... [Sokolov, 1971, p.
86.]

This is precisely what is needed to update or "strobe" a person’s own internal
world model, in contrast to the more fully developed verbal expression needed
when communicating in order to activate a particular world model in another
person. Similarly degraded verbal expressions can be found in conversation
between two persons deeply involved in the samé work situation and therefore
having highly synchronized world models. Sokolov also analyzed internal speech
in problem-solving situations and found, by measuring electromyographic
potential, that speech motor excitation increased with complexity and novelty of
a mental task, for instance, when a transition occurred from one type of
arithmetic problem to a different type. Again, the verbal expressions used by
subjects were of the reduced form that constitutes one of the characteristic
features of visual thinking.

The situation of such thinking does not require any verbalization of all that is
perceived; the internal speech functions in a highly generalized and
fragmentary way, only directing the process of visual analysis and synthesis
and introducing certain correctives into them. [Sokolov, 1971, p. 90.]

Or, in other words, the verbal statements only serve to direct the state of the
internal world model underlying thinking and perception.

Dynamic World Model and Mental Models

In modeling human performance, it appears to be useful to distinguish between
the dynamic representation underlying automated sensorimotor performance, and
the more static mental models used for conscious, sequential reasoning.
However, there is a tight relation between these types of models, which will be
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particularly clear when considering visual imagery used for conscious problem
solving.

The dynamic world model of automated sensorimotor behavior can be seen as a
structure of hierarchically defined objects and their behavior in a variety of
familiar scenarios, i.e., their functional properties, what they can be used for, and
potential for interaction, or what can be done to them. These elements of a
generic analog simulation of the behavior of the environment are updated and
aligned according to the sensory information during interaction with an
environment. The model is structured with reference to the space in which the
person acts and is controlled by direct perception of the features of relevance to
the person’s immediate needs and goals.

In many ways, this conception has similarities to Minsky's (1975) "frames."
The main--and fundamental—difference is that Minsky's frames depend on a
sequential scene analysis; they are structured as networks of nodes and relations,
and they are basically static. Minsky defines frames as a data structure for
representing stereotyped situations that are organized as a network of nodes and
relations. The top levels of a frame are fixed and represent things that are always
true about the supposed situation. The lower levels have many terminals that
must be filled by specific instances or data. This means, however, that the
overall spatial relation will be replaced by local relations as "left-off” or "above."
The dynamic properties are replaced by "before-after” frame pairs. In a way,
Minsky's frames look like a sequential, introspective analysis of the appearance
of the subconscious dynamic world model during visual thinking and imagery.
Minsky's use of one single concept—the frame system—to model the human
representations of the environment that are active for sensory perception, for
physical and verbal interactions with environment, and for symbolic reasoning,
leads to unnecessary simplification. It appears to be more fruitful to rely on
various types of representations. Gibson's (1966) concepts related to "direct
perception” are far more convincing, viewed as a model of the high-capacity
information-processing mechanisms underlying perception, sensorimotor
performance in fast sequences, etc., than Minsky's symbolic information
processing. The latter is more adequate for higher-level conscious information
processing, i.e., the manifestations of the "dynamic world model” at the
conscious level in terms of natural language representations.

As I understand Gibson's concept of direct perception, the "dynamic world
model" is in the present context very similar to the mechanisms needed for the
"attunement of the whole retino-neuro-muscular system to invariant
information" (Gibson, 1966, p. 262), which leads to the situation where "the
centers of the nervous system, including the brain, resonate to information."
This selective resonance relies on the existence of a generic dynamic model of
the environment. The implications of Gibson's view of perception, as based on
information pickup instead of sensation input, are in many ways compatible
with the model of human information processing illustrated in Figure 8.6. To
Gibson, perception is not based on processing of information contained in an
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array of sense data. Instead, the perceiver, being attuned to invariant information
in space and time in the environment, samples this invariant information directly
by means of all senses. That is, arrays of sense data are not stored or
remembered. They have never been received; instead the nerve system
“resonates." In my terms, the world model, activated by the needs and goals of
the individual, is updated and aligned by generic patterns in the sensed
information, but the idea of an organism "tuning in" on generic time-space
properties is basically similar and leads to the view of humans as selective and
active seekers of information at a high level of invariance in the environmental
context. The subconscious dynamic world model or the attunement of the neural
system leads to the situation where primitive sense data are not processed or
integrated by symbolic information processes as Minsky suggests, but the
generic patterns in the array of data in the environment are sampled directly by
high-level questions controlling the exploratory interaction involving all senses.

A related point of view is argued by Rosch (1977, p. 30, cited from Dreyfus,
1981): "Many experiments have shown that categories appear to be coded in the
mind neither by means of lists of each individual member of the category, nor by
means of a list of formal criteria necessary and sufficient for category
membership, but, rather, in terms of a prototype of a typical member." Such
prototypes will be similar to generic elements in an analog representation of the
environment. Rosch continues to make the correspondence even clearer: "The
most cognitively economical code for a category ig, in fact, a concrete image of
the average category member." As Dreyfus adds: "One paradigm, it seems, is
worth a thousand rules" (1981, p. 178).

Gibson draws some general conclusions on memory and learning that are
related to the role of the "dynamic world model” at the subconscious level of
Figure 8.6. Regarding memory, he states, as already cited in relation to
perception (Gibson, 1966, p. 262): "It should now be clear that the brain does
not have to integrate successive visual sensations in immediate memory. There
is no necessary reason to suppose that the fixations have been retained. The
invariance of perception with varying samples of overlapping stimulation may
be accounted for by invariant information and an attunement of the whole retino-
neuro-muscular system to invariant information. The development of this
attunement, or the education of attention, depends on past experience but not on
the storage of past experience." This conforms closely to observations of
behavior in process control, where data are not remembered, but their functional
implications are.

The states of the internal world model or the attunement to the environment of
the neural system are reflected in higher-level information processes in terms of
natural language. Verbal statements reflect perceptual structures, and can be used
to report perceptions, to activate world models for imagery, and to synchronize
the world models of several persons through verbal communication. Sequential
scene analysis and verbal reasoning based alone on semantic nets or "frame
systems” defined as a system of nodes and relations will lack the basis for the
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overall "direction” in the process. It will be like walking in a city without a
map, only aware of the immediate neighborhood. Only by assuming the
attunement of the system or an effective world model will there be a basis for
overall control of the direction in the sequential process.

From the beginning, the Al community seems to have been aware of this
difficulty with a frame concept in terms of a network of nodes and relations.
Goldstein and Papert (1977) introduced anthropomorphisms like "frame keepers"”
and "demons" for procedural control, and state (p. 93):

In the previous paragraph, we wrote as if the tickle-frame could be direct,
explicit knowledge about feathers. A fundamental and pervasive class of
problems concerns the relative feasibility of achieving this as compared with
various schemes for indirect reference to feathers via some superset or
description. For example, the tickle frame might know that "long, soft
objects” are good instruments for tickling and somehow use this as a means
for finding a connection to feathers. Most early workers in Al (like most
contemporary psychologists) were strongly averse to the direct approach, and
so a great deal of attention has been given to the invention of "search” and
"information retrieval" methods to mediate the indirect approach. Current
thinking (especially among frame theorists) leans towards very much more
direct knowledge than was previously considered feasible. This places a heavy
demand on memory, and less on retrieval mechanisms. This appears to some
to be "heavy-handed." But we do know that human memory has a very large
capacity, and no one has been able to propose very sophisticated retrieval
mechanisms. So perhaps it is nature (rather than the theorists) who has
adopted the "heavy-handed” solution.

For perception and sensorimotor activities, Gibson's attunement appears to be a
much more effective and elegant solution than this "heavy-handed" concept, and
even for sequential verbal reasoning, organization of the content of mental
models in terms of schemes for "indirect reference to feathers via some superset”
elaborated to a multilevel abstraction hierarchy will be more acceptable to
account for the direction in reasoning than "direct, explicit knowledge." Duncker
(1945) found that problem solving is a sequence of reformulations of a problem,
"of mediating phases” of which each one, in retrospect, possesses the character of
a solution and, in prospect, that of a problem. This reformulation considers
several levels of "functional values," their "by-means-of-which" features, and
Duncker remarks: "There is no need for a special concept of a "direction" that
combines elements. Direction is of the type of a problem, or, more exactly, of
the reformulation of a problem and of a mediating phase in the solution
process." This view is entirely depending upon a process through several levels
of "functional values." Functional value is tightly related to somebody's
intention or reasons, as shown in Figure 4.1. A chair is only useful as a chair if
somebody wants to sit down; and if so, many objects may have functional value
for sitting, if a chair is not present. The form and content of mental models will
be discussed in more detail in Chapter 10.
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The Internal World Model Revisited

It is clearly necessary to have a more specific characterization of the internal
dynamic world model or attunement of the organism. The view advocated here is
compatible with the positions of Gibson (1966) and Pylyshyn (1973) that
knowledge of the environment is not stored in memory as traces of sense data,
but as highly processed information. This makes it possible to regenerate
imagery and verbal descriptions that are only to be taken as the manifestations of
the stored information structures in the conscious domains and the means for
conscious control of the knowledge representations. From the role in human
behavior, some of the functional features of the world model can be summarized:

It is able to control bodily movements in a feed-forward mode of control
during fast sequences, i.e., it is capable of real-time, quantitative, and precise
simulation of the time-space patterns of the environment, and it is an acfive
model.

It is a hierarchical representation; it enables recognition of objects and scenes
at the level of physical appearance; it makes it possible to identify objects
by their functional values rather than their appearance; and patierns of
purposive behavior can be activated by high-level intentions.

There is a very efficient mapping between features of the environment and the
model; i.e., a very efficient updating of the medel is possible in response to
changes, as well as easy transfer to "similar" scenarios. This points to an
analog-type model with elements representing objects and their functional
properties and values, and consequently a one-to-one mapping of elements in
the environment and the model.

Pylyshyn (1973) discusses the need for knowledge representations of a more
fundamental nature than imagery. In accordance with the view put forward here,
he points out that one has to accept imagery as a phenomenon of importance for
cognitive behavior but that imagery does not reveal the information processes.
Instead of accepting the process of perceptive analysis of imagery as the basis of
visual thinking, the visual imagery should rather be seen as the result of
underlying perception-like processes. He finds the typical features of imagery
"much closer to a description of the scene than a picture of it" (p. 11) and
therefore it is "useful to think of propositional knowledge even when the
concepts and predicates in such propositions do not correspond to available words
in our vocabulary" (p. 7). Consequently, he discusses as models of knowledge
representations the propositional representations, data structures, and procedural
representations developed within computer science. Like Minsky's frames, these

- representations have great advantages by being immediately operational for

digital computer simulations. However, these kinds of Fregean knowledge

representations have some shortcomings when taken as psychological theories.
First of all, they tend to be passive representations, needing external control

algorithms; for propositional representations in terms of rules for deductive
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reasoning, for data structures in terms of retrieval routines, which lead to the
procedural models that need still higher-level rules for proper functioning, they
all lack the active, reconstructing power of the representation behind perception
and imagery, and, just as for Minsky's frames, it is tempting to invent a
"demon" for this control (cf. Norman's plea for active memory units).

Second, among abstract concepts, i.e., attributes of elements in the
environment, the Fregean character in consequence leads to a complex mapping
function between changes in the environment and necessary updating of the
representation. It appears plausible to relax a little from digital computer biases
and consider the spatial characteristics of the neural basis for representation. The
neural networks are basically capable of active representation or simulation of
properties in the time-space patterns of information from the sensory data.

Analog processes representing the behavior of the environment are possible in

a pulse-density-coded network seen as a distributed digital differential analyzer
(Ribeiro, 1967) or as a holographic processor (Pribram, 1966). By holographic
processes, the neural network would be able to generalize at several levels of
abstraction and to identify "prototypical” objects, functional properties, and value
features given the activation by suitable "reference beams.” Analog applications
of holographic techniques have been demonstrated in optical data processing in
terms of optical Fourier transformation for object and feature identification from
prototypical reference samples. The point in question is that search for a model
of the basic goémmmm representation should not be constrained by the bias from
symbolic processes in sequential digital computers, but should include the
possibility of a much more effective mapping of active features in the space- -time
information contained in-the sensory data. Holographic generalization from the
sensory time-space array of information by reference beams related to functions,
goals, and purposes may very well lead to a hierarchical and prototypical analog
model up through a hierarchy of abstraction similar to the one shown in Figure
4.1,

A holistic, holographic process based on stored, dynamic Eanmﬁnnnm or
correlation patterns between excitation wavefronts seems to be very plausible. A
hierarchical organization can be based on identification of generic spatial patterns
representing objects, i.e., invariant over scenes and during movement and related
to human acts. The next level of functional properties can be identified by
invariants in events of object interaction and value properties by invariants in
relationships between object patterns and human intentions. Michotte's (1963)
experiments with perception directly in terms of causal relation between objects,
when subjects were presented to abstract dynamic light patterns, seem to indicate
such mental "layouts” at a higher abstract, functional level. Furthermore, based
on Johannson's (1973) experiments with perception of human movements, when
persons with small light bulbs attached to the major joints moved in the dark,
Annett (1981) asserted that a human's perception of movement is tuned for
reading intentions, i.e., for immediate perception of what other people are about
to do. Holographic memories depend on "reference beams" for retrieval of
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information. Such "reference beams" can probably be generated in the neural
network by excitation waves from other neural complexes; intentions may
activate reference patterns from the speech motor system, which in turn activate
the holographic representation top-down, creating imagery. Sensory output can
activate bottom-up and lead to perceptions. This holographic conception very
well matches the requirements of Pylyshyn (1973, p. 10) that vague
recollections should be characterized by lack of resolution, or "in the sense that
certain perceptual qualities or attributes are absent or uncertain—not that there are
geometrically definable pieces of a picture missing.” (If part of a hologram is
removed, the entire content will be developed by a reference beam, but with
decreased resolution.) This active knowledge representation will be able to
control bodily interaction with the environment as well as visualization
verbalization during all routine situations. During unique situations, the
simulation may stop, and outside control may be needed. If the motor schema of
speech is an independent coding form, it will be plausible that internal speech
will be effective to control the dual process of detailed operation on the
knowledge representation manifesting itself as imagery, and keeping track of the
overall plan by means of speech motor schemata.

The difficulties with an entirely Fregean or propositional model of knowledge
representation have recently been discussed by several authors. Sloman (1971)
argues the need for a more analog and intuitive model of reasoning to represent,
for instance, the immediate "grasping” of the function of a pictorial presentation
of a pulley. Pylyshyn (1973) realizes the difficulties with the propositional
models of knowledge representation as a model of human cognition (p. 13). The
system must, for instance, "display similar intermediate states of knowledge as
subjects do in solving a problem or answering a question.... It is not clear at this
stage in our understanding of theorem-proving schemes whether a uniform proof
procedure is capable of meeting such requirements.” This condition will serve as
a test at only the higher symbolic level of the information processes, not as a
test of the model of the more fundamental aspects of knowledge representation at
the level of processes behind imagery. A more reliable test of a model will be
the requirement that it must make mistakes and errors in the same way and in the
same situations as humans will do. Johnson-Laird (1980) discusses in length the
problems related to a propositional model of knowledge. The problems arise
with inferences such as: A is to the right of B; B is to the right of C; then A is
to the right of C only if on a straight line. If sitting around a round table? The

‘problem is that the concepts of right and left are only defined in a given

structural context. This problem is not in particular related to right and left, but
many terms are ambiguous unless the structural context is specified separately:
"at," "between,” "near,” "next to," etc. To generate propositions is to abstract
selectively some properties from the context and, consequently, the structural
context cannot be regenerated from the propositions. This makes a propositional
theory of imagery difficult because "it must be possible to apply the inverse of
the propositional encoding to obtain the original stimulus, or, more plausibly, a
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sensory representation isomorphic to the original stimulus. However, because
perception is likely to involve a many-to-one mapping, the inverse may fail to
yield the original 'stimulus™ (Johnson-Laird, 1980, p. 94). To resolve such
difficulties, Johnson-Laird introduces the "mental model" which, however, seems
to be a model only at the level of representing the spatial relationships among
objects that are labeled by names, categories, and relational properties. The
possible extension of the concept of mental model to more structural, symbolic
levels is not discussed by Johnson-Laird.

In conclusion, the most economic and effective representation of knowledge
appears to be based on an interaction between a dynamic world model
representing the spatial structure of the state of affairs of the physical world
directly, as well as at different symbolic levels, and a system of verbally coded
propositions serving to control the simulation processes. The relationship
among the concepts, which is the basis for the propositions, the knowledge
base, is a "mental model" of the environment.

This mental model or cognitive map can be viewed as a network of relations
among conceptual nodes, a "semantic net." However, the interpretation of the
verbal codes of this model heavily depends on the context supplied by the
current, subconscious dynamic world model. Attempts to define the meaning of
isolated words and even sentences are only meaningful within formal logic, not
in natural language. .

The need for a function like the internal dynamic world model as the
background for understanding language, as well as for actions, has long been
discussed in the philosophical literature. Polanyi (1967) has thoroughly
discussed the importance of "tacit" knowledge. Machie (1975) found it necessary
to introduce the notion of a "field" as the representation of the context in his
efforts to define causality in commonsense descriptions of event sequences.
Recently, Searle (1983) has argued the importance of the "background,” which in
his terms is the "nonrepresentational” something underlying mental
representations, "intentional states.” Mental representations form a network of
intentional states, and the semantic content of a state depends on its location in
this network. However, "anyone who tries seriously to follow out the threads in
the network will eventually reach a bedrock of mental capacities that do not
themselves consist of intentional states (representations), but nonetheless form
the preconditions for the functioning of intentional states.” His arguments for
the existence of the "background"” is very analogous to the present arguments for
the internal world model: the background is necessary to account for the fact that
the literal meaning of a sentence is not a context-free notion, for understanding
of metaphors, and to explain physical skills as, for instance, needed in expert
skiing. .

The speculations above are by no means intended to serve as a hypothesis on
the actual organization of human information processing. Instead, they may
serve to illustrate a possible organization as a counterexample, considering the
trend in cognitive psychology to take the Al conceptualizations as psychological
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theories. It is evident that concepts within Al must be related to the means
available for implementation today. It should not, however, prevent the
consideration of other models by the system designers, if they give a more
realistic representation of human capabilities and limitations, even these cannot
be reproduced today by existing technology and thus be tested by direct
simulation.

Fixation on current sequential, propositional AI models may very well prevent
a designer of human-machine interface systems from considering possible
alternative and efficient, high capacity human processing modes.



Chapter 9

Models of Human
Information Processing

In order to have a basis for man-machine systems design, it is important to
identify manageable categories of human information processes at a level that is
independent of the underlying psychological mechanisms. Such implementation-
independent models furthermore will be compatible with models used for design
of the automatic information-processing algorithms of the interface.

Distinction of various categories of human information processes appears
when we consider the way in which human behavior can be internally controlled.
This leads to a more formal description of the various domains of behavior
behind the examples discussed in Chapter 8.

In this effort, we have to consider that humans are not simply deterministic
input-output devices, but goal-oriented creatures who actively select their goals
and seek the relevant information. The behavior of humans is teleologic by
nature. In their classic paper, Rosenbluth et al. (1943) definé teleologic behavior
as behavior that is modified during its course by signals from the goal. This
restrictive definition seems, however, to be due to an inadequate distinction
between two concepts: causes of physical events and reasons for physical
functions, a distinction that has been discussed in detail by Polanyi (1958).
Teleologic behavior is not necessarily dependent on feedback during its course
but on the experience from previous attempts, i.e., the reason for choosing the
particular approach. Reasons act as the classic "final causes” and can control
functions of behaving systems by selection, be it natural selection in biologic
evolution or through human design choices for man-made systems, whereas
causes control functions through the physical structure of the system. In that all
technical systems are designed for Very definite reasons, it directly follows that
teleologic explanations—in the classical sense—of the functions of man-made
systems derived from their ultimate purpose are as important as causal
explanations based on engineering analysis. The same is the case for
explanations of purposive human behavior.
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Actually, even human position and movement in the physical environment are
only occasionally directly controlled during the course of action by simple
feedback. It may be the case in unfamiliar situations calling for accurate and slow
time-space coordination, but in more complex, rapid sequences the sensory
equipment is too slow for direct feedback correction, and adaptation is based on
means for selection and regeneration of successful patterns of behavior for use in
subsequent situations, i.e., on an internal dynamic world model.

At a higher level of conscious planning, most human activity depends upon a
rather complex sequence of activities, and feedback correction during the course
of behavior from mismatch between goal and final outcome will therefore be too
inefficient because in many cases it would lead to a strategy of trial and error.
Human activity in a familiar environment will not be goal-controlled; rather, it
will be oriented toward the goal and be controlied by a set of rules that have
proven successful previously. In unfamiliar situations when proven rules are not
available, behavior may be goal-controlled in the sense that different atternpts are
made to reach the goal, and a successful sequence is then selected. Typically,
however, the attempts to reach the goal are not performed in reality, but
internally as a problem solving exercise—i.e., the successful sequence is selected
from experiments with an internal representation or model of the properties and
behavior of the environment. The efficiency of humans in coping with
complexity is largely due to the availability of a large repertoire of different
mental representations of the environment from which rules to control behavior
can be generated ad hoc. An analysis of the form of these mental models is
important to the study of human interaction with complex man-made systems.

Basically, meaningful interaction with an environment depends upon the
existence of a set of invariate constraints in the relationships among events in
the environment and between human actions and their effects. The implications
of the discussion above is that purposive human behavior must be based on an
internal representation of these constraints. The constraints can be defined and
represented in various different ways, which in turn can serve to characterize the
different categories of human behavior.

Skills, Rules, and Knowledge

When we distinguish categories of human behavior according to basically
different ways of representing the constraints in the behavior of a deterministic
environment or "system," three typical levels of performance emerge: skili-,
rule-, and knowledge-based performance. These levels and a simplified
illustration of their interrelation are shown in Figure 9.1.

Skill-based behavior represents sensorimotor performance during acts or
activities that, after a statement of an intention, take place without conscious
control as smooth, automated, and highly integrated patterns of behavior, Only
occasionally is performance based on simple feedback control, where motor
output is a response to the observation of an error signal representing the
difference between the actual state and the intended state in a time-space
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Figure 9.1. Simplified diagram of the three levels of control of human actions.
The three levels in a real situation interact in a much more complex way than
shown. Note that the arrows indicate information flow, not necessarily control.
For instance, only the lowest level can be considered "data-driven.” For the higher
levels, information is actively sampled ("rule-" or "model-driven”). However, two
aspects are necessary in explaining human behavior: reasons in terms of
intentions, conditioning the organism top-down, and causes in terms of sensory
information releasing actions bottom-up, as shown .in the figure. For nonQ.oH.om
attention, see Chapter 8. [Reproduced from Rasmussen (1983) with permission
from IEEE.} :

environment, and where the control signal is derived at a specific point in time.
Typical examples are experimental tracking tasks. In real lifg, this mode mm._,wnm:\
used, and only for slow, very accurate movements—assembly tasks, drawing. In
most skilled sensorimotor tasks, the body acts as a multivariable, continuous
control system synchronizing movements with the behavior of the environment.
As discussed in the previous chapter, performance is then based on feed-forward
control and depends upon a very flexible and efficient dynamic internal world
model.

It is characteristic that skilled performance rolls along without conscious
attention or control. The total performance is smooth and integrated, and sense
input is not selected or observed--the senses are only directed toward the aspects
of the environment needed to update and orient subconsciously the internal map.
The man looks rather than sees.

LY Fey R




102 Information Processing and Human—Machine Interaction

In some cases, performance is one continuous, integrated dynamic whole, such
as bicycle riding or musical performance. In these cases, the higher-level control
may take the form of conscious intentions to update the dynamic world model
and thereby to "modulate” the skill in general terms, such as "be careful now the
road is slippery” or "watch out, now comes a difficult passage.” In other cases,
performance is a sequence of rather isolated, skilled routines that are sequences of
a conscious "executive program.” In general, human activities can be considered
as a sequence of such skilled acts or activities composed for the actual occasion.
The flexibility of skilled performance is due to the ability to compose from a
large repertoire of automated subroutines the sets suited for specific purposes.

At the next level of rule-based behavior, the composition of such a sequence of
subroutines in a familiar work situation is typically consciously controlled by a
stored rule or procedure that may have been derived empiricaily during previous
occasions, communicated from other persons' know-how as an instruction or
cookbook recipe, or it may be prepared on occasion by conscious problem
solving and planning. The point here is that performance is goal-oriented, but
structured by "feed-forward control" through a stored rule. Very often, the goal is
not even explicitly formulated, but is found implicitly in the situation releasing
the stored rules. The control is teleologic in the sense that the rule or control is
selected from previous successful experiences. The control evolves by the
survival of the fittest rule. In effect, the rule will reflect the functional properties
that constrain the behavior of the environment, but usually properties found
empirically in the past. Furthermore, in actual life, the goal will only be reached
after a long sequence of acts, and direct feedback correction considering the goal
may not be possible. Feedback correction during performance will require
functional understanding and analysis of the current response of the environment,
which may be considered an independent, concurrent activity at the next higher
level (knowledge-based).. )

The boundary between skill-based and rule-based performance is not quite
distinct, and much depends on the level of training and on the attention of the
™ person. In general, the skill-based performance rolls along without the person’s
conscious attention, and he will be unable to describe how he controls and on
what information he bases the performance. The higher-level, rule-based
coordination is in general based on explicit know-how, and the rules used can be
reported by the person, although the cues releasing a rule may be difficult to
describe.

During unfamiliar situations, faced with an environment for which no know-
how or rules for control are available from previous encounters, the control of
performance must move to a higher conceptual level, in which performance is
goal-controlled, and knowledge-based (knowledge is here taken in a rather
restricted sense as possession of a conceptual, structural model). The level might
more appropriately be called model-based. In this situation, the goal is explicitly
formulated, based on an analysis of the environment and the overall aims of the
person. Then, a useful plan is developed—by selection, such that different plans
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are considered and their effect tested against the goal; physically by trial and
error; or conceptually by means of understanding of the functional properties of
the environment and prediction of the effects of the plan considered. At this level
of functional reasoning, the internal structure of the system is explicitly
represented by a "mental model” that may take several different forms. We will
return to this point in the next chapter.

Similar distinctions between different categories of human behavior have
previously been proposed. Fitts and Posner (1962) distinguish between three
phases of learning a skill: the early or cognitive phase, the intermediate or
associative phase, and the final or autonomous phase. If we consider that in real
life a person will meet situations with a varying degree of training when
performing his task depending on variations and disturbances, the correspondence
with the three levels in the present context is clear.

These three levels of control of human behavior are closely related to the
rational processing in the ladder of abstraction itself, in the habitual bypasses and
the automated subroutines that form the elements of the task procedure. This
relationship is illustrated in Figure 9.2

Whitehead (1927), discussing symbolism, operates with three categories of
human performance: instinctive action, reflex action, and symbolically
conditioned action, which are also related to the present discussion:

Pure instinct is the most primitive response which is yielded by organisms to
the stimulus of their environment {p. 92].... Reflex action is a relapse towards
a more complex type of instinct on the part of an organism which enjoys, or
has enjoyed, symbolically conditioned action [p. 94].... Reflex action arises
when, by the operation of symbolism, the organism has acquired the habit of
action in response to immediate sense-perception, and has discarded the
symbolic enhancement of causal efficacy [p. 96l.... In symbolic conditioned
action the causal efficacy is thereby perceived as analysed into components
with the locations in space primarily belonging to the sense-perceptions [p.
94}.... Finally mankind also uses a more artificial symbolism, obtained
chiefly by concentrating on a certain selection of sense-perceptions, such as
words for example. In this case there is a chain of derivations of symbol from
symbol whereby finally the local relations between the final symbol and the
ultimate meaning are entirely lost. Thus these derivative symbols, obtained as
they were by arbitrary association, are really the result of reflex action
suppressing the intermediate portions of the chain [p. 98].

Whitehead's discussion of symbols and derived symbols, the meaning of which
is lost, leads to the distinction between signals, signs, and symbols.

Signals, Signs, and Symbols

One aspect of the categorization of human performance in skill-, rule-, and
knowledge-based behavior is the role of the information observed from the
environment, which is basically different in the different categories. The fact that
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Figure 9.2. The relationship between the decision ladder and the three levels of

control of human behavior.

information or indications from the environment can be perceived in basically
different ways by a human observer is no new discovery (see, €.g., Morris, 1971;
Eco, 1979), but curiously enough, it has so far not been explicitly considered by
human-machine interface designers. This is the case even though major problems
during unfamiliar situations may be caused by the fact that the same indication
may be perceived in various different roles and that it is a well-known
psychological phenomenon that shift between different modes of perception is
difficult (functional fixation).

At the skill-based level, the perceptual motor system acts as a multivariable,
continuous control system synchronizing the physical activity, such as
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navigating the body through the environment and manipulating external objects
in a time-space domain. For this control, the sensed information is perceived as
time-space signals, continuous, quantitative indicators of the time-space behavior
of the environment. These signals have no "meaning” or significance except as
direct physical time-space data. The performance at the skill-based level may be
released or guided by value features attached by prior experience to certain
patterns in the information not taking part directly in the time-space control but
acting as cues or signs activating behavioral routines of the organism. At the
skill-based level, the performance is similar to that of a data-driven continuous
system, conditioned by signs in terms of patterns in the sensory information or
intentions, or both, supplied from the higher levels of control.

At the rule-based level, the information is typically perceived as signs. The
information perceived is defined as a sign when it serves to activate or modify
predetermined actions or manipulations. Signs refer to situations or proper
behavior by convention or prior experience; they do not refer to concepts or
represent functional properties of the environment. Signs are generally labeled by
names that may refer to states or situations in the environment or directly to
goals and tasks of a person. Signs can only be used to select or modify the rules
controlling the sequencing of skilled subroutines; they cannot be used for
functional reasoning, to generate new rules, or to predict the response of an
environment to unfamiliar disturbances.

To be useful for causal functional reasoning.in order to predict or explain
unfamiliar behavior of the environment, information must be perceived as
symbols. Whereas signs refer to percepts and rules for action, symbols refer to
concepts tied to functional-properties and can be used for reasoning and
computation by means of a suitable representation of such properties. Signs
have external reference to states of and actions upon the environment, but
symbols are defined by and refer to the internal, conceptual representation that is
the basis for reasoning and planning. Cassirer notes (1944):

Symbols—in the proper sense of the term—cannot be reduced to mere signs.
Signs and symbols belong to two different universes of discourse: a sign is
part of the physical world of being, a symbol is part of the human world of

meaning.

The difference betweeri signs and symbols, and the difficulty in the shift from
rule-based reliance on signs to knowledge-based use of symbols is clearly
illustrated in the testimony of the Three Mile Island operators to the U.S.

Congress (Oversight Hearings, 1979):

Mr. Frederick: Let me make a statement about the indications. All you can say
about them is that they are designed to provide indications for whatever
anticipated casualties you might have. If you go out of the bounds of an
anticipated casualty, if you go beyond what the designers think might
happen, then the indications are insufficient and they may lead you to make
wrong inferences. In other words, what you are seeing on the gauge, like what
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1 saw on the high pressurizer level, I thought it was due to excess inventory.
In other words, 1 was interpreting the gauge based on the emergency
procedure, where the emergency procedure is based on the design casualties.
So the indications then are based upon my interpretation. Hardly any of the
measurements that we have are direct indications of what is going on in the
system. They are all implied measurements [p. 138].

If to this is added the difficulty in abandoning a search for a rule, which is not
there, the point becomes clear.

Mr. Faust: What maybe you should try to understand here is that we are trying
to gain the proper procedure to go at it. We were into possibilities of several
procedures, not just one, to cover what was happening. It has not been
written, in fact. So we were still trying to determine which procedure to go by
[p. 139].

The distinction between the perception of information as signals, signs, or
symbols is generally not dependent on the form in which the information is
presented, but rather on the context in which it is perceived, i.e., upon the
intentions and expectations of the perceiver. Whorf expresses this well-known
fact in the following way (Whorf, 1956):

The categories and types that we isolate from the world of phenomena we do
not find because they stare every observer in the face; on the contrary, the
world is presented to us in a kaleidoscopic flux of impressions which has to
be organized by our minds....

Figure 9.3 illustrates how the same instrument can serve to transmit all three
kinds of message.

The discussion of the different perception of information is a classic topic
within biology and philosophy, and similar distinctions have been drawn. Dewey
and Bentley (Bentley, 1950) apply the same definition for sign and symbol as
discussed above, but use the term "signal” in a different way, which is more
related to its use in classic discussions of reflexive behavior such as that of
Pavlov's dogs: they...

have employed the word "sign" to name this technically characteristic
"indirectness” as it is found across the entire behavioral field.... Within the
range of sign, the word "signal" was chosen to name the underlying sensory-
perceptive level; the word "designation” for the next higher evolutionary
level-namely, that of linguistic sign operation; and the word "symboling" for
a still higher range in the evolutionary sense....

In the present human-machine context, it seems to be important to keep the role
of information as time-space signals, which are processed directly in a dynamic
control of the motor performance, separate from the role as signs that serve to
modify actions at a higher level.
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Figure 9.3. The same indications can be interpreted by a process operator as a
signal, a sign, or a symbol depending on circumstances. [Reproduced from
Rasmussen (1983) with permission from IEEE.]

The distinction signs/symbols is also treated by von Foerster (1966). He
focuses, however, upon the difference between humans and animals:

Communication among social insects is carried out through unalterable signs
which are linked to the genetic make-up of the species. To communicate
acquired knowledge by passing through generations, it must be communicated
in symbols and not signs. This separates man from beasts.

Sometimes, but operating from signs may also be the normal way to be efficient
for humans. You act on signs, but understand symbols.
To sum up, the three levels of behavior in the present context are characterized
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by different uses of the information available, and the distinction is very clear
from an information processing point of view:

Signals are sensory data representing time-space variables from a dynamic,
spatial configuration in the environment, and they can be processed by the
organism as continuous variables.

Signs indicate a state in the environment with reference to certain conventions
for acts. Signs are related to certain features in the environment and the
connected conditions for action. Signs cannot be processed directly; they
serve to activate stored patterns of behavior.

Symbols represent other information, variables, relations, and properties, and
can be formally processed. Symbols are abstract constructs related to and
defined by a formal structure of relations and processes, which by
conventions can be related to features of the external world.

Semiotic Interpretation of Human Acts

In the discussion above, only the interpretation of the information picked up by
humans has been discussed in semiotic terms. However, the same point of view
can be taken on human actions. In human-machine interaction, the transfer of
information from the human to the system will in general be in the form of
actions on the system, i.e., it involves the change of position of a physical
element of the system. In some cases this change of position is directly involved
in the intended change in the environment, e.g., when assembling things,
moving things, or shaping objects. In other cases, the movement itself is only
indirectly involved since the system amplifies the movement or the applied force
in order to have the intended change, e.g., when tools and manipulators are used,
or the course of a vehicle is controlled. In both cases, the movements are acting
as continuous signals in a time-space control loop of which the human body is
an integrated part.

Frequently, however, the manual act or movement itself is not at all involved
in the intended change in the environment, but merely acts as a sign that by
convention and design is suited to release a predetermined causal chain in the
environment as, for example, when a switch is activated in order to turn on the
light or to start a car. In human-machine interaction, it therefore appears to be
necessary to consider the same distinction between signals and signs for the
significance of human acts as it is for the information observed by a human.
Also, the interpretation of a movement or act as a symbol can be relevant, in
particular if gestures are intended for interpretation by another human, not to
mention speech acts. When acts or movements serve to transfer information to
or control the processes of an automatic information-processing system, they
may appear to be symbolic, but in general, they will only at the present state of
development be signs releasing predetermined causal sequences and not
participate in a symbolic process. Only for intelligent systems, which understand
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the meaning of messages (i.e., that perform under the control of conceptual
models and goals, rather than rules), can input acts be interpreted as symbols.
Compare this with Searle’s (1981) discussion on whether computer programs are
able to understand language.

The distinction is related to the phenomenologic question whether a human
will consider tools and information gathering equipment to be extensions of the.
body or parts of the environment. This appears to be important for the resulting
data-processing capacity of the total human-machine system. Different typical
categories of human-machine interaction will therefore be considered in more
detail. Direct manipulation of the physical environment takes place in manual
tasks as, for example, when moving and shaping objects and assembling things.
At the conscious level, objects are perceived directly in terms of their functional
implications, and intentions are stated in terms of acts to perform, goals or
targets to reach—generally not in terms of movements. Therefore, conscious
statements of intention have the character of signs releasing acts, i.e., patterns of
movements. The control of the necessary movement is based on the sensing of
time-space signals, which aligns the internal model. In direct manipulation, both
attention and intention are related to the time-space configuration of the
environment but expressed at the level of acts, intentions, i.e., in terms of signs
related to the state of environment by convention. They are typically not tied
only to the specific situation, but applicable for many similar situations.
However, the integrated interaction in the time-space control loop (the skilled
patterns) is specific for the actual situation. Examples of general expression of
intentions are "fill the bottle," "screw lid on," and "we have to put this
together." The more general statements of intention are interfaced with the real
physical environment by the sensorimotor skill, controlled by the internal world
model; see Figure 9.4.

Figure 9.4. During highly skilled, direct object manipulation, the spatial-
temporal continuous signal loop through the sensorimotor functions is intact. The
loop is activated and the properties controlled by perception of cues as signs.
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Figure 9.5. By indirect object manipulation, when the spatial-temporal signal
loop is intact, the tool may be considered an extension of the motor system of
the human. Manipulation and control interfaces are different.

Objects in Context
Environment

Indirect manipulation appears when mechanical tools are applied to manipulate
or transform objects. Examples can be hand tools and major Emn:im@ such as
bulldozers or remote manipulators for radioactive hot-cells, the ?so:o.z o»,.sr_or
can be monitored visually. The characteristic feature of this situation is that
intention and attention are both focused on the task at the interface coﬁioos. the
tool and the environment; the tools or manipulators are perceived as nﬁmdmﬂo:m
of the human body because the time-space control loop through the sensorimotor
system is intact. When the initial training period is over, the properties of H.:m
tool during movements, as, for example, dynamic properties, are integrated s:.:
those of the body into one whole pattern of the internal io&a Boa&.. This
category also includes vehicle control tasks such as oﬁ.&ﬁ:m and m%ﬁ@
piloting, as long as they are based on direct visual perception. The prerequisite
for this "embodiment" of the tool (Ihde, 1981) is the possibility of a dynamic
integration of the control of body and tool movement, which implies .Emﬁ the
tool is transmitting signals from the "manipulation interface” to the "control
interface”; i.e., the focus of intention and attention is at the task itself, not at the
tool operation. This also implies that the sensing channel must be able to
transmit the time-space signals. The control signal loop is closed through the
sensorimotor mechanisms, with a higher-level control performed by direct
perception of functional properties and values and of signs that can be related to
intentions (see Figure 9.5).

The introduction of means for information transmission between the task
location and the human controller is necessary in many situations of remote
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Figure 9.6. Remote manipulation. When an information channel is inserted for
remote control, this channel may be considered an extension of the senses, if the
spatial-temporal signal loop is maintained. Attention and control will be at the
remote object interface. The skilled performance effectively takes part in the task
itself.

manipulation, for example, for remote underwater manipulators, remote control
of vehicles, and of robots for work in radioactive areas or for space work. When
the information transmission channel is able to transmit the time-space signals
necessary for control of movements as well as information carrying functional
value features and signs for higher-level formation of intention—as, for example,
will be the case for a closed circuit television channel or a microscope—the
information channel will act as an extension of the sensory channel, and the
attention and intentions can be focused on a control interface at the location of
the remote task. The characteristics of this situation can be maintained even if
the visual appearance of the work scene is not itself directly transmitted but only
selected features, as long as the time-space signal information needed for
movement control together with the features needed for interaction control are
properly transmitted. Examples of such displays are the analog displays for
instrument piloting of aircraft. In case of such abstract displays, the illusion of
being on-site will generally disappear, and attention/intention level may shift to
the display interface. The only way to distinguish whether attention is paid to
the task itself or the representation by the display will be the language used to
express intentions. With pictorial representation, distinction by means of the
language terms disappears, and only subjective experience may indicate the focus
of attention. In terms of control performance, the distinction is rather irrelevant
because proper sensorimotor skill control can be maintained through the intact
signal transmission loop in both cases; see Figure 9.6.
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Figure 9.7. Remote process control. When symbolic E&.Ssnm and &mn_”own
control keys changing parameters in an Eﬁmmc—m. process are inserted, the %.w:m -
temporal loop is broken. Sensorimotor skill is no longer part of the primary
task, but functions as a translation interface.

The time-space signal loop may be broken in some types .om remote process
control—the manipulation channel may not transmit space-time analog signals
but, for example, alphanumerically coded orders, or the mmsmomw channel, or both,
may be coded in abstract codes rather than maawm representation of the effect of
acts. This is typically the situation if the task is not related to concrete space-
time object manipulation, but to a higher-level state of a physical process that is
not immediately visible, as, for example, the processes of a power plant or
chemical process plant; see Figure 9.7. If the time-space oo.EH.E loop is Eowhw:
in this way, there are translating functions in each transmission path, and the
human attention/intention level will typically be at the surface wm m:o system.
During routine situations for operations gmoa on signs and associations to w_oa
(i.e., rule-based performance) upon the manipulation interface. UE.B.m unfami iar
situations, the attention/intention must be time-shared cm:z..wmn this interface (in
order to translate readings to symbols and intentions G.mn:o:mv and the mental
representation (in order to make functional ma,mmgoom in zﬁ. w:os_namm.wmmma
domain). In this situation, the automated sensorimotor functions are applied to
functions of translation that are unrelated to the higher-level cognitive task. The
high-capacity sensorimotor skill will not be w<m=m¢_m to the main problem, but
will be occupied by interface manipulation and sign recognition. Furthermore,
during unfamiliar situations, cognitive resources must .ca spent on the
translation tasks related to state identification and action planning.

The aim of introducing interface systems based on information aﬁ._no_om«
should be to select a coding system that eliminates the human translation task
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and makes it possible to apply the high sensorimotor capacity directly in the
main task itself. This implies at least two conditions. First, the presentation of
information on the interface must be based on symbols related directly to the
internal function to be controlled. Second, the symbols and structure must be
chosen so as to allow operation by direct manipulation of the time-space
configuration of the symbolic representation. In this case, there is a one-to-one
analog mapping of the configuration of the symbolic representation and the
function to be controlled, and the sensorimotor skill can be applied to the central
task. This mean in fact that the time-space control loop is intact with a
symbolic reinterpretation of the time-space signals in the translating human-
machine interface, where the displayed graphic symbolic configurations are
treated as artificial objects. This problem will be discussed in more detail in
Chapter 10.

Skills, Rules, and Knowledge as Stages in
Learning a Skill

In the three-level model, the final stage is the skill level where automated
routines are based on subconscious time-space manipulations of objects or
symbols in a familiar scenery. During training, the necessary sensorimotor
patterns develop, while the activity is controlled by other means. From a control
point of view, two problems must be solved during training. First, the activity
must be synchronized with the behavior of the environment in order to meet the
proper purpose. Second, the activity must be optimized to form a smooth and
efficient pattern within the boundary of the task. A good example illustrating the
synchronization and optimization problem is learning to ride a bicycle. The
control of the activity during the initial phases of synchronization and formation
of the sequence of acts can be obtained in various ways. It may happen directly at
the skill level by imitation and trial-and-error, as, for instance, learning to play
an instrument by ear or children learning to talk, walk, etc. In some cases,
synchronization presents a problem—as in walking or riding a bicycle—and an
external assistant with hand-on-the-saddle kind of support will be effective. In
other cases, control at the rule-based behavioral level will be efficient during
development of the automated skill. The rules may be obtained from an
instructor or a textbook, as is typically the case in learning to drive a car, to
operate tools and technical devices supplied with an instruction manual, or to
manage social interactions from rules of good manners. And, finally, persons
with a basic knowledge of the structure and functioning will be able to generate
themselves a set of rules to control activities related to various purposes during
early phases of learning. g

An important point is that it is not the behavioral patterns of the higher levels
that are becoming automated skills. Automated time-space behavioral patterns
are developing while they are controlled and supervised by the higher-level
activities, which will eventually deteriorate, and their basis as knowledge and
rules may deteriorate. In fact, the period when this is happening may lead to



114 Information Processing and Human—Machine Interaction

errors due to interference between a not fully developed sensorimotor skill and a
gradually deteriorated rule system. This kind of interference is known also to
highly skilled musicians when they occasionally start to analyze their
performance during fast passages. It seems to be plausible also that this effect
can play a role for pilots of about 100 hours flying experience, which is known
to be an error-prone period among pilots.

If rule-based performance is characteristic of professional activities in general,
one would expect the basic causal or functional understanding to deteriorate. This
is in fact the evidence found by Ackermann and Barbichon (1963) from their
analysis of the organization of knowledge and the explanation of phenomena as
presented by electrical and chemical technicians in industry. Based on analysis of
interviews, their conclusions were that the professional knowledge of the
technicians was fragmented, with lack of relationship among phenomena, with
barriers between theory, practice, and extraprofessional life, and lack of
relationship among various Evnmwm::&oaw!Bm%m:&mo&. graphic, concrete, and
analogical—of a particular phenomenon. One explanation could be, as the authors
suggest, that theoretical knowledge is not used and the findings reveal
rudimentary memories from basic education. But, seen in our context, it could
also be that basic symbolic knowledge and representations are typically used to
support stereotyped lines of functional reasoning in various typical situations,
and causal reasoning therefore turns into rule- and skill-based manipulations of
symbolic representations that will thereby lose their symbolic nature and
theoretical relationship. As mentioned previously, this effect has been reported
by Goldstein (1969) in solving algebraic equations. Analysis of the functional
explanations offered by the technicians interviewed by Ackermann and Barbichon
was characterized by resort to what the authors call verbal nominalisms, i.e., the
use of technical terms without understanding their content or relationship, or
verbal logicism, as, for instance, pseudoanalogies or replacement of logical
sequences with chronologic sequences from the problem context. A general trend
found is the replacement of functional arguments by reference to human
interaction, a tendency that can be explained by the tight relationships between
human acts and symbols that are degenerated into mere signs. Cuny (1971,
1973) studied the use of gestures by construction workers as, for instance, in
control of crane movements, and describes the change of distinct, formally
defined signs into more variate, analog signals, as skill develops.

During the first phases of skill acquisition, the activity will be controlled by
separate cues that are defined individually and related to rules controlling very
elementary acts. As skill develops, cues of more global nature in terms of the
data pattern they include and depending on temporal and situational aspects will
be adopted, and rules will be related to activity patterns rather than acts, ie.,
intentions are expressed in terms of goals rather than acts to perform. Finally,
the whole task is automated and is performed without conscious awareness as
long as unexpected deviations do not occur, and the higher the skill, the less
probable will unexpected occurrences be. In this phase, the initial expression of a
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.z:m as, "It's now 25 mph and I have to change gears," is replaced by the overall
intention, "It's four o'clock and Friday, I have to go home," and the conscious
mind can start planning the weekend activities while the skill brings you home
E_,ocm:.ém: hours. This development of skill and the changing nature of the
controlling rules have been studied by Dreyfus and Dreyfus (1980), who have
formulated five distinct phases in professional learning which :o,zm,én a
to be rather ambiguous in their boundaries. . PPt

The .mxwaw_m of driving home raises the question: how are the conscious
reflections and the skilled performance interacting during performance with
Bonmn.ma and high skill? At low-skill levels, conscious attention will be
o.nocva.a by the search for and analysis of cues and control of related actions. At
Eﬁ..-&c: levels, conscious attention may be occupied by completely &EW.RE

ccmSmmm. In situations of moderate difficulty, however, there will be time E.a

capacity left for conscious attention from analysis of cues and situations and

owcﬁm o.». rules, capacity useful for other activities. Knowledge-based analysis and
monitoring of the rule-based control of activities may be important for copin

s.:E .&m::cwsomﬁ see the discussion on human errors, Chapter 11 moi%mw

little is known &.65 how the available time and conscious capacity ».8 spent Hm,

conscious attention scanning through time to monitor the past and analyze ?m

future? m..wnmoE.:oSn skills depend on a properly updated internal world model;

when a high degree of skill is developed, the integration across time is gettin .

more EE. more extended. What is the immediate time span integrated mw

subconscious skill? What is the role in conscious evaluation of future
developments for the updating of the internal model and its predictions?



Chapter 10

Mental Models: Aggregation,
Abstraction, and Analogy

In the knowledge-based domain, the planning of interaction with th
environment depends on structural knowledge, and on mental representations o
the structural configuration of elements and their functional relationships. Thi
is in contrast to the procedural knowledge that underlies rule-based behavior. A:
already discussed in relation to cognitive task analysis, these mental models car
refer to properties at the various levels in an abstraction hierarchy. Like thest
different categories of models, different categories of strategies for operation wit}
the models can be formulated—categories that are specifically tied to differen
types of models, tasks, goals, or subjective performance criteria; see the
discussion of diagnostic strategies in Chapter 6. The efficiency of humans it
coping with the complexity of the physical world is due to an ability to apply
knowledge from previous experience to new situations by selecting and freel
combining models, rules, and strategies that have proven successful separately ir
other situations. In the present section, the role of the different categories o
mental models applied for knowledge-based operation will be discussed in some¢
detail.

Several problems meet the human data processor in the interaction with ;
complex physical environment. Only a few elements of a problem can be withir
the span of conscious attention simultaneously. That is, the complex net o
causal relations of the environment must be treated in a chain of menta
operations, often leading to effects like the law of least resistance and the poin
of no return discussed in Chapter 5. That is, strategies that depend on sequence:
of simple operations are intuitively preferred, and there will be little tendency 1
pause in a line of reasoning to backtrack and develop alternative or parallel paths
An effective way to counteract limitations of processor capacity and short-tern
memory seems to be to modify the basis of mental data processing—the menta
model—to fit it to the specific task in a way that optimizes the transfer o
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previous results and minimizes the need for new information. The efficiency of
human cognitive processes seems to depend upon an extensive use of model
transformations together with a simultaneous updating of the mental models in
all categories with new input information, an updating that is performed below
the level of conscious attention and control and depends on the context defined by
the internal dynamic world model.

Several strategies for model transformation are possible and are generally used
to facilitate mental data processing:

Component
Transistor
short~circuit

Looks burned

Solenoide driver
13

Aggregation: Elements of a representation are aggregated into larger units—
chunks—within the same model category as familiarity with the context
increases. This relates to the model transformation in the part-whole
dimension; see Chapter 4.

Abstraction: The representation of the properties of a system or the
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illustrates the trace followed in an actual diagnostic task.
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One way of coping with the complexity of the real-life environment is to change m_ 5 k) m §

the resolution of one's considerations when the span of attention is increased, g ] ~_ m.s m &%

i.e., to aggregate physical items into higher-level objects or to integrate patterns ® 5 @ll@ 5 89

of actions into routines controlled by higher-level intentions. Complexity is not 84 4 e

an objective feature of a system (Rasmussen and Lind, 1981). The complexity . £8 £

perceived depends upon the resolution applied for the information search, A g 3%

simple object becomes complex if observed through a microscope. Objective 2 &7 AL

complexity can only be defined with reference to a given representation of a . mw@llnmm

system. Therefore, the complexity faced by controllers is determined by the m 8% -

representation of the internal state of the system the interface allows the 23 SER

controller to develop for the various work conditions. Consequently, the apparent
complexity of a system ultimately depends on the technology of the interface
system. For instance, the complexity of the traditional industrial control
consoles depends on the one-sensor-one-indicator technology. Only one level of
resolution of the representation is available, and this has to meet the most
detailed one needed in any situation. In that case, the interface must be complex
by the law of requisite variety. One way to cope with control of systems that are
complex in terms of large numbers of information sources and of devices for
basic control actions is to structure the situation by aggregation, and thereby to
transfer the problem to a level with less resolution.

Decompo~
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Physical

Physical
function
form
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Figure 10.1.
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Very often, a change of the level of physical decomposition s.&E: the span of
attention is coupled with a change in the level of abstraction 5.8@3%:&:0:
but, basically, the whole-part and the abstract-concrete .Q_Bm.nm_o:m are
conceptually separate. As an example, the changes in the two dimensions during
troubleshooting in a computer system are shown in Figure 10.1.

Abstraction

It was discussed in Chapter 4 how a cognitive task can be formulated at several
levels of abstraction in the representation of system properties. The same levels
can therefore be expected in a description of the content of the mental models of
human interaction with such systems. We will here only repeat some wa.w
features of the abstraction hierarchy, as a basis for discussion of its role in
knowledge-based planning.

In the functional means-end hierarchy, the functional properties of the system
are represented by concepts that belong to several levels of abstraction; see
Figure 10.2 (which repeats Figure 4.1). The lowest *m<m_ of wcmmnwn:on
represents only the physical form of the system~its material configuration. The

Figure 10.2. The functional properties of a system can be represented at several
levels in an abstraction hierarchy.
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next higher level represents the physical processes or functions of the various
components and systems in a language related to their specific electrical,
chemical, or mechanical properties. Above this, the functional properties are
represented in more general concepts without reference to the physical process or
equipment by which the functions are implemented, and so forth. At the lower
levels, elements in the process description match the component configuration of
the physical implementation. When moving from one level of abstraction to the
next higher level, the change in system properties represented is not merely
removal of details of information on the physical or material properties. More
fundamentally, information is added on higher-level principles governing the
cofunction of the various functions or elements at the lower level. In man-made
systems, these higher-level principles are naturally derived from the purpose of
the system, i.e., from the reasons for the configurations at the level considered.
A change of level of abstraction involves a shift in concepts and structure for
representation as well as a change in the information suitable to characterize the
state of the function or operation at the various levels of abstraction. Thus, an
observer asks different questions of the environment depending on the nature of
the currently active internal representation,

In other words, models at low levels of abstraction are related to a specific
physical world that can serve several purposes. Models at higher levels of
abstraction are closely related to a specific purpose that can be met by several
physical arrangements. Therefore, shifts in the level of abstraction can be used to
change the direction of paths, suitable for transfer of knowledge from previous
cases and problems. At the two extreme levels of models, the directions of the
paths available for transfer are in a way orthogonal, in that transfer at one level
follows physical, material properties, while at the other it follows purpose.

As discussed in detail in Chapter 5, important human functions in human-
machine systems are related to correction of the effects of disturbances and faults.
Events can only be defined as disturbances or faults with reference to intended
state, normal function, or other variants of system purpose or functional
meaning. The functional models at the different levels of abstraction play
different roles in coping with disturbed systems. Causes of improper functions
are dependent upon changes in the physical or material world. Thus they are
explained "bottom-up” in the levels of abstraction, whereas reasons for proper
function are derived "top-down" from the functional purpose (see Figure 10.2).
The clear difference between the propagation of causes of faults and reasons for
function in the hierarchy has been discussed in detail by Polanyi (1967). This
role of the abstraction hierarchy can clearly be seen in verbal protocols recorded
during diagnostic search in information-processing systems. The diagnostician
will frequently be forced to consider the functions of the system at several levels
(see Chapter 4 for more detail). He will typically have to identify information
flow paths and proper functional states by arguing top-down from the level of
symbolic information, while he will utilize bottom-up considerations to analyze
and explain the actual functional state from physical causes. .

Another human task for which the use of representations at several levels of
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abstraction is of obvious value is the design of technical systems. Basically,
system design is a process of iteration between considerations at the various
levels rather than an orderly transformation from a description of purpose to a
description in terms of physical form. There exists a many-to-many mapping
between the levels; a purpose can be served by many physical configurations,
and a physical system can serve many purposes or have a variety of effects. The
use of different categories of representation in a design strategy has been
explicitly discussed by Alexander (1964), pp. 89-90:

Every form can be described in two ways: from the point of view of what it
is, and from the point of view of what it does. What it is is sometimes called
the formal description. What it does, when put in contact with other things,
is sometimes called the functional description.... The solution of a design
problem is really only another effort to find a unified description. The search
for realization through constructive diagrams is an effort to understand the
required form so fully that there is no longer a rift between its functional

specification and the shape it takes.

If we accept the complex of strata between physical form and functional meaning
of technical systems, an "invention” is related to a jump of insight that happens
when one mental structure upward from physical form and another downward
from functional meaning, which have previously been totally unconnected,
suddenly merge to "a unified description.”

Another consideration should be added to this discussion. Frequently, other
persons will be part of the environment with which a particular person interacts,
and for which he has to use mental models in order to cope with unfamiliar
situations. As for technical systems, various levels of abstraction can be used to
model human "functional” properties, and an analogy of the levels discussed in
Figures 4.1 and 10.1 was drawn for "models of man” in Figure 4.3, All the
levels are used in various research contexts, but what is of particular interest here
is that, in ordinary working life, human interaction is based on a top-down
prediction drawn from perceptions of other persons’ intentions and motives, and
on commonsense representations of human capabilities, together with knowledge
of accepted practice. Causal bottom-up arguments literally play no role, and the
most important information to use for planning human interactions for
unfamiliar occasions is therefore knowledge of the value structures and myths of
the work environment. The obvious reason for this is the complexity and
flexibility of the human organism. However, it should be emphasized that,
because of the growing complexity of information and control systems, the role
of such "intentional models" (Dennett, 1971) is rapidly increasing, also for
interaction with such technical systems. The distinction between causal and
intentional systems with respect to problem solving will be discussed in more
detail in the subsequent section on a means-end abstraction hierarchy.
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Analogy; Transfer of Results and Rules

At each level of abstraction, reasoning depends on a particular type of model and
rules for information processing. Therefore, shifting the level of modeling can be
very effective in a problem situation because data processing at another level can
be more convenient, the process rules can be simpler or better known, or results
can be available from previous cases. A special instance of this strategy is the
m..u_cnon of a problem by analogy, which depends upon the condition that
different physical systems have the same representation at higher levels of
»c.m:mnnoz. Higher-level models for one physical configuration may therefore be
reinterpreted to solve problems related to a quite different, unfamiliar
configuration.

Use of different levels in an abstraction hierarchy has different implications for
different kinds of problem environments, which will be considered in more detail
in the next section.

In some cases, efficient strategies can be found where symbols are transferred
to another level of abstraction and reinterpreted. A simple example will be the
subconscious manipulation of symbols that are reinterpreted as artificial objects,
e.g., Smith's (1976) solution of scheduling problems by manipulation of
rectangles; or the reinterpretation of numbers in terms of actions for calculations
by means of an abacus. This kind of problem-solving skill will be discussed
separately later in the chapter. -

i,

Problem Solving in a Means-Ends Abstraction Hierarchy

In a task related to control of a physical system, control may be based on rules
for action upon the system at a specific level of abstraction. Rules may be
prescribed or found empirically at that level or developed by inference up or down
the hierarchy. This may involve generation of new rules or transfer of known
:.:@m by analogy. Problem solving not related to a causal, physical system
differs in this respect, and different categories of problem-solving environment
can be identified.

Physical systems with known and invariate internal structure are responding to
changes and to human acts according to basic laws of nature that therefore can be
used to predict their behavior. They are here called causal systems, and their
response to physical changes for which no experience is available for an observer
can be explained or predicted by means of bottom-up reasoning in the abstraction
hierarchy, i.e., by functional analysis.

This approach is not possible for all the environments in which humans have
to 5.&8 decisions. Systems with a high degree of autonomous internal
w::n:oa:m, with self-organizing and highly adaptive features, will change their
internal functional organization continuously in order to meet the requirements
of the environment and to suit their internal goals or performance criteria. Even
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Figure 10.3. The abstraction hierarchy used for description of human functional
properties.

though such systems are basically controlled by laws of nature, their complexity
in general makes it impossible to explain or predict their performance by
functional analysis during real-life decision making. The alternative is to
consider such systems as intentional systems controlled by motives or intentions
together with the constraints on performance posed by the environment—
physically or in the form of conventions and legal requirements—and by the
limiting capabilities of their internal mechanisms.

Prominent examples are humans and social systems. For humans, an
abstraction hierarchy similar to that of Figure 10.3 is considered (which repeats
Figure 4.3), with the different levels representing models in terms of anatomy,
physiology, psychology, information processing, and value structures such as
myths and religions. It has been a classic discussion since Stuart Mill whether
the problem of relating mental events to physiologic states is due only to the
complexity of the human organism and will be resolved by means of natural
science in terms of causal explanations bottom-up in the hierarchy, or whether
basically different, intentional models are needed in principle (Winch, 1958).
It is, however, not only a problem in living organisms. Many technical

Mental Models 125

systems, such as control systems and information processing systems, are very
complex and have no simple relationship between their basic physical processes
and their function in the information domain. Therefore, predictions regarding
their behavior are more readily made when considering the systems as intentional
systems (Dennett, 1971). Even in relatively simple systems, operators can be
seen in verbal protocols to develop an explanation of system behavior from a
top-down "redesign” of a reasonable functional structure from its supposed
purpose, rather than to collect information on its actual, physical structure.

Decision making in control of intentional systems is based on knowledge of
the value structures of the system, the actual input from the environment of the
system, and its internal, limiting properties—i.e., it is based on reasoning top-
down in the abstraction with little or no consideration of the internal causal
structures or functions. This is probably the reason why top-level executive
decision makers, according to Mintzberg's study (Mintzberg, 1973), do not
behave according to analytical decision models, but prefer live action and
constant consumer contacts instead of analysis of abstract reports, and current
information—even gossip and hearsay—for statistics and status reports. Meeting
people and considering hearsay are probably the best sources of information on
current trends in value structures. This aspect is as important for understanding
managerial decision making as the role of concrete, situational intuition of
experts, which has been emphasized by Dreyfus (1980).

The strong emphasis on the causal relationships in the modeling of social
systems, such as Forrester's world model (1971), rather than careful consideration
of the dynamics of value structures, may greatly decrease the quality of long-term
projections. A similar critique of traditional historical theories has been
expressed by Toynbee (1972), who has a system-oriented approach to the history
of societies. He defined a society in the following way: "A society is the total
network of relations between human beings. The components of society are thus
not human beings but relations between them" (p. 43). Presenting his
"challenge-and-response model," he argues: "In my search up to the present
point, I have been experimenting with the play of soulless forces—vis inertia and
race and environment—and I have been thinking in the deterministic terms of
cause-and-effect,” and he continues: "The effect of a cause is inevitable,
invariable, and predictable. But the initiative that is taken by one of the other of
the live parties to an encounter is not a cause, it is a challenge. Its consequence
is not an effect, it is a response. Challenge-and-response resembles cause-and-
effect only in standing for a sequence of events” (p. 97).

The distinction between physical, causal systems and intentional, self-
organizing systems must also be considered when research in human performance
in games is used to explain performance faced in physical systems. In two-
person games like chess, a person faces a system that is not controlled by basic,
invariant laws, but by the intentions and value structures of the opponent. The
game itself only represents a means of communication and the rules of the game
serve only to constrain the decisions of the players to a well-defined set in each
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situation. Decisions depend upon prediction of the opponent's value structures
and performance criteria and the strategy he adopts in the game.

The difference between games like chess and other social system contexts for
management decision making is largely a question of formal nozmmwﬁ.w@ and
invariance of the rule set. In games, the set of rules at the problem level is small
and closed, and only the strategies for generation of proper action sequences are
flexible and depend on top-down inferences regarding the opponent's intentions.
In management decision making, there is room for invention of new rules of the
game within the constraints of laws and "fair play.”

Formal systems for decision making are E,oZmB.m that are only mmm:m.n atone
single level of abstraction, such as geometrical %moB.B proving and
construction, cryptographic problems, puzzles, and purely logic ?,oEoBm.w see,
for instance, Newell and Simon (1972). The problem is stated here as an initial
state and a target state, and the task is to identify a sequence of allowed, formal
transformations that will close the gap. In this category are also several of ?m
"context-free” tasks that are used for problem solving and :aBms-Bmo:mnm
interface experiments. It should, however, be realized that Eoﬁma-woz_:m
behavior may be very different in one-level formal systems and in a problem
context of an abstraction hierarchy. This leads to a discussion of problem-
solving strategies with reference to the abstraction hierarchy.

Problem-Solving Strategies

An illustrative example of the role of the abstraction hierarchy can be found
when comparing a decision task that has to be performed in a o:m-ﬁkﬂ formal
description with the performance when the context is also méiuzm. d,:w
difference may partly be due to the use of shifts in level of abstraction to find
paths for transfer of solutions and strategies by analogy, but also due to support
of memory and search for rules in terms of structures at other levels of
abstraction. A good empirical piece of evidence is the experiment made by
D'Andrade (discussed by Rumelhart and Norman, 1981) who repeats the
experiment of Wason and Johnson-Laird (1972). This experiment was based on a
set of cards representing a concept like: if one side shows a vowel, then the back
side displays an odd number. A subject was given a sample of four cards and
asked which to turn in order to test the hypothesis. The experiment was repeated
with the same concept disguised in a bill-signing context: if the amount of a bill
exceeds $50, the supervisor must sign the back side. The ratio of correct
solutions in the two experiments was 13% to 70%. Rumelhart and Norman
conclude:

What is the difference here? Why do people appear not to understand the
meaning of "if" in the first case and understand it nearly perfectly in ‘9.0
second? This is exactly the kind of effect expected if our knowledge is
embedded in a relatively inaccessible procedural format rather than as general
rules of inference. The first case of the label factory represents a relatively
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unfamiliar case in which we cannot rely on specific knowledge and must,
therefore, rely on general reasoning processes. The second case more nearly
approximates our "real life” problem solving situations. Once we can
"understand” the situation, the conceptual constraints of our specific
knowledge can be brought into play, and the problem readily solved. It is as

if our knowledge representation already contains all the reasoning
mechanisms ordinarily required.

Thus, it would appear that the context dependencies inherent in the more

procedural representational systems are also present in the human reasoning
system.

This is a rather implicit way of explaining the difference. A more explicit
explanation seems to be possible, considering the use of an abstraction hierarchy
in the problem solving. In the first experiment, the problem solving is based on
formal, logical arguments at only one level of abstraction, on syllogistic logic
that requires manipulation of abstract symbols and storage of intermediate results
in short-term memory. In the second experiment, the context defines an
intentional system in which the effects of the different decisions can very easily
be inferred at the higher levels. The reasons for proper states can be inferred top-
down. The problem is solved by top-down model modification, by transferring to
a model of "reasonable states of affairs." Rumelhart and Norman refer to
"understanding," which in our context can be viewed as the ability to transfer the
problem—upward toward a reason, or downward toward a cause—to a level where
immediate intuition from experience is available.

The role of the abstraction hierarchy not only seems to be the transformation
of a problem to a level at which a solution is more readily available, e.g., by use
of analogical reasoning. The transformation between levels seems to be a
powerful tool for functional reasoning. Formal logical reasoning appears to be
"horizontal" reasoning within a single level of the hierarchy, based on the classic
syllogistic reasoning about membership of exclusive categories. On the other
hand, practical, functional reasoning is related to "vertical” transformations in the
abstraction hierarchy.

The difference between classic, formal logic and practical functional reasoning
has long been a topic for discussion within philosophy. And, mentioned in
passing, the well structured nature of the abstraction hierarchy related to man-
made physical systems might make them a better suited vehicle for resolving
such questions than the all-encompassing "real world" normally considered by
philosophers. Bosanquet (1920) criticizes the classic syllogistic model of

‘reasoning and, typically, as examples for his arguments selects electrical circuits

with fuses and Harvey's discovery of the function of the circulation of blood.
Bosanquet discusses at length the difference between syllogistic reasoning, which
is linear, and functional inference, which he calls "systemic.” Bosanquet (1888,
1920) argues that the explanation depends on the relational network of a whole,
and that linear syllogistic arguments therefore are inadequate. Similar arguments
have recently been presented by Harman (1982). He distinguishes inference or
reasoning, on the one hand, from proof or argument on the other. To him,
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reasoning is a process of trying to improve one's overall view and is a holistic
process that puts the problem into context, whereas rules of argument or proof
are local rules of logical implication. He relates the distinction to a syntactic or
grammatical basis, to a distinction between elements of logical form and
nonlogical content, a distinction that is similar to the present discussion of
arguments within a model at a single level of abstraction, and reasoning across
levels by transformation and modification of models; cf. Harman's (1976)
comment—practical reasoning is concerned with what to intend; formal
reasoning, with what to believe. Formal logic arguments are a priori true or false
with reference to an explicitly defined model; functional reasoning is dealing
with relationships between models, and truth depends on correspondence with the
state of affairs in the real world.

Certain schools of psychology also emphasize the significance of the structure
of a problem as a guide to thinking. From analysis of a number of problem-
solving scenarios, Wertheimer (1945) argues that problem solving is a
productive process that depends on the structure of the problem situation in a
way that was neither considered in the then-prevailing associative theories, nor in
classic logic. The process is not characteristic merely by piecemeal linking
together elements by associations; the flow is controlled by whole-
characteristics, a "sensible expectation about structural truth.” He argues the need
for a theory that goes directly to the structural nature of the process and states
"the gist of the thesis: structural reasons become the causes of the process,” and
he goes on to discuss the difference between reasons and causes in control of the
process.

Also, Selz (1922; for a good English review, see De Groot, 1965) argues
against an association model of thinking. His work is interesting in the present
context in that his arguments are based on an analysis of errors in thinking. His
premise is that given the mechanism is associative, errors should include a large
fraction of associations with no functional meaning or without connection with
the task. This is not what he found. On the contrary, errors typically appeared to
be results of solution trials with regard to the task, which is somewhat
misconceived. Selz is very modern in his conception of problem solving
procedures, which are determined by: (a) the intellectual personality, i.e., the
repertoire of solving operation dispositions; (b) the features of the problem; and
(c) the subject's intention. The course of thought process is controlled by the
subject's "schematic anticipation” with the features of gap and tension, and four
basic operations are involved, such as likeness evocation, abstraction,
combination, and complex completion, which can all be readily related to
operations in an abstraction hierarchy. Selz's distinction between "productive”
and "reproductive” thinking is related to the distinction between knowledge-based
and rule-based control of behavior. In productive thinking, he distinguishes
between "finding the means"” and "applying the means.” Finding new means may
involve: (a) reproductive abstraction of means that identifies means by top-down
search in the hierarchy; compare Duncker's "by means of which" relation,
mentioned below; (b) coincidental identification, which looks like Duncker's
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"suggestion from below"; and (c) identification of means from structural insight
into the nature of the task, i.e., restructuring through understanding. In all, the
work of Selz points to the importance of a well-structured representation of the
problem context. Through De Groot's (1965) study of chess strategies, the work
of Selz has influenced modern Al research, but mainly through work on games
and formal problems (Newell and Simon, 1972).

The role of a multilevel abstraction hierarchy in problem solving is most
explicitly seen in Duncker's (1943) research on practical problem solving related
to physical, causal systems (radioactive tumor treatment and temperature-
compensated pendula). Based on verbal protocols, Duncker describes how
subjects go from the problem to a solution by a sequence of considerations
where the items proposed can be characterized by a "functional value" feature
pointing upward to the problem, and a "by means of which" feature pointing
downward to the implementation of a solution; see Figure 10.4. The relation to
the abstraction hierarchy as shown in Figure 10.2 is clear. He states: "The final
form of a solution is typically attained by way of mediating phases, of which
each one in retrospect possesses the character of a solution, in prospect that of a
problem.... When one closely examines what Maier calls 'direction’ (in
thinking), it becomes clear that direction is nothing but the earliest phase of the
solution, i.e., the reformulation of the problem as it initiates the solution
process concerned." Therefore, direction in thinking is given by the structure of
the available abstraction hierarchy with its gaps; compare this with the structural
anticipation of Selz. .

Yet another observation on the role of an abstraction hierarchy on understanding
a mechanical device has been reported by Rubin (1920), who reports an analysis
of his own efforts to understand the function of a mechanical shutter of a
photographic camera. He finds that consideration of purpose or reason plays a
major role in the course of arguments: he conceived all the elements of the
shutter in the light of their function in the whole. He did not perceive the task to
explain how the individual parts worked, but rather what their functions were in
the whole. How they worked was immediately clear when their function was
known. He mentions that he finds it an analytical task to identify the function of
parts, the direction of thought being from overall purpose to the individual
function (top-down considerations). The hypothesis necessary to control the
direction is then readily available. This approach was found to have additional
advantages: solutions of subproblems immediately have their place in the whole
picture, and it is immediately possible to judge whether a solution is correct or
not, In contrast, arguing from the parts to the "way they work” is much more
difficult as a result of being a synthesis. Solutions of subproblems must be
remembered in isolation and their correctness is not immediately apparent.

For comparision, readers with philosophical inclinations should read Kant's
discussion of the problem faced by "dissectors of plants and animals":

In fact, they can as little free themselves from this teleological proposition
as from the universal physical proposition; for as without the latter we should
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have no experience at all, so without the former we should have no guiding
thread for the observation of a species of natural things which we have
thought teleologically under the concept of natural purposes. [From Greene,
Critique of Judgement, 1929, p. 471.]

Implications for the Design of Decision Support Systems

During new and unfamiliar system disturbances the task of a supervisory
controller is very similar to the problem-solving task studied by, for instance,
Duncker; the problem is formulated during the diagnostic phase and a solution is
sought in terms of a reconfiguration of the available physical resources. The
preceding discussion of the importance of the structure of the problem in terms
of a means-end hierarchy therefore has a number of implications for analysis and
design of systems for support of supervisory systems control.

Structuring Representation in Databases

In the design of human-machine interfaces for supervisory control as, e.g.,
industrial process control consoles, the emphasis has traditionally been on the
presentation of measured data representing the physical state of the system and
its processes. In complex systems, this information has been supplemented by
information about the underlying functional structure by graphical means such as
mimic diagrams, etc. This information is intended to serve the controller's
identification of the actual state of processes bottom-up through the hierarchy.
Information representing the intentions behind the system design, in terms of the
purpose of functions and equipment and of constraints upon the acceptable
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Figure 10.4. The generic solution tree found by Duncker in a problem-solving
task. The levels are similar to the abstraction levels of Figure 4.1. [Adapted from
Duncker (1945).]

operation, for instance, as derived from safety considerations, has only been very
sparsely represented. This means that the interface system gives little or no
support in the top-down derivation of the proper or acceptable states of
processes. This kind of information was supposed to be immediately available to
operators from their basic training. However, as systems become complex and
potentially risky, and very low probabilities of erroneous decisions during rare
events are required, this can no longer be assumed. During such situations,
information about the purpose of interlocks, properties of equipment if used for
untraditional purposes, etc., may be vital for ad hoc improvisations.
Consequently, it becomes increasingly important to include in the support for
decision making the information needed for top-down consideration of reasons.
This means that the properties of the system to be controlled should be
represented in terms of a consistent means-end hierarchy, systematically mapping
the purpose/function/equipment relationships.

This leads to two problems: to find the information needed and to structure the
representation. Information on "reasons" behind design decisions is to a great
extent implied in standard practice, or only their implications are recorded by the
designer in specifications and drawings. Regeneration may require quite a fair
amount of work. For the structuring of the description, a systematic method
based on a formal language is required. An approach to this problem has been
taken by Lind (1982), who has developed a multilevel description of process
systems in terms of their mass and energy flow topology (see Figure 10.5). This
description is basically a representation of the flow topology of the system at
several levels of decomposition, but it maps very well onto a means-ends
hierarchy for a given system and is well suited for structuring a data base for
supervisory support systems independently of the formats chosen for information
presentation. In particular, this formal representation supports systematic
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Figure 10.5. Illustrates the many-to-many mapping between Eo._me.a_m of
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relationships.
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analysis for the information gathering from the designers and, in addition, it will
serve as a basis for automatic inference generation in the process computer's
processing of the plant information.

Structuring Information Presentation

Given that the information is present in the database in a structured way, the
problem is how to present it. During the various phases of a supervisory control
task, the relevant level of consideration will vary in the means-ends hierarchy.
An obvious proposal will be that the data from the system should be available in
preprocessed form matching the level considered. For this purpose, the formal
flow-term representation is well suited for data integration by the computer. In
addition, the display format should match a useful mental model of the structure
of the functions at that level. In this way, the information processing required by
a supervisory controller for preparation of data to match his decision task can be
greatly reduced. However, there is a price, which is the added information
retrieval task of finding the relevant display in a perhaps large library. An
experimental program is needed in order to analyze problem-solving behavior and
subjective preferences in a task environment where information is available at
several levels of a means-ends hierarchy and in several formats of presentation.
Goodstein et al. (1983) have developed an experimental set-up based on a
simulated nuclear power plant for this purpose. For these experiments, a set of
displays based on the multilevel flow concept kas been designed by Goodstein
(1984) (see Figure 10.6).

The introduction of advanced information technology for support of
supervisory control also ieads to a cooperative decision making where parts of
the underlying information processing are performed by computers. When it
comes to more complicated solutions involving, for instance, automatic
diagnosis or planning, a general problem is to reach compatibility between
computer processing and human strategies to a degree that the decision support is
actually accepted by operators. To reach such compatibility, computer processing
should not be constrained to algorithmic, problem-specific processing, or
heuristic processing based on procedural representation related to empirical
evidence like that in the present typical expert systems, When empirical rules
break down, the computer should be able to follow a human operator to higher-
level, structural knowledge-based (model-based) processing.

In order to be able to add this level of knowledge-based control to expert
systems (Barnett, 1982) and other complex decision support systems, it is
necessary to formalize the description of the system to be controlled in an
abstraction hierarchy, and to establish a set of rules for the vertical model
transformations to be implemented in the computer program.

Predicting Decision-Error Modes

Another important implication of the functions of the means-ends hierarchy in
control of problem-solving behavior is its influence on error modes during
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Figure 10.6. Computer-generated-displays can Qg maiched with the content and
form of useful mental models at the different levels of abstraction. This figure
illustrates display formats for control of a simulated nuclear plant, designed by
Goodstein (1984) for experimental studies. One display (a) represents the overall
energy flow topology of the plant, another (b) represents lower-level functions,
while (c) represents the basic physical anatomy as a format for displaying sets of
equipment status data.
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decision making. As Selz noticed, decision errors are not stochastic events but
depend upon the structure of the problem space in question. If supervisory
decision making is considered as resource management in a task performed in a
purpose/function/equipment hierarchy, several kinds of interference can be
suggested as sources of systematically appearing decision errors. Equipment may
be useful for different purposes in different situations or during different tasks,
and conflicts may appear between the efforts of different users or the aims of the
same person at different times. Seemingly unexplicable human acts during a
critical task may be caused by mistakes caused by similarities of features at one
or another level in representation. Similarly, decisions may be judged erroneous
in retrospect, but in the actual situation be caused by attempts to test a very
reasonable, but wrong, hypothesis. The conclusion of this is that a systematic
representation of the means-ends relationships of the control object of a
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supervisory decision maker is a necessary prerequisite for modeling and
prediction of decision errors.

Planning of Experiments

The distinction between problem solving, which is performed by formal logic
within a problem space of only one level of abstraction, and problem solving
based on transformation through the levels of an abstraction hierarchy has
immediate implications for laboratory experiments on decision making.
Frequently, more or less context-free problem representations are used .mS
experiments on problem-solving strategies. These experiments are very effective
when the aim is to model logical reasoning in a closed, formal system, but the
implications for real-life tasks may be difficult to establish, because the setting
does not invite a shift in the level of abstraction and hence does not support
problem solving from prior experience based on functional inference and
analogies. Furthermore, the lack of context leads to the replacement of the task
to infer proper states from high-level purposes and the effect of complex
disturbances from physical relationships, by the task to use the mS.B&
arguments of the one-level rules of the game. However, if embedded in various
context scenarios, a context-free system simulation can be a very flexible
experimental tool. Adding context to an experiment may change the task in two
ways. It may add to the task the transformation of high-level criteria and physical
disturbances into formal parameters, and it may change the decision strategy in
the D'Andrade case. This means that, in addition to the traditional experimental
psychology methodology, there is a need for experiments in much more complex
and yet controlled settings (see, e.g., Goodstein et al., 1983).

Skills, Rules, and Knowledge in Problem Solving

In discussing knowledge-based problem solving in Chapter 9, it was briefly
mentioned that problem solving can be transferred from the knowledge-based to
the rule- or skill-based levels of behavior if it is possible to reinterpret the
symbolic representations at another level of abstraction at which rules for
manipulation are available. The potential of modern information and display
technology for making graphic displays that act as externalizations of the
symbolic mental representations suitable for human problem solving, in a form
that can be directly manipulated, makes a more detailed consideration of this
reinterpretation of symbols necessary.

The distinction between knowledge-based and rule-based behavior was also
drawn by Duncker (1945) in his definition of "thinking": "Whenever one cannot
go from a given situation to the desired situation simply by action, then there
has to be recourse to thinking (by action we here understand the performance of
obvious operations)" (p. 1). To face a problem means t0 realize a difference
between the current state of affairs in the environment and another, in some way,
specified state, between the actual state and the target state.
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Problem solving, then, takes place when the reaction of the environment to
possible human actions is not known from prior experience, but must be deduced
by means of a mental representation of the causal or intentional structure and the
functional state of the environment. These must be represented symbolically in a
mental model as relationships among the elements of the model. The model can
then serve to identify those human acts that will bring the causal elements into
proper functional structure or initial conditions, or both. Intentional systems
such as games and social systems will be discussed separately.

A major task in knowledge-based problem solving is to transfer those
properties of the physical environment that are related to the perceived problem
to a proper symbolic representation. The information observed in the
environment is then perceived symbolically with reference to the conceptual
framework available to the person. The environment is analyzed and broken
down into elements at a level where the functional properties are known to the
person and can be combined into a proper representation. How far this analysis
need go depends on the person's familiarity with the situation.

In the present human-machine context, this analysis means an iterative
consideration of the functional properties of the system at the various levels of
representation in the abstraction hierarchy, between what is functionally needed
and what is physically available. Elements in the representation at the various
levels must be known from two points of view—from their functional value and
the physically oriented implementation. Search for the proper model depends on
identification top-down for elements "by méans of which” or a bottom-up
consideration of the "functional value" of the available objects and processes, to
use Duncker's terms. Duncker (1945) describes problem solving as genealogic
lines in a solution tree that very closely resembles iteration in the abstraction
hierarchy used here, and discusses orderly top-down search as well as
"suggestions from below," which are bottom-up considerations. He also realizes
the importance of the guidance in the process that can be obtained from
considering "avoidance of the evil" as additional demands upon the solution, a
consideration that is very relevant for control of physical systems, in that
reliability and safety requirements are very often stated as negative specifications.
Alexander (1964) discusses in detail how an optimal design is best characterized
by the consequences that are not acceptable.

In experimental problem solving, the actual state and the target state are often
well defined or specified. In real-life problem solving, this is typically not the
case. Very often, several goals must be considered and the priority depends upon
the situation, and the actual state may be very obscure, e.g., in the case of
failures in a technical system. These conditions will add to the difficulty of
defining and establishing an adequate mental representation.

Formation of a proper representation of the causal structure of the environment
depends on knowledge about the basic physical laws governing its behavior.
This phase of problem solving is finished when a representation in a framework
familiar to the person is obtained—which means a representation for which a set
of rules for information processing is available. The representation then ceases to
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be an informative, symbolic framework and turns into a prescriptive system of
signs that control the application of stereotyped process rules.

If the representation is then externalized in the form of a physical or graphic
model, it is evident that the same kind of rule- and skill-based operation can be
developed, as it is found for operation on the physical system itself. The
efficiency of formal, mathematical models and technical graphs and diagrams, as,
for example, control engineers' Bode plots and pole-zero graphs, depends on the
existence of a large repertoire of stereotyped manipulation rules used for
solutions and predictions—often to a degree where the fundamental understanding
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manipu;ation of symbols
appearing as artificial

symbol and model states
* Goals are implicit in task

* Stereotype operation on
* Model states act as signs
* Automated sensorimotor
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science between prescriptive and informative texts (Morris, 1971; Eco, 1979).
The important point in the present context is, however, related to the fact that
the same text—or model—will be considered as prescriptive or informative by the
same person, depending upon the situation. An important question is therefore
how the cognitive level needed is activated and what information in fact serves
this activation. This discussion closely relates to the philosophical discussion of
the nature of mathematical propositions and their relation to the physical world
(Gasking, 1953), i.e., whether such propositions, are for instance, well-founded
empirical generalizations or they express rules for symbol manipulations. In the
present context, the conclusion appears to be that their role entirely depends
upon the situation of the user, his intentions, and background.

The role of a functional representation as prescriptive signs has been studied
from a semiotic point of view by Cuny and Boy (1981). They analyzed the role
of electrical circuit diagrams in terms of signs controlling activities during
design, installation, and repair of electrical power supply systems in private
houses, and investigated how different appearance of the same functional diagram
was effective for support of the different activities.

Tn order to emphasize the role of rules and skill for symbol "manipulation” in
problem solving, the three behavioral levels for operation upon a physical
system, illustrated in Figure 9.1, can be extended as shown in Figure 10.7.
When symbolic, graphic information displays are used for problem solving, the
distinction between the two sides of the figure will disappear, and the high-
capacity sensorimotor functions will be available for problem solving.

The Form of Mental Models

In the previous discussion of system representations in the abstraction hierarchy,
only the content of the mental model, i.e., the system properties to be
represented, has been mentioned. An important question is the form of the
mental model, its structure, the elements, and relationships. We are here not so
much interested here in the true description of some persons' mental models in
some specific situation, but rather in a useful description of possible mental
models that can be effective for persons in various tasks, and therefore useful for
system design and evaluation. The form of mental representation must be
inferred from the way humans express their knowledge about the functional
properties of a particular system. People express such knowledge when they
explain the functioning of a mechanism to other people during teaching and
discussion, when they use functional reasoning during knowledge-based planning
of a task, etc. The expressions are then available as verbal protocols or sketches
and drawings.

A review of a couple of examples illustrates that at least two different forms of
mental models must be considered. One is a mental model used in commonsense
reasoning in terms of interacting objects; another is a more formal model in
terms of variables and relations.
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Figure 10.8. Typically, a mental model of a physical environment is a causal
model structured in terms of objects with fam#liar functional properties. The
objects interact in events, i.e.,, by state changes that propagate through the
system. The purpose of or reason for a collection of objects can be so obvious
that a model of physical form-can turn into an animated behavioral model. The
observer adds the reason and functional properties implied. [Reproduced with
permission from Storm P. Museum, Copenhagen.]

The model behind commonsense reasoning is illustrated when the function of
the system in Figure 10.8 is analyzed in order to explain it for another person.
The structure of the system is represented as a spatial layout of the various
components—in the form of the drawing itself or an internal cognitive map that
may manifest itself by imagery. In the present case, the content of the model is
the properties at the level of physical function, and the elements of the model
will be physical objects, which are identified and separated from the general
background; when the overall purpose of the arrangement has been realized, i.e.,
the objects are identified top-down in the abstraction hierarchy, even the
explanation is performed only at the one level of physical function. In the
mental model, each of the familiar objects has attributes representing their
functional value, i.e., what they can be used for, and their functional properties,
i.e., what they can do and what can be done to them by other objects. The
function of the "system” can then be predicted or explained in the framework by
means of if-then arguments resulting in a chain of events, i.e., changes of states
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Figure 10.10. Semantic net representation of elements of natural language
discourse—objects, events, states. "John pushed the table to the wall." [Reproduced
from Shank (1975) with permission from Elsevier Science Publishing Co., Inc.]

by which objects interact. Such causal reasoning based on objects, states, and
events is also used professionally for analysis of the propagation of events
following a fault or error in a technical system (see Figure 10.9). The reason for
this is that there is normally a close relationship between a fault or change in the
real world and the corresponding change to update a model based on objects and
states, whereas the changes necessary to update a formal deterministic model are
more indirect and complex. Deterministic models appear to be well suited to
describe the normal or intended, continuous function of a system, whereas the
propagation of changes is more readily handled by causal models together with
chains of if-then arguments.

The form of this mental model is close to the semantic nets of Schank (1975)
and Rieger (1976) (Figure 10.10). Johnson-Laird (1980) also discusses internal
representations in similar terms of a network of relations among objects. It
should, however, be emphasized that this mental model only represents the
structure that is used for conscious control of the higher-level strategy in
reasoning. The total information process very much depends upon subconscious
processes related to the internal dynamic world model that supplies the total
context and thereby focuses the attention upon the appropriate phenomena and
defines objects for consideration without conscious analysis. Without the context
of the world model, the conscious verbal explanation loses precision unless
extreme effort is spent on defining object properties in the general knowledge
base and rules for selecting the relevant in particular situations. The present
problem in Al appears to be related to the attempts to model human thinking by
only representing the high-level verbal control and the lack of consideration of
simultaneous use of several levels of abstraction.

Reference is frequently made to the ambiguity in analysis of isolated
statements from commonsense reasoning. It is discussed in some detail by
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representation is complementary to the commonsense, causal model structured in
objects. The example shows the representations of an inverted pendulum system.

Russell (1913), who distinguishes between commonsense, causal and formal,
deterministic reasoning.

Deterministic reasoning is formal, scientific reasoning based on a .Bmﬁ&
model in terms of formal relations among ims-amm.sma .acwE:ﬁZm
representations of physical variables. In terms of the abstraction hierarchy, wmuor
models are typical for the level of generalized function. At the level of physical
function, the models are related to sets of physical objects that are frequently Bm.ﬁ
and therefore familiar. When physical, measurable variables are considered, it
appears that certain sets of variables and typical relationships frequently appear
and that formal representations of such generalized functions can be established
independent of the particular physical configuration in the form of ».o:.smr
mathematical relations between quantitative variables or derived representations
such as graphs and tables. In the way that models based on recurrent familiar
objects are well suited for commonsense reasoning, models c.mmmm on recurrent
relationships among physical variables will be well suited for .».onsmr
mathematical operations, because the formulas and rules for :w:mwo.naw:osm are
applicable for a large variety of physical contexts. A good example is a model of
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dynamic relationships in terms of differential equations based on Newton's laws
(see Figure 10.11). Russell calls such models deterministic representations
because the direction of causality is not represented in the set of equations. Any
variables can be considered dependent variables and determined by calculation,
given knowledge of the magnitudes of the remaining variables in the proper set
of equations.

The two types of descriptions are in many respects complementary. In causal
models, objects interact by events; the system is a set of objects related by a net
of potential interactions in which changes or events propagate. Several
quantitative variables are typically necessary to replace a description in terms of a
state of a component or a mutual event between two components. The formal
deterministic model is a network of relations among variables. In this model, the
variables have replaced the physical objects as elements of the model. Physical
objects are dissolved into a set of relations. To reflect a physical change of a
component (owing to a fault or physical damage) in a formal deterministic
model, a complicated updating of a set of relations is necessary. Updating of the
qualitative, causal model to reflect a fault is much simpler in that the physical
component is retained as an element in the model.

In the examples illustrated by Figures 10.8 and 10.11, the models also differ
in the levels of abstraction. However, causal and deterministic models can be
found at any levels of abstraction. A model of the dynamic properties of a
specific mechanical arrangement in terms of reljtions among variables at the
level of physical function can be derived from Newton's laws and other general
laws by inserting the parameters and initial conditions in the proper set of
equations, Or the model can be identified by trial and error in a search to match
model predictions to recorded observations, e.g., a search that can be guided by
aesthetic or metaphysical principles as was the case in the Ptolemaic epicycle
models of planet motion. At the level of physical function, deterministic models
are frequently represented in graphic form, i.e., relationships among variables are
represented by graphs that can be derived from mathematical models or measured
directly on a physical system.

On the other hand, commonsense causal reasoning is frequently used on higher
levels of abstraction. A good example is a model of the generalized function of a
feedback loop. An extensive mathematical modeling with well-developed
procedures for calculation and transformations has been developed within the
framework of deterministic models. However, for more informal and cursory
reasoning, e.g., during systems design, an engineering practice for causal
reasoning has developed. The "objects" of such reasoning are not physical
objects, but abstract model concepts, such as loops, loop-gain, bandwidth,
stability, overshoot, oscillation, etc. Causal reasoning then serves to track the
propagation of design changes through the model structure. Very sophisticated
tools have been developed to support such reasoning, e.g., in terms of pole-zero
configuration charts that serve to investigate the effect of manipulations of gain-
bandwidth characteristics upon loop performance (see Figure 10.12). In this way,
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Figure 10.13. Elements of the mental model of a skilled operator as mentioned
during start-up of a power plant boiler. The model is in terms of objects, states,
and functional properties, here shown in relation to a mimic diagram of the
underlying system. The statements are a literal transiation of operators’ short-hand
terms. "Pump"” is a label for coolant flow. "Cold slugs guzzle steam" is an
objectizing of a general thermodynamic relation.
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the symbolic representations of any model may be 3586.88@ as "artificial
objects” and used in commonsense causal reasoning. Also in nzm way, o.mc.mm_
commonsense reasoning is the forerunner of the formal, deterministic description
in systems design, which often involves sequences of the arguments related to
test of hypothetical changes in the design concept.

Because commonsense reasoning is well suited when elaborating on the
propagation of changes through the physical environment, it will m._imwm be the
basis of knowledge-based planning of the physical interaction with a system.,
Knowledge-based reasoning is most frequently called for when changes or
abnormalities in the environment no longer allow behavior to be controlled by
the lower rule- and skill-based levels. It is important to consider that this
commonsense reasoning only serves to develop higher-level modifications of the
lower-level behavior. The effects of causal arguments are determined by the
context delivered by the subconscious dynamic world model, which will be
updated during interaction and define the changes. Russell ﬁmcmm.ﬁrmﬁ .owcmw_
reasoning is ambiguous and vague. This is, however, due to a consideration of
the context-free, generalized verbal statements. Considered in the context, as
higher-level control of behavior, verbal statements are very precise, which can be
seen by the very specific effect of even rudimentary statements exchanged by
people cooperating in system control (see Figure 10.13).

Chapter 11
Human Errors

Human errors and their prevention and prediction play an important role in
human-machine system design. Furthermore, analysis of human errors is
important for the attempt to validate models of human performance. Success in
prediction and simulation of well-adapted human interaction is no proof of the
validity of a model; only analysis of situations when adaptation breaks down
will be informative, inasmuch as the aspects of human resources and their
limitations must be reflected by a model. Models of well-adapted behavior
largely reflect characteristics of the work environment.

Definition and Characteristics of Human Error

It is basically very difficult to give a satisfactory definition of human errors.
Frequently they are identified after the fact: if a system performs less
satisfactorily than it normally does—because of a human act or a disturbance that
could have been counteracted by a reasonable human act—the cause will very
likely be identified as a human error. When compared with technical
components, human operators have some peculiar features that must be analyzed
more closely to see whether the present general attitude toward faults and errors
is reasonable and expedient. How are faults and errors defined? Faults and errors
cannot be objectively defined by considering the performance of humans or
equipment in isolation. They can only be defined with reference to human
intentions or expectations; they depend upon somebody's judgment of the
specific situation. Faults and errors are not only caused by changes in
performance with respect to the normal or accepted performance, but also by
changes of the criteria of judgments; i.e., changes in requirements to system
performance, in safety requirements, or in legal conventions will be able to turn
hitherto accepted performance into erroneous acts.
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In the present human-machine context, we can define technical faults and
human errors as causes of unfulfilled system purposes. If system performance is
judged below the accepted, present standard, somebody will typically try to go
back through the causal chain to find the causes. How far back to search is a
rather open question; generally, the search will stop when one or more changes
are found that are familiar and therefore acceptable as explanations, and to which
something can be done for correction. In the case of a technical breakdown, a
"component” failure is generally accepted as the cause at the component level
where replacement is convenient. In some cases, however, component failure
will not be found an acceptable cause: for example, if it occurs too frequently. In
such cases, the search will often continue to find the "root cause" of the
component's malfunction.

In summary, the characteristics of a fault are the following: it is the cause of
deviation from a standard; it is found on the causal path backward from this
effect; it is accepted as a familiar and therefore reasonable explanation; and a cure
is known. In all these respects, the human operator is in an unlucky position.
Because of human compléxity, it is generally very difficult to "pass through” a
person in causal explanations. In addition, it is generally accepted that "it is
human to err,” and finally, you can always ask people to "try harder.” This
means that allocation of causes to people or technical parts in the system isa
purely pragmatic question regarding the stop rule applied for analysis after the
fact. Ultimately, a thorough analysis will always end up with a human error,
probably during design or manufacture, or with an act of God.

Errors as Unsuccessful Experiments in an
Unkind Environment

A more fruitful point of view is to consider human errors as instances of human-
machine or human-task mismatches. In case of systematic or frequent
mismatches, the cause can then typically be considered a design error. Occasional
mismatches are typically caused by variability on the part of the system or the
person and can be considered system failures or human errors, respectively.
However, human variability is an important ingredient in adaptation and
learning, and the ability to adapt to peculiarities in system performance and
optimize interaction is the very reason for having people in a system. To
optimize performance, to develop smooth and efficient skills, it is very
important to have opportunities to "cut corners,” to perform trial and error
experiments, and in a way human errors can be considered as unsuccessful
experiments with unacceptable consequences. Typically they are only classified
as human errors because they are performed in an "unkind" work environment.
An unkind work environment is then defined by the fact that it is not possible
for a person to correct the effects of inappropriate variations in performance
before they lead to unacceptable consequences. This is often the case because the
person either cannot immediately observe the effects of "errors," or because the
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effects are irreversible. This is no new wisdom; as early as 1905, Ernst Mach
said: "Knowledge and error flow from the same mental sources, only success can
tell the one from the other" (Mach, 1905, p. 84). The interaction can be seen as
a complex, multidimensional demand-resource matching process. To discuss the
mismatches and evaluate means for improvement, it is more important to find
the nature or dimensions of the mismatches than to identify their causes. In other
words, it is necessary to find what went wrong rather than why.

Human Errors in Learning and Adaptation

The fact that human variability causes problems and, at the same time, is closely
related to human learning and adaptation, deserves some closer consideration.
Earlier, the change of the control of behavior during learning was mentioned; a
key point was that during training, control structures at the lower cognitive
levels are developed while, at the same time, higher-level structures can
deteriorate.

The variation in human behavior when control moves downward during
training and adaptation probably has important implications for human-task
mismatches, which may ultimately be judged human error if not corrected in due
time. In general, the only information available to the person to judge the proper
limits of adaptation will be occasional mismatchessof behavior and environment.
In this way, conscious as well as subconscious experiments are part of the
adaptation mechanisms at all levels of cognitive control.

The efficiency of human interaction with the environment at the skill-based
level is due to a high degree of fine tuning of the sensorimotor schemata to the
time-space features in the environment. Changes in the environment will often
be met by an updating of the current schema by a subconscious reaction to cues
or a consciously expressed intention ("Now look, be careful, the road is icy").

However, the updating of the current schema will frequently not take place
until a mismatch has occurred, for instance, when walking onto more uneven
mﬁo,.:a. adaptation of the current motor schema to the actual features of the
environment may first happen after the feet have detected the mismatch by
stumbling. The point here is that adaptation and fine tuning of sensorimotor
schemata basically depend upon mismatch occurrences for optimal adjustments.
The proper limits for fine tuning can only be found if surpassed once in a while,

If the optimization criteria for manual skill development are the speed and
smoothness of movements, optimization can only be constrained by the
experience of the precision tolerance limits. This means that the shape of the
distribution curve representing variability in time-space coordination is not a
characteristic of the person's motor control, but reflects tolerance limits of the
environment, and the "risk sensitivity" of the individual. This feature of human
behavior has also been identified and discussed by researchers in traffic safety,
which is related to a high-skill manual control task. It appears that beyond a
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certain limit, efforts to decrease accident frequency may influence the accident
patterns, but not the general risk level (Taylor, 1981).

Also, the development of efficient rules-of-thumb and know-how at the rule-
based level depends on a basic variability and experimentation to develop and
adjust the proper rules, and to identify the information patterns that are suitable
signs for controlling the rule application. The initial conditions for this
adaptation by a novice are either knowledge-based rational planning or a set of
simplified stereotyped procedures supplied by an instructor. In both cases, the
process of adaptation will lead to experiments, some of which are bound to end
up as human errors in unfriendly work environments.

The rational process of analysis, evaluation, and planning by an informed
novice will not be maintained throughout a familiar work situation. The use of
symbolic information for rational inference will gradually be replaced by use of
convenient signs that are empirically correlated with the conditions necessary for
the steps in a work procedure. This information may very well be informal
information, such as relay clicks and mechanical noise. Such signs are, however,
not reliable guides if the internal structure of the task environment changes, as it
may in cases of component failure. In these situations, the convenient signs may
lead the person into a trap in terms of acts based on wrong premises. Again, an
occasional experience of unacceptable adaptation may serve basic control
functions in the learning mechanism.

Formal work procedures will normally be based on signs and readings that are
functionally defining the required initial states, and the planning of the steps and
their mutual relationships in the work sequence will be made under consideration
of likely variations in the work context. During adaptation, not only the formal
sign will be replaced by more convenient, informal signs, but the sequence of
work elements may, consciously or subconsciously, be rearranged to have a
more natural and smooth sequence, judged from the immediate, normal
experience with the task. This deviation from working "according to the rules" is
the hallmark of experienced people, but is bound to give experiences that,
depending on the consequences, give rise to human error and the related blame
after the fact.

It should be considered here that the adaptation to informal signs and rules-of-
thumb generally is not the result of conscious decisions, but is found as a result
of the general variability of human behavior. Adaptation can be an evolutionary
process, where effective variations survive and are integrated into behavior,
whereas the unsuccesful are experienced as lapses and later avoided.

At the knowledge-based level where people are trying to cope with unfamiliar
situations and therefore have to base behavior on functional analysis, evaluation,
and planning, we will consider two major groups of human-task mismatches.

One group includes those cases in which people have proper intentions, but
fail to implement them. In such cases, people may commit errors in reasoning
because of, for instance, slips of memory, lack of knowledge, or to high
workload—it may be difficult by unsupported, linear reasoning to deal with the
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complex causal net of the real world. It is not, however, possible to establish a
complete set of preconditions for consideration in practical work situations and,
logically, to make sure one's considerations are reliable. The only reliable test is
to judge the response from the environment—and to correct oneself when
unsuccessful, with the risk that one commits what later may be judged an error.
Not even scientists are reliable—measurement of the atomic weights did only first
converge on whole numbers when theoretical considerations asked for that and
supplied the stop rule for the necessary efforts (Kuhn, 1962).

The other major category includes cases in which the humans' acts are in good
correspondence with their intention, which, however, serves a subgoal not
acceptable from an ultimate task or system performance point of view. An
illustrating example may be the situation in which an operator in a disturbed
process plant has several alternative hypotheses on the failed state that he has to
test. The classic research on problem solving (Duncker, 1945) shows that it is a
normal feature to develop several branches in a "solution tree” (see Figure 10.4)
before one settles down for detailed consideration of one of the solutions.
Theoretically, the test of hypotheses can be done conceptually, but faced with the
system itself, testing by means of manipulations on the system will be a
tempting solution. In case the hypothesis is incorrect, this act may add another
disturbance to a system in an unknown state, and the result after the fact may be
accusation of serious decision error.

The conclusion of this discussion is that "errors" are basically the effect of
human variability in an unfriendly environment, and that this variability is an
inherent element in human adaptation. In the following section, these aspects
will be discussed in more detail in order to identify the most important classes of
human error.

Error Recovery

If variation of human behavior is an important ingredient of development of
smooth skills and professional know-how, and experiments on the environment
are necessary for problem solving, definition of error should be related to a lack
of recovery from unacceptable effects of exploratory behavior,

Error recovery depends on observability and reversibility of the emerging
unacceptable effects. Reversibility largely depends on dynamics and linearity of
system properties, whereas observability depends on the properties of the human-
environment interface, which will be greatly influenced for many tasks by the
use of advanced information technology.

Error observability depends on the perception of a mismatch between the
expected and the actual system response to human actions. At the level of skilled
behavior, the patterns of behavior are continuously adapted to the changes in the
environment to absorb variations in coordination. Only when variations exceed
the limits of adaptability in the current regime and cues call for modification, is
it usually referred to as an error (for instance, stumbling). Error corrections then
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depend on the availability of alternative control patterns, and on the activation of
these patterns by proper cues before control is irreversibly lost. This means that
error recovery is tightly related to specific dynamic properies of the actual
interface configuration.

In being related to the rule-based coordination of a sequence of skilled routines,
error recovery may be influenced by various features. The information needed for
control of actions and for observation of errors may be related to different time
spans and to different levels of abstraction. The information used en route to
control activity in pursuit of an intention or goal may be totally unrelated to the
intention itself. In a habitual sequence of skilled action complexes, the individual
complexes are released by stereotypical cues. Judgment of system responses in
terms of intended outcome may require simultaneous functional evaluation at the
knowledge-based cognitive level. Whether the knowledge basis required for this
is maintained also for the more frequent tasks and the information necessary is
available very much depends upon details in the human-task interface, in
particular in tasks such as process control. This makes objective error data
collection very difficult, because the bias caused by error recovery features of the
various data sources is difficult to determine.

Mechanisms Behind Human-Machine Mismatches

For human-machine system design it is necessary 10 characterize and classify
human errors in terms of human-system mismatches and the underlying
cognitive control. Paradoxically, two major classes to consider include cases in
which human variability is unacceptably great, and cases when human variability
is insufficient to cope with changes in system performance. To explain human-
system mismatch, we must therefore look at the control of human behavior, to
find mechanisms behind variability during normal, familiar situations and
mechanisms that limit capability in unfamiliar situations when the system
changes.

In discussing these mechanisms, we are considering those occasions when a
human-system interaction is judged a mismatch that needs correction—either by
the person himself or by somebody else. We are not considering the success of
the correction, i.e., the ultimate effect of the mismatch. Mismatches are
typically corrected immediately by the person, but the success of the correction
very much depends upon qualities of the task and environment, such as
observability and reversibility, and must be discussed separately from the
mechanisms behind the initial mismatch that led to a corrective action or
adaptive change in behavior. See Figure 11.1.

Human Variability During Familiar Tasks

We will first consider intrinsic human variability, which leads to mismatches
during normal work situations; i.e., we will consider the effect of variability
upon skill- and rule-based behavior.

Effects of linear thought in causal net
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“error’ mechanisms and their relations to control of behavior.

[Adapted from Rasmussen (1980) with permission

Typical human

Figure 11.1.

from John Wiley & Sons, Lid.]
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Motor variability. The time-space precision of skill-based sensorimotor
control may not be adequate for the task at hand, leading to occasional
mismatches. Examples are:

Inadequate precision leads to short circuit of terminals with screw driver.

Inadequate precision in replacement of relay cover leads to short circuit of relay
terminals.

Varying use of force in manipulating a bank of valves occasionally leaves a
valve leaking.

Topographic misorientation is another mechanism of mismatches a.casm
sensorimotor performance, occurring when the internal world model owing to
some cause loses synchronism with the external world. For example: failure in
one of several pump trains in the basement leads to the decision in the control
room to switch off the "north train"; however, during passage downstairs, an
operator loses orientation and switches off the southern train, even though he has
the proper intention.

These are mechanisms within a single motor schema; other mechanisms are
related to the fact that skilled operators have a large repertoire of schemata, and
that a schema may involve a long sequence of acts. A single conscious statement
of intention may activate a schema; whereafter, the attention may be directed
toward planning of future activities or monitoring the past. The current,
unmonitored schema will then be sensitive to interference leading to stereotype
takeover. This means that another schema takes over the control, either because a
part of the current action sequence is also part of another frequently used schema,
or because of interfering intentions of the detached attention. Examples:

During normal operation of a process plant, the power supply to the
instrumentation is disrupted. Investigation reveals that the manual main
circuit breaker in the power supply is in the off position. The conclusion
was that a roving operator, in checking cooling towers and pumps, had
inadvertently switched from a routine check round to the Friday afternoon
shutdown check round and turned off the supply. The routes of the two
check rounds are the same, except that the operator is supposed to pass by
the door of the generator room on the routine check, but to enter and turn off
the supply on the shutdown checks. Something en route has obviously
conditioned him for shutdown checks (sunshine and daydreams?). The
operator was not aware of his action, but did not reject the explanation.

An experimental plant shuts down automatically during normal operation
because of inadvertent manual operation of a cooling system shutoff valve.
The valve control switch is placed behind the operating console, and 50 is
the switch of a floodlight system, used for special operations monitored
through closed-circuit television. The switches are neither similar nor
closely positioned. The operator has to pass the valve switch on his way to
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the floodlight switch. In this case, the operator went behind the console to
switch off the flood light, but operated the shutoff valves that caused plant
shutdown through the interlock system.

During start-up of a process plant, the plant is automatically shut down during
manual adjustment of a cooling system. During start-up, the operator
monitored the temperature of the primary cooling system and controlled it
by switching off and on the secondary cooling pumps to avoid water
condensation in the primary system owing to the cold cooling water. On
this occasion, he observed the temperature to pass the low limit, signaling a
demand to switch off the secondary pumps, while he was talking to a
cooperator about another matter over the phone. He then switched off the
primary pumps and the plant immediately shut down automaticaily. He did
not recognize the cause immediately, but had to diagnose the situation from
the warning signals. The control keys for the two sets of pumps are
positioned far apart on the console. However, a special routine exists, during
which the operator switches the primary pumps on and off to allow an
operator in the basement to adjust pump valves after pump overhaul while
they communicate by phone. Is the event caused by schema interference
resulting from the phone call?

Because the repertoire of automated sensorimotor schemata and their complexity
increase with the skill that operators develop duging their daily interaction with
their system, the role of this kind of mismatch becomes more important with
their experience, and can only be counteracted by making systems more tolerant
of error. .

At the rule-based level, human variability during performance of the normal,
familiar tasks is most frequently found as an incorrect recall of rules and know-
how. A characteristic category is forgetting an isolated item, i.e., what is not an
integrated part of a larger memory structure. Typical is omission of an isolated
act that is not a necessary part of the main task sequence.

The fact that the omitted steps are frequently unrelated to the verbal label of
the task may be a condition directly contributing to their frequency. Analysis of
industrial fires led Whorf (1956) to the conclusion that "the name of a situation
affects behavior,” Examples are abundant: "jumpers” not removed from terminals
after repair; switches not turned back to "operation" after instrument calibration;
bypass valves not reopened after pump repair, cables not reconnected after
instrument repair, etc.

In an analysis of test and calibration reports from nuclear plants, it was found
(Rasmussen, 1980a) that this category accounted for 50% of the analyzed reports.
The high frequency can be due to high initial probability, but can also be due to
the fact that the isolated acts are less likely to be observed and corrected
immediately by the person.

A closely related mechanism is the incorrect recall of isolated items, such as
quantitative figures, numbers, etc. Examples:
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Incorrect recall of numbers of valves and switches.

Incorrect recall of figures, such as calibration references, set points, instrument
readings.

Another frequent mechanism of variability during familiar tasks is the mistake
among alternatives, which frequently appears as incorrect choice of one of a
couple of possible alternatives to use, such as left-right, up-down, plus-minus,
A-B, etc. Examples:

Using positive correction factors instead of negative; using increasing instead
of decreasing signal in calibration.

Disconnect pump A instead of B.

These are all mismatch events caused by human variability in normal, familiar
task situations. Other mechanisms lead to mismatch when humans fail to
adequately adapt to variations and changes in the task environment.

Improper Human Adaptation to System Changes

The efficiency of human interaction with the environment at the skill-based level
is due to a high degree of fine tuning of the sensorimotor schemata to the time-
space features in the environment. Changes in the environment will often be met
by an updating of the current schema by a subconscious reaction to cues or a
consciously expressed intention ("Now look, be careful, the road is icy").

However, as mentioned above, the updating of the current schema will
frequently not take place until a mismatch has occurred; for instance, when
walking onto more uneven ground, adaptation of the current motor schema to the
actual features of the environment may first happen after the feet have detected
the mismatch by stumbling. The point here is that adaptation and fine tuning of
sensorimotor schemata basically depend upon mismatch occurrences for optimal
adjustments, The proper limits for fine tuning can be found only if surpassed
once in a while. This means that mismatches cannot, and should not, be avoided,
but a system must be tolerant and not respond irreversibly. This discussion
relates to mismatches that are needed to control adaptation within the skill-based
level. More serious mismatch categories are met when changes in the
environment are not met by proper activation of higher-level control of behavior.

Two types of mismatch mechanisms are related to improper activation of rule-
based control: stereotype fixation and stereotype takeover, similar to that
discussed in the previous section. ,

Stereotype fixation represents the situation when a sensorimotor schema is
activated in an improper context, and the person on afterthought very well knows
what he should have done. He does not switch to proper rule-based control.
Examples:

An operator presses air out of a plastic bag containing dust in order to seal it,
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although he knows it contains radioactive material. He gets contamination
in his face.

During a cleanup operation in a radioactive area, a vacuum cleaner fails. A
foreman opens it for a possible rapid repair, despite the fact that he knows it
contains radioactive dust.

In both cases, normal everyday reactions are carried over to a special context.
Also, this appears to be a reasonable and effective learning mechanism, in a
reversible context. Here the invisible radioactivity makes the environment
"unkind."

In other cases, people realize the need for the application of special procedures,
but relapse to familiar routines; i.e., the stereotype takes over because of
overlapping sequence elements. Examples:

You have noticed that the road is icy and decided to drive carefully, but when a
dog enters the road you hit the brake.

An operator enters an emergency procedure and executes a sequence of actions
correctly but then inappropriately stops a pump, an act that follows the
sequence in another, more frequently used procedure, but here is wrong and
risky.

An airplane is below acceptable altitude while approaching a runway. The
pilot orders "full power" and the copilot responds correctly but also retracts
the landing gear, resulting in a "wheels-up" landing. This act normally
follows "full power" at low altitude during takeoff.

Subconscious control of sensorimotor sequences quite naturally has a high
affinity to the very familiar routine sequences that are likely to "capture” the
control (Norman, 1980). As we saw previously, this interference can happen
between sets of familiar sequences, but is more probable in less frequent
situations when conscious rule-based control is needed. This is particularly the
case during situations in which the need for forward planning occupies the
conscious attention as soon as the necessary rule has been rehearsed, i.e., before
it has been executed.

Similar difficulties in proper adaptation to system changes by switching to
knowledge-based behavior are caused by the reliance on signs during all familiar
situations. The high efficiency of human interaction with objects and other
persons of everyday life is due to a large repertoire of skilled subroutines and
rules, and know-how for updating the routines and linking them together, The
control is based on recognition of the state of affairs in the environment in terms
of signs, which relates to the appropriate rules by convention or experience.
Even in direct interaction with the physical environment will these signs be
convenient correlates in the given context rather than defining attributes. This
makes the interaction susceptible to mistakes if the environment changes in a
way that does not affect the signs, but makes the related behavior inappropriate.
This is basically the idea behind all kinds of hunting traps.
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In the direct interaction with a physical world, identification of signs takes
place by perceptual categorization, which can be based on complex patterns and
therefore also be rather sensitive to changes. This is typically not the case for
human interaction with complex industrial systems, where operators are
controlling more or less invisible processes. They have to infer the state and
select proper actions from a set of physical measurements that is seldom
presented in a way that allows perceptual identification of the state; operators are
supposed to apply conceptual categorization based on rational reasoning, i.e., t0
exhibit knowledge-based reasoning. For several reasons, this leads to difficulties
for human operators to adapt appropriately to changes in the system, for
instance, as caused by technical faults.

The use of a set of measured variables requires knowledge of the system in
terms of engineers' conception as a network of quantitative relations among
variables. Natural language reasoning, which is typically used for control of the
systems, is, however, ot based on nets of relations among variables, but upon
linear sequences of events in a system of interacting components or functions.
To circumvent the need for mental effort to derive states and events from the sets
of variables and their relations, operators generally use indications that are
typical for the normal events and states, including informal signals such as
motor and relay noise, as convenient signs for familiar states in the system. This
is a very effective and mentally economic strategy during normal and familiar
periods, but leads the operator into traps in which changes in plant conditions are
not adequately reflected in his set of signs. Such mental traps often contribute
significantly to the operator's misidentification of unfamiliar, complex plant
states. Therefore, to adapt performance to the requirements of a system in a
unique and unfamiliar state, the operator must not only switch to knowledge-
based reasoning based on a mental model of the internal, functional properties of
the system, he must also replace his perception of the information as signs with
an analytical interpretation as symbols. This appears to be very difficult, because
the use of signs basically means that information from the system is not really
observed, but is obtained by "asking questions" that are heavily biased by
expectations based on a set of well-known situations.

The difficulty in shifting to higher-level analytical reasoning is further
aggravated when inference must be based on a number of information sources
that are sequentially attended. From analysis of verbal protocols recorded by
skilled technicians in diagnostic tasks, we found several principles in operation
that served to minimize memory workload. In reading a sequence of
measurements, they did not try to remember the original observations; each
reading was immediately judged according to their expectations and only the
result of the judgment was later recalled. Furthermore, they followed a "way of
least resistance” in that they made a decision about what to do next, as soon as a
familiar approach seemed to be possible, without considering the possibility of
alternative, more effective ways. Instead, there seemed to be a "point of no
return,” which had the effect that information observed after a decision would
rarely lead to a reconsideration of the situation.
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Taken together, these aspects force one to draw the conclusion that there is a
considerable probability that highly skilled operators with a large repertoire of
convenient signs and related know-how will not switch to analytical reasoning
when required, if they find a familiar subset of data during their reading of
instruments. They will instead run into a procedural trap and be caught by a
familiar association shortcut very probably based on a subset of the available
data. Examples from major industrial incidents are legion, but my favorite case
story tells about Lalande, who failed to switch from his rule-based recording of
star positions to an analytical interest for moving stars:

The incident in question occurred in 1795, nine years after the discovery of
the planet Uranus, and the principal figure involved was the great French
astronomer Lalande. In that year Lalande failed to discover the planet Neptune,
although the logic of events should have led him to it. Lalande was making a
map of the heavens. Every night he would observe and record the stars in a
small area, and on a following night would repeat the observations. Once, in
a second mapping of a particular area, he found that the position of one star
relative to others in that part of the map had shifted. Lalande was a good
astronomer and knew that such a shift was unreasonable. He crossed out his
first observation of the shifting point of light, put a question mark next to
his second observation, and let the matter go. And so, not until half a century
later did Neptune get added to the list of planets in the solar system. From the
aberrant movement, Lalande might have made %a inference not that an error
had been made but that a new planet of the solar system was present. But he
was reasonable. And it was more reasonable to infer that one had made an
error in observation than that one had found a new planet. [From Bruner et
al,, 1956.] '

The incident reveals that Lalande was not open-minded analyzing a physical
system; he was absorbed in rule-based observation and data recording.

From a butadiene explosion in Texas City (Jarvis, 1971) the investigation
considers:

Loss of butadiene from the system through the leaking overhead line motor
valve resulted in substantial changes in tray composition.... The loss of liquid
in the base of the column uncovered the calandria tubes, allowing the tube
wall temperature to approach the temperature of the heat supply. The increased
vinylacetylene concentration and high tube wall temperature set the stage for
the explosion which followed.... The make flow meter showed a continuous
flow; however, the operator assumed that the meter was off calibration since
the make motor valve was closed and the tracing of the chart was a straight
line near the base of the chart. The column base level indicator showed a low
level in the base of the column, but ample kettle vapor was being generated.

Given an unstable flow meter, only wisdom after the fact will make you consider
a leak. This incident was, in fact, the basis of the example shown in Figure 9.3.
An example from the melt-down of fuel elements in a nuclear reactor shows
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the great affinity to familiar signs, even a prewarning has been received (Hanford
incident, 1955):

Certain tests required several hundred process coolant tubes to be blocked by
neoprene disks. Seven disks were left in the system after the test, but were
located by a test of the gauge system that monitors water presssure on each
individual process tube. For some reason the gauge on one tube was
overlooked, and it did not appear in a list of abnormal gauge readings
prepared during the test. There was an additional opportunity to spot the
blocked tube when a later test ‘was performed on the system. This time the
pressure for the tube definitely indicated a blocked tube. The shift supervisor
failed, however, to recognize this indication of trouble. The gauge was
adjusted at that time by an instrument mechanic to give a midscale reading
which for that particular tube was false. This adjustment made it virtually
certain that no flow condition would exist until serious damage resulted.

Once an operator has succeeded in shifting to analytical functional reasoning at
the level of knowledge-based behavior, it is very difficult to characterize his
mental data processing and the related mechanisms leading to mismatch.

At the skill- and rule-based levels, behavior is controlled by motor schemata
and know-how rules, the goals are implicitly specified, and "error” mechanisms
are described in terms related to established, "normal” action sequences in a rather
behavioristic way. At the knowledge-based level, this is not possible. The
sequence of arguments an operator will use during problem solving cannot be
described in general terms; the goal to pursue must be explicitly considered, and
the actual choice depends on very subjective and situation-dependent features. At
the skill- and rule-based levels, it is known per definition that adaptation to
changes is within the human capability in that we are considering familiar tasks.
This is not the case when knowledge-based performance is required during
complex disturbances. Therefore, different kinds of mismatch situations may
occur:

Adaptation is outside the limits of capability, because of requirements for
knowledge about system properties that is not available, or for data that are
not presented; or because of excessive workload requirements.

Adaptation is possible, but unsuccessful because of inappropriate decisions,
which result in acts upon the system, not in conformance with actual
requirements. It must be noted here that these are only "errors” if they are
not corrected timely; as discussed below, actions not conforming with
system requirements can be an important element during problem solving.

In the present context, only the latter category is considered, and again different
typical categories of mismatch situations can be found during any of the
necessary phases of the decision making, such as identification of system state,
evaluations and choice of ultimate goals, and planning of proper action sequence:
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Human variability in a cognitive task, such as slips of memory, mistakes,
interference from familiar lines of reasoning, etc. These mechanisms are
similar to those discussed above. They are difficult to identify or to use in
prediction, when the problem-solving process is as unconstrained as it is in
a real-life task in a control room.

Errors caused by the difficulty of keeping track of sequential reasoning in a
causal structure, which is in fact a complex network, unsuited for linear
reasoning. The mental workload involved may lead to adoption of premature
hypotheses from the influence of factors as the way of least resistance and
the point of no return, leading to lack of consideration of important
conditions or unacceptable side effects of the ultimate decision.

Actions not conforming with system requirements may not be related to the
ultimate result of erroneous decision making, but a reasonable act to fest a
hypothesis or get information which, however, may bring the system into a
more complex and less controllable state.

The need for human decision making during disturbed system conditions
basically depends on functional redundancy in the purpose/function/
equipment relationships of the system. There is a complex many-to-many
mapping between the levels in this hierarchy, and during search for resources
to resolve the various goals in a complex situation, operators may very
likely be caught by familiar or proceduralized relationships serving goals
that are not relevant to the present situation. Decision errors during complex
disturbances are not stochastic events, but very often reasonable mistakes
caused by interference in this mapping.

The conclusion is that in present-day control rooms based on individual
presentation of the measured variables, the context in which operators make
decisions at the knowledge-based level is far too unstructured to allow the
development of a model of their problem-solving process, and hence to identify
typical error modes, except in very general terms, such as "lack of consideration
of latent conditions or side effects" (Rasmussen, 1980a).

As a basis for a useful model, the conceptual framework within which the
operators have to make decision has to be modeled in a consistent way in terms
of the purpose/function/equipment hierarchy of the system. As Simon notes
(Simon, 1969): "the complexity of human behavior largely reflects the
complexity of his environment...." Before his behavior can be modeled, a
systematic description of his decision making context must be found in order to
identify likely interferences. Second, realistic models will probably only be
possible if his choice of goals and strategies is more constrained and controlled
than is the case in present-day control rooms. This is possible if a computer-
controlled presentation of a symbolic framework is developed, which may lead to
skill- and rule-based problem solving in an externalized context.
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Taxonomy of Human Errors

In order to characterize human errors as human-machine mismatch situations, the
categories of psychological mechanisms discussed in the previous section must
be supplemented by a description of the interaction with the environment, the
machine. The psychological mechanism described is only one element in the
causal sequence we meet during causal backtracking from the occurrence of
unacceptable system performance.

The first element of the mismatch we meet during backtracking will be an
unacceptable state in a physical component owing to a human act, i.e., features
of the mismatch in terms of inappropriate task performance. This dimension
could be called the external mode of human malfunction, in order to avoid the
term "human error,” which has a flavor of guilt. In this category, mismatch is
expressed in terms of omission of acts in a procedural sequence, wrong timing,
etc. In order to relate these elements to the psychological mechanisms, a
cognitive task analysis should be applied to identify the internal mode of
malfunction, i.e., which element of the internal cognitive control was affected,
either by not being properly performed or by being improperly bypassed. In
practice, this is possible in terms of the elements of the decision sequence of
Figure 2.1, which in acceptable detail will take care of rule- and skill-based
behavior during analysis of incident reports. The strategies of knowledge-based
behavior can only be considered by very careful analysis in cooperation with the
actual people (e.g., see Pew et al., 1981). This is the reason for the very
rudimentary discussion of knowledge-based mechanisms in the previous section,
which was based on analysis of routine event reports from nuclear power plants.
In consequence, the elements in the category of internal malfunction directly
reflect the steps in the "decision ladder.” Frequently, the mismatch is not due to
spontaneous, inherent human variability, but events in the environment, which
act as precursors, can be identified. Such events can be causes of the human
malfunction, and the causal backtracking can be continued upstream from the
human. In the present context, only events recognizable at distinct locations in .
time are considered to be causes, such as, for instance, interference by ™
communication from colleagues, telephone calls, events in the physical
environment, and bursts of noise. More persistent conditions, such as bad
ergonomic design, generally high noise levels, inadequate instruction, etc., are
considered performance-affecting factors, which do not release malfunction but
change their likelihood. These factors include the influence upon performance
through the psychological and physiological levels below the level of
information processing in the modeling hierarchy of Figure 8.1. Supplemented
by a representation of the task content, these different features of a human-
system mismatch add up to a taxonomy that is useful for collection of human
error data and for analysis during system design (see Figure 11.2),

This taxonomy does not lead to a generic, hierarchical classification system,
but to a multifacet system to characterize mismatch occurrences. This approach
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has several advantages. First of all, a very high resolution in the description can
be obtained with only a manageable few elements in each of the dimensions of
the taxonomy. Furthermore, the internal structure of an event is preserved in the
description, and can be regenerated in another context for analysis during design
of new systems. For instance, very complex, but likely, scenarios for mismatch
events can be identified and studied by postulating an internal mismatch
mechanism, which is then folded into the different decision phases under the
assumption of level of training of the person. The resulting relevant "internal
malfunctions” are then correlated with each of the steps in an assumed work
procedure by careful consideration of potential interference in the decision
context, and the combined effects of possible inappropriate acts are assessed for
different alternative system configurations. The probability of the significant
courses of events could then be judged by identification of the likely causes and
the quality of work situation in terms of performance-affecting factors. The
advantage is that complex scenarios can be directly identified from the underlying
psychological mechanisms. If the analysis is based only on the consideration of
human errors in terms of their external manifestations as, for example,
omissions, commissions, and inappropriate timing, the search for complex and
risky scenarios will be hindered by a combinatorial explosion (Rasmussen,
1982a). The multifacet taxonomy of Figure 11.2, supplemented by categories to
characterize the technical system and component faults, has been considered for
an event reporting system for nuclear installations by an expert group under the
OECD committee on the safety of nuclear installations (Rasmussen et al,
1981).

Human Information Processing and Stress

In the discussion of human error mechanisms, it has thus far been assumed that
the normal cognitive processes are active, and that the general factors in the work
situation affecting the performance would do this by changing the probability of
error, rather than changing the organization of the cognitive performance
drastically; i.e., only moderate levels of emotional stress are considered. In terms
of the levels of modeling in Figure 8.2, this means that the influence from the
emotional and affective psychological processes does not bring the cognitive
performance outside the domain that can be described by the information-
processing mechanisms identified during near-normal work conditions.

However, for analysis of human performance in supervisory control tasks, an
important problem is to model how stress developing in situations with high
workload, threat on the individual, or debilitating physical environments, e.g.,
noise, affects the human information processes and, in particular, the error
characteristics. Unfortunately, the cognitive approach is not typical of stress
research. The information available is typically from either behavioristic
experiments relating stressors, e.g., noise level, to reaction times, or is very
general statements as the uncalibrated inverted U-shape relation between stress
and performance, or as statements describing "tunnel vision" in cognitive
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activities in levels of high stress. In addition, because of the lack of cognitive
analysis, the fact is typically not considered that the cognitive task itself will
normally change during situations of high stress due to the unfamiliarity of the
situation,

Thus, two factors need to be analyzed. A theory relating the influence of stress
and other affective factors upon the basic organization of the human information
processes should be developed. This is, however, a problem of basic
psychological research and will only be very briefly discussed here. Furthermore,
the influence directly on the choice among the normally available information
processing strategies should be described. We will consider the latter factor first,
because it can be described within the present modeling framework.

In the human-machine context, periods inducing stress are generally periods of
major disturbances of operation when high risk for losses is present together
with time stress caused by system dynamics. Independent of emotional stress,
the cognitive task will be changed in a way that leads to tunnel vision or
narrowing of attention from at least two causes. First, the identification of an
unusual state in the physical system depends on functional reasoning, i.e.,
diagnosis through hypotheses and test or topographical search strategies, which
require much higher information capacities than is the case during familiar
periods when identification is based on recognition of signs. This directly
implies that less capacity is available for general monitoring and scanning to
maintain a wide field of attention. Second, during normal periods a wide field of
attention can be maintained because monitoring and observational scanning can
be performed at a high functional level, in that variables related to the same
functional unit will be highly correlated, and only representative indications for
each unit need to be included in observation scanning. In case of disturbances,
however, the correlation of variables from the disturbed function changes and, in
order to diagnose, the entire set of variables from that function must be included
in the observation. Consequently, the observer will focus on the disturbed
function with a "cognitive tunnel effect” as the result (Moray, 1981).

Also, the disintegration of behavior during periods of high stress may be
directly related to the structure of human information processing with its frequent
shift in strategy. In general, an information-processing task may be based on
various strategies with different resource/demand characteristics, and when
difficulties are met during a task, a shift in strategy will probably be made in
order to find a better resource/demand fit; see Chapter 7. This tendency may be
particularly pronounced during high risk or time stress and therefore lead to a
hectic looking for a better way of approaching the problem.

Another consideration is the influence upon performance directly from the
affective arousal involved in stress. Unfortunately, no psychological model is
available to relate affective stress to the parameters of the processing
mechanisms. In his review, Rabbit (1979) states: "No current models in
psychology specify how the functional mechanisms underlying human
performance at any simple task may change their characteristics.” However, the
approach by Broadbent (1971) is an attempt in this direction. Broadbent's model



168 Information Processing and Human—Machine Interaction

of human information processing identifies three distinct mechanisms: perceptual
encoding, translation processes, and response selection and execution. The
assumption is then that any stressor, or general condition of the system, may
potentially affect the operation of any stage but not others. From results
obtained from laboratory experiments applying stressors such as noise, heat,
alcohol, and loss of sleep, Broadbent supposes that all stressors affect perceptual
selection and transformation, but that only stressors that lower arousal, e.g., lack
of sleep, affect response selection. Other approaches to modeling the influence of
stress upon elements in an information process model have been based on
Sternberg's (1969) paradigm. So far, the results of laboratory experiments have
been difficult to transfer to real-task performance; for a review, see Rabbit
(1979).

What is really needed at present seems to be experiments in real tasks, for
instance, in training simulators. A classic experiment is described by Bartlett
(1943), who analyzes the influence of fatigue upon pilot performance. Bartlett
argues that the classic experimental technique to analyze degradation of an
elementary task from fatigue when repeated through time has no bearing on real-
task performance, because real tasks are characterized by the demand for
coordination of several elementary activities. This position is supported by the
analysis of the degradation of skill from fatigue through time of flying. The
result is that skilled subroutines do not deteriorate, but the higher-level
coordination does. When fresh, the operator perceives instrument indications as a
whole and relates control actions to overall performance of the aircraft. Fatigue
leads to a dissociation of the "stimulus field" and of the actions into separate
elements. An action was not performed to control the aircraft but to correct an
instrument indication. Furthermore, subtasks of occasional nature, such as fuel
replenishment, are omitted, and sensory information of secondary nature, such as
bodily sensations that a fresh pilot integrates into the overall pattern and uses
skillfully, becomes disintegrated and distracting. It appears that analysis of the
influence of stress upon higher-level information processing functions is highly
desirable.

Also, Mandler (1975, 1979) relates stress to conscious, cognitive processes
and to interruption of activity. He applies a cognitive definition of stress:
"External stressors are effective to the extent that they are perceived as dangerous
or threatening, that is to the extent they are cognitively interpreted.” According
to this view, the most important effect of stressors on thought processes is that
they interfere with consciousness and thus with the smooth operation of
cognitive processes. Mandler views the human organism as preprogrammed to
represent certain events consciously. Among these are intense stimuli and—
important for his definition of stress—internal physiologic events and autonomic
neural activity. Whenever such events call for conscious attention, the limited
capacity will be drained, and other cognitive functions will deteriorate. His basic
premise is then that autonomic activity results whenever some organized action
or thought process is interrupted. This may occur because of some blocking by
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external events, or because some internal thought process prevents the
completion of another process.

. An interruption can occur in perceptual, cognitive, or behavioral domains, and
in all cases the consequence will be autonomic activity. The consequence of the
amma.no: of stress as an emergency-signaling interruption and competition for
capacity of cognitive mechanisms will be that it can have the effect of increasing
attention to crucial events in the environment and more efficient attack on central
problems. This is not only mentioned by Mandler (1979) but also by Baddeley
(1972), quoted by Mandler: "A dangerous situation will tend to increase the level
of arousal which in turn will focus the subject's attention more narrowly on
those aspects of the situation he considers most important. If the task he is
mmnmo_,amsm is regarded by him as most important, then performance will tend to
improve. On the other hand, if it is regarded as peripheral to some other activity,
such as avoiding danger, then danger will deteriorate.” The position taken by
Mandler is very much in line with the mechanism discussed in the beginning of
this section.

The emphasis of the above discussion of models of stress has been to indicate
that unusual situations influence the control of attention and the choice of
strategy even though the phenomenon called stress is not present, and to cite
mo».m:w:n.mm to approaches to models of stress that are compatible with
information-processing models of human behavior considered for systems design.
For more general treatment, readers are nmmmqma to sources from social and
w&.\o:o_ommom_ research (for instance, see Janis and Mann, 1977). This literature
is important to consider for analysis of human errors, when situations with high
degrees of stress may bring operators and system users outside the domain of
behavior for which the models considered in this text are applicable.



Chapter 12
A Catalogue of Models

The skill-, rule-, and knowledge-based framework is not a predictive model of
human behavior, but rather a taxonomy that can be used to characterize various
categories of behavior and to distinguish among them. Because the control
mechanisms of the different categories, as well as the interpretation of
information from the environment, are basically different, it is likely that
different types of models are suitable for quantit4tive prediction in the various
domains. Analytical models can be very important in the design of human-
machine systems for optimizing task performance, in particular, for rare event
scenarios that are to be considered for design in centralized, high-risk
installations and for which system performance cannot be verified
experimentally. A problem one has to face in such situations is that modeling of
the interaction of categories of behavior is very important, and this requires
compatibility among the separate kinds of models. It is not intended here to go
into detail on the various models, but instead to review their main characteristics
and to interrelate them and discuss the boundaries of their usefulness in the light
of the skill-rule-knowledge framework.

The natural starting point of this discussion is a review of the approaches
toward the modeling of the subconscious, skilled interaction with the physical
environment. Behavior in this domain has some characteristics that determine the
nature of useful models. Behavior is not controlled by a set of process rules, but
by a dynamic, internal model of the environment that controls the sensorimotor
interaction by means of signal processing in the space-time domain. Because
skilled performance only includes behavior of well-adapted persons, models of
performance in this domain will generally be models of features of the
environment as viewed through human selectivity and limitations. If models
should also include the quantitative precision necessary in control of manual
acts, sets of mathematical time functions seem to be the only reasonable choice.
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Models in this category have been discussed in detail by Sheridan and Ferrell
(1974). Two aspects of skilled behavior are to be considered, and have typically
been considered separately, in modeling. One is the control of human attention
allocation; the other aspect is the control of the manual interaction.

Attention Allocation

Humans do not constantly scan the environment and extract meaningful features
from the available flux of information. Acting in a familiar environment, people
sample the environment, controlled by their expectations as to where an update
of their internal model is needed. This means that this model specifies when an
update is needed, and where to look. Different approaches to model this function
have been tested experimentally.

One family of models is based on queucing theory. The system considered in
queueing theory is a person serving a number of tasks. The tasks cannot be
attended simultaneously, but have to be considered on a time-sharing basis
according to a service strategy depending on the nature of the tasks. Many task
demands, such as instrument reading during a monitoring task, arrive randomly.
Typically, queueing theory considers demands with Poisson or exponential
distributions. Queueing models of attention allocation postulate that humans
optimize their performance according to a service strategy considering the arrival
sequence and task priority. Queueing theoretic models have been used by
Carbonell (1966) and Carbonell et al. (1968) for a study of instrument scanning
behavior of aircraft pilots in order to predict the fraction of time devoted to each
instrument. Also, Senders and Posner (1976) have developed a queueing model
for monitoring tasks. Rouse (1977) has employed queueing theory to model
pilot decision making in a multitask flight management task. Queueing models
basically represent the time distribution and priority characteristics of the task
environment and can therefore be useful for analysis of the workload posed in
terms of time and scanning requirements in a monitoring task.

Another approach in the frequency domain is based on Nyquist's information
sampling theorem, which states that the information from a source having
spectral components with an upper limit frequency of w Hertz can be completely
represented by an observer who samples 2w times per second. The sampling
model has been tested by Senders (1964) in experiments where the subjects’ task
was to respond to a number of instruments fed by random signals of different
bandwidth. Also, data from pilots in real flight tasks seem to match the model
(Senders, 1966).

Detection

The ability of humans to detect changes in the behavior of a system that they are
monitoring is important for systems control, and different approaches to
predictive, quantitative models have been taken.
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A classic approach is based on the signal-detection theory that was developed
from studies of problems in statistical analysis of detection of radar signals in
noise (Wald, 1947). A review of later developments can be found in Sheridan and
Ferrell (1974). An extensive number of experiments have been made with
subjects detecting visual or auditory signals in a background of noise. Given
probability distributions of noise and signal plus noise, signal-detection theory
can lead to prediction of the probability of misses and false alarms in a detection
task. The theory has, however, had more application in experimental
psychophysics than in systems design.

Detection of changes in system behavior from signals, rather than appearance
of signals in noise, has been modeled by estimation theory. This is a control
theoretic approach based on parameter estimation in a state-space representation.
Models based on estimation theory represent human detectors as ideal observers
monitoring dynamic processes. Gai and Curry (1976a) have proposed such a
model, which assumes that the human observer can be represented by an optimal
Kalman filter that serves to eliminate perceptual noise and to predict the state of
the system monitored. Detection is, then, based on the Kalman filter residuals,
i.e., the difference between the observers' expectations regarding the states and
the actually observed states. In this type of detection model, only visual input
information is considered, i.e., the system is an open loop. It has been
suggested, partly based on Young's (1969) experiments, that feedback from the
hand movement of a closed-loop human controller will improve failure detection
(Curry and Ephrath, 1976). Subsequent experiments tend to indicate that the
influence on detection of closed-loop control depends on circumstances. A series
of experiments made by Wickens and Kessel (1981) confirm the hypothesis of
improved closed-loop detection, whereas Ephrath and Young (1981) report
ambiguous results possibly depending on the level of workload in the task.
Another explanation may be that perception and motor schema generation have
different characteristics and limit properties in their functions of dynamic world
modeling. Probably, comparative experiments with detection in open-loop
monitoring and closed-loop control could be used to separate aspects of these
functions.

The attention allocation and detection functions basically depend on signal
processing. The information considered is the quantitative state of signal patterns
related to spatially distributed sources with reference to their stochastic nature.
For these functions, the functional meaning with respect to selection of proper
action is not considered. This interpretation is represented separately in
judgment- or decision-making models.

Manual Control Models

Models of human performance in closed-loop control tasks have been very
important for representation of the properties and limitations of humans in
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Figure 12.1. A typical optimal control model of a human vehicle controller.
[From Kleinman et al. (1971) with permission from IEEE.]

vehicle control, in particular in aviation, and a separate school of modeling based
on control theoretic tools has developed.

A review of models of human sensorimotor performance has been given by
Pew (1974). Such models have been developed, in particular, from laboratory
tracking tasks, and will typically give information on signal-to-noise ratio,
maximum bandwidth when tracking unpredictable wave forms, prediction
capabilities in sine-wave tracking, etc. The role of predictive feed-forward control
for an industrial control task has been demonstrated experimentally by Crossman
and Cooke (1962). For design and evaluation of the control system for aircraft,
for example, models based on continuous linear differential equations are
important because they are suitable for computer simulation of the total system
performance. A review of such models can be found in Sheridan and Ferrell
(1974).

The most recent development of such models has led to the optimal control
models, which are based on the observation of Leonard (1960) and Roig (1962)
that the mean-square error from human tracking data approximated the mean-
square error of various optimal controllers. Optimal control models have in
particular been developed by Baron and Kleinman (1969) and used for describing
pilot performance (Kleinman et al., 1971). This model is based on the
assumption that a well-trained, well-motivated human operator will act in a near-
optimal way subject to certain internal constraints that limit his behavior. The
internal dynamic world model necessary to account for human anticipation is
represented by a Kalman-Bucy optimal filter. The model also includes
observation noise and time delays depending on the instrument scanning
strategy. The criterion used is typically minimum square deviations from desired
output as well as squared control effort according to a chosen trade-off ratio. See
Figure 12.1.
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The model has been developed beyond the simple man-in-a-servoloop case, in
that higher-level sequential functions for parameter and criterion control have
been added in order to include multivariable control, monitoring, and decision
making. This effort has proved successful for flight control and landing approach
planning (Muralidharan and Baron, 1980; Baron et al., 1981).. Efforts have also
been made to extend this model to process control, and recently (Baron et al,,
1982), a simulation model based on control theory has been proposed for
simulation of the dynamic performance of a nuclear power plant including the
operating staff. One important aspect of this approach is that human behavior at
all three levels (skill-, rule-, and knowledge-based) as well as their interactions
are considered in one integral model. It appears, however, at present to be
difficult to collect the explicit human performance data that are needed for
implementation of the model.

This kind of integrated model has great importance for design of aviation and
other vehicle systems because the decision and manual control tasks of the
operator form one integrated task in direct coupling with system dynamics. The
task of a pilot or driver is a direct space-time control of a moving physical
object, the vehicle. The sensorimotor level of the human information processing
in this task serves for control signal processing; i.e., the output manual actions
are continuous signals in the semiotic sense.

For process plants of the present levels of automation the continuous control
signal processing is, however, automated. This means that human output actions
will typically be related to switching and valving, and will be interpreted as
stereotyped signs by the plant systems. This means that the human sensorimotor
behavior will largely be used-for an interface manipulation skill. For this, the
time-space characteristics will have no direct relation to the basic system
dynamics or the supervisory control tasks for which they in a way act as
separating interface. For such systems, the interface manipulation skill is
probably most conveniently described separately with reference to the parametric
description in terms of the gain-bandwidth-accuracy mentioned above. In
particular, the state identification can only be represented in terms of a Kalman
observer when the dynamic properties of the system to be controlled are known
in terms of the parameters of control theoretic state-space description. This is
only the case for well-structured systems as, for instance, aircraft and space
vehicles, and to some extent, the internal thermodynamic processes of industrial
plants, and not for object manipulation in the physical environment in general.
In consequence, models based on optimal control theory are only suited to
represent the state identification of sensorimotor behavior, and the feature
formation necessary to release and modify skilled patterns in case of manual
control of well-structured dynamic systems, from which information is
interpreted as signals. In less-structured situations when feature formation and
state identification are based on recognition of information interpreted as signs,
models of human judgment in terms of statistical representations are more
suitable.
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Models of Human Judgment

State identification and recognition based on a pattern of cues or signs are typical
front-end functions involved in the behavior at the rule-based level. Patterns of
information from the environment—or the internal representation of the problem
space—are interpreted as signs referring to manual acts or information processes.
The process is not based on functional or symbolic reasoning, and the
association from sign to response may be based on purely empirical evidence
from prior trials or learned from a teacher. The person will typically not be able
to identify the information from the environment acting as cues for his
decisions, and very probably conscious introspection may only lead to invalid
after-rationalization, because the basis of introspection is a process of a higher
cognitive domain than involved in the rule-based behavior itself.

Figure 12.2. Different approaches to models of human decision and judgment
and their relations to economical and psychological concepts. [Adapted from
Hammond et al. (1980) with permission from Hemisphere Publishing.]
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Models of judgment and decision making in everyday professional life at the
rule-based level have very important implications for all trades, in particular for
education and training and for the design of supporting tools. Therefore, models
of this process have been the topic of extensive research in the area called human
decision making, judgment, or choice, depending upon the paradigm of the
approach. Several different approaches can be identified in this modeling effort,
ranging from purely normative models based on economic concepts to predictive
models derived from psychological research. Hammond et al. (1980) have
recently reviewed these different approaches, and their classification has been
adopted in the following section. The varying dependence of the theories on
economic and psychological concepts is illustrated in Figure 12.2. In varying
degrees, the theories consider the problem as a one-sided cognitive problem or a
two-sided problem also involving the task system in the environment (see
Figure 12.3). In the following section, the various models will be characterized
briefly.

Decision Theory

This model is a mathematical model based on the expected utility theory
developed by economists (Morgenstern) and mathematicians (von Neumann).
The theory can be traced back to Bernoulli's work on the worth of a decision
determined by the probability of events and their assgciated utilities. Decision
theory limits its interest to the single-system case, which involves one person
without full knowledge of the task situation and without feedback about the
effect of the decision. The approach focuses on decision making from a
prescriptive point of view only. It is a logical structure for decisions and makes
no claim that it represents or describes the information processing of human
decision makers. The emphasis is not on what they do, but what they should do.
Modern theorists (Keeney and Raiffa, 1976) emphasize the mathematical
modeling of subjective probability and utility and promote the use of the theory
to aid decision makers to achieve logical consistency.

Critics of decision theory argue, however, that it is not useful as a guide
because human beings do not behave in accordance with the fundamental
assumptions of the theory. As it is a normative model, it will not be considered
in more detail in the present context. It may, however, be an important candidate
to consider for computer implementation in decision support systems.

Behavioral Decision Theory

This theory was initially developed by Edwards and Tversky (1967) and is based
on the Bayesian probability theory and on an experimental approach to
modeling. The aim of the experiments has been to find out how closely human
information processing approximates the Bayesian process, and how information
is used to revise subjective probabilities. Experimental manipulations of the
objective probabilities were used to examine revisions of the subjective
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Figure 12.3. Decision theories consider the cognitive system and the
environmental system to varying degrees. [Adapted from Hammond et al. (1980)
with permission from Hemisphere Publishing.]

probabilities. Because decision tasks with known properties are included in the
models, the theories consider the double-system case of Figure 12.3.

The approach intends to describe human departures from optimal performance
empirically and to explain such departures in terms of both the external (task)
and the internal (psychological) conditions. An often-mentioned departure from
optimal decision making is conservatism, which represents the failure of humans
to revise their posterior subjective probability as much as they should upon the
receipt of new information. People are "conservative Bayesians.”

Behavioral decision theory and classic decision theory share the same basic
concepts as decision, preference, subjective probability, and utility, and both
refer to the cognitive process of continuing probability and utility as
"aggregation.” These concepts are inherited from economic theory and
mathematics, not psychology. However, unlike classic decision theory,
behavioral decision theory does not aim at a prescription of the decision process,
but at a description of the actual deviations from the optimal process. As such, it
has had a rather extensive use to describe deviation from rational behavior in
experiments on diagnostic ,corwig for instance, in electronic troubleshooting
(Rigney et al., 1968).
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Psychological Decision Theory

In its recent form, this theory is based on the work of Tversky and Kahneman
(1974, 1979) with their concepts of representativeness, availability, and the use
of heuristics. Their approach rejects the use of optimal decisions as a frame of
reference for description. It turns instead to a search for the psychological
mechanisms that people use to evaluate frequencies and likelihoods.
Psychological decision theorists generally consider subjective utility theory to be
empirically unsuccessful and to be replaced by a theory that explains human
behavior, that not only explains why, but is also able to predict when people
replace the laws of statistics by heuristics. The theory is still rooted in decision
theory, using probabilities and utilities as central descriptive forms, but focuses
on the way in which people assign probabilities to events on explicit
formulation of the biases, and upon classification of means for supporting
decisions by debiasing (because it appears that simply warning people against
their bias often proves ineffective).

Tversky and Kahneman have identified a number of biasing heuristics that are
relevant also for the human-machine context (Tversky and Kahneman, 1974).
Because the basic role of the heuristics is "to reduce complex tasks to simpler
judgmental operations,” they are relevant in many situations during disturbed
plant operation.

The heuristics and their most important biasing effects are as follow:

Representativeness. People associate to a prototyped number of a class,
neglecting prior probabilities and base-rate frequencies as well as the effect
of sample sizes, and are influenced by the illusion of validity as well as by
the misconception of regression toward the mean.

Availability. People assess the frequency of a class or the probability of an
event by the ease with which instances of their occurrence could be brought
to mind. They are typically influenced by bias owing to easy retrieval of
familiar and recent events, and by bias owing to the effectiveness of a search
set and the imaginability of situations, independent of probability.

Adjustment and anchoring. People make estimates from an initial value that
may be suggested by the formulation of a problem and that is generally not
adequately adjusted.

The heuristics and bias must be viewed as characteristics of the cognitive
process, not as the effects of emotional or motivational behavioral factors (as,
for example, wishful thinking). "The main cause for the failure to develop valid
statistical intuitions is that events are normally not coded in terms of all the
factors that are crucial to the learning of statistical rules” (Tversky and
Kahneman, 1974); i.e., they operate from convenient signs, not defining
attributes, as is discussed in Chapter 11.
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Social Judgment Theory

This theoretical development as well as the basic concepts of "ecological validity
of cues" and "utilization of cues” originate in Brunswik's theory of perception.
The primary intention of the approach is not to explain, but to %u%.&.m :E.ES
judgment processes, and to provide guides for the development of decision aids.
Central to the development has been the work of Hammond, Brehmer, and o%.ﬂ.m
(see Hammond et al., 1980). The basic framework of the theory mw Brunswik's
"lens model” (see Figure 12.4). An important feature of Brunswik’s theory of
perception is that he distinguishes clearly between the term ».oﬁmzmi of the S-R
(stimulus-response) psychologist, which is "stimulus,” pointing from the
environment toward the person, and the term "cue," pointing outward from n.ﬁ
person toward the aspects of the environment. Central to the :.5&2., as shown in
Figure 12.4, is that the environment and the person are amwn:cma._s symmetric
terms, hence the name "lens model.” The cues of the task vary in _.mow_cm_om_
validity" and the person has a variation in "cue utilization," both of which may
assume various linear and nonlinear forms. Both sides are analyzed and m:ma.wa
are made to match ecological validities to cue utilization, as well as ecological

Figure 12.4. Brunswik's "lens model." [Adapted from Hammond et al. (1980)
with permission from Hemisphere Publishing.]
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function forms to subjective function forms, i.e., to identify the extent to which
the principles of organization that control the task system are reflected in the
principles of the organization that control the cognitive system of the person.

The "lens model” has been the basis of research concerning diagnostic
judgments in several professional activities such as, for instance, stockbrokers,
clinical psychologists, and physicians (Brehmer, 1981). A problem in such
research is to describe a mental process of which the person is not himself aware.
The approach has been to assume that even though the person is not aware of the
process, he will know the information, i.e., the cues, on which the process is
based. In experiments, therefore, cues identified as diagnostically relevant by
expert judges are used to present, generally in written form, subjects with trial
cases. From the experimental research, the statistical model describing diagnostic
behavior is identified. The general result has been that linear statistical models,
such as multiple regression analysis, have been adequate. Four general results are
typical of such diagnostic experiments. First, the judgment process tends to be
very simple. Even though persons identify up to 10 cues to be relevant to
diagnosis, they actually use very few, usually only two or three, and the process
tends to be purely additive. Second, the process tends to be inconsistent.
Subjects do not use the same rule from case to case, and judgment in a second
presentation of a case may differ considerably from what it was the first time.
Third, there are wide individual differences even among subjects with years of
experience. They differ with respect to the cues uged and the weights they apply.
The fourth general result is that people are not very good at describing how they
make judgments (Brehmer, 1981).

Given that intuitive judgments of an expert are performed by processes below
the level of conscious attention, one may wonder whether laboratory experiments
based on formal cues identified consciously by professional experts (textbook
cues?) really correlate with the cues used in the real-life situation in which cues
depending upon prehistory and informal "situational cues" may play an
important role.

The review of Hammond et al. (1980) considers two further schools of
theorists with strong relation to psychological concepts and methods: the
"information integration theory" and the "attribution theory," which were
developed within social psychology and have a strong emphasis upon
interpersonal judgments. They have not, to my knowledge, been applied to
human-machine systems but should probably be considered for group decision-
making situations. In the following section, they will be characterized briefly.

Information Integration Theory

This theory is based on the work of Anderson (1974) and has its origin in
psychophysics. In contrast to the previously mentioned theories, it is not a
probabilistic theory. The aim of the theory is to discover psychological laws that
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intervene between stimulus and response in quantitative terms of a "cognitive
algebra” (Anderson, 1974). It focuses on the organization and integration of
information by means of various algebraic formulations such as additive
equations, averaging equations, etc., which are considered models of cognitive
functions. Discussing social judgments, Anderson (1974, p. 84) states:
"Cognitive integration seems to follow simple averaging, subtracting, and
multiplying rules far more commonly than has been recognized.” Central to the
theory is "functional measurement,” which is strongly related to psychophysical
methods of measuring complex social rather than physical data. Information
integration theorists criticize social judgment models for only considering the
subjects’ physical stimuli, while information integration also considers
conditions employed in traditional psychophysics such as, for example, social
effects, anchoring, contrast, etc. There has been no interest within this theory to
evaluate the fit of empirical behavior to models of optimal behavior; only
models that account for the subjects' actual behavior are considered.

Attribution Theory

The basis of this theory is the theoretical work of Heider (1958) but has been
developed by several researchers, for instance Kelly (1973), who has given
several survey papers. The theory has been central within social psychology. The
theory is very general in its aim and tends to cover not only a single person
making judgment of the cause of an event in a social situation but also
interpersonal relations in judgment, learning, and conflict. The central concept of
the theory—"attribution"—can be considered a special case of inference or
judgment. Choice of action or preference for friends, for instance, follow from
different attributions, but the theory is primarily concerned with inferences about
causality, i.e., causal attributions, and should therefore probably be considered
more in regard to human-machine systems than it presently is.

Kelly (1973) considers two different cases. First, the attributor has information
from several observations and is able to respond to covariation between the
observed effect and its possible causes. Second, the attributor has information
from only a single observation and must respond to the set of conditions present
at a given time. Thus, it is necessary for him to take account of the
configuration of factors that are plausible causes. By the covariation concept, an
effect is attributed to one of its possible causes with which it covaries over time.
Implicit in this principle is the problem of the exact temporal relations assumed
to exist between a cause and its effect.

Kelly and Heider conceptualize the attribution process in terms of the analysis
of variance as employed by the psychologist to interpret experimental results.
“The assumption is that the man in the street, the naive psychologist, uses a
naive version of the method used in science” (Kelly, 1973, p. 109). In this
analysis of variance, the salient possible causes constitute the independent
variables and the effect constitutes the dependent variable. For a wide range of
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Figure 12.5. Analysis of variance of attribution theory. (a) The analyses of
variance framework for making causal inferences; (b) data pattern indicating
attribution to the entity; (c) data pattern indicating attribution to the person; (d)
data pattern indicating attribution to the circumstances. [Reproduced from Kelley
(1973) with permission from the American Psychological Association.]

attribution problems, the classes of possible causes are as shown in Figure 12.5:
persons, entities, times. An important application of the persons x entity x time
framework has to do with attribution validity. A response is known to be valid if
(a) the response is distinctively associated with the stimulus, (b) there is
consensus, other people have a similar response, and (c) the response is
consistent over time. These criteria have been tested experimentally, and studies
designed to test the idea that naive subjects treat information informally ina
manner similar to the way statisticians treat it formally have been supportive.
Configuration concepts are the basis of causal inference from a single
observation of the effect. A person is rarely acting in complete ignorance, in that
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Figure 12.6. Causal schemata of attribution theory for (a) multiple necessary
causes, (b) multiple sufficient causes, and (c) compensatory causes. [Reproduced
from Kelley (1973) with permission from the American Psychological
Association.]

ordinarily he has observed similar effects before and has some notions about
possible relevant causes. Several statements can be made about the way
attributors think: the discounting principle, stating that a given cause in
producing a given effect is discounted if other plausible causes are also present;
the augmentation principle, stating that if the external cause tends to inhibit or
suppress the observed effect, the presence will increase the attribution of causes
internal to the person observed, etc. The configuration concept has been
implemented in a set of causal schemata related to compensatory causes,
multiple necessary causes, and multiple sufficient causes (see Figure 12.6). Such
causal schemata provide a person with means for making causal attributions
given only limited information. People have repertoires of causal schemata
enabling them to deal with causal problems, and prototyped features can
be identified. A major task for attribution theory is to specify when a
given schema is evoked. In this function also, stereotypes can be found:
tendencies to prefer simple, e.g., single-cause patterns. This tendency has
also been identified by Duncker (1945). He notes that certain cause-and-
effect connections are intelligible to an attributor without evidence of
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covariation: a track resembles a foot of an animal; heavy things make loud
noises, etc. Another simplification is that consequences will be linked directly to
an actor rather than being viewed as a joint function of him and the situation.

As with other theories, systematic discrepancies between normative and
intuitive inferences have been identified: subjects fail to extract all available
information; they do not gain as much confidence from a series of events
characterized by consistency as a probability model suggests they should, or they
give too much weight to exceptions from general trends. A tendency to find
causal explanations for variations that should be attributed to sampling
variability is related to the bias from representativeness as discussed by Tversky
and Kahneman (1974).

Attribution theory has, as mentioned, not been much considered in the context
of human-machine systems, but the results obtained should probably be
considered, for instance, in relation to group decision and personnel management
modeling and in relation to attribution of the cause of an incident to personnel
error. Finally, as control systems grow increasingly complex and functionally
intransparent, the operator-control system relationship becomes more of an
interpersonal relationship and, consequently, a social-psychological approach
such as attribution theory may be an appropriate point of view.

Fuzzy Set Theory

In the typical models of human judgment, the relationship between the criterion
and the attributes as well as between the attributes is considered to be stochastic
in nature. This means that the categories and attributes are considered to be well
defined and describable by classic logic including the rule of exclusion of the
mean; i.e., an attribute is present or not present, and a judgment is either true or
not true with a certain probability. The uncertainty may be due to the fact that
the underlying phenomena are stochastic by nature, but it may also be due to
lack of knowledge on the part of the observer, to choice of attributes that are
convenient cues rather than defining attributes, or may be caused by discrete
representation in verbal statements of states of affairs that are in reality
overlapping and fuzzy. This had led to extensive efforts to develop models of
fuzzy reasoning (Gaines, 1976) based on Zadeh's fuzzy set theory (Zadeh, 1965).
An extensive bibliography on applications can be found in Gaines and Kohout
(1977). The idea is basically that membership of a category is defined by a
continuous membership function varying in the interval 0-1, for instance, the
membership value of a temperature related to the category "hot" is a continuous
function of measured temperature; the membership value of a man related to the
class "tall" is a continuous function of his height around 180 ¢cm. This means
that the classic probability distributions are replaced by "possibility
distributions.” From the literature it seems that two different developments can
be distinguished. One is the use of fuzzy sets in familiar many-valued logic;
another is development of a fuzzy logic in which the truth values are themselves
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fuzzy sets. Doubts have been raised about the value of the latter approach
(Haack, 1979) and, in general, the value of fuzzy sets compared with more
traditional approaches seems to be a bit obscure.

Experimentally verified fuzzy models have typically been based on fuzzy sets
that have been manipulated using nonfuzzy operations, which could have been
handled by the traditional sum-of-weighted-attribute decision models. King and
Mamdani (1977) have studied a fuzzy set model of a simple manual control task.
Using verbal protocols, they identified the following human operator control
algorithms: if the error is "positive medium” or "big," and if its rate of change is
"negative small," then the control input should be "negative medium." The
control action to choose from their observations was then selected from the
possible actions as the one having the highest composite membership value.
The individual membership grades were then quantified heuristically so that the
performance of the algorithm was optimized. Comparison with the performance
of an algorithm based on conventional control design for control of practical
systems proved that the fuzzy approach yielded better performance. A model
based on a fuzzy set representation of human cement kiln operators' heuristic
control rules has been developed by Umbers and King (1980) and afterward
implemented in an automatic control system. They found it possible to obtain a
satisfactory control, but experienced difficulties in having operators explain their
behavior to a degree that made it possible to reach an adequate fuzzy model. The
basic advantage of the fuzzy set approach seems to be its combatibility with
ambiguous verbal statements.

Fuzzy set theory has been used by Hunt and Rouse to model the diagnostic
behavior in fault finding tasks (Rouse and Hunt, 1981; Hunt and Rouse, 1984).
They used a two-level model based on the distinction between symptomatic and
topographical search, discussed in Chapter 5. The idea is that an expert will
operate on the rule-based level by associating symptoms to proper repair acts as
long as he finds them useful. When this is no longer the case, he will turn to the
knowledge-based topographical search based on the functional topology of the
system. The definition of an expert then depends on the ability to realize when
his expertise is no longer valid. This aspect will be discussed in more detail in
relation to "Expert Systems" in the next section.

Hunt and Rouse (1984) define some symptomatic and topographic search rules
that are derived from interviews of repair staff and laboratory experiments. The
problem attacked by fuzzy set theory is which rule to apply in a given situation.
In order to apply the knowledge contained in the rules, an algorithm for selecting
rules is needed. Experience gained through prior diagnosis experiments has led
Hunt and Rouse to the conclusion that four factors appear to significantly affect
the rule selection process. For a rule to be selected: (a) the rule must be recalled;
(b) the rule must be applicable to the current situation; (c) the rule must have
some expected usefulness; and (d) the rule must be simple. It is hypothesized
that rules are chosen on the basis of these four attributes. In most realistic
situations, it is not always easy to make unambiguous assessments of the
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usefulness of a given rule. Further, from a human problem-solving point of
view, recall and applicability are not simple either-or attributes. These attributes
can therefore be considered to be fuzzy sets. In the model, the choice of the rule
to apply in each instance is based on an evaluation of each of the available rules
according to its membership value in the sets of recalled, applicable, useful, and
simple rules. The model has been tested experimentally, and the approach seems
to be promising (Hunt and Rouse, 1984). An interesting feature of this model
may be its potential for learning the membership functions by experience (Rouse
and Hunt, 1981),

Artificial Intelligence Models; Scripts and Plans;
Expert Systems

During the recent decades there has been an extensive effort to design "artificial
intelligence" systems based on analysis of human information-processing
strategies. Different points of view concerning the aims of this development
have been expressed, varying from design of intelligent machines that consider
only human behavior as a source of design ideas, to the view that Al programs
are to be taken as models of human performance (Ringle, 1979). Taken with
caution, i.e., viewing Al programs as one possible implementation of a
cognitive model without necessarily an isomorphic relation between elementary
processes of human and computer, the cognitive models of Al are at present the
most promising approach to simulation of higher-level processes in system
design.

Development within artificial intelligence has different typical periods and
approaches; see, for instance, the review by Dreyfus (1981). The early period was
mainly based on the general, context-free problem-solving abilities of humans; a
typical example is the general problem-solver program (GPS) by Newell et al.
(1960). This approach is tightly related to human behavior in the knowledge-
based domain and is based on a representation of the basic causal structure of a
problem, and will be discussed in more detail below. After some years of
optimism, however, the development turned more toward models based on an
extensive representation of domain-specific, procedural knowledge and of
commonsense reasoning (Schank and Abelson, 1977). This means that the focus
has shifted toward models of human behavior at the rule-based level, and typical
for this approach are the various "expert systems" (Feigenbaum, 1979; Hayes-
Roth et al., 1983). The knowledge representation in such systems is based on
the "rules of thumb" used by human experts. These rules are not principles of
general reasoning, and long inference chains that develop from general rules used
on structural representations are rarely used by "expert systems.” The basic
deductions behind the rules of the real expert are not repeated; the systems have
stored the symptom-based responses of an expert within a limited domain.

Recently there has been some concern about the reliability of such expert
systems (Barnett, 1982). The symptom-based rules are derived from experts'
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experience rather than being model-based. Therefore, they are usually very
effective and produce correct behavior, but they also have the potential to produce
inconsistent responses to unfamiliar information. "The rules are plausible and
work a high percentage of the time; this is why the expert uses them. However,
when they fail, the human expert will know enough to realize this fact and find
out why. He retreats to a better grounded model (one based upon more general
principles)" (Barnett, 1982). In other words, the typical expert system only
models human behavior at the rule-based level and lacks the ability to retreat to
knowledge-based problem solving—it is only able to interpret information as
signs. Therefore, the systems fail abruptly when the environment changes and no
longer conforms with the experience behind the rules.

Fuzzy set models
Production systems
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Actions
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Planning
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Problem-Solving Models:
Artificial Intelligence Approaches

Problem solving at the knowledge-based level is, even now, best represented by
the results of the classical analysis of verbal protocols by Selz (1922), Duncker
(1942), de Groot (1963), etc. It is also typical that the approach taken by Newell
et al. for simulating knowledge-based problem solving by means of production
systems (Newell et al.,, 1960; Newell and Simon, 1972) is based on this
research. Based on a representation of the problem in a well-formed problem
space, i.e., a model of the basic structure of the problem, behavior is developed
from a set of production rules that are general, context-independent inference
rules. A major weakness of this approach has been the difficulty of representing
the ability of humans to consider only promising lines of reference for further
development. This intuitive ability to see "where the problem is" is explicitly
excluded from de Groof's analysis of the verbal protocols, and is not present in
the production type models; see Dreyfus' commient on this issue (Dreyfus,
1972).

Generally, Al models have severe limitations because of the difficulty in
representing the intuition or context present in human thinking stemming from
the "subconscious world model”—or as Dreyfus expresses it—because of the lack
of a physical body (Dreyfus, 1972). However, Al models are even then the best
available tool for simulation of human information processing, and the
development is important, not only for design of intelligent information-
processing robots, but also for representing the human part in simulation of
human-machine systems.

‘ Goals
Decision,
choice of 9
task

Associa=-
state/task
(Signs)

i tion

v Manual control models
Optimal control models

fication [~™

Identi~
Recog-
nition

Information flow models, production systems

Psychological problem solving models
GPS - General problem solver

Signs
Feature
formation
T 1 T T ~
Sensory input

Symbols

Knowledge-based
Behavior
Rule~based
Behavior
skill-based
Behavior

£

Decision theory
Attribution theory
Detection
Estimation theory
Attention allocation

¢ Social judgment theory
Figure 12.7.

. Signal detection theory

« Sampling theory
. Queueing theory

.

Figure 12.7. The various models of human behavior are suitable for different
functions of an overall model. An important problem is to model the interaction
among the various domains of behavior.



Chapter 13
Epilogue

In the Preface, it was mentioned that the aim of the book is to present a
conceptual framework useful for bringing together the developments within
several professional fields and making them applicable for human-machine
systems design. The aim is not to propose solutions to specific problems. The
discussions have therefore been kept at a rather general level in order to allow
each individual reader to evaluate the implications within his domain of
experience. At least two major lines of detailed analysis are necessary to bring
substance into the framework for specific applications and thus to optimize the
use of advanced information technology. One is the analysis of the control
requirements of the particular systems and a systematic formal mapping of their
functional means-end hierarchy, together with a cognitive task analysis of the
decision tasks allocated operators and computers. Another line of analysis is the
study of mental strategies and of human subjective preferences in the specific
real-life tasks. This area raises the problem of experimental methods within
psychology. We need reliable methods for probing cognitive control structures
and mental models during real task performance and during experimental
conditions. How can computers be used for the identification of patterns in the
sequential data strings of verbal protocols and human-machine interaction records
from experiments and real systems and thus make such data practically useful?
Can association tests and categorization tasks be used for routine probing of the
evolution of the mental models and strategies of experimental subjects during
training and experiments? This apparently requires a new direction within
experimental psychology to include complex experiments in the laboratory
repertoire, and it requires that psychologists not only focus their interest upon
the human but include detailed analysis of the human's task environment. This
development was foreseen by Brunswik in 1952 when he advocated equal
attention by psychologists to the real-life task content and to the psychological
processes of the performer (see Brehmer, 1984).
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This development within experimental psychology is crucial for the effective
use of information technology in advanced human-machine systems, not only to
develop the basis for systems design but, even more important, to develop
methods and tools that allow a system designer—experimentally and analytically—
to evaluate the match between his design intentions and the way the actual
user(s) adapts to his system.
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priority, 12
subjective, 3
in troubleshooting, 35
Good/bad judgments
mapping by, 28-30, 32-33, 38-40, 43
GPS. See General problem solver
Group decision making, 185

H

Heuristic rules, 71, 179
Hierarchical representation, 93
Hierarchies. See Abstraction hicrarchy
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Mental representation, 100
externalization of, 136
Mismatch detection, 80-83
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information processing, 63
of manual tasks, 186
psychological, 63
of rule-based behavior, 176
of social systems, 63125
in terms of variubles and relations, 144-145
quantitative—qualitative, 01
validity of, 149
Monitoring, 172
and stress, 167
Motor control, 74-75
Motor systeng, 81-82
Motor variability, 154-155
Movements as signals, 108
Multiple goals, 68-70

N
Naive psychologist, 182184
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