
iv

Library of Congress Cataloging in Publication Data

Main entry under title:

Postscript language program design.

Includes index.
1. PostScript (Computer program language)

I. Adobe Systems.
QA ????
ISBN 0-201-14396-8

Copyright © 1988 by Adobe Systems Incorporated.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the
prior written permission of the publisher.

Printed in the United States of America.
Published simultaneously in Canada.

PostScript is a registered trademark of Adobe Systems
Incorporated.

The information in this book is furnished for informa-
tional use only, is subject to change without notice, and
should not be construed as a commitment by Adobe
Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or
inaccuracies that may appear in this book. The software
described in this book is furnished under license and
may only be used or copied in accordance with the
terms of such license.

ISBN 0-201-14396-8
ABCDEFGHIJ-HA-898
First printing: February 1988

v

CONTENTS

PREFACE..xi

chapter 1
THE POSTSCRIPT LANGUAGE: OVERVIEW1

1.1 INTRODUCTION...1

1.2 THE LANGUAGE MODEL...2
DICTIONARIES AND DATA STRUCTURES...4
STACKS ...4
BUILT-IN POSTSCRIPT LANGUAGE OPERATORS5

1.3 THE IMAGING MODEL..5
COORDINATE SYSTEMS...6
PATHS AND PAINT..7
FONTS ..7

1.4 ELECTRONIC PUBLISHING AND PRINTING ...7

1.5 PROGRAM DESIGN GUIDELINES ...9

chapter 2
THE EXECUTION MODEL ..11

2.1 INTRODUCTION...11

2.2 THE PRINTING JOB MODEL ..11

2.3 THE OPERAND STACK...13
OBJECTS IN THE POSTSCRIPT LANGUAGE ..13
THE STACK AS A DATA STRUCTURE ...15

2.4 THE DICTIONARY STACK ..16
DICTIONARY OBJECTS ...17
USING THE DICTIONARY STACK ...18

2.5 OPERATORS AND NAME LOOKUP ..19
THE BIND OPERATOR ..21

2.6 THE INTERPRETER AND THE SCANNER ...23
RECOGNITION OF OBJECTS ...24

2.7 PROCEDURES..25
VERY LARGE PROCEDURE BODIES..29

vi

2.8 THE EXECUTION STACK ...32

2.9 THE SERVER LOOP ..34

chapter 3
THE IMAGING MODEL.. 37

3.1 INTRODUCTION...37

3.2 APPLYING THE METAPHOR...38

3.3 CONSTRUCTION OF PATHS ...40
THE GRAPHICS STATE AND PATHS ..40

3.4 PAINTING OPERATIONS ...42

3.5 WHAT HAPPENS TO THE CURRENT PATH? ...43

3.6 PROCEDURES FOR CONSTRUCTING PATHS44
RECTANGLES ...44
CIRCLES AND ARCS ..46
ARROWHEADS ...46

3.7 TEXT OPERATIONS ...49
CHARACTER WIDTHS ..51

3.8 CLIPPING..53
COMPLEXITY AND PERFORMANCE ...53

3.9 RASTERIZATION..54

3.10 SAVE AND RESTORE..54

3.11 THE FONT CACHE ..55

chapter 4
EMULATORS AND TRANSLATORS.. 57

4.1 INTRODUCTION...57

4.2 EMULATING ANOTHER PRINTER...58
THE STRINGWIDTH OPERATOR...61
TEXT JUSTIFICATION IN AN EMULATOR...62

4.3 TRANSLATING EXISTING FILE FORMATS...68
UNITS ...68
FONTS..69

4.4 FONT DIFFERENCES..69

4.5 USING THE IMAGING MODEL ..71
PRESERVING HIGH-LEVEL INFORMATION ...72
RENDERING...72

4.6 OPTIMIZING TRANSLATOR OUTPUT ..72

4.7 COMPUTATION AND DECISION-MAKING ...73

vii

chapter 5
DESIGNING THE PAGE AND THE PROGRAM77

5.1 INTRODUCTION...77

5.2 PAGE LAYOUT CONSIDERATIONS...77
PAGE NESTING AND INDEPENDENCE..78

5.3 PRODUCING POSTSCRIPT LANGUAGE OUTPUT79

5.4 ROUND-OFF AND COORDINATE SYSTEMS...80

5.5 EFFICIENCY...81
DATA TRANSMISSION OVERHEAD...82
COMPUTATION..83
INTERPRETATION TIME..85

chapter 6
PROGRAM STRUCTURE...87

6.1 INTRODUCTION...87

6.2 THE PROLOGUE AND SCRIPT MODEL...87

6.3 MODULARITY AND PAGE STRUCTURE ..89
GROUND STATE ...90
THE OPERAND STACK ...92
FUNCTIONAL AND GRAPHIC INDEPENDENCE92
SAVE AND RESTORE ..93
PAGE ELEMENTS AND THEIR PROPERTIES ...94

6.4 DOCUMENT STRUCTURING CONVENTIONS......................................96

chapter 7
THE MECHANICS OF SETTING TEXT99

7.1 INTRODUCTION...99

7.2 CHARACTER WIDTHS..100

7.3 MARGINS AND JUSTIFICATION...102
JUSTIFICATION...104

7.4 HANDLING DIFFERENT FONTS ...106

7.5 LEADING AND POINT SIZE ...108

7.6 KERNING AND LIGATURES..109

7.7 ENCODING AND CHARACTER SETS..114

7.8 COMPOSITE CHARACTERS AND ACCENTS117

7.9 NON-ROMAN FONTS...117
CHARACTER WIDTHS AND ORIGINS ..118

viii

chapter 8
SCANNED IMAGES AND HALFTONES 123

8.1 INTRODUCTION...123

8.2 THE IMAGE OPERATOR...123
HOW IT WORKS ...124
THE IMAGE MATRIX ..124
DATA ACQUISITION PROCEDURES ..126
SMALL AMOUNTS OF DATA...127
LARGE AMOUNTS OF DATA ...127
A COMMON ERROR AND ITS CAUSE...129
SYNTHETIC DATA ...129

8.3 DATA COMPRESSION...131

8.4 HALFTONE SCREENS ..131
HALFTONING IN THE POSTSCRIPT LANGUAGE132
CHANGING THE HALFTONE SCREEN...132

8.5 THE SPOT FUNCTION...134

chapter 9
COMPLEX GRAPHIC PROBLEM-SOLVING 137

9.1 INTRODUCTION...137

9.2 PATTERN FILLS..137

9.3 LOGOS, GRIDS, FORMS, AND SPECIAL FONTS.................................143
GRIDS...146

9.4 TRANSFORMATION MATRICES...149
INVERTED COORDINATE SYSTEMS..151

9.5 COLOR AND COLOR SEPARATIONS ...151
COLOR SEPARATIONS ...152
SPOT COLOR ...154

chapter 10
FILE INTERCHANGE STANDARDS....................................... 157

10.1 INTRODUCTION...157

10.2 CONFORMING DOCUMENTS ..157

10.3 HANDLING PRINTER-SPECIFIC FEATURES..158

10.4 SPECIFYING PAPER SIZES ..159

10.5 PRINTER QUERIES ...162

10.6 CONDITIONAL EXECUTION ...163

10.7 FONT AVAILABILITY ..164

10.8 PUTTING IT ALL TOGETHER..165

ix

chapter 11
MERGING FILES FROM DIFFERENT SOURCES.....................167

11.1 INTRODUCTION...167

11.2 USING EXISTING CONTEXT..168

11.3 ERROR RECOVERY ...169

11.4 HANDLING SHOWPAGE ...170

11.5 SCREEN REPRESENTATIONS..171

chapter 12
WRITING A PRINT SPOOLER ...173

12.1 INTRODUCTION...173

12.2 PRINTER MANAGEMENT...174

12.3 COMMUNICATIONS ..174
MESSAGES...175

12.4 USING EXITSERVER ...176

12.5 MANAGING FILES AND FONTS...178
%%DocumentFonts ..178
%%IncludeFont ..179
%%BeginFont, %%EndFont ...180

12.6 DETERMINING WHAT FONTS ARE AVAILABLE...................................181

12.7 HANDLING RESOURCE SHORTAGES ...182

12.8 PRINTER DESCRIPTION FILES ..183

chapter 13
MEMORY AND FILE RESOURCE MANAGEMENT185

13.1 MEMORY STRUCTURE...185

13.2 MEMORY ALLOCATION..186

13.3 SAVE AND RESTORE..187
SAVE OBJECTS ..187
THE INVALIDRESTORE ERROR..188

13.4 DOWNLOADABLE FONT PROGRAMS ...190

13.5 PACKED ARRAYS ...190

13.6 RASTER MEMORY..191

13.7 FILE SYSTEMS AND DISK MANAGEMENT..192

13.8 POSTSCRIPT LANGUAGE FILE OPERATIONS192
THE STANDARD INPUT STREAM..193

x

chapter 14
ERROR HANDLING.. 197

14.1 INTRODUCTION...197

14.2 STRATEGIES ..197
NON-STANDARD OPERATORS..197
IMPLEMENTATION LIMITS EXCEEDED ...198

14.3 THE STOPPED OPERATOR...199

14.4 THE ERROR HANDLING MECHANISM...203

14.5 REDEFINING ERROR PROCEDURES..204

14.6 HANDLING ERROR MESSAGES..206

chapter 15
DEBUGGING TECHNIQUES... 207

15.1 INTRODUCTION...207

15.2 ESTABLISHING TWO-WAY COMMUNICATION207
SERIAL COMMUNICATIONS...208
PARALLEL COMMUNICATIONS...209
PACKET NETWORK COMMUNICATIONS..209

15.3 UNDERSTANDING POSTSCRIPT LANGUAGE ERRORS........................209
ERROR: UNDEFINED..210
ERROR: TYPECHECK ..211

15.4 REDEFINING BUILT-IN OPERATORS ..212

15.5 STACK TRACES ...214

15.6 INTERACTIVE TECHNIQUES ..214

15.7 COORDINATE SYSTEM TRANSFORMATIONS....................................215

15.8 DEBUGGING MESSAGES...216

appendix A
ERROR HANDLER .. 217

INDEX.. 221

xi

PREFACE

ABOUT THIS BOOK

PostScript® Language Program Design is intended to provide a sol-
id background for developing software in the PostScript lan-
guage—not just getting a program to work, but thoroughly
designing it from top to bottom. The book is organized into
fifteen chapters, each of which addresses a specific aspect of
program design or problem-solving. The ideas in this book are
targeted for sophisticated software development, although
they should be useful at any level.

The goal of this book is to teach the fundamentals of designing
PostScript programs and to show how the language works, so
that your programs will be fast, well-behaved, easy to under-
stand, and portable.

The PostScript language is somewhat unusual in the realm of pro-
gramming languages in that it is interpreted and stack-based.
Learning to program effectively in the PostScript language is not
as easy as just learning another procedural high-level language.
This book should help you learn how to think in the language as
well as provide pragmatic advice and examples for accomplish-
ing specific tasks.

The sample programs contained in each chapter are intended to
be directly usable. They are examples, but they are not trivial
ones. Each program has been carefully designed and debugged
and should provide an excellent foundation for an industrial-
strength printer driver. Feel free to use the code—that is why it
is there.

This volume is a companion volume to two other books by
Adobe Systems Incorporated: PostScript Language Reference Man-
ual and PostScript Language Tutorial and Cookbook, both pub-
lished by and available from the Addison-Wesley Publishing
Company, Inc. We recommend that you have at least the Refer-
ence Manual handy when writing programs. If you have not

xii

been exposed to the language before, the Tutorial and Cook-
book is a good place to start.

PRODUCTION NOTE

Glenn Reid, of Adobe Systems Incorporated, is the principal
author of this book. Glenn conceived and executed the text,
examples, and illustrations, with feedback from many people at
Adobe. John Deubert helped with preliminary outlines of the
book and supplied the first draft of Chapter 8. Doug Brotz, Ed
Taft, Ann Robinson, Ming Lau, and many others proofread the
manuscript, found bugs, and offered valuable advice. Thanks to
Carole Alden of Addison-Wesley as editor for providing guidance
and encouragement. Special thanks to Pat Marriott, who was a
paragon of patience and wisdom throughout the project, and to
Linda Gass, who made it all possible.

The book was produced using Frame Maker™ 1.1 from Frame
Technologies, Inc., San Jose, California. It was composed and
written on a Sun Microsystems™ 3/50 workstation running Sun
Unix™. All illustrations were produced in the PostScript lan-
guage directly with the Adobe Illustrator™ software package on
an Apple Macintosh® Plus computer and imported into Frame
Maker for final printing. Proofs were printed on a Digital Equip-
ment Corporation ScriptPrinter™ and final camera-ready copy
was set on a Linotype L-300 typesetter at Adobe Systems.

PROGRAMMING STYLE AND NOTATION

Programming style is an important part of programming in any
language. The PostScript language has a very unstructured syn-
tax and can be somewhat difficult to read, depending on how it
is written.

For software development, there are three goals for program-
ming style: the program text should be readable (meaning that
the structure and execution of the file should be easy to follow),
it should be easily edited, and it should be consistent (especially
when more than one programmer is working on the same pro-
ject). Many reasonable approaches are possible. The style cho-
sen for the listings in this book is designed to be as readable and

xiii

maintainable as possible without requiring too much white
space, which tends to make the listings long and more difficult
to read.

PROCEDURE BODIES

Procedure bodies are probably the most common construct in
any program written in the PostScript language. Procedure bod-
ies are delimited by braces, also frequently called “curly braces.”
It is important to be able to determine at a glance where the
beginning and end of a procedure body are found. PostScript
procedures can be used as arguments for many different opera-
tors, including loop, forall, kshow, image, ifelse, def, and oth-
ers. The notation used for procedures in this book uses a simple
PostScript language comment to indicate the operator for which
the procedure body is an operand:

usertime dup 1000 add
{ %loop

dup usertime lt { pop exit } if
} bind loop

Short procedure bodies that fit entirely on one line do not use
this comment convention, since their use is more obvious.

INDENTATION

In general, any construct that has a clear beginning and end has
its contents indented, including gsave and grestore, begin and
end, procedure brace delimiters, and so on:

/$arithdict 12 dict def
$arithdict begin

/avg { %def
add 2 div

} bind def
/graph { %def

gsave
0 0 moveto
1 3 avg lineto
2 setlinecap stroke

grestore
} bind def

end % $arithdict

xiv

The horizontal alignment (indentation) of the beginning of the
line containing an open-procedure brace delimiter matches the
horizontal alignment of the close brace:

currentpoint exch 500 gt { %ifelse
72 exch 12 sub moveto

}{ %else
pop

} ifelse

The slightly unusual technique of placing brace delimiters on a
line by themselves is to make it easier to edit. You can add lines
to or subtract lines from procedure bodies without worrying
about the delimiters becoming unbalanced.

There are, of course, other styles that work well. This one has
been adopted throughout this text so that it is at least consis-
tent, which is the last of the three goals.

THE NAME “POSTSCRIPT”

The name PostScript® is a registered trademark of Adobe Systems
Incorporated. This book, PostScript Language Program Design, is
concerned with programs written in the PostScript language. All
instances of the name PostScript in the text are references to
the PostScript language as defined by Adobe Systems Incorporat-
ed, unless otherwise stated. The name PostScript also is used as a
product trademark for Adobe Systems’ implementation of the
PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a
“PostScript driver,” refer to printers, files and driver programs
(respectively) which are written in or support the PostScript
language. The sentences in this book that use “PostScript lan-
guage” as an adjective phrase are so constructed to reinforce
that the name refers to the standard language definition as set
forth by Adobe.

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW 1

chapter 1

THE POSTSCRIPT
LANGUAGE: OVERVIEW

Things should be made as
 simple as possible,

 but no simpler.

– Albert Einstein

1.1 INTRODUCTION

PostScript is the name of the computer programming language
developed originally by Adobe Systems Incorporated to commu-
nicate high-level graphic information to digital laser printers. It
is a flexible, compact, and powerful language both for express-
ing graphic images and for performing general programming
tasks.

As is true with many programming languages, the PostScript lan-
guage has been designed for a specific purpose—to express com-
plex digital graphics in a device-independent manner. Powerful
typesetting features are built into the language for sophisticated
handling of letterforms as graphics.

The PostScript programming language is an easy one to learn,
and graphics programs may be written by hand to produce high
quality text and images. However, the language is intended for
machine generation. That is, PostScript language programs are gen-
erally produced by other software rather than by programmers.

This chapter is an overview of some of the more important fea-
tures of the PostScript language. It is intended to provide a basis
for understanding the “why” behind the programming exam-
ples given in the rest of the text. The full specification of the
PostScript programming language can be found in a companion
volume, PostScript Language Reference Manual (Addison-Wesley).

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW2

It is assumed that the reader of this book is a programmer or has
some experience with programming languages. Previous experi-
ence with the PostScript language is recommended, but not
required. The book is targeted at the specific tasks that need to
be performed to implement a driver for any device containing a
PostScript interpreter.

The examples in the book are intended to be “cut and paste”
routines. They are optimized for efficiency wherever possible,
and should be appropriate for direct inclusion in a product-level
driver. Rather than making the examples simple and relying on
the text to illustrate the point, the examples show what you
should do, and the text attempts to explain why. In theory, at
least, it should be possible to paste all the examples in the book
together without necessarily understanding how they work and
have a very functional program when you are through. In prac-
tice, of course, it is best to understand why an example is writ-
ten the way it is, so that you can adapt the programming style to
your own implementation.

Much of the material contained in this book is useful to develop-
ers of drivers for devices containing PostScript interpreters. A
printer driver is typically the part of a software application that
produces output specifically intended for a printer. A printer
driver for a device with a PostScript interpreter simply produces
a PostScript language page description as output, rather than
supplying “escape sequences” for a particular printing device.
These page descriptions are partly generated by the application
software and partially written by hand. This book is dedicated to
the process of design which must go into producing high-quality
PostScript language software.

1.2 THE LANGUAGE MODEL

The three most important aspects of the PostScript program-
ming language are that it is interpreted, that it is stack-based, and
that it uses a unique data structure called a dictionary. The dictio-
nary mechanism gives the PostScript language a flexible, exten-
sible base, and the fact that the language is interpreted and uses
a stack model means that programs can be of arbitrary length
and complexity. Since very little overhead is necessary to exe-
cute the programs, they can be interpreted directly from the

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW 3

input stream, which means that no memory restriction is placed
on a PostScript language program other than memory allocated
by the program itself.

The PostScript language is based heavily on context, or state.
This context dependency is very powerful—by modifying the
coordinate system transformation, any page can be easily scaled,
rotated, or translated. The program executes in the context
established for it beforehand. By redefining the context of the
dictionary stack mechanism, built-in PostScript operators can easi-
ly be replaced by procedures with additional functionality. Cor-
rectly using the context provided by the PostScript imaging
model is a challenging aspect of learning the language, since it
behaves much differently than most other programming lan-
guages in this respect.

The PostScript language is designed to be interpreted, not com-
piled. User programs do not execute directly on the CPU—they
are read and interpreted by another program, the PostScript
interpreter. The PostScript language is a high-level programming
language and it can be used to implement algorithms and pro-
cess data, but a careful understanding is necessary to use it effec-
tively.

The difference in execution speed between a poorly written C
program and well written one may be a factor of two or three at
best, if the code is improved dramatically. More often, improve-
ments of 10 percent are considered quite good. In general,
speed improvements to software written in compiled languages
come from improving the algorithms used, not from changing
one’s programming style.

Simply improving the style of a poorly written PostScript lan-
guage program can yield substantial execution speed improve-
ments, frequently by a factor of ten or more. The nature of the
interpreted language model and the execution semantics
require more attention to detail than most compiled languages.

Learning to use the PostScript language well can have an imme-
diate and dramatic effect on the efficiency and reliability of
your software.

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW4

DICTIONARIES AND DATA STRUCTURES

The PostScript language provides a unique data structure known
as a dictionary. A dictionary is a structure in which are stored key–
value pairs, where the key and the value can be any valid
PostScript language objects. Presenting a key (usually a name
object) to the PostScript interpreter will cause it to perform a
name lookup, and execute the resulting object found in the dic-
tionary. This mechanism provides an extremely flexible founda-
tion for the language. New procedures can easily be created,
and existing operator names can be redefined.

The PostScript language also provides several other standard
data structures: strings, arrays (of any PostScript objects, includ-
ing other arrays), integers, reals, names (analogous to identifiers
in other languages), and files (with standard file operations
defined). All of these data types are maintained as PostScript
objects, which are manipulated on the operand stack. A dictio-
nary can contain any of these data types as a value. The notion
of a variable usually means a dictionary entry in the PostScript
language.

A PostScript dictionary is the only way to store PostScript objects
for later recall (other than leaving a reference to them on the
operand stack). The standard operator for making a dictionary
entry is the def operator, which makes a definition in the cur-
rent dictionary. This mechanism is used for conventional pur-
poses such as defining and using variables or procedures, but it
can also be used for more complex data structures.

STACKS

The PostScript language is based on stacks. A stack is a fixed data
structure in which objects are placed temporarily, one on top of
another. By nature, stacks are “last in, first out” data structures.
If you put three items on a stack, the third one is on the top,
(and is the first item available).

Operators in the PostScript language are preceded by their
operands. The operands are placed on the operand stack as
they are encountered by the interpreter, and when the opera-
tor itself is encountered and executed, its arguments are found
on the stack. This is often referred to as post-fix notation.

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW 5

There are several stacks used by the PostScript interpreter—an
operand stack, an execution stack, a dictionary stack, and a graphics
state stack. The operand stack is in constant use, while the oth-
ers are more specialized. The operand stack is frequently
referred to simply as “the stack.”

Programming in the PostScript language is primarily an exercise
in stack manipulation. The most common PostScript errors result
from incorrect manipulation of the stack, and many optimiza-
tion strategies consist of using the stack as efficiently as possible.
Further discussion of stack mechanics is provided in Chapter 2.
It is worthwhile to become quite familiar with the mechanics of
stack operations in the PostScript language.

BUILT-IN POSTSCRIPT LANGUAGE OPERATORS

The standard PostScript interpreter has more than 250 built-in
operators. It is an extremely rich language. The nature of the
PostScript language’s execution model makes it very easy to add
new procedures that behave like operators, since the interface
between them is just the operand stack.

It is difficult to learn how to use 262 operators at first. It is even
harder to remember all of them. However, using the appropri-
ate operator for the task at hand can be very important in terms
of performance and program design As a rule of thumb, keep
the following in mind:

If you are having difficulty with some aspect of your
program, it is likely that the problem has been
encountered before. There may be a specific
PostScript language operator that directly addresses
the problem. It is a good idea to briefly review a
list of operators grouped by function when you
encounter problems. (See chapter 6 of the
PostScript Language Reference Manual.)

1.3 THE IMAGING MODEL

The imaging model of the PostScript language includes standard
operations for typesetting and rendering graphics. The model is
device- and resolution-independent, and provides an abstrac-

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW6

tion for raster imaging that frees application software from hav-
ing to make device-specific rendering decisions.

An important aspect of using the PostScript language correctly is
to make proper use of the imaging model. The purpose of the
PostScript language is to provide a uniform way to represent
visual elements on any raster device. An application program
typically needs to communicate visually with the user in terms
of representing text, graphics, and aspects of the user interface.
Whatever internal representation or data structure is used,
some imaging model is necessary when presenting the informa-
tion visually.

When printing on a device with a PostScript interpreter, some
translation is usually necessary between the applications inter-
nal representation for graphics and the PostScript language’s
imaging model, unless the screen display is also driven by a
PostScript interpreter.

The PostScript language provides both an execution model and
an imaging model to applications programs. An important con-
sideration is to adapt naturally to the imaging model when pro-
ducing output for the PostScript interpreter, rather than using
the programming power of the language to emulate another
graphic imaging model.

COORDINATE SYSTEMS

The user coordinate system in the PostScript imaging model pro-
vides a consistent and predictable environment for construct-
ing graphics. This coordinate system, referred to as user space, is
the same for all printers with PostScript interpreters—it is only
the mapping from user space to device space that is different
from one raster device to another, depending on the resolution
and orientation of the device.

To produce truly device-independent programs with the
PostScript language, it is important to think only in terms of the
user space abstraction, and never about any particular output
device. Similarly, page layout and sizes should be expressed only
in terms of where they fall in user space. The coordinate system
transformation from user space into device space can be
modified easily to scale an entire page when it is actually ren-

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW 7

dered, and it is good not to make any specific assumptions at
page composition time about the size of the final page.

PATHS AND PAINT

Graphics in the PostScript language are rendered by construct-
ing algorithmic paths consisting of lines, arcs of circles, or Beziér
curves. These paths are then painted with a current color or
grayscale (the default color is black). Paths may also be used for
clipping or masking graphics, and they may be either stroked
with a line, filled as regions, or both.

Paint is applied to the current page as opaque color, completely
painting over anything that may be beneath it on the current
page. There is a more detailed discussion of this in Chapter 3.

FONTS

The PostScript language has a completely integrated model for
quality typesetting. PostScript fonts are executable programs
that draw the character shapes using the same path construc-
tion and painting mechanism as all other graphics. The text can
be thought of as integrated graphics, and can be transformed in
any way that graphics can be. There is extensive support in the
PostScript language (beyond the standard graphics commands)
for manipulating font programs and for setting text characters.

Fonts may be created from existing graphic shapes. Once a pro-
gram or procedure has been devised that renders a particular
shape, that code can be packaged into a font dictionary and
placed on the page through the text-handling mechanisms.

It is the representation of typefaces as graphic descriptions that
realizes the full integration of text and graphics on a single page.
It is not that the text alone may be scaled and rotated that is sig-
nificant—it is that the entire page is completely integrated and
may be treated as a single graphic entity, and the page itself may
be printed half-size or rotated to any angle.

1.4 ELECTRONIC PUBLISHING AND PRINTING

Electronic publishing is the business of composing and printing
documents, from books to magazines and even newsletters.

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW8

Computers are now used extensively to simplify the editing,
composition, and typesetting of books and documents.

The PostScript language is a system solution to the perplexing
problem of composing, proofing, and printing documents. It is
intended chiefly for high quality typesetting, graphic design,
and book production. However it is also used for more standard
computer printing, including everything from program listings
to business correspondence using typewriter-like typefaces.

There are many, many different levels at which a computer
environment might support PostScript technology. A PostScript
printer may be used to get “hard copy” of something on the
computer screen, it may be used to print text in much the same
way that a line printer does, or the PostScript language typeset-
ting and graphic models may be used fully in the preparation of
camera-ready output for major book production.

There is a great difference between printed output intended as
a final product and simply a “hard copy” of some information
that already exists in some other form.

When designing software, it is useful to consider what the final
product will be. If the program is a word processor, for instance, is
the final product considered to be the words themselves, their
arrangement, the typeface that they are set in, or the book in
which they will eventually appear? To enter even slightly into
the level of presentation means a heavy commitment to the final
form. For example, if the arrangement of words is part of the
product, then it becomes a visual product, and most likely a print-
ed visual product.

When designing software for printing and publishing, the final-
form technology must be considered. The graphic imaging mod-
el used by the printing technology, the available typefaces, the
units of measure, and the available paper sizes are all part of the
final product.

A common problem in bridging from traditional computer print-
ing into the realm of electronic publishing is to muddy the
waters between composing the document and printing it. For
example, when printing on PostScript devices, one must com-
pose text using the character widths of the fonts that will ulti-

chapter 1 THE POSTSCRIPT LANGUAGE: OVERVIEW 9

mately be used on the printer. This requires some advance
knowledge of the printing technology. But it is the abstraction
that is used, and not a particular output device. The resolution
and printing characteristics of the device should not be propa-
gated into the document design—only the ideals of the layout.

1.5 PROGRAM DESIGN GUIDELINES

There are a few items that may be kept in mind while imple-
menting a driver for a PostScript device. As with most software
development, the most difficult part of writing programs in the
PostScript language is the design of the program. If the design is
good, implementing it is easy. If the design is poor, it may not
even be possible to correctly implement it. Below are some
helpful items to keep in mind when writing your software. All of
them are explained more fully within the text of this book; this
is only an attempt to prime the pump before you start reading:

• Use the operand stack efficiently. Pay particular atten-
tion to the order of the elements on the stack and how
they are used.

• Avoid unnecessary redundancy. When a program is pro-
duced, check for many repetitive steps that perhaps
could be condensed. Keep identifiers short if they are
to be transmitted many times.

• Use the PostScript imaging model effectively. When
printing, a document must be translated into the lan-
guage of the printer. This includes a philosophical
adjustment to the nature of the PostScript imaging
model.

• It is better to translate into the PostScript imaging mod-
el than to maintain another set of graphics primitives
using the PostScript language for emulation.

chapter 2 THE EXECUTION MODEL 11

chapter 2

THE EXECUTION MODEL
It is more of a job to interpret the

interpretations than to interpret the things,
and there are more books about books

than about any other subject....

– Michel Eyquem de Montaigne

2.1 INTRODUCTION

The manner in which the PostScript interpreter executes a pro-
gram has a profound effect on the efficiency and design of soft-
ware. This chapter takes a close look at the execution semantics
and details of the PostScript interpreter, with the idea that a full
understanding of how a program is being executed will provide a
solid foundation for good programming skills. Probably the most
important concept to glean from this chapter is the notion of
PostScript language objects and how they are stored and manipu-
lated. Understanding the mechanics of the scanner and inter-
preter will also help shed light on issues of efficiency.

2.2 THE PRINTING JOB MODEL

PostScript interpreters are most frequently used in batch mode.
That is, a document is prepared by applications software and is
then submitted to a PostScript printer for interpretation. A doc-
ument may consist of any number of pages and any amount of
text and graphical information, since interpretation is carried
out directly as the file is received by the interpreter.

For example, it is typical to start with a page composition pro-
gram that permits users to construct pages, graphics, and text
interactively. The PostScript language may be used for display
purposes during the document composition, but it is likely to be
an interactive session. When the document is to be printed, the

chapter 2 THE EXECUTION MODEL12

application invokes a particular section of code usually known
as a printer driver to produce the output for the printing device.
This page description must then be transmitted to the printer as
a batch job, usually by an intermediate communications filter.
The print job is then scanned and interpreted by the PostScript
interpreter for that printer, and the resulting pages are printed.

This model of execution is mostly invisible when one creates
and executes PostScript language programs. It is presented here
as a framework of reference, since it is the outermost level of
interpretation in a device with a PostScript interpreter.

A PostScript interpreter (in batch mode) executes a single job
from the time it receives the initial byte over a communications
channel through the next end-of-file (EOF) indication. All legal
PostScript language sequences are interpreted and executed by
the interpreter until the EOF is reached. At the end of each job,
the interpreter resets the state which existed at the beginning
of the job. This is actually accomplished by the save and restore
operators. The interpreter then returns to an idle state until the
next job is received. This behavior is discussed in more detail in
Section 2.9, “THE SERVER LOOP.” This job execution model has
two important consequences:

• The PostScript interpreter is completely restored to its
original state after each job finishes execution.

• Each print job must be a contiguous stream of bytes.
Anything that is to be part of a particular document
must be present in the print file.

The main advantage of this mechanism is that it guarantees cer-
tain initial state conditions to all print jobs, regardless of
whether the job is the first or the forty-first one interpreted
since the machine was powered on. A print job should always
assume that the initial state of the PostScript interpreter is the
default state, which is defined in Section 6.3, “MODULARITY
AND PAGE STRUCTURE.” This initial state is guaranteed by the
job server loop.

For reasons that will become apparent, it is important to trust
the initial state of the interpreter. A common practice is to ini-
tialize the interpreter at the beginning of each job, in an

chapter 2 THE EXECUTION MODEL 13

attempt to guarantee some execution state for the job. In most
instances, this accomplishes nothing. (The state has already
been initialized by the server loop). In instances where the
state is not the default state, there is likely to be a good reason
for it. For example, the transformation matrix may have been
modified to print the page as a small illustration rather than as a
full-size page. Initializing the matrix will reverse this effect. For
a more involved discussion of this principle, see Section 6.3 and
most of Chapter 11.

2.3 THE OPERAND STACK

The operand stack is, in a sense, the global communications area
for execution and parameter passing in the PostScript language.
All data objects that are to be operated on by any procedure or
operator must be present on the operand stack. Objects are
placed on the operand stack by the PostScript interpreter. As a
rule of thumb, any object that is not directly executable is placed
on the operand stack. There are a few special exceptions to this,
which are detailed throughout this chapter.

OBJECTS IN THE POSTSCRIPT LANGUAGE

An object is actually a unified representation used for all entities
in the PostScript language. Each object is a fixed-size package (in
many implementations it is 8 bytes, for example). Since these
objects are all the same size, they are easily manipulated on the
operand stack, placed into dictionaries, and passed through the
internal mechanisms of the PostScript interpreter. There are
two distinct kinds of objects, simple and composite.

A simple object is one whose value can be stored within the 8-
byte packet that represents the object. These include the data
types integer, mark, real, boolean, name, and null. Each of these
data types can be represented in a self-contained object.

A composite object is one whose value is stored elsewhere in
memory. The object itself contains a pointer to the value, which
in turn can consist of other objects. Only the data types string,
dictionary, and array are composite objects. A procedure body is
actually just an executable array, so procedure bodies also quali-
fy as composite objects.

chapter 2 THE EXECUTION MODEL14

To understand the distinction between a simple and a compos-
ite object, consider what happens when the dup operator is exe-
cuted. The dup operator makes a copy of (duplicates) the top
entry on the operand stack. Since the operand stack contains
only objects, the result of executing dup is to duplicate the
object itself.

If the topmost object on the operand stack is a simple object,
dup produces a new object with a copy of the original value,
since the object is completely self-contained. With a composite
object, however, the new object produced by dup contains a
pointer to the same value as the original. The value of the object
is stored elsewhere in memory, and is not duplicated. This means
that any changes made to the value of the duplicated copy are
also made to the original. You can obtain a new, distinct copy by
allocating a new composite object (with the dict, string, or
array operators, for example) and using the copy operator to
copy the original object’s value to the new one.

Another way to think of it is that the value stored with an object
either fits into the object (simple) or it doesn’t. If it doesn’t fit,
then a pointer to the value is stored instead (composite). See
Figure 2.1.

figure 2.1

9

9

PostScript

(PostScript) dup

()

()

9 dup

duplicating a
composite object:

duplicating a
simple object:

operand stack operand stack

chapter 2 THE EXECUTION MODEL 15

Each object has several attributes associated with it. These
include a literal or executable flag, an access attribute, which con-
trols read-write-execute permissions for the object, and a length
attribute (used only with composite objects). There is also a type
associated with every object as one of its attributes. Some of
these attributes are easily changed with the following operators:

Attributes Operators

literal/executable cvlit, cvx
access readonly

executeonly
noaccess

type cvi, cvr, cvrs
cvs, cvn

For the most part, there is no need to convert objects from one
type to another or to modify their attributes. However, it is good
to remember that PostScript language objects are typed and
maintained internally with this representation.

THE STACK AS A DATA STRUCTURE

The operand stack is often overlooked as a data structure for pro-
gram development. In fact, it is the fastest, most direct, cheap-
est, and easiest-to-use data structure available in the PostScript
language.

The techniques for using the stack effectively are many. Almost
without exception, the sample programs in this book use the
operand stack directly instead of defining local storage. Since all
objects are initially constructed on the operand stack when
they are read from the input stream, the most natural approach
is to use them directly from the stack. Resist the temptation to
define variables for procedure operands, unless those values are
needed more than once or twice. This is related to the funda-
mental design issues of how and when to pass values on the
stack, when to use the graphics state stack, and when to use
“global variables.” For further discussion on program organiza-
tion, please see Chapter 5.

Objects that are placed on the operand stack should be in a natu-
ral order appropriate for their intended use. To understand this,

chapter 2 THE EXECUTION MODEL16

consider the two (equivalent) PostScript language fragments giv-
en in listing 2-1; each takes the same values on the operand
stack, but each in a different order. Compare the procedures
and how they use the data.

listing 2-1

%!PS-Adobe-2.0
%%Title: stack example
 /procGOOD { %def

findfont exch scalefont setfont
 } bind def
 /procOK { %def

exch findfont exch scalefont setfont
 } bind def
 /procBAD { %def

/ptsize exch def
/fontname exch def
fontname findfont ptsize scalefont
setfont

 } bind def
%%EndProlog
 12 /StoneSerif procGOOD
 /StoneSerif 12 procOK
 /StoneSerif 12 procBAD
%%Trailer

The procedure calls themselves look much the same. The data
passed is identical in each case. The difference between the
procGOOD and procOK procedures is only a single exch instruc-
tion. However, if the data is supplied in the natural order, the
exch is unnecessary. The only difference between procGOOD
and procBAD is that the operand stack is used naturally in the
good example, whereas the operands are defined into a dictio-
nary (and subsequently retrieved from the dictionary and put
back on the operand stack) in the bad example.

2.4 THE DICTIONARY STACK

The dictionary stack is a very special feature of the PostScript lan-
guage. It is the context in which name lookup and definitions

chapter 2 THE EXECUTION MODEL 17

occur. It can be manipulated directly, but it is best to think of it
as an environment, not a data structure.

The dictionary stack contains objects, just as the operand stack
does. However, the only type of object which can be placed on
the dictionary stack is, naturally, a dictionary object.

DICTIONARY OBJECTS

A dictionary is a composite object, much like an array. It is repre-
sented by a dictionary object, and it is always referenced through
that object. The object can be placed onto one of the stacks, or
it can be stored in a dictionary, just like any other object. Howev-
er, certain special operations can be performed only with dictio-
naries. In particular, entries in a dictionary are ordered pairs.
Each entry has a key and a value (actually an object, not to be con-
fused with the value of the object itself). Either of these objects
can itself be a composite object, including a dictionary.

Dictionaries are the foundation of the storage and retrieval
mechanism in the PostScript language. Data can actually exist in
only one of two places:

• On the operand stack (or as a component of a compos-
ite object on the operand stack)

• In a dictionary (or in a component of a dictionary, such
as an array).

The reason is that unless an object is on one of the stacks, the
only way to call it up is by name. If you don’t store something
explicitly into a dictionary (with def, for instance) and the
object is removed from the operand stack, it cannot be recovered.
That alone is not quite reason enough to place something in a
dictionary, but it is something to be aware of.

Dictionary objects can be created only by the dict operator. The
dict operator requires an integer value as its argument, and it
creates an empty dictionary object with that number of ele-
ments allocated for later use. The dictionary object is returned
on the operand stack. For example, the dictionary created by
the sequence 3 dict is just a composite object. It is not the cur-
rent dictionary, nor does it have a name. It is just an empty data

chapter 2 THE EXECUTION MODEL18

structure on the operand stack, which (in this instance) can con-
tain up to three entries.

USING THE DICTIONARY STACK

The dictionary stack starts out with two entries. These are
known as systemdict and userdict. These dictionaries cannot
be removed from the dictionary stack. The systemdict dictio-
nary contains predefined names for all the standard PostScript
language operators. The other dictionary, userdict, is a writable
dictionary that typically has about 200 elements available. user-
dict is on the top of the dictionary stack when each job begins,
and systemdict is right below it. The dictionaries on the dictio-
nary stack are the context in which name lookup takes place.
You can use this mechanism to redefine built-in PostScript lan-
guage operators or to define new procedures, as appropriate.
The name-lookup mechanism is described in Section 2.5.

Other dictionary objects can be placed onto the dictionary stack
with the begin operator. It is called begin because it affects the
context in which dictionary operations take place. Its effect is
to place a dictionary object on top of the dictionary stack, mak-
ing it the current dictionary. The current dictionary is simply
the one on top of the dictionary stack.

The current dictionary is where definitions are placed when the
def operator is executed. It is also the first place the interpreter
looks when a name lookup takes place. Let’s look at a PostScript
language sequence that creates and uses a dictionary:

3 dict begin
 /proc1 { pop } def
 /two 2 def
 /three (trois) def
currentdict
end

This example creates a dictionary with three available slots,
places it on the dictionary stack (with begin, making it the cur-
rent dictionary), and then makes three definitions (with def).
The definitions are placed into the newly created dictionary
only because it was made the current dictionary, not because it
was recently created. The call to currentdict makes a copy of

chapter 2 THE EXECUTION MODEL 19

the dictionary object (the one currently on top of the dictio-
nary stack) and places the copy on the operand stack. Notice
that the dictionary object that was initially created was also on
the operand stack until begin moved it to the dictionary stack.
The end operator simply pops one element off the dictionary
stack (and discards it). If currentdict had not been executed
before end, the dictionary (along with its three entries) would
have been lost. This is because the object created by the 3 dict
statement was never stored into a dictionary—it was simply used
by the begin operator. Here is an equivalent (though substan-
tively different) PostScript language fragment:

3 dict
dup /proc1 { pop } put
dup /two 2 put
dup /three (trois) put

This examples uses put instead of def. It never places the dictio-
nary onto the dictionary stack, and it makes each entry explicit-
ly by presenting the dictionary object to the put operator each
time. (The dup is used to avoid losing the object when put is per-
formed.) However, the resulting dictionary on the operand
stack is identical to the one created in the previous example.

The dictionary stack is an environment. It is most important as a
context for name lookup, which is discussed in depth in the
next section. The previous discussion, although cumbersome, is
meant to illustrate two concepts:

• Dictionaries are represented as objects, which can
either be left on one of the stacks or given a name and
defined as an entry in another dictionary.

• Dictionary objects do not necessarily have names and
are much like arrays in their use. They are special most-
ly in the context of name lookup.

2.5 OPERATORS AND NAME LOOKUP

All built-in PostScript language operators are stored in dictionar-
ies as executable objects of type operatortype. The keys under

chapter 2 THE EXECUTION MODEL20

which these operators are stored are the names by which we
think of them: moveto, showpage, or add, for example. The
names themselves are not special in any way. They are used sim-
ply as keys for dictionary entries. (For the most part, they are
keys in systemdict.) The actual execution is carried out after
these names have been looked up and an executable object has
been found in systemdict. This mechanism is known as automat-
ic name lookup.

Name lookup is invoked whenever the PostScript interpreter
encounters an executable name object. The difference between a
literal name and an executable name in the PostScript language
is the presence (or absence) of a leading slash character:

/moveto % literal name

moveto % executable name

When the PostScript interpreter encounters an executable
name, it looks up the name in the current dictionary context
and interprets whatever it finds as a result of that name lookup.

figure 2.2

Name lookup is done from the top down, in the context of the
current dictionary stack. When a name is encountered

dictionary stack

systemdict

userdict

3 dict begin

chapter 2 THE EXECUTION MODEL 21

(whether it is in the original input file or found in a procedure
body executed later) it is looked up in all dictionaries that are
currently on the dictionary stack. (See figure 2.2.)

If the interpreter finds an executable object (like a procedure
body) or a built-in PostScript language operator, it executes it
directly, rather than placing it on the operand stack. This is how
both operators and procedures are executed: They are just
looked up in a dictionary as names, and the object found in the
dictionary is interpreted further.

THE BIND OPERATOR

The bind operator is used to perform early name binding on pro-
cedure bodies. What this means, effectively, is that it is possible
to look up all the names in a procedure ahead of time and, if a
real operator is found (as opposed to an array, a procedure, or
any other type of object), to replace the executable name with
the operator itself. This is a very important concept in making
PostScript programs more efficient. The resulting procedure
body (after bind is applied) may actually have its contents
modified. Here is a sample use:

%!PS-Adobe-2.0
/F { %def

findfont exch scalefont setfont
} bind def
%%EndProlog
12 /StoneInformal F

When bind is executed, there are two things on the operand
stack: a literal name, /F, and a procedure body, { findfont exch
scalefont setfont }. The bind operator returns an array object
on the stack when it is finished. In this case, however, since
none of the operators in the procedure have previously been
redefined, bind finds real operators (objects of type
/operatortype) for every name lookup except findfont, which
is actually a procedure. The result looks something like this:

{ findfont --exch-- --scalefont-- --setfont-- }

The --setfont-- notation with the hyphens is a convention used
by the == operator to indicate an object of type /operatortype

chapter 2 THE EXECUTION MODEL22

(as distinguished from an executable name). It means that the
name objects have been removed and replaced by operator
objects. The array as it is stored in memory actually looks like
figure 2.3:

figure 2.3

The procedure body is actually an array object with its exe-
cutable flag set, and the contents of the array are, in turn, other
objects. After bind is applied, the original name objects are
replaced by their respective operator objects, as you can see in
the figure. (See Section 2.7 for more detailed information about
procedure bodies and how they are constructed.)

It is useful to execute bind on any procedure body that will be
used many times. The result of binding a procedure body is that
the name-lookup operations can be distilled out, requiring less
time to execute the procedure. The semantics of bind dictate
that if an operator has been redefined prior to being used in a
procedure, then bind leaves the name in the procedure body
and will not replace it with the operator object.

/showpage { } def
/ENDPAGE { %def

gsave
showpage % name is not replaced

grestore
} bind def

operand stack

value:
type:

executable:

F
nametype
literal

value:
type:

executable:
length:

arraytype
executable
4

value:
type:

executable:

findfont
nametype
executable

value:
type:

executable:

--exch--
operatortype
executable

value:
type:

executable:

--scalefont--
operatortype
executable

value:
type:

executable:

--setfont--
operatortype
executable

procedure body (in memory)

chapter 2 THE EXECUTION MODEL 23

/ENDPAGE { %def
gsave

showpage % name is replaced by operator
grestore

} bind def
/showpage { } def % has no effect in ENDPAGE proc

Because bind replaces only those items that are found to be of
type operatortype, it will not replace an object that is of type
arraytype (which is the case when an operator name is
redefined with a user procedure). This means simply that it is all
right to bind procedures even if some of their elements might
be redefined, as long as the definitions are done before the pro-
cedures are called.

2.6 THE INTERPRETER AND THE SCANNER

The PostScript interpreter deals only with objects. A separate
entity exists between the interpreter and the standard input
stream known as the scanner. The scanner actually converts
incoming bytes into objects and hands them to the interpreter.
It is invoked directly by the interpreter whenever more infor-
mation is needed from the input stream. (Note that the scanner
does not pre-scan any of the incoming bytes, since they could be
used as data and not read by the interpreter.)

The scanner actually tokenizes the input stream into PostScript
objects. This includes conversion of names into name objects
and strings into string objects. It is the scanner that makes the
distinction between a literal and an executable name by recog-
nizing the leading slash character (“/”). Thus the distinction
between /findfont and findfont is made by the scanner, which
sets the literal or executable flag on the resulting name object.

The scanner recognizes strings (with either the (string) or
<string> notation) and converts them into string objects. The
scanner also recognizes the backslash notation in string objects
(including \\, \(, \), and \octal notation). For example, if it
encounters a sequence like the following:

(\101B\103D \\\(ABCD\) (balanced))

chapter 2 THE EXECUTION MODEL24

the scanner will recognize and replace the backslash notation
with the appropriate characters and it will produce a string
object as follows. The parentheses are omitted because they are
not part of the string, but indications to the scanner of where
the string starts and end (although this string contains some
parentheses as data, as you can see):

ABCD \(ABCD) (balanced)

The scanner also is responsible for issuing the PostScript lan-
guage syntaxerror, which can only result from mismatched
(unbalanced) string delimiters and unexpected ends-of-file.
There are no other syntax errors possible in the PostScript lan-
guage!

The PostScript interpreter invokes the scanner each time it
needs a token from the object currently being executed. The
scanner reads from a file or string with exactly the same seman-
tics as the token operator (see the PostScript Language Reference
Manual), returning exactly one object to the interpreter.

RECOGNITION OF OBJECTS

It is the scanner’s responsibility to recognize objects. There are
only four kinds of objects that it knows how to recognize:

• Literal strings: any string object delimited by either < >
or (). The scanner watches for \ notation and attempts
to find the closing delimiter. Mismatched delimiters
result in syntaxerror.

• Numbers: the scanner tries first to make a number out of
a token. This includes reals, integers, and radix notation.

• Names: anything that cannot be interpreted as one of
the above is returned as a name object. The liter-
al/executable flag is set depending on the presence of a
leading slash (/).

• Procedure bodies: Procedure bodies delimited by curly
braces ‘{ }’ are recognized by the scanner and returned
to the interpreter as executable array objects.

chapter 2 THE EXECUTION MODEL 25

There are a few special cases. For instance, the leading slash
(indicating a literal name) overrides the scanner’s ability to rec-
ognize a token as a number:

/1000 type ==
 nametype

It is worth noting that any type of object can be used as a key in
a dictionary. Names are used most often, but they are not
required. The following is a perfectly legal, although somewhat
confusing, PostScript language sequence (shown as though
typed in interactive mode):

PS> 13 (thirteen) def
PS> 13 load ==
 (thirteen)
PS>

It is necessary to use load in this example because the token 13
is recognized first as an integer, not as a name. Therefore, auto-
matic name lookup is not invoked. The load operator explicitly
invokes key lookup for any object, in the context of the current
dictionary stack.

Note:
When a name is encountered in a program, the scanner
returns a name object. Name objects require a fixed
amount of overhead, regardless of the number of bytes
in the name. However, time required to recognize a
name is proportional to its length. With this in mind, it
is always best to use short procedure names if the proce-
dure will be invoked many times (as in the script, but
not in the prologue—see Section 6.2).

2.7 PROCEDURES

A PostScript language procedure is simply an executable array of
PostScript objects. Normally, procedures are given a name and
stored in a dictionary, so that they may be called up by present-
ing the appropriate executable name to the PostScript inter-
preter. However, procedures can exist without having names at
all (as can any object until it is stored into a dictionary).

chapter 2 THE EXECUTION MODEL26

A procedure that exists (perhaps on the operand stack) but is
not referenced by name is typically referred to as a procedure
body. Procedure bodies are usually stored in a dictionary under a
particular name and used in the same manner as the built-in
operators, although they are also required (or permitted) as argu-
ments to several operators, including image, imagemask,
setscreen, settransfer, if, ifelse, loop, and forall.

The PostScript language’s mechanism for building and defining a
procedure is worth examining more closely:

/F { %def
 findfont exch scalefont setfont
} bind def

This is a typical procedure definition. It builds a procedure body
(in this case consisting mostly of operators), executes bind to dis-
till out the name lookup, and then defines the procedure in the
current dictionary under the name F.

Let’s look at this sequence as the PostScript interpreter would,
token by token:

/F

The scanner digests this as a literal name object and hands it to
the interpreter. The PostScript interpreter places all literal
objects directly on the operand stack and moves on.

{

This is a special PostScript language delimiter (informally known
as a “curly brace,” or “open-curly”). It marks the beginning of a
procedure body. The scanner enters deferred execution mode
when this character is encountered. All objects through the clos-
ing ‘}’ token are scanned but not executed, regardless of their
type. When the closing delimiter is found, an executable array is
created containing all the collected objects between the ‘{ }’
delimiters.

In most implementations, the scanner uses the operand stack to
construct procedure bodies, placing a mark on the stack and
then placing each object on the operand stack until the closing

chapter 2 THE EXECUTION MODEL 27

brace is found, at which point the array is constructed from the
objects on the stack. This places a practical limitation on the
number of objects (which may be composite objects) which can
be put into a procedure. In most implementations, this number
is 499, which is the depth of the operand stack less 1 for the
mark (listing 2-3 contains a method for building much larger pro-
cedure bodies when necessary). Here is the state of the stack
just before the ‘}’ character is encountered, which causes the
objects on the stack (down through the mark) to be collapsed
into a single array object.

setfont

scalefont

exch

findfont

--mark--

/F

These are all objects of type /nametype, with the exception of
the mark, which is of /marktype. The scanner performs no
name lookups during the scanning of a procedure body.

When the scanner recognizes the ‘}’ delimiter it performs sever-
al functions. First, it decrements the level counter that keeps
track of the nesting of curly braces, and if the level is back to 0,
the interpreter reverts back to immediate execution mode
(which is the normal state of the PostScript interpreter). Next,
the scanner performs the equivalent of counttomark array
astore: It allocates an array of the appropriate length, fills it
with the objects on the stack down through the mark, removes
the mark, and leaves a freshly created array object on the stack.

The final step is to make the new array an executable array. (It
does this by performing the equivalent of cvx.) Here is the state
of the operand stack right after the ‘}’ character is processed:

chapter 2 THE EXECUTION MODEL28

--executable array--

/F

The name /F is still on the bottom of the operand stack, where
it was at the beginning of this example. The entire procedure
body is now stored in memory as a sequence of objects repre-
sented as an executable array object on the operand stack. Note
that there is still no procedure named F. There are merely two
objects on the operand stack. They could be eliminated very eas-
ily by executing the clear or pop operators, for example. It is
not until the def operator is finally executed that this array
object is safely stored in the current dictionary under the name
F. The remaining part of the last line of the program is

bind def

These are two more executable names. Each of these is looked
up and executed (since the interpreter is now in immediate exe-
cution mode). The effect of executing bind is to perform early
name binding on any elements of the array object that may be
executable operator names. (See Section 2.5, “OPERATORS AND
NAME LOOKUP,” for a discussion of bind.) The bind operator
expects to find an executable array on the operand stack, and it
leaves one there (possibly containing different objects) when it
is through.

The effect of executing def, of course, is to take the top two ele-
ments from the operand stack and make a key-value pair associa-
tion in the current dictionary. The F procedure is now defined.
It can be used like any of the built-in operators in the PostScript
language, as long as the dictionary in which it is stored is avail-
able on the dictionary stack.

listing 2-2

%!PS-Adobe-2.0
/F { %def

findfont exch scalefont setfont
} bind def
%%EndProlog

chapter 2 THE EXECUTION MODEL 29

24 /Helvetica F
288 72 moveto
(Green Book) show
showpage

Listing 2-2 would result in something like this being printed on
the page:

Green Book

VERY LARGE PROCEDURE BODIES

Occasionally one needs to define a very large procedure body,
perhaps as a character description in a font or as part of a logo-
type. The operand stack depth limit is typically about 500 ele-
ments, which limits the total size of a procedure created while
in deferred execution mode, since all the elements in the proce-
dure are first placed on the operand stack.

There are a few ways to cope with this problem. The easiest way,
if the host application can keep track of how many elements
are being generated, is to break out pieces of the procedure and
make them separate procedures, invoked by name within the
large procedure body:

/small1 { one two three four } def
/small2 { five six seven eight } def
/small3 { nine ten eleven twelve } def
/large {

small1 small2 small3
} def

If the procedure is being generated automatically, rather than
by hand, this may not be a feasible approach. For one thing, the
number of new (unique) names required cannot be predicted
easily. In listing 2-3 is a method for collapsing a large procedure
into many small component pieces.

chapter 2 THE EXECUTION MODEL30

listing 2-3

%!PS-Adobe-2.0
%%Title: collapseproc.ps
%%EndComments
 /EXEC { /exec load } bind def
 /mainproc [%def

{ gsave 400 36 moveto } EXEC
{ /Times-Italic findfont 24 } EXEC
{ scalefont setfont (from Listing 2-3) } EXEC
{ show grestore } EXEC

] cvx bind def
%%EndProlog
 mainproc
 showpage
%%Trailer

Notice the use of exec in this example. It is necessary since the
component procedure bodies will not be immediately executed
when encountered directly (they are simply placed on the
operand stack). Also, the relationship between building square
bracket arrays and curly-brace procedure bodies is interesting
(and crucial to this example). Since the outermost brackets are
actually square brackets, all the intervening PostScript code is
executed, not deferred. For this reason, in order to place the
exec operator in the procedure body, its value must be obtained
with load (see the EXEC procedure in the example). Here is
what the /mainproc in listing 2-3 looks like after it is built (a lit-
tle interactive dialog is shown to show the length of the array,
too):

PS> /mainproc load dup ==
{ { gsave 400 36 moveto } --exec-- { /Times-Italic
 findfont 24 } --exec-- { scalefont setfont
 (from Listing 2-3) } --exec-- { show grestore }
 --exec-- }
PS> length ==
8
PS>

chapter 2 THE EXECUTION MODEL 31

Each procedure body within the square brackets is built individu-
ally, and when the ‘}” token is encountered, each one is col-
lapsed into a single (executable) array object on the operand
stack. This way the operand stack does not overflow, since it is
effectively segmented into smaller pieces. An array of arrays is
built, and each sub-array is explicitly executed by exec. The out-
ermost array is simply made executable and can be used like any
other procedure.

listing 2-4

%!PS-Adobe-2.0
%%Title: addproc.ps
%%EndComments
 /F { findfont exch scalefont setfont } bind def
 /S { moveto show } bind def
 /addprocs { %def

dup length 2 add array cvx
dup 3 -1 roll 2 exch putinterval
dup 0 4 -1 roll put
dup 1 /exec load put

 } bind def
%%EndProlog
 gsave

currenttransfer { 1 exch sub } addprocs
settransfer
36 /Helvetica-Oblique F
1 setgray % normally white...
(Black) 36 670 S % but the inverse transfer
(Words) 36 634 S % function yields black

 grestore
 showpage
%%Trailer

Another application of this technique is a space-efficient way to
concatenate two procedure bodies, as can be seen in listing 2-4.
It defines a procedure called addprocs which concatenates two
existing procedure bodies. It creates one new procedure body
that is the length of the second procedure plus two. The array
object representing the first procedure is inserted into the 0th
position in the new array, the exec operator is placed in the sec-

chapter 2 THE EXECUTION MODEL32

ond slot, and the second procedure is copied into the rest of the
new procedure body, resulting in a new procedure like this:

{ one two three } { four five six } addprocs

=> { { one two three } exec four five six }

This preserves at least the first of the procedures without hav-
ing to copy it (it is simply executed with exec).

2.8 THE EXECUTION STACK

The PostScript interpreter always looks at the top of the execu-
tion stack when it has finished executing any single operator.
The execution stack contains the object currently being execut-
ed, whether it is a procedure body, the standard input file, some
other file object, or a string. During the normal execution of a
print job, there is a file object on the execution stack that repre-
sents the standard input file, and as the program is executed,
other procedure bodies may also be placed on top of the execu-
tion stack temporarily until they have been completely execut-
ed.

Objects can explicitly be placed on the execution stack with the
exec, run, or stopped, for, ifelse, and forall operators. Each of
these causes an object to be executed directly. If the object is a
file or string, it is tokenized first by the scanner. If the object is
an executable array (a procedure body), each object in the array
is executed consecutively. If the object is a file, it is scanned and
interpreted and the file object is popped from the execution
stack when the end-of-file indication is reached.

There is an infinite loop on the bottom of the execution stack,
known as the server loop. (See the next section for more details.)
The current job is typically represented by a file object on top
of the server loop. As the file is executed, other objects may be
executed as well. For instance, a common occurrence is for a pro-
cedure to be defined and executed as in the following example
(which is borrowed from listing 2-3):

chapter 2 THE EXECUTION MODEL 33

%!PS-Adobe-2.0
/F { %def

findfont exch scalefont setfont
} bind def
%%EndProlog
24 /Helvetica F
0 0 moveto
(Red Book) show
showpage

This program is represented by a file object on the execution
stack that the scanner reads and interprets token by token. We
have seen the execution of the scanner; now let’s look at what
happens when the procedure is executed.

When the F token is scanned and interpreted from the file
object on top of the execution stack, it is seen to be an exe-
cutable name. This name is looked up in the current dictionary
stack, and an executable array (procedure body) is found. This
procedure body is then pushed onto the execution stack:

{ findfont --exch-- --scalefont-- --setfont--}

-file-

{ --job server-- }

Remember that the array is represented by an array object,
even when it is on the execution stack. Figure 2.4 shows what
this array object looks like on the execution stack.

The PostScript interpreter executes array objects one element
at a time, leaving the unused part of the array on the execution
stack. The interpreter always checks the remainder of the pro-
cedure body before it executes the first element. If the proce-
dure body is empty, the interpreter discards it. This permits
infinitely deep tail recursion, since the empty procedure bodies
will not accumulate on the execution stack. (Tail recursion
means that the recursive procedure call is the very last element
(the tail) of the procedure body.)

chapter 2 THE EXECUTION MODEL34

figure 2.4

2.9 THE SERVER LOOP

The execution stack starts out with a procedure that is an
infinite loop. The interpreter is always busy executing this loop,
even when the interpreter is in an idle state. This loop is known
as the server loop, and each time around the loop it checks to see
if there is a new job to execute (if one of the communications
ports has become active). When a new job is discovered, a file
object representing the standard input file is opened and placed
on the execution stack. This file object is executed until the
end-of-file indication is reached, at which point it is popped off
the execution stack, and the interpreter reenters the server
loop.

The primary task of the server loop is to isolate one batch job
from another. Before each job starts, the server loop executes
the save operator. When a job has finished executing, the serv-
er loop is re-entered, and a restore is performed, restoring the
state of the interpreter back to exactly the state that was in
effect at the start of the job.

Errors are caught by using the stopped operator. There is a discus-
sion of this technique in Section 14.3.

execution stack

value:
type:

executable:

--filestream--
filetype
executable

value:
type:

executable:
length:

arraytype
executable
4

value:
type:

executable:

--findfont--
operatortype
executable

value:
type:

executable:

--exch--
operatortype
executable

value:
type:

executable:

--scalefont--
operatortype
executable

value:
type:

executable:

--setfont--
operatortype
executable

procedure body (in memory)

chapter 2 THE EXECUTION MODEL 35

In listing 2-5 is an idea of what the server loop looks like. A few
pieces of pseudo-code are included to show some functionality
without providing all the nuts and bolts. These are represented
in italics. This example does not match any real server loop
code, but it provides the theoretical model for how it operates.
The server loop procedures for any given interpreter can be
seen by simply executing this code: 128 array execstack ==

listing 2-5

/server save def % save the initial state
{ %loop

server restore % when entering loop
{ %loop

any port active { %if
exit

} if
} loop % until new job is encountered
/server save def % before each job
(%stdin) (r) file
cvx stopped { % execute the file object

errordict /handleerror get exec
currentfile flushfile

} if
} bind loop % main server loop

chapter 3 THE IMAGING MODEL 37

chapter 3

THE IMAGING MODEL
Painting isn’t an æsthetic operation;

it’s a form of magic designed as a mediator
between this strange hostile world and us....

– Pablo Picasso

3.1 INTRODUCTION

The PostScript language imaging model is the metaphor through
which graphics are rendered on output devices. The imaging
model consists of specific rules and mechanisms by which a pic-
ture is described, and its behavior is exactly predictable.

The imaging model for silk-screening, for example, might be
loosely stated like this: “Ink is forced through a mask of film that
adheres to a stretched piece of silk. Ink flows through the mask
only where it has been cut away.” The imaging model for the
PostScript language might be stated: “Algorithmic paths are cre-
ated to define an area or a series of lines, and ink is applied to
those paths through one of several methods, including stroking,
filling, halftoning, text rendering, and clipping.”

In the world of computers, all graphics application programs
have a graphic imaging model, whether it is explicitly stated or
simply assumed. Even text editors have a paradigm for the lines
of text being edited. Although video screens are two-dimension-
al, the model used by a drawing program may permit objects to
overlap on the screen, as though there were a third dimension.
There is no “correct” imaging model—it is just a consistent way
of thinking about graphics that is useful to a computer program.

Writing a driver for an application to print through a PostScript
interpreter is almost entirely the task of adapting one graphic
imaging model to another. The act of printing a page is a transla-
tion of some computer graphics representation into a printed

chapter 3 THE IMAGING MODEL38

reality. If the software permits the user to draw a circle, for
example, the circle must be stored in some way (the internal
representation), and ultimately printed with whatever means
are available.

3.2 APPLYING THE METAPHOR

The PostScript language uses a “path and paint” model for imag-
ing. A path is constructed out of simple graphics primitives such
as moveto, lineto, curveto, and closepath. The resulting path
may then have paint applied to it with one of the painting opera-
tors (such as fill or stroke). Paint is opaque in the PostScript
imaging model—that is, any color of paint will completely
obscure any paint that may already have been laid on the page.

Path construction and painting operations in the PostScript lan-
guage are state-dependent. All of the elements used in graphic
operations are maintained by the PostScript interpreter in what
is known as the graphics state. This includes the current path,
the current line weight, the current color, the current transfor-
mation matrix, and other elements used in rendering graphics.

At any moment there is only one current path. The path can
have additional elements added to it, it may be used by one of
the painting operators, or it may even be initialized (with new-
path). There can be many disconnected subpaths that together
make up the current path.

The approach used for rendering graphics consists basically of
the repetition of the following steps:

• Save the current state of the interpreter VM (memory).

• Establish a current point (with moveto).

• Construct a path, if needed (it is not necessary, for
example, with show).

• Paint the path (or show characters), resulting in marks
on the page.

• restore to the previously saved state.

• (Optional) Execute showpage to print the current page.

chapter 3 THE IMAGING MODEL 39

figure 3.1

fi
gu

re
 3

.1

Pa
in

tin
g

(R
en

de
rin

g)
Pr

in
tin

g
Pa

th
 C

on
st

ru
ct

io
n

fi
ll

sh
o

w
p

a
g

e
m

o
ve

to
st

ro
k

e
co

p
yp

a
g

e
li

n
et

o
im

a
g

e
cu

rv
et

o
sh

o
w

a
rc

, a
rc

to
cl

o
se

p
a

th

ch
a

rp
a

th
cl

ip

st
ro

k
ep

a
th

rm
o

ve
to

rl
in

et
o

rc
u

rv
et

o
a

rc
n

re
ve

rs
ep

a
th

a
sh

o
w

fl
a

tt
en

p
a

th
eo

cl
ip

n
ew

p
a

th

w
id

th
sh

o
w

k
sh

o
w

im
a

g
em

a
sk

eo
fi

ll

sh
o

w
a

sh
o

w
w

id
th

sh
o

w
k

sh
o

w

cl
ip

p
a

th
in

it
cl

ip

U
se

r S
pa

ce
D

ev
ic

e
Sp

ac
e

 (
fr

am
e

bu
ffe

r)
Ph

ys
ic

al
 P

ag
e

er
a

se
p

a
g

e

chapter 3 THE IMAGING MODEL40

3.3 CONSTRUCTION OF PATHS

Paths are constructed using path construction operators. Here is a
list of all of them:

moveto lineto curveto
rmoveto rlineto rcurveto
arc arcn arcto
closepath clippath charpath
clip eoclip reversepath
initclip strokepath flattenpath
show widthshow newpath
ashow kshow initgraphics
grestore restore grestoreall

Each of these adds to (or creates, or modifies) the current path.
The newpath, initgraphics, restore, and grestoreall operators
can be thought of as path construction operators, even though
they are really path destruction operators. The variations on the
show operator are path construction operators only in that they
affect the current point, which is part of the current path.

The current path is part of the standard graphics state, and it is
preserved (and restored or overwritten) by both the gsave and
grestore operators and the save and restore operators.

The clip operator uses the current path (appending it to the
current clip path) but does not destroy it. This is often the cause
of strange program behavior when using clip. Using the new-
path operator after the clip usually fixes these problems.

Construction of a path alone is not sufficient to cause marks to
be made on the page. A path must be painted in order to see it.

THE GRAPHICS STATE AND PATHS

There is an interesting relationship between building the cur-
rent path and changing the graphics state. For example, consid-
er the short PostScript program given in listing 3-1. Notice that
the constructed path has three elements: an initial moveto and
two instances of rlineto, each of which appends a line segment
to the current path. However, there are also three changes to
the graphic state. The setlinewidth operator is invoked twice

chapter 3 THE IMAGING MODEL 41

in this example, and scale is invoked once. What does this path
look like on the final page, after it has been stroked?

listing 3-1

%!PS-Adobe-2.0
%%Title: pathconstruct.ps
%%EndComments
 /F { findfont exch scalefont setfont } bind def
%%EndProlog
 gsave

400 300 moveto
100 0 rlineto % horizontal line
2 setlinewidth
4 4 scale
0 100 rlineto % vertical line
1 setlinewidth
 gsave % make the picture more interesting...

14 /Times-Roman F (A) show
2 -12 rmoveto -20 rotate (A) show

 grestore
 stroke

 grestore
 showpage
%%Trailer

To answer this, one must look more carefully at the graphics state
(and at figure 3.2). Here are the elements of the graphics state:

• Current point and current path
• Current transformation matrix (CTM)
• Current font
• Current color (or gray level)
• Line weight, line cap, and line join
• Line miter limit and dash pattern
• Current raster device
• Current clipping region
• All halftone parameters

The entries set in bold are the only elements of the graphics
state that affect path construction directly. The others affect

chapter 3 THE IMAGING MODEL42

only the painting of the path. In listing 3-1, the 4 4 scale does
affect the subsequent execution of rlineto, causing the line to
be (effectively) four times as long when it is appended to the
current path. The path construction operators use the current
transformation as the path is being constructed, but once an
element of the current path exists, it is not affected by further
changes to the coordinate system.

figure 3.2

Another way to think of it is that changes to the current trans-
formation matrix and the current font affect future elements of
the path, but not existing elements.

Changes to the line width or the current color take effect only
when stroke or fill is executed, and they apply to the entire
current path.

3.4 PAINTING OPERATIONS

A path, once constructed, must be painted in order to make
marks on the page. There are several painting operators, each of
which causes some marks to be made in device space (assuming

A
A

chapter 3 THE IMAGING MODEL 43

that some part of the path is within the clipping region, of
course). Here is a list of painting operators:

fill eofill stroke
image imagemask
show widthshow
ashow kshow

When marks are made in device space by one of these painting
operators, they stay there. Even the showpage, erasepage, and
framedevice operators, which cause device space to be cleared,
operate by painting the entire page with “white.”

In the steps for path construction and painting outlined in Sec-
tion 3.2, the use of save and restore guarantees the functional
independence of each page element, although the marks on
the page persist until showpage is finally executed.

3.5 WHAT HAPPENS TO THE CURRENT PATH?

There is only one current path in the graphics state. A large per-
centage of the execution of a document involves the construc-
tion and use of paths. It definitely helps to understand this
mechanism and use it efficiently. In particular, keep the follow-
ing in mind:

• It is inefficient to destroy a path explicitly (with new-
path) if it will happen as a natural consequence of using
the path (as it will with stroke or fill).

• Don’t preserve the path (with gsave and grestore) if it
isn’t needed for anything.

It is unfortunately fairly common to see sequences like the fol-
lowing one in production software:

0 0 moveto 100 100 lineto
gsave stroke grestore newpath

The path is carefully preserved, stroked, and restored, only to
be destroyed immediately with newpath. In this case three
unnecessary operators are executed for every line drawn.

chapter 3 THE IMAGING MODEL44

3.6 PROCEDURES FOR CONSTRUCTING PATHS

It is often found that the kinds of shapes rendered by a graphics
application require a little more than simple calls to lineto or
curveto. In these cases, after careful consideration, it may be
determined that writing a procedure to implement a particular
graphic primitive is advantageous. For example, rectangles, cir-
cles, arrowheads, and other shapes may be fundamental parts of
your application.

It is important to construct efficient procedures. Defining a pro-
cedure and using it instead of a number of PostScript language
commands is only a useful technique if the procedure is faster
than the unrolled code would have been. There are a couple of
considerations that make it easier to generate fast procedures:

• What is the least amount of critical data needed from
the host application to construct the required shape?

• What is the natural order and format in which to supply
the data, based on the PostScript operators to be used?

• How should the operands be presented on the operand
stack to minimize the computation required of the pro-
cedure itself?

For example, if the arc operator is used (as it is to construct a cir-
cle), the center and radius should be specified, not the corners
of a bounding rectangle (see Section 5.5 and Figure 5.1). If an
arrowhead is to be drawn, it should be carefully worked into the
line-drawing primitives like lineto and curveto, making use of
the way paths are naturally constructed.

RECTANGLES

A common task performed by a graphics application is to draw a
rectangle, often one that is shaded and/or outlined with a bor-
der. There are many ways to represent a rectangle. The goal,
when writing a PostScript driver, is to minimize the computa-
tion required and the data transmitted. For example, if rectan-
gles are always oriented either vertically or horizontally (never
at an angle), they can be represented by two points (for exam-
ple, the lower left and upper right corners), or by one corner

chapter 3 THE IMAGING MODEL 45

and the width and height of the rectangle. However, if the rect-
angle may be rendered at an angle, four points are necessary, or
two points and an angle (although that would require more com-
putation).

A rectangle procedure may require several painting attributes
(like a gray level and a line weight) as well as the geometric infor-
mation to construct the rectangle. If so, this data should be
passed to the procedure on the operand stack. Listing 3-2 pro-
vides a good rectangle procedure.

listing 3-2

%!PS-Adobe-2.0
%%Title: rectangle.ps
%%EndComments
% "R" takes the following arguments:
% lineweight linegray fillgray
% width height LLx LLy
 /R { %def

gsave
moveto
1 index 0 rlineto
0 exch rlineto
neg 0 rlineto
closepath
gsave setgray fill grestore
setgray setlinewidth stroke

grestore
 } bind def
%%EndProlog
 3 .5 .9 200 300 100 100 R
 showpage
%%Trailer

This example draws a rectangle that is 200 points wide, 300
points tall, is filled with 10 percent gray (0.9) and stroked with a
3-point line at 50 percent gray (0.5). Notice that the procedure
uses the values directly from the stack (rather than defining
them into a dictionary and calling them up again), since they are
only needed once.

chapter 3 THE IMAGING MODEL46

CIRCLES AND ARCS

Circles are another simple graphic shape for which there are
many, many possible representations. The PostScript language
has one in the arc operator. To draw a circle in the PostScript
language, use the method provided in the imaging model.

listing 3-3

%!PS-Adobe-2.0
%%Title: circle.ps
%%EndComments
% "C" takes the following arguments:
% linewidth linegray fillgray
% X Y r ang1 ang2
 /C { %def

gsave
newpath 0 360 arc
gsave setgray fill grestore
setgray setlinewidth stroke

grestore
 } bind def
%%EndProlog
 3 .5 .9 300 500 200 C
 showpage
%%Trailer

Listing 3-3 draws a circle of radius 200 at the point 300, 500, fills
it with 10 percent gray (0.9), and strokes it with a 3-point line at
50 percent gray.

ARROWHEADS

Lines terminating with arrow heads are commonplace in many
graphics applications. In listing 3-4 is a procedure that will draw
an arrow head at the current point, at a specified orientation
and line width. (The line width is used only as a size refer-
ence—the arrow head is scaled to an appropriate size for lines of
the specified width.) The orientation is supplied by a previous
point. The arrow head is drawn parallel to the line implied by

chapter 3 THE IMAGING MODEL 47

the previous point and the current point, which should be the
tangent of the line at the end point. See Listing 3-4.

listing 3-4

%!PS-Adobe-2.0
%%Title: arrowhead.ps
%%EndComments
%%BeginProcSet: arrows 1.0 0
% "arrowhead" takes these arguments:
% lineweight prevX prevY
 /arrowhead { %def

gsave
currentpoint
4 2 roll exch 4 -1 roll exch
sub 3 1 roll sub
exch atan rotate dup scale
-1 2 rlineto
7 -2 rlineto
-7 -2 rlineto
closepath fill

grestore
newpath

 } bind def
 /l^ { %def % lineto-arrow

currentlinewidth currentpoint 5 3 roll
lineto
currentpoint stroke moveto
arrowhead

 } bind def
 /rl^ { %def % rlineto-arrow

currentlinewidth currentpoint 5 3 roll
rlineto
currentpoint stroke moveto
arrowhead

 } bind def
 /arc^ { %def % arc-arrow

5 copy arc
currentpoint stroke moveto % stroke arc

 % getting the correct orientation for the arrowhead
 % is tricky. This procedure uses the arguments to
 % "arc" to determine the tangent of the curve at the
 % endpoint, and it orients the arrowhead along that
 % tangent line. It leaves an X-Y point that is just
 % behind the arrowhead along the tangent.

chapter 3 THE IMAGING MODEL48

 % newX = X + radius * cos(endAngle-1)
 % newY = Y + radius * sin(endAngle-1)

exch pop 1 sub % endAngle - 1 degree
dup cos 2 index mul 4 index add % arrowX
exch sin 2 index mul 3 index add % arrowY
currentlinewidth 2 add 3 1 roll % thickness
arrowhead pop pop pop % draw ->

 } bind def
%%EndProcSet: arrows 1.0 0
%%EndProlog
%%Page: 1 1
 % line sample:
 200 600 moveto
 0 10 360 {

currentlinewidth .1 add setlinewidth
gsave
dup cos 100 mul
exch sin 100 mul
rl^
grestore

 } bind for
 newpath
 % curve sample:
 /radius 10 def .1 setlinewidth
 0 30 360 {

/radius radius 10 add def
280 230 radius 0 5 -1 roll arc^

 } bind for
 showpage
%%Trailer

Listing 3-4 contains a fairly sophisticated set of procedures.
There is one procedure to draw an arrowhead at the current
point, and there are three other procedures (rl^, l^, and arc^)
that work like rlineto, lineto, and arc, respectively, except
that each draws an arrowhead at the end of the line segment (or
arc) using the arrowhead procedure. In the arc^ procedure, the
tangent to the curve is computed and a point is passed to the
arrowhead procedure for orienting it properly. It is more likely
that the host application would provide this simple x-y location
to orient the arrowhead, to avoid this largely unnecessary calcu-
lation. There are also other possible orientation schemes.

chapter 3 THE IMAGING MODEL 49

Note:
Keep track of the current path, and use it naturally.
Avoid unnecessary path operations or safeguards that
may seem at first like good, defensive programming.
The language is designed to work the way you probably
need it to work, and it is best to use it that way.

The fill, eofill, and stroke operators effectively “use up” the
current path, destroying it when they are through (by execut-
ing the equivalent of newpath). The image and imagemask
operators do not disturb the current path in any way. The show
operator and its siblings make changes only to the current point
(corresponding to the width of the string being shown), and oth-
erwise do not disturb the current path.

3.7 TEXT OPERATIONS

In the PostScript language, text is rendered with the show oper-
ator (or one of its relatives). The show operator is somewhat spe-
cial in the PostScript imaging model, in that there are very
specific requirements for setting text that may not apply when
rendering other graphic elements.

In particular, text characters are normally set one after another,
along a baseline. The show operator leaves the current point
when it is done, rather than destroying the path as other path
painting operators do. Furthermore, show requires not only a
current point but a current font in order to render text (unlike
other painting operators).

In order to effectively make use of the PostScript imaging mod-
el, one should understand just what effect the show operator
has, and when it is appropriate, for instance, to use gsave and
grestore to preserve the current point (and the current font).

Let us consider two variations that print a couple of lines of 10-
point text (listing 3-5).

chapter 3 THE IMAGING MODEL50

listing 3-5

%!PS-Adobe-2.0
%%Title: text examples
%%EndComments
 /F { findfont exch scalefont setfont } bind def
 /S1 { moveto show } bind def

 /S21 { moveto gsave show grestore } bind def
 /S22 { %def

0 exch rmoveto gsave show grestore
 } bind def
%%EndProlog

% method 1:
 10 /Times-Roman F
 (method 1:) 72 512 S1
 (Viva Nuestra Senora de Guadelupe!) 72 500 S1
 (Viva la Independencia!) 72 488 S1

% method 2:
 10 /Times-Roman F
 (method 2:) 72 412 S21
 (There was a young lady named Bright,) -12 S22
 (Whose speed was far faster than light;) -12 S22
 (She set out one day) -12 S22
 (In a relative way) -12 S22
 (And returned home the previous night.) -12 S22
 (-Arthur Buller) -12 S22
 showpage
%%Trailer

The first method in listing 3-5 (labeled method 1 in the com-
ments) has a very simple procedure (called S1) which does a
moveto and a show. The x,y location for the text is passed on the
stack along with the string, and the current font is understood
already to exist. The second example (called method 2) uses a dif-
ferent approach. The first line uses an x,y pair, as does method
1, except that it uses gsave and grestore to preserve the current
point after show is finished. Subsequent lines of text are set
with just a relative quantity (an amount to move down before

chapter 3 THE IMAGING MODEL 51

printing the line). This enables the driver to generate and trans-
mit less data, but there is a greater computation cost in doing the
gsave, grestore, exch, and rmoveto for each line.

The two examples above are inherently based on the behavior
of the show operator: It always leaves the current point at an
adjusted position (usually to the right of the text shown) based
on the character widths. In method 2, the second line (and sub-
sequent lines) of text are dependent on the first, in the sense
that the position is relative to the first line.

Another approach might be to have a procedure for setting an
entire paragraph, where the inter-line spacing is constant for
the whole paragraph, and the moveto can be generated easily
from within the code.

The rest of this book is dedicated to the decision-making pro-
cess. The PostScript language execution and imaging models pro-
vide great freedom in setting text, but in any environment
there are constraints or advantages that may dictate using one
method over another. Understanding the workings of the mech-
anism will help you to make these decisions.

CHARACTER WIDTHS

Character widths are stored within PostScript language font pro-
grams as displacements in coordinate space. The best way to
think of text setting is to view each character as an origin, a
shape, and a width. The relationship between the shape and the
origin is fixed—the origin is the 0,0 point in character space
(described later) and the character draws itself relative to that
location. The width is essentially an implicit rmoveto that occurs
after the character shape is rendered. (See figure 3.3).

The character width is not related to the actual execution of the
character shape (the shape may even be in the font cache, and
not get executed at all). This is not important unless you are
building font characters yourself. (See also Section 9.3). Remem-
ber that characters widths have both an x and a y component. A
common bug is to call stringwidth but to forget that there are
two values returned. Typically, the extra number stays on the
stack until a typecheck occurs later.

chapter 3 THE IMAGING MODEL52

figure 3.3

The important thing to remember is to use the way The
PostScript language renders text instead of fighting it. Below are
some aspects of the execution and imaging models that com-
monly present difficulty. Each of these is a symptom of not hav-
ing used the language effectively:

• When you try to use save and restore at the page
boundaries, you discover that it destroys the current
font at the bottom of the page, and it needs to be
explicitly re-set at the beginning of the next page.

• You find that changing fonts in the middle of a line of
text makes it hard to justify the line, since the character
widths are different for the two fonts.

• You are using stringwidth to determine where text is
going to be placed. (The application should always con-
trol placement of text, and should know the character
widths beforehand.)

• When you relocate or remove graphics from a file, the
text does not print in the correct position on the page,
since it relies on the current point being in the right
place.

G
origin (current point when show executes)

character width (displacement after show)

chapter 3 THE IMAGING MODEL 53

Some thought is required to build a complex program, and using
the PostScript language is no exception. Learning the character-
istics of each text operator and remembering the semantics of
the imaging model will help enormously in designing a simple
and efficient program.

3.8 CLIPPING

Clipping is a mechanism used to limit the area in which paint can
be applied by the PostScript language painting operators. It
behaves like a stencil.

There is always a clipping path in the graphics state, which by
default is the current page boundary. The clipping path may
have further restrictions appended to it or removed from it
(with grestore, for example)—but it can’t be replaced entirely.
The clip operator appends the current path to the current clip-
ping path (but does not destroy the current path).

COMPLEXITY AND PERFORMANCE

Clipping requires computation. When the PostScript inter-
preter paints a path, it must determine whether or not the
marks fall within the current clipping path. This computation
can be quite expensive, depending upon the implementation.
Additionally, the clip operator reduces the current path to a
flattened path as it is added to the clipping path. This means that
it is broken down into line segments. There is a practical limit on
how many path elements may be stored, both in the clipping
path and in the current path in the graphics state. Exceeding
this limit will result in a limitcheck error. Depending on the
path and the resolution of the output device, a flattened path
may contain hundreds or even thousands of elements, and care
must be exercised when using clip.

One source of unexpected behavior stems from the fact that
the clip operator does not destroy the current path. Remember
to execute newpath after clip unless the current path is to be
used for something else. The clip operator does not initialize
the current path.

chapter 3 THE IMAGING MODEL54

3.9 RASTERIZATION

Rasterization is a term for the process of converting the original
high-level PostScript language description into rasters, or plain
old bits of black or white (or plain old 16 bits of color or plain old
8 bits of grayscale, or whatever is the appropriate fodder for the
output device). In particular, rasterization is the end result of all
the painting operators such as stroke, fill, and show.

The real device independence of the PostScript language lies in
the fact that the interpreter performs the rasterization at the
resolution of the output device. Only high-level descriptions of
graphics are sent to the printer. (Even scanned images are scal-
able, and not resolution-dependent.)

In many devices, the PostScript interpreter can rasterize in par-
allel with the interpretation of the program, and may be
deferred when the original painting operator is executed. This
is especially true in high-speed printing devices, where some of
the final rasterization may be done on the fly during showpage.

Most programs need not be concerned with the rasterization
process itself—the purpose of the PostScript language is that
the user program is removed from the level of rasterization to
ensure true device independence.

3.10 SAVE AND RESTORE

The save and restore mechanism is a fundamental part of the
PostScript imaging model. It affects all aspects of a program,
including its execution, the graphics state, and its use of memo-
ry and resources. As a starting place for this discussion, here is a
rule of thumb:

If you find it difficult to get save and restore to work cor-
rectly in your program, you should redesign your program.

A PostScript program should be designed from the very start to
work easily with the state-dependent execution model of the
PostScript interpreter. Page elements should be independent
of one another. Each page should be functionally independent

chapter 3 THE IMAGING MODEL 55

of all others. (See Chapter 6). The graphics state stack should
naturally parallel the execution of your program.

Simply stated, save and restore (they are always used in pairs)
provide a mechanism for saving the current state of the world
and then returning to it. This mechanism affects everything
(except the contents of the stacks and the marks on the current
page). It saves the contents of dictionaries, the current line
weight, the current halftone screen, the current font, the path,
the clipping region, the existence of string bodies, array objects,
and all objects in memory.

There is nothing special required to use save and restore effec-
tively. They should be designed in from the beginning into any
procedures that use memory. If memory conservation is not an
issue, gsave and grestore will probably work just as well, and are
more efficient.

In general, every procedure that affects the graphics state in
some way should contain either gsave and grestore or save and
restore. Chapter 6 provides more detail on how to structure pro-
cedures and programs to take full advantage of these operators.
Section 13.3 discusses the use of save and restore for memory
management.

3.11 THE FONT CACHE

The font cache is an optimization technique. The best way to use
the font caching mechanism is to be glad that it exists. There is
no direct means for manipulating the font cache, and it is not
intended for general use. However, it is useful to have some
background on how it works.

Characters go into the font cache whenever they are executed
by the show operator, as long as they will fit (based on the font
caching limits currently in effect, not on how many characters
are already in the cache) and as long as the font itself executes
the setcachedevice operator (the only other choice is setchar-
width, which explicitly avoids the font cache).

chapter 3 THE IMAGING MODEL56

Characters are removed from the font cache on a least-recently-
used basis whenever the available space in the cache is exhaust-
ed. The font cache occupies a fixed amount of space in most
implementations (although not all of them), and characters
always are added to the cache if they qualify. If there is not
enough room, the least recently used characters are removed.

Entries are made into the font cache for a single character, and
are not pre-cached for an entire font. The entry is made based
on the current font, the size and orientation of the character
(based on the current transformation matrix), the character
name, and its width.

chapter 4 EMULATORS AND TRANSLATORS 57

chapter 4

EMULATORS AND
TRANSLATORS

Nature has ... some sort of
arithmetical-geometrical coordinate system,

because nature has all kinds of models.

– Richard Buckminster Fuller

4.1 INTRODUCTION

The PostScript language can be thought of in two distinct ways:
it provides an imaging model for describing and printing com-
plex text and graphics, and it is a complete and general program-
ming language.

A printer emulator is software that uses the PostScript program-
ming language to implement some other imaging model. The
simplest example of this might be a line printer emulator, in
which the ASCII text sent to the printer is simply listed out on
the page rather than being interpreted.

A print format translator is a host-based program which converts
a file created for another printing device (and its accompanying
imaging model) into a PostScript file. For instance, the program
might take line printer input files and produce PostScript out-
put files which may then be transmitted to a device for printing.

There are many problems which can arise in translating other
print files or emulating other printers, most of which generally
have to do with fonts. When setting text, the widths of the indi-
vidual characters are very important in making decisions about
line breaks and for centering text. If text has been formatted for
a different printer (perhaps with different character widths for
its fonts) the translation process becomes more difficult. In addi-
tion, many print files may have been decomposed from their

chapter 4 EMULATORS AND TRANSLATORS58

original editable form into an output format appropriate for a
particular printer, and what used to be text or labels might be
vectors or bit images by the time the print file is produced. At
that stage, there is no reasonable way to reverse-engineer the
print file to produce the clean typography which the PostScript
language provides.

Whenever possible, it is best to compose pages originally with
PostScript devices in mind, and to use font width tables that cor-
respond to the fonts that will be used on the PostScript printer.
It is also best to consider the PostScript imaging model fully, and
to adapt the editable representation to the PostScript language
model when producing the print file, rather than translating it
after the fact, or programming the interpreter to emulate anoth-
er printer.

This chapter outlines some of the best methods for writing emu-
lators and translators when it is not possible to modify the soft-
ware which produces the print files. Chapter 5 is devoted to the
subject of creating PostScript language page descriptions direct-
ly from the composing application.

4.2 EMULATING ANOTHER PRINTER

To successfully emulate another printer in the PostScript lan-
guage, the software must be able to print any file that would pro-
duce results on the original printer. This means that any control
sequences, condensed printing modes, or other features of the
printer must be mimicked completely.

From an implementation point of view, an emulator is simply a
program that executes in the printer and reads directly from the
input (superseding the interpreter). As input is received, the
emulator looks for control codes, keeps track of line positions,
reproduces condensed or overstrike modes, and prints pages as
required. Because the PostScript language is interpreted, the
program loop is actually re-interpreted each time around, and
must be written carefully in order to make performance reason-
able.

Listing 4-1 is a simple loop that reads a fixed-length string from
the current file (normally the standard input stream, %stdin)

chapter 4 EMULATORS AND TRANSLATORS 59

and prints it, quitting only when the readstring operator
detects an end-of-file indication. Note that no parsing of the
string is attempted, no control codes are recognized, and there
is no capability to change fonts. In fact, with this example even
line breaks (carriage return characters) are ignored.

listing 4-1

%!PS-Adobe-2.0
%%Title: emulate1
/buff 128 string def
/emulate1 { %def

{ %loop
currentfile buff readstring
exch show not { exit } if

} loop
showpage

} bind def
%%EndProlog
72 750 moveto
/Courier findfont 10 scalefont setfont
emulate1
So spake the Fiend, and with necessity,
The tyrants plea, excused his devilish deeds. -Milton

The readline operator may be used to automatically recognize
newline characters, but with even this simple change the pro-
gram becomes much more complex. For instance, there is imme-
diately the possibility of trying to read in a line that is longer
than the allocated buffer size (this is not a problem with the
readstring operator, since it does not look for newline charac-
ters, it simply fills the buffer). Additionally, depending on the
communications channel, newlines may be handled differently
in different environments and by different PostScript inter-
preters.

In the purest sense, it is better not to use readline, but instead
to use search to parse for various escape sequences and newline
characters explicitly. Listing 4-2 is a revised form of the previous
example. It searches for linefeed characters.

chapter 4 EMULATORS AND TRANSLATORS60

listing 4-2

%!PS-Adobe-2.0
%%Title: simple line printer emulator
 /buff 5000 string def
 /leftmargin 72 def /topmargin 72 def
 /bottom 72 def /top 792 topmargin sub def
 /ptsize 10 def /lead 10 def
 /EOLchar (\n) def % line feed
 /F { findfont exch scalefont setfont } bind def
 /newline { %def

currentpoint exch pop lead sub
dup bottom lt { %if

showpage
pop top

} if
leftmargin exch moveto

 } bind def
 /emulate { %def

{ %loop
currentfile buff readstring exch
EOLchar
{ %loop (innermost)

search { %ifelse
show newline

}{ %else
show exit

} ifelse
} loop
not { %if readstring found EOF

exit
} if

} loop
showpage
leftmargin top moveto

 } bind def
%%EndProlog
%%BeginSetup
 ptsize /Courier F
 leftmargin top moveto
%%EndSetup
emulate
I wasted time, and now doth time waste me;
For now hath time made me his numbering clock;
My thoughts are minutes.
 - William Shakespeare

chapter 4 EMULATORS AND TRANSLATORS 61

There are several items of note in this program. The innermost
loop, for instance, takes advantage of the syntax of the search
operator. After calling search, there is a boolean on the top of
the operand stack which indicates the success or failure of the
search. This boolean is used immediately by the ifelse state-
ment, and one of the two procedure bodies is conditionally exe-
cuted. If the search failed, the original string is still on the stack,
and it is merely printed (show) and the loop is exited. If the
search succeeded, there are three strings on the stack. The top-
most one is the portion of the string just before the newline
(the newline was the match string provided to search), which is
then printed (with show). The remaining two strings are already
in the correct position for another call to the search operator,
so it is okay to just drop through the loop and re-enter at the
top. The search operator was designed very carefully to return
on the stack the information that is most likely to be needed, in
an appropriate order, and it is easy to write a program that takes
advantage of this design.

This use of search can easily be extended to search for other
characters as well as the newline character, although the inner
loop would become more complicated. For instance, the tab
character could be caught, and perhaps the escape character, in
order to interpret control sequences.

THE STRINGWIDTH OPERATOR

If the printer emulator is likely to be faced with printing text,
be sure to read Chapter 7, which presents several approaches to
setting text, including font changes, justification, leading, and
underlining. In general, however, all text-setting algorithms
(whether implemented in an emulator or in a print driver) need
to know the widths of character strings in order to make posi-
tioning judgements. Widths are normally made available on the
host system for computing line breaks, but an emulator is forced
to do the calculations in the PostScript interpreter.

Character widths can be obtained using the stringwidth opera-
tor. This operator requires a current font (and a current point)
and a string object on the operand stack. It returns two values,
which represent the width of the string in both x and y. The
width of a string is defined to be the distance by which the cur-

chapter 4 EMULATORS AND TRANSLATORS62

rent point is modified if the given string were printed in the cur-
rent font. Here is an example of its use (a session from an inter-
active PostScript interpreter):

PS> 0 0 moveto
PS> /Times-Roman findfont
PS> 12 scalefont setfont
PS> (TRANSLATING EXISTING FILE FORMATS)
PS> dup stringwidth exch == ==
230.316
0
PS>

The stringwidth operator can take almost as long to execute as
show, since it does the same work of imaging the characters into
the font cache and computing the offset to the current point
that would occur. It is not too unreasonable to say that printing
time doubles when the width of a string must be computed
before it is printed. Although the characters are already in the
font cache when show is executed, the overhead in interpreta-
tion and execution time required to compute the string’s width
and to adjust the current point tend to offset this.

Whenever possible, an emulator written in the PostScript lan-
guage should avoid computing the width of a character string.
For instance, if line breaks have already been determined (as is
usually the case in line printer output) and the text is not
justified, there is no reason to measure the string.

TEXT JUSTIFICATION IN AN EMULATOR

Performing full justification on a line of text with more than one
font presents some tough problems for an emulator. First the
line of text must be collected, and each substring (per font used)
must be measured with stringwidth. Then the number of spaces
must be counted, as well as the total number of characters in the
line. Finally a subtraction and division problem are performed
to figure out how much the line must be stretched to fit the mar-
gins, and the error divided evenly among the spaces or charac-
ters in the string and widthshow (or ashow) is called.

The program in listing 4-3 is a printer emulator. It emulates a
fictitious printer that is reasonably close to several real-world

chapter 4 EMULATORS AND TRANSLATORS 63

printers. It takes ASCII input data already broken into lines (it
uses readline, in fact) and prints it with a variety of possible
fonts. It is designed to use a default font (which you can speci-
fy) and to search for any of several escape sequences which per-
mit changing fonts and going into or out of “justification” mode.
The following are the recognized escape sequences:

ESC Sequence Function Result

ESC Y justification on

ESC N justification off

ESC 0 set font 0 (roman)

ESC 1 set font 1 (bold)

ESC 2 set font 2 (italic)

ESC 3 set font 3 (bold italic)

The escape character and the individual commands are “soft.”
The fonts mapped to the font codes are also soft. The 0, 1, 2,
and 3 in the font codes are, in this example, actually the ASCII
versions of those numbers (48, 49, and so on) so that the exam-
ple program is readable. Similarly, the escape character is set to
the caret character (^). In a real emulator, these would probably
be changed. This emulator prints at roughly 17 pages per minute
on current implementations, with a good mix of fonts and in full
justification mode.

chapter 4 EMULATORS AND TRANSLATORS64

listing 4-3

%!PS-Adobe-2.0
%%Title: justify.ps
%%Creator: Glenn Reid
%%EndComments
%%BeginProcSet: general 1.0 0
 /FS { findfont exch scalefont } bind def
%%EndProcSet: general 1.0 0

%%BeginProcSet: justify 1.0 0
 /spacecount { %def

0 exch
(\040) { %loop (space)

search { %ifelse
pop 3 -1 roll 1 add 3 1 roll

}{ pop exit } ifelse
} loop

 } bind def
 /justify { %def % mark (text) (text)

/spaces 0 def
/currentwidth 0 def
/currlength 0 def
counttomark /num exch def
2 2 num { %for % roll through stack and count

-2 roll setfont
dup spacecount spaces add
/spaces exch def
dup stringwidth pop currentwidth add
/currentwidth exch def
dup length currlength add
/currlength exch def
currentfont

} for
currlength 1 le { setfont show } { %ifelse

/adjust %def
columnwidth currentwidth sub
spaces 0 eq { %ifelse

currlength 1 sub
}{ %else

spaces
} ifelse div

def
num 2 idiv %repeat

spaces 0 eq { %ifelse
{ %repeat

setfont adjust 0 3 -1 roll ashow
}

}{ %else

chapter 4 EMULATORS AND TRANSLATORS 65

{ %repeat
setfont adjust 0 32 4 -1 roll
widthshow

}
} ifelse

repeat
} ifelse

 } bind def
%%EndProcSet: justify 1.0 0

%%BeginProcSet: linemulator 1.1 0
 /buff 1000 string def % longest line for "readline”

 % for recognizing escape sequences to change fonts
 % and enter/leave "justify" mode:
 /ESC (^) def % escape character
 /justON (Y) 0 get def % ESC-Y
 /justOFF (N) 0 get def % ESC-N
 /QUIT (Q) 0 get def % ESC-Q
 /zero (0) 0 get def % for subtracting ASCII offset
 /newline { %def

currentpoint exch pop lead sub
dup bottom lt { %if

showpage pop top
} if
leftmargin exch moveto

 } bind def
 /linetoolong { %def

newline (%%[Error: line too long.]%%) show
showpage

 } bind def
 /printline { %def

JUST { %ifelse
counttomark 2 ge { justify } if

}{
counttomark 1 ge { show } if

} ifelse
newline

 } bind def
 /emulate { %def
 % read currentfile one line at a time. Search for
 % ESC sequences. If not found, just "show" with
 % current font and move on. If justification is
 % turned on, then LEAVE all the strings and the
 % correct font dictionaries on the stack, and call
 % "justify" at the end of the line:

/fmax fonts length def
/top 792 topmargin sub def
/JUST justification def
leftmargin top moveto

chapter 4 EMULATORS AND TRANSLATORS66

/sv save def
{ %loop

mark currentfile buff { readline } stopped {
linetoolong stop

} if
not /done exch def % use the boolean later
{ %loop % handle escape sequences

ESC search { %ifelse
JUST { %ifelse

exch pop exch currentfont exch
} {

show pop
} ifelse
dup length 0 eq {

pop ESC JUST { %ifelse
exch currentfont exch

} if
printline exit

} if
dup 0 get % escape argument
true exch % look for ESC-fontchange?
dup justON eq {

/JUST true def exch pop
false exch

} if
dup justOFF eq {

/JUST false def exch pop
false exch

} if
dup QUIT eq { /done true def exit } if
exch { %ifelse

zero sub % subtract ASCII offset
dup dup fmax le
exch 0 ge and { %ifelse

fonts exch get setfont
dup length 1 sub
1 exch getinterval

}{ %else
pop ESC JUST { %ifelse

exch currentfont exch
}{

show
} ifelse

} ifelse
}{ %else

pop
dup length 1 sub
1 exch getinterval

} ifelse
}{ %else

chapter 4 EMULATORS AND TRANSLATORS 67

JUST { %ifelse
dup length 0 ne { %ifelse

currentfont printline
}{ pop printline } ifelse

}{ %else
dup length 0 ne { %ifelse

printline
}{ %else

pop newline
} ifelse

} ifelse exit
} ifelse

} loop
cleartomark
done { exit } if
currentpoint
/JUST JUST

sv restore /sv save def
def moveto

} loop
showpage
sv restore

 } bind def
%%EndProcSet: linemulator 1.1 0
%%EndProlog
%%BeginSetup
 /columnwidth 432 def
 /justification false def
 /leftmargin 108 def
 /topmargin 72 def
 /bottom 72 def
 /lead 14 def
 /fonts [%def

12 /Times-Roman FS % ESC-0
12 /Times-Bold FS % ESC-1
12 /Times-Italic FS % ESC-2
12 /Times-BoldItalic FS % ESC-3

] def
 fonts 0 get setfont
%%EndSetup
emulate
(turn on justification after this line)^Y
Here is ^1bold^0, here is ^2italic^0, and here is
^3BoldItalic^0.
^NNo other justification is necessary.^Q

chapter 4 EMULATORS AND TRANSLATORS68

4.3 TRANSLATING EXISTING FILE FORMATS

A description of how to write a print format translator is not
directly within the scope of this book, since it most often means
writing an application on a host computer to accomplish the
translation. However, the PostScript language output which is
produced by the translator should be designed carefully, and
there are several issues that are likely to be common to many dif-
ferent kinds of translators.

UNITS

One of the first issues that must be addressed when translating a
print file intended for another printer is to determine what
units or measurements were used in the original file, and to con-
vert or scale them into an appropriate PostScript coordinate sys-
tem.

Conversion between number systems can result in significant
round-off error in computation. When setting text and produc-
ing graphics, exact tolerances are needed to preserve the quali-
ty of the page image. It is best to study the relationship between
the host units used by the host application and the default
PostScript coordinate system and to perform the simplest possi-
ble conversion.

One way to map an application’s coordinate system into the
units that the PostScript language uses is simply to use the scale
operator. However, the following issues should be considered if
this technique is chosen:

• Fonts are scaled separately from the user coordinate sys-
tem, but they are rendered through the current trans-
formation matrix. If the user-space transformation is
modified, then the numbers provided to scalefont
must be adjusted accordingly.

• The implicit mapping performed by the current trans-
formation matrix represents a calculation. This calcula-
tion is performed whether or not the mapping is used
as a means to reconcile coordinate system differences;
taking advantage of this mechanism is essentially free.

chapter 4 EMULATORS AND TRANSLATORS 69

• showpage performs an implicit initgraphics. It will be
necessary to use gsave and grestore to preserve the
coordinate system across pages, or to set it explicitly for
each page.

For example, if the base coordinate system in a layout applica-
tion uses inches as its unit of measurement, it is much more
efficient to scale the PostScript coordinate system to match this
than it is to programmatically convert numbers into points:

/in. { 72 mul } def
1 in. 2 in. moveto

This requires three name lookups, the execution of a procedure
body, and two multiplication operations (as well as 6 more bytes
of information to be received and parsed by the PostScript inter-
preter) to position the current point. Compare this to the fol-
lowing bit of code, which has the same function and more than
twice as fast:

72 72 scale
1 2 moveto

FONTS

The most basic problem encountered in translating other print
formats into the PostScript language is incompatibility among
font libraries. If a fixed-pitch font is used (one in which all char-
acter widths are the same) the problem is simplified quite a bit,
but in most cases involving proportional fonts, there will be
incompatibilities. Deciding on a philosophical approach to
these kinds of differences is perhaps the most difficult part of
writing a good emulator or translator.

4.4 FONT DIFFERENCES

For both emulators and translators, it is a tough problem to print
a document that was formatted for a different printer. Most for-
matting and typesetting decisions contain very typeface-
specific assumptions. Line layout, justification, centering, and
amount of text on a page are all contingent upon the fonts for
which the document was originally formatted.

chapter 4 EMULATORS AND TRANSLATORS70

When the fonts available on the original printer do not match
the fonts available on the PostScript device in question, the first
step is to introduce a font substitution strategy. Essentially, a table
is built that maps the generic Roman font to Times-Roman on
the PostScript printer, and so on for all the possible fonts. Some
of these substitutions will be better than others (depending on
the similarities or differences between the original and substitut-
ed fonts), but they provide a good starting point. A refinement
to this approach is to define additional fonts in the PostScript
language that may more closely match the fonts on the original
printer, rather than trying to use the existing PostScript fonts.
In either case, when a font is encountered in the original print
file, some PostScript font must be used.

At the second level, a decision must reached as to where com-
promises can be made. For instance, for text which is not
justified, it may be best to allow the normal letter spacing of the
PostScript font to prevail, as long as the lines will be approxi-
mately the correct length. However, with justified text (like the
text you are reading, with the margins aligned on both sides) the
difference in line lengths between the original line of text (set
in one font) and the line set in Times-Roman on a PostScript
printer must be accounted for.

The widthshow and awidthshow operators can be used to
“stretch” a line of text to any arbitrary size, although the result
may not necessarily look like the original text. Typographers
usually prefer to modify the word spacing rather than the letter
spacing (this means using widthshow and stretching only the
space character). If the text is not justified, then the line can
simply be printed with show and the result can be quite good,
depending on the match of the substituted font. (Frequently
the results are much better than the original printer may have
been able to produce, if the font style is not particularly impor-
tant.)

When the decisions have been made as to roughly how to deal
with the original imaging model and font library, there are
implementation decisions to be made. For printing text, switch-
ing from one font to another tends to be the most difficult task,
especially when the text is justified. Depending on the informa-

chapter 4 EMULATORS AND TRANSLATORS 71

tion provided in the original print file, there are two schools of
thought:

• Print all instances of any given font at once, for any par-
ticular page, regardless of their positions on the page.

• Proceed left to right, top to bottom, switching fonts as
necessary.

If the print format you are translating has location information
for each word (or letter, or string) independently, the first
approach may be preferable, especially if there are many font
changes. If the existing print format relies on the current posi-
tion of one piece of text in order to set the next, this is probably
not feasible. Sometimes this kind of positioning information can
be computed from the original print file, even if it is not inher-
ent in the original format.

For instance, the positions of the lines of text (or words of text,
given many font changes) must be determined at some point in
order to print them. Unfortunately, they are often computed in
the printer simply because it seems easier. However, by keep-
ing a width table for all characters of a font, it is fairly easy to
compute the position of any word on a page simply by adding
together the character widths of preceding characters. The
resulting PostScript program can be enough faster to make the
first of these approaches worth considering when the translator
is being designed.

4.5 USING THE IMAGING MODEL

To translate a graphics data file into a PostScript print file, it is
necessary to correctly translate all aspects of the graphic imag-
ing model used by the original creator software. Whenever
graphic print files are produced, assumptions are made about
the capabilities of the output device and the semantics of the
individual graphic objects (for example, the notion of an object
being a circle, not just a series of vectors). Whenever these
semantics can be preserved at a high level, the resulting
PostScript program is more efficient (and the results are usually
better).

chapter 4 EMULATORS AND TRANSLATORS72

PRESERVING HIGH-LEVEL INFORMATION

If the captions on an illustration or other text matter are pre-
served as character information in the print file, the strings can
be passed directly to the printer and set as text. However, if the
text was reduced to a graphic representation such as vectors or
pixels as the print file was produced, the semantic notion of
text is lost. Similarly, if a line of text in the print file is originally
set justified, it means that some computation was made to deter-
mine where the words would be placed. If a print file translator
can determine that all the words on the line are evenly spaced
and were intended to be set justified, an invocation of
widthshow may be generated for the entire line of text, rather
than many instances of moveto and show. This would result in a
significant performance gain.

RENDERING

The physical properties of a display or marking device heavily
influence the way in which graphics are rendered. PostScript
interpreters are currently designed to drive raster devices. In
particular, the final page image is typically represented as a large
pixel array. Other devices, notably pen plotters or vector dis-
plays, may require an input file containing only the equivalent
of moveto and lineto operations. The capabilities of the target
device often factor heavily into the graphic imaging assump-
tions in the print file.

For further discussion on adapting to the PostScript imaging
model, read Chapter 3.

4.6 OPTIMIZING TRANSLATOR OUTPUT

There are several areas where the code produced by a translator
can be optimized. As an example, consider a print file intended
for a pen plotter which is restricted in movement along one axis
at a time. It is common to see sequences like the following for
positioning the pen in a plotting device:

0 150 rmoveto
300 0 rmoveto

chapter 4 EMULATORS AND TRANSLATORS 73

This represents movement first in the y direction, then in the x
direction. By recognizing this sequence in the original print file,
it can easily be optimized by combining the motion into a single
command:

300 150 rmoveto

This is quite a bit shorter than the original, and it will therefore
transmit faster and be interpreted faster. The key is to recognize
sequences or patterns in the original file that might be repre-
sented more compactly in the PostScript language.

Another important optimization relates to setting text. Strings
should be printed in as long a chunk as is practical; entire lines at
a time are best. As an example, consider two approaches to set-
ting a line of text in which the word spacing needs to be
modified slightly, as in the following example:

% first example:
 0 800 moveto (Entire) show
 4 0 rmoveto (line) show
 4 0 rmoveto (at) show
 4 0 rmoveto (a) show
 4 0 rmoveto (time.) show
% second example:
 0 800 moveto
 4 0 32 (Entire line at a time) widthshow

Even if the first of these is optimized by putting the rmoveto
operation into a short procedure, it is still much slower to reposi-
tion between words than to print the whole line, modifying the
width of the space using widthshow, as is done in the second
part of the example.

Chapter 7 contains more detailed information on text setting
algorithms.

4.7 COMPUTATION AND DECISION-MAKING

In general, the goal when writing a PostScript language driver is
to distill out as much computation as possible from the
PostScript program. The PostScript language is extremely

chapter 4 EMULATORS AND TRANSLATORS74

flexible, but it is designed as a final-form output representation,
not as a layout or computation tool.

Making decisions at the PostScript interpreter level can also be
quite expensive. As usual, it is best to make the decisions on the
host computer if possible. Consider the mechanism presented
in listing 4-4 for performing line wrapping. This is not a recom-
mended approach, given the amount of computation per-
formed.

listing 4-4

%!PS-Adobe-2.0
%%Title: example of what not do to
 /SH { %def

dup stringwidth pop
currentpoint 3 1 roll
add 300 gt { %if

72 exch 48 sub dup 36 lt { %if
showpage
pop 700

} if
moveto

}{ %else
pop

} ifelse
show

 } bind def
%%EndProlog
 72 700 moveto
 /Times-Roman findfont 48 scalefont setfont
 (As) SH (usual,) SH (it) SH (is) SH
 (best) SH (to) SH (make) SH (the) SH
 (decisions) SH (on) SH (the) SH
 (host) SH (computer) SH (if) SH
 (possible.) SH
 showpage
%%Trailer

This program takes input text one word at a time and places
each string on the page. Right before printing each word, its

chapter 4 EMULATORS AND TRANSLATORS 75

width is computed and added to the current point on the page.
If the resulting position would exceed the right margin, that
word is moved to the next line. If that new line is below the bot-
tom margin (36), then showpage is first executed for the cur-
rent page, and the current point is then moved to the top of
the next page. There is a great deal of computation involved in
doing this, and it may cause a PostScript printer to run at less
than one fourth the speed which it might otherwise achieve if
the same page were composed carefully on the host system.

chapter 5 DESIGNING THE PAGE AND THE PROGRAM 77

chapter 5

DESIGNING THE PAGE
AND THE PROGRAM

Computers are at a double disadvantage in
the production of documents. They are not clever,

like secretaries, nor can they read penciled
proofreader’s marks, like typographers.

– Brian K. Reid

5.1 INTRODUCTION

An important aspect of designing printer driver software is to
adapt the application’s graphic data structures to the PostScript
language imaging model. If the application has a representation
for text, exactly how is it maintained? How are graphics edited,
stored, and represented? What might be the relationship
between filled regions in the PostScript language and the graph-
ic texturing in the application’s own representation?

As is the case with any output device, these internal graphic
imaging models must be translated into a format appropriate for
the printer: the PostScript language. The subject of this chapter
is the task of designing the page description as a software appli-
cation in its own right.

5.2 PAGE LAYOUT CONSIDERATIONS

One of the basic ideas in the PostScript language model is the
coordinate system. It is best to think in terms of user space, and
not about the actual paper—the job of getting a piece of paper
under the coordinate system for printing is almost the last con-
sideration, and the PostScript language is infinitely flexible
about the exact mapping of the user coordinate system onto the
physical paper.

chapter 5 DESIGNING THE PAGE AND THE PROGRAM78

Frequently, one of the first questions that arises in the early
stages of laying out a PostScript language driver is: “Where is the
top of the page?” Many imaging models work from the top of
the page with positive y coordinates growing downward, rather
than using the lower left corner as the origin. The way to think
about this in the PostScript imaging model is to answer: “There is
no page at the composition stage, only an infinite real number
coordinate system.”

A good way to think about page composition is to imagine the
desired page at any size: 11 inches by 18 inches, 36 inches by 48
inches, or 8-1/2 inches by 11 inches, it doesn’t matter. What
matters is the relative positioning of page elements, the overall
proportions of the page, and its design. The page can easily be
scaled to print at any size and orientation, and on any kind of
paper (or on many sheets instead of one) without much trouble.
It is most important to consider how the page elements will
interact with one another.

In fact, the individual page elements should probably interact
very little. That is, each page element should be self-contained,
and be placed and executed individually. Columns of text (or
perhaps even individual lines of text) might be considered to be
independent page elements. In this context, independent
means that there should be no “ripple effects” from, say, chang-
ing the location of one page element, or selecting a thicker line
weight or a different font. This kind of context should be isolat-
ed from one page element to another.

PAGE NESTING AND INDEPENDENCE

It is important that all of the individual page descriptions within
a document print file maintain functional independence from one
another. This means, informally, that you should not define a
procedure in the midst of page 1 and then use it again on page 2.
It also means that there should be contextual independence
between the pages. There should be no leftover graphics state,
no reliance on the contents of a variable that may have been
defined on a previous page, and no carry-over of the current
font. The motivations for this are many. Most important among
them are the ability to reverse the pages for printing, and the
ability to print pages in parallel. There is a much fuller coverage

chapter 5 DESIGNING THE PAGE AND THE PROGRAM 79

of this in Chapter 6, but it is mentioned here because it affects
page layout design directly.

All programs in the PostScript language should be written as if
they were subroutines rather than the main program. You should
avoid PostScript language operators which are absolute (for
instance, initgraphics, grestoreall, defaultmatrix, and so on).
For example, a document that is composed to print on standard
letter-sized paper should be written in such a way that it can eas-
ily be printed 2-up (two half-size page images on a single sheet
of paper, side by side). In order to accomplish this, the coordi-
nate system must be scaled to half its original size. If the docu-
ment executes initgraphics, this effect is nullified, since the
default transformation matrix is installed. Even simply printing
a page in “landscape” mode will not work if the file contains a
call to initgraphics or grestoreall. There is further discussion of
this in Chapter 6.

Note:
Never initialize or replace the existing state of the inter-
preter. All changes should be modifications to the exist-
ing state, including changes to the transformation
matrix, the halftone mechanism, the transfer function,
and redefinitions for operator names. Always concate-
nate the new procedures or matrices with the existing
ones.

5.3 PRODUCING POSTSCRIPT LANGUAGE OUTPUT

The fundamental level of a PostScript driver is the “print state-
ments” in the host application which actually emit code frag-
ments. This level is often overlooked in the overall design of a
PostScript driver, but it is an extremely important area to consid-
er, especially in terms of efficiency. It is at this level that the
basic translation from the application’s internal data structures
to the PostScript print format takes place. It is an important
place to consider some of the higher-level concerns:

• Analyze the geometry or properties of the object being
generated, and how it relates to the inherent PostScript
imaging model.

chapter 5 DESIGNING THE PAGE AND THE PROGRAM80

• Identify the aspects of this page element that can be
considered data, and the order in which these data are
needed at the PostScript level.

• Perform any calculations necessary to convert data from
the program’s internal representation into the desired
PostScript language representation.

• Decide whether to generate native PostScript code at
this stage, or to generate a procedure call to a procedure
defined in the prologue.

The machine-generated part of the data stream (the script)
should be as compact, modular, and efficient as possible. The
script segment of a PostScript program is tightly linked to proce-
dure definitions in the prologue, and a large part of the design
process for a PostScript language program is to decide what the
distribution of labor should be between the prologue and the
script.

Note:
Remember that the PostScript language is interpreted,
and that it is a programming language only as one
aspect of its design. It is best not to defer calculation
(such as division problems, computing the diameter of a
circle, or figuring the length of some text) to the inter-
preter. Instead, perform these calculations on the host
system as the script is being generated, providing the
data to the procedures in the format expected by the
PostScript language and the individual operators used.

5.4 ROUND-OFF AND COORDINATE SYSTEMS

Raster output devices are digital. That is, the pixels that make up
device space are discrete, and you either hit one of them or you
don’t. The user space coordinate system in the PostScript lan-
guage model, however, is a real number coordinate system,
based on the printer’s point (1/72 of an inch). This permits very
accurate construction of paths, since the paths are maintained
as points in an ideal coordinate space. When the paths are paint-
ed, the decision is made as to which of the pixels should be
painted.

chapter 5 DESIGNING THE PAGE AND THE PROGRAM 81

Essentially, there are two possible approaches in a digital device
such as a laser printer:

1. A moveto or lineto instruction falls on the nearest pix-
el boundary in device space.

2. A path operation (like moveto) is maintained as a real
number.

Either of these methods could be adopted. The first method
would help ensure uniformity of line weights, for example, but
it would prove far less accurate for constructing curves and other
complex shapes (especially character descriptions in fonts).
The second method is the one chosen for the PostScript lan-
guage. One side effect of this model is that stroked lines (or
filled shapes) may vary by as much as one device pixel, depen-
ding on where the paths fall in device space. There is an easy
way to coerce the path construction operators into behaving
like the first example, if desired. (See Section 9.3.)

Be careful not to make any assumptions about the resolution or
orientation of device space when you use the PostScript lan-
guage, or your program may not be device-independent.

5.5 EFFICIENCY

The overall efficiency of a PostScript program is affected primari-
ly by the following three factors:

1. Data transmission (and tokenizing) time

2. Computation overhead

3. Interpretation time

All three of these are of roughly equal importance, although
one or the other of them may become more significant in a par-
ticular application or environment. For instance, at low baud
rates across a serial connection, data transmission time is likely
to be the primary bottleneck, whereas across a high bandwidth
connection, it is often less significant. However, reducing the

chapter 5 DESIGNING THE PAGE AND THE PROGRAM82

time the scanner takes to tokenize the input stream is
beneficial at any data transfer rate.

DATA TRANSMISSION OVERHEAD

Transmission and tokenization overhead can be minimized by
defining very short procedure names for use in the script sec-
tion of the document (which is usually the largest part of any
PostScript file). Avoiding the retransmission of redundant infor-
mation can also play a large role (for instance, long font names
or extra unnecessary moveto instructions).

Aside from the time it takes to transmit the data to the
PostScript device, the scan time is proportional to the number
of bytes in the data stream. Short identifiers can be scanned
more quickly than long ones. Compare the following two
PostScript language fragments:

%!PS-Adobe-2.0
%%EndProlog
gsave
 10 10 moveto
 20 10 lineto
 20 20 lineto
 10 20 lineto
 closepath fill
grestore
showpage
%%Trailer

%!PS-Adobe-2.0
 /gs /gsave load def /gr /grestore load def
 /m /moveto load def
 /l /lineto load def
 /cf { closepath setgray fill } bind def
 /S /showpage load def
%%EndProlog
gs
 10 10 m
 20 10 l
 20 20 l
 10 20 l
 0.5 cf
gr S
%%Trailer

chapter 5 DESIGNING THE PAGE AND THE PROGRAM 83

The second example is actually longer than the first, but the ini-
tial procedure definitions (the prologue) are only executed
once. For a very short document like this, the first example is
faster. However, it would not take very many more boxes to
change the balance in favor of the second example, since the
amount of information transmitted and scanned for each box is
minimized.

Notice that, in the previous example, each time a box is drawn a
very predictable data stream is produced. In particular, there is
always the sequence of moveto lineto lineto lineto closepa-
th fill. An extremely useful approach in program design is to
look for patterns like this and to factor out repeated procedure
calls from the script. The following fragment defines a proce-
dure called B that combines the functions of m, l, and cf in the
previous example:

%!PS-Adobe-2.0
 /B { %def

gsave
moveto lineto lineto lineto
closepath setgray fill

grestore
 } bind def
 /S /showpage load def
%%EndProlog
 0.5 10 10 20 10 20 20 10 20 B
 S
%%Trailer

COMPUTATION

Consider the following illustration of computation overhead.
The task at hand is to draw an arc of a circle, but the stored repre-
sentation for this arc maintained by the composition software is
much different than the model used by the native arc operator
in the PostScript language. In the original representation, an arc
is represented by storing two corners of the bounding rectangle
of the arc, and two angles representing the starting and ending
points for the arc. (See figure 5.1).

chapter 5 DESIGNING THE PAGE AND THE PROGRAM84

figure 5.1

The arc is stored in the host application simply as these six inte-
gers This representation must be converted to the syntax
required by the arc operator, which uses the center of the arc,
its radius, and the beginning and ending angles to represent the
arc segment. Listing 5-1 is a procedure that draws this arc merely
by passing in the original six numbers as parameters. Incidental-
ly, this listing is presented as an example of what it is best not to
do.

listing 5-1

%! example of how not to draw an arc:
 /origmtx matrix def
 /drawarc { %def

/EndAngle exch def
/StartAngle exch def
/URy exch def
/URx exch def
/LLy exch def
/LLx exch def
gsave

LLx URx add 2 div
LLy URy add 2 div translate

100, 100

300, 300

0¡

90¡

chapter 5 DESIGNING THE PAGE AND THE PROGRAM 85

newpath
URx LLx sub
URy LLy sub
origmtx currentmatrix

3 1 roll scale
newpath
0 0 0.5 StartAngle EndAngle arc

setmatrix stroke
grestore

 } bind def
% end of prologue

 100 100 300 300 0 90 drawarc
 35 10 translate
 % as opposed to this:
 300 200 100 0 90 arc stroke
 showpage

Contrast this to a simple call to the built-in PostScript arc opera-
tor, without any of the attendant computation. The resulting
mark on the page is the same:

300 200 100 0 90 arc stroke

Refer to Section 3.6 for a good procedure to construct and paint
a circle with the arc operator.

INTERPRETATION TIME

Interpretation time is the time spent in the PostScript inter-
preter when no work is being done directly. For example, the
scan time, stack manipulations and name lookup required to
execute 0 0 moveto are interpretation time necessary for estab-
lishing a current point.

Minimizing interpretation time is probably the most effective
way to improve the performance of a PostScript program. The
shorter the procedure is, and the fewer PostScript operators
executed, the more efficient the program will be. This can make
an order of magnitude difference in execution time under some
circumstances, given the interpreted nature of the language.

chapter 5 DESIGNING THE PAGE AND THE PROGRAM86

There are several ways to go about improving your PostScript
program’s efficiency, especially the interpreter overhead:

• Study the listings in this book. The examples throughout
the text have been carefully designed to be efficient.
Look carefully at the balance between the data passed
in the script and the procedures defined in the prologue.

• Study your script. After you have gotten your program
working, take a critical look at the script. Forget the con-
straints that you are working under, and forget the pro-
logue procedures themselves. Are there any patterns in
the output? Can you factor anything out of the script?
There are many clues to the performance of your driver
locked up in the script for an average document.

• Look at your prologue procedures. As a rule of thumb, if
they are more than a few lines long, they are too com-
plicated. If there are more than four or five instances of
roll, dup, exch, or index, you may want to look more
carefully at the data itself. Can it be rearranged? Can a
division be performed by the host application? On the
other hand, if there are a lot of instances of /variable
exch def, look carefully to see if these dictionary
entries need to be made. If the data is completely used
up by the procedure, there is usually no reason to store
the data in a dictionary, and it tends to be much slower
to do so.

• Do a timing test. It is an extremely rare page that should
take more than about five seconds to print. Without
exception. This is true even when writing emulators. If
your PostScript program is taking longer than that to
print a page with text and graphics on it, start simplify-
ing things. The usertime operator can be used for pre-
cise timings.

• Implement special cases. For the most part, procedures
that are generalized to handle several possibilities are a
bad idea in PostScript programming. It is better to make
several simple, slightly different variations and invoke
the appropriate one.

chapter 6 PROGRAM STRUCTURE 87

chapter 6

PROGRAM STRUCTURE
Anything that’s designed to do more than

one thing can’t do any of them well.

– Anonymous

6.1 INTRODUCTION

A PostScript language program contains several levels of struc-
ture. The program file conventionally consists of a prologue, a
script, and a trailer. The prologue may be composed of several
procedure sets, each of which is an independent package of pro-
cedures appropriate for a specific task. The script is divided into
pages, and each page may contain many page elements. Within
the execution of page elements, there are many procedure
calls, and there is a structured interaction between these proce-
dures and the PostScript language operators. The trailer section
often is empty, but it can be used to restore the environment to
its original state at the end of a document.

The program structure is important for several reasons. First, the
structure affects the execution, as is true with most program-
ming languages. The performance and robustness of the pro-
gram are, in turn, linked to its execution. PostScript files also
should be well-formed, according to specific structuring conven-
tions (see Section 6.4) to cooperate effectively with print spool-
ers, page reversal programs, and applications wishing to import
PostScript files as illustrations. There is a thorough discussion in
Chapter 11 of the issues of embedding a complete PostScript
document file within another PostScript file.

6.2 THE PROLOGUE AND SCRIPT MODEL

A good model of organization for a PostScript file is to divide it
into two basic pieces, known as the prologue and the script. The

chapter 6 PROGRAM STRUCTURE88

prologue consists of procedure definitions and constants, and
should contain only definitions (it should not, for instance, con-
tain any modifications to the graphics state). The script is pro-
gram-generated data along with procedure invocations (calls
either to native PostScript language operators or to procedures
defined in the prologue).

A software developer typically writes the prologue by hand, but
the script is generated by software and is usually different for
each document printed. The PostScript interpreter does not
require the clean break in functionality found in the prologue-
and-script model, but it is easier to maintain the software, and,
more importantly, many kinds of pre- or post-processing of
PostScript files depend on this structure. For instance, if the
script can be broken cleanly into pages then host software can
reverse the pages even after the application has produced a
final print file. (See Section 6.3, MODULARITY AND PAGE
STRUCTURE.)

Here is a simple example of a simple program written in the
PostScript language that has an inherent prologue and script:

/F {
findfont exch scalefont setfont

} bind def

12 /Optima-Oblique F
10 10 moveto
(Fairly Oblique) show
showpage

There is only a single procedure definition (the F procedure),
and it must, of course, be defined before it can be executed. It is
significant, however, that the definition precedes all of the exe-
cutable code. For instance, if the 10 10 moveto were performed
first, the file would still execute correctly, but the clean distinc-
tion between the prologue definitions and the executable
script would be lost.

What follows is the same program with PostScript language com-
ments included to indicate the structure of the file. These are
known as structure comments. (See section 6.4.) These comments

chapter 6 PROGRAM STRUCTURE 89

are ignored by the PostScript interpreter, but may be parsed by
other software to determine the program’s structure:

listing 6-1

%!PS-Adobe-2.0
%%Title: example
%%Pages: 1
%%BeginProcSet: TextProcs 1.0 0
 /F {

findfont exch scalefont setfont
 } bind def
%%EndProcSet
%%EndProlog
%%Page: one 1
 12 /Optima-Oblique F
 100 100 moveto
 (Fairly Oblique) show
 showpage
%%Trailer

These structure comments may be used, for example, as guide-
lines to reverse the pages or to print only one page of many.
The last section in this chapter is devoted to these structure
comment conventions, but their use here points out the implic-
it prologue/script structure in the original example program.
Adding the comments identifies the program as a conforming
PostScript language program. These comments should not be
included unless the file adheres carefully to the prologue and
script model and conforms to the PostScript Document Structuring
Conventions. The version number to which it conforms is includ-
ed in the very first line as part of the %!PS-Adobe- comment; in
this case, the version is 2.0.

6.3 MODULARITY AND PAGE STRUCTURE

The PostScript language is context-dependent. This means that
execution usually depends on previously defined context. The

chapter 6 PROGRAM STRUCTURE90

nature of the execution model can be reduced to the following
operations, which are typically performed in sequence:

• Set (or add to) the state of the interpreter. This could
consist of setting the current font, adding to the cur-
rent path, or making a dictionary entry.

• Execute a graphic operation. This includes, for instance,
using show to print characters, applying fill to the cur-
rent path, or executing showpage to print the current
page.

Note that the execution of PostScript operators depends to a
large extent on the current state of the interpreter (in particu-
lar, the graphics state). This is an extremely powerful mecha-
nism, but one which must be understood and used carefully. It is
not necessary to program defensively, but it is usually good to
isolate the interdependency between page elements as much
as possible.

Modularity is an important aspect of program design. It means iso-
lating pieces of code and making them perform independently,
with a rigorously defined interface between them. In the
PostScript language, this might seem to be hard to accomplish,
given the strong dependency upon context. However, by care-
fully looking at the ground state of the interpreter, the context-
dependency can be used to advantage.

GROUND STATE

The ground state in a PostScript interpreter is the default con-
text in which all jobs are executed. The ground state of the inter-
preter is guaranteed to have the following properties:

• The coordinate system (user space) is set up with print-
er’s points as the default measure (72 points to a linear
inch), with the origin of the coordinate system placed
in the lower left hand of the current page.

• There are no marks on the current page (it need not be
erased).

chapter 6 PROGRAM STRUCTURE 91

• There is no current path. (This means that there is no
current point, either.)

• There is no current font.

• The dictionary stack contains userdict and systemdict
(userdict is on the top of the stack).

• All elements of the graphics state have some default set-
ting (for example, butted line end caps, mitered line
joins, and black as the current color). The default graph-
ics state is enumerated fully in the PostScript Language
Reference Manual.

• The current transformation matrix is in its default state
(it is machine-dependent).

This context is the starting place for all programs executing on
the PostScript interpreter. In order to cooperate effectively
with the execution environment, the ground state should be
taken to be inviolable. That is, since the page is blank, it should
not be erased. Since the graphic state is in its default state, one
should not execute initgraphics. Only those elements of the
interpreter’s state which need to differ from the ground state
should explicitly be set. There are several reasons for this: the
programs are simpler; there is usually nothing accomplished by
unnecessarily setting default states; if the state of the machine
differs from the documented default, it is probably done deliber-
ately. For example, to print pages 2-up requires modification to
the current transformation matrix, which initgraphics would
reset.

Some parts of the graphics state are restored naturally to their
default state, and gsave and grestore may not be necessary. For
example, the current point is destroyed naturally by the path
painting operators. If a procedure constructs a path and paints it
without modifying any other aspects of the ground state, then it
need not use gsave and grestore.

Modularity is best achieved by carefully redefining the ground
state and returning to it between elements (modules). That way,
every page element, every document page, and every proce-

chapter 6 PROGRAM STRUCTURE92

dure can expect the same initial state. It may be convenient in
many cases to use the default state of the PostScript interpreter
as the ground state for an application, although a slightly differ-
ent state can be defined at the beginning of the document and
reestablished with save and restore.

THE OPERAND STACK

The PostScript language provides a uniform, rigorously defined
interface between all modules of a program, and it is best to use
this system to provide functional independence among mod-
ules. This mechanism is simply the operand stack. All parame-
ters are passed via the operand stack, and all operators have
very carefully defined semantics in terms of what they expect
on the stack and what they will return on the stack. This is inher-
ently the way programmers write PostScript procedures and
functions, too, but it is important to realize that it is a definition
of the interface between program modules, in addition to being
the only reasonable way to pass information.

Use of the operand stack as both an interface and a data struc-
ture is covered in Section 2.3. For purposes of examining pro-
gram modularity, it is enough to think of it as the communica-
tions medium between modules of a program.

FUNCTIONAL AND GRAPHIC INDEPENDENCE

Two kinds of failures can result when program modules are not
sufficiently independent. They are actually quite different, and
must be considered individually:

• Incorrect functional context (execution errors)

• Incorrect graphic interdependency (an unintended
picture)

Most programmers are familiar with the first of these: if you
don’t define a module correctly or pass it the proper parame-
ters, the program fails. the interpreter will usually alert the pro-
grammer to this kind of difficulty by executing the typecheck or
stackunderflow errors, for example, although occasionally the
program will continue to execute, even though the operands
on the stack may not be the right ones.

chapter 6 PROGRAM STRUCTURE 93

The second kind of failure mode above, which has been termed
“Incorrect graphic interdependency,” is typically a conceptual
error on the part of the programmer, and can be paraphrased:
“It printed, but it did not print as I intended.” This is usually the
result of a kind of ripple effect that occurs when some aspects of
the graphics state carry over from one graphic element to anoth-
er. For example, if the caption under a drawing is linked to the
current point after the drawing is executed, the caption may
end up in the wrong place if the drawing is changed. Similarly, if
the current font at the end of one paragraph is bold and it is not
explicitly re-set to the “roman” face at the beginning of the
next paragraph, the following text may incorrectly print in the
bold font. Unfortunately, many programs which are poorly
designed only get worse as “bugs” like this get fixed. The result-
ing program, after debugging, is typically much more complex
than it should be, and is often characterized by unnecessary
calls to gsave and grestore or explicitly executing 0 setgray at
the beginning of every procedure. These kinds of problems usu-
ally can be traced to a single procedure that failed to restore the
state correctly when it finished executing.

This second kind of graphic modularity is perhaps the more
important one in terms of designing a driver for an application.
Because the order of evaluation for page elements is not
enforced when building a page in the PostScript language, it is
the programmer’s responsibility to determine how (and in what
order) to execute the various graphic elements on a page. This
typically depends upon the composition software’s imaging
model, but it must be carefully considered in order to write a
modular PostScript language program.

SAVE AND RESTORE

Perhaps the best way to ensure independence between graphic
modules is by using the save and restore mechanism provided in
the PostScript language. The save and restore operators capture
a particular state of the interpreter and restore it exactly as it
was. In particular, a well-defined ground state may be saved and
reclaimed between each graphic element on a page. Each indi-
vidual component is then free to modify the graphics state in
any way which seems appropriate (including scaling, rotating,
changing fonts, and so forth), but these changes are guaranteed

chapter 6 PROGRAM STRUCTURE94

to be isolated from other page elements by the save/restore
mechanism.

Since save and restore are somewhat more expensive than
gsave and grestore, they should only be used where the con-
tents of VM need to be restored as well as the graphics state.
They are appropriate at a fairly coarse level, either at each page
boundary, or between page elements that consume memory
(like text blocks, since the strings require storage space).

There is further information on save and restore in Section 13.3
and in Section 3.10.

PAGE ELEMENTS AND THEIR PROPERTIES

When designing programs in the PostScript language, character-
istic graphic elements should be isolated, each of which may
have a set of properties associated with it. These properties
should be defined to be the set of characteristics that may differ
from the ground state. For instance, a line-drawing primitive will
have the line weight defined to be one of its properties, since it
is useful to be able to provide different line thicknesses. On the
other hand, a line-drawing routine need not modify the current
font in order to perform correctly. This approach is a formaliza-
tion of the principle of functional independence. By carefully
isolating which aspects of the interpreter’s state needs to be
changed for each graphic procedure, and by making sure the
state is returned afterward, the necessary independence can be
achieved simply and effectively.

With this approach, each page element will likely have a partic-
ular position on the page as one of its properties. This corre-
sponds to establishing a current point in the graphics state
before the code is executed. In many instances, it seems as
though the position of a page element depends (or should
depend) on some other page element. Part of the work in
designing a driver for an application involves determining the
interdependency between page elements, both graphically
and programmatically.

Listing 6-2 is an example of two routines that have some graphic
interdependency. One is called circle, the other square. Each

chapter 6 PROGRAM STRUCTURE 95

of them calls the fill operator, which makes it implicitly depen-
dent upon the current color. In the example, it can be seen that
setting the gray value affects all subsequently drawn circles or
squares.

listing 6-2

%!PS-Adobe-2.0
%%Title: graphic independence
%%EndComments
 /circle { %def

0 360 arc fill
 } bind def
 /square { %def

moveto
1 index 0 rlineto
0 exch rlineto
neg 0 rlineto
closepath fill

 } bind def
%%EndProlog
 0.5 setgray
 72 100 200 circle
 200 300 100 100 square
 0 setgray
 200 300 300 300 square
 showpage
%%Trailer

Listing 6-3 shows the same two procedures, slightly rewritten to
have the color (gray value) of each shape passed as one of its
arguments. This effectively removes the interdependency
between the objects. If the shapes are likely to be painted with
various gray levels, it is appropriate to pass the shade of gray as
one of the attributes for those page elements. This also ensures
that the ground state is preserved between page elements, and
other procedures can rely on the current color to be as originally
defined.

For each graphic element on a page, for each module of the
PostScript language driver, you must decide exactly how the ele-

chapter 6 PROGRAM STRUCTURE96

ments will behave with respect to one another. A ground state
can be defined that is appropriate for all the various elements
on a page, and each element can provide any alternate proper-
ties that are appropriate.

listing 6-3

%!PS-Adobe-2.0
%%Title: graphic dependence
%%EndComments
 /circle { %def

gsave
arc setgray fill

grestore
 } bind def
 /square { %def

gsave
moveto
1 index 0 rlineto
0 exch rlineto
neg 0 rlineto
closepath setgray fill

grestore
 } bind def
%%EndProlog
 0.5 72 100 200 0 360 circle
 0.5 200 300 100 100 square
 0 200 300 300 300 square
 showpage
%%Trailer

6.4 DOCUMENT STRUCTURING CONVENTIONS

The PostScript Document Structuring Conventions are a formal set
of guidelines for PostScript language programs. Program files that
observe the guidelines are known as conforming files. The pur-
pose of having conforming file standards is to facilitate docu-
ment interchange and promote the development of print
spoolers and font servers. Many documents are composed on a
workstation and printed later on one of perhaps several differ-
ent printing devices. Being able to identify the structure of the

chapter 6 PROGRAM STRUCTURE 97

file permits greater flexibility to adapt the needs of the docu-
ment to a particular printer.

The structuring conventions have a tangible representation in
the form of PostScript language comments that are embedded in
the program file, which delineate its structure. These comments
are intended to be parsed and understood by software, rather
than humans. The format of the comments should be strictly fol-
lowed for this reason. It is also understood that a file which
claims to be a conforming file (by having the appropriate com-
ments embedded) should indeed conform to the structuring
conventions.

The PostScript document structuring conventions are fully docu-
mented in a separate document available from Adobe Systems
entitled PostScript Document Structuring Conventions. They can
also be seen in context in most of the program listings in this
book, although their use here is minimal, to keep the listings
from being lengthy and hard to read. The purpose of the com-
ments is to convey information about the program to parsing
software that may be interested in determining its structure (or
its resource requirements, such as downloadable fonts). The
structuring rules, including page modularity, are required for par-
allel processing, page reversal, and other document handling
needs. Please refer to Chapter 10 for further information on
PostScript file interchange standards.

chapter 7 THE MECHANICS OF SETTING TEXT 99

chapter 7

THE MECHANICS OF
SETTING TEXT

You shall see them on a beautiful quarto page,
where a neat rivulet of text shall meander

through a meadow of margin.

– Richard Brinsley Sheridan

7.1 INTRODUCTION

Setting text is one of the most common operations performed
by many printing applications, and one of the most difficult.
There are many aspects of typography and graphic design that
can be difficult to accommodate in a computer program. For
example, a typesetter may expect justified text, even when it
contains different fonts or point sizes, kerning of the text based
both on the point size and on specific pairs of letters, and all at
the full rated speed of the printer. Setting non-Roman text or
using font characters as symbols presents another class of prob-
lems but uses the same mechanisms in the PostScript language.

Many of the requirements of setting text are in fact document
formatting issues. For instance, establishing margins, laying out
lines, or choosing a text point size are decisions that are typical-
ly made by a word processing application or some other layout
software. Writing a PostScript language driver is the task of con-
verting the document formatter’s representation of text into a
printable form.

This chapter is devoted to the mechanics of setting text in the
PostScript language. A primary focus is efficiency: how to get the
job done as fast as possible. Most of the topics are specific to pro-
portional fonts and traditional typography, although the con-
cepts should apply as well to monospaced fonts and special
requirements.

chapter 7 THE MECHANICS OF SETTING TEXT100

Unfortunately, optimizing the text-setting portion of a driver
depends to some extent on the nature of the text being set. It
may be that an algorithm that works well for setting many lines
of text in the same font becomes too slow when fonts are
changed frequently, or that a method that assumes line spacing
is uniform may be difficult to adapt to display typography. Sever-
al different approaches and algorithms are presented in this
chapter, and the software designer must choose which ones are
appropriate for a particular task. In many instances, it is best to
build in several mechanisms, and to invoke one or the other of
them depending on the text being set.

Note:
There is one principle to keep in mind when deciding
upon an algorithm for setting text. The longer the
string presented to one of the show operators, the
more efficient the system is likely to be. This is because
the PostScript language built-in operators, such as show,
widthshow, and ashow, operate essentially at com-
piled speed once they have been invoked. Each moveto
or div operation performed must first be interpreted,
which is significantly slower.

7.2 CHARACTER WIDTHS

Formatting text requires access to character width information.
In order to decide where to break a line of text, one needs to be
able to compute the length of the line of text by adding up the
widths of the individual characters in the line. In order to cen-
ter a heading on a page, one needs to know what the width of
the heading is.

Line breaks and centering are formatting issues. Making a deci-
sion to break a line is a document-wide decision, since it can
affect page breaks or paragraphs, which in turn can affect the
rest of the document. Under most circumstances, the formatting
of a document is left to document composition systems, and is
not appropriate at the printing stage.

The standard approach to document formatting is to make charac-
ter metric information available in a format that can be used by

chapter 7 THE MECHANICS OF SETTING TEXT 101

host composition software. All a word processor needs to be able
to use a new font is a table with the widths of all the characters
in the font. In a screen display system, a set of screen fonts may
be required, as well, although the pixel widths of the screen
characters may or may not be accurate enough for careful type-
setting. Usually both width tables and screen fonts are required.
Adobe Systems typefaces are made available with separate met-
rics files in a file format designed to be parsed by application soft-
ware. These files are known as AFM files (for Adobe Font Met-
rics). A complete description of the format of these files is found
in a separate document available from Adobe Systems, entitled
AFM Files: An Interchange Format for POSTSCRIPT® Font Met-
rics. These files also contained detailed kerning and ligature
information. (Their use is discussed in Section 7.6.)

The width of a character is defined to be the amount by which
the current point is modified after printing the character. For
Roman character sets, the width typically includes the left and
right sidebearings, which are a comfortable amount of space on
each side of the character for good letter spacing.

Figure 7.1 is an illustration of four characters (including a space
character) from the font StoneSerif (which is also the font you
are reading), that shows the character widths and sidebearings.

figure 7.1

Notice that the physical width of the two characters is not quite
the same as the optical width of the characters, due to the side-

w at
character bounding box

character width (displacement)
sidebearings

chapter 7 THE MECHANICS OF SETTING TEXT102

bearings. This is often ignored in ordinary typography, although
it can be handled by obtaining the bounding box of the charac-
ters at each end of the string to determine what the side-bear-
ings are. The bounding box provides the corners of an imaginary
rectangle that just touches all the extremes of the character
shape (hence “bounding”). This information is given as an off-
set from the character origin, and therefore provides the left
side-bearing directly, and can be subtracted from the width of
the character to determine the right side-bearing. The bounding
box of each character is also provided in the AFM files.

7.3 MARGINS AND JUSTIFICATION

In setting columns of text (or “body copy”) there are often mar-
gins observed on each side of the lines of text. These margins are
usually specified as the amount of white space between the text
and the edges of the paper, but this is not a very specific mea-
surement when a document may be printed on more than one
size of paper. A better measure probably is to specify the start-
ing point of the text, and the line length of the text. These start-
ing point for the text is certainly needed for setting with the
PostScript language. There are four basic types of line layout
that are in common use: centered, flush left, flush right, and
justified. These are also sometimes referred to as centered, left-
justified, right-justified, and fully-justified. In Figure 7.2 is an
example with four text blocks, each of which is set in one of
these styles.

One might also want to indent the first line of a paragraph of
text or provide unusual borders around which to “flow” text.
These can all be handled relatively easily if both the starting
point of the text and the particular line length are maintained
by the composing application.

chapter 7 THE MECHANICS OF SETTING TEXT 103

figure 7.2

In listing 7-1 some procedures are defined that implement
“rightshow” and “centershow”. These procedures do a fair
amount of calculation, and are only appropriate if the widths of
the strings cannot be determined at the host (for instance, they
might be used in a printer emulator). Generally, the host appli-
cation will already have determined precisely where the text
should be placed, and can simply use moveto and show for all of
the above styles.

These procedures combine the moveto and show operations.
Both the x, y values of the location on the page and the string to
be printed are passed on the operand stack. This is faster than
doing separate name lookup and execution on both moveto and
show. Notice that the margins are maintained by the host appli-
cation, and an explicit location on the page is passed for each
string.

Then this ebony bird
beguiling my sad fan-
cy into smiling,
By the grave and stern
decorum of the coun-
tenance it wore,
“Though thy crest be
shorn and shaven,
thou,” I said, “art sure
no craven,
Ghastly grim and
ancient Raven wander-
ing from the Nightly
shore—
Tell me what thy lord-
ly name is on the
Night’s Plutonian
shore!”
Quoth the Raven
“Nevermore.”

But the Raven, sitting
lonely on the placid

bust, spoke only,
That one word, as if
his soul in that one

word he did outpour.
Nothing farther then

he uttered–not a feath-
er then he fluttered–

Till I scarcely more
than muttered “Other

friends have flown
before—

On the morrow he
will leave me, as my

Hopes have flown
before.”

Quoth the Raven
“Nevermore.”

an excerpt from
The Raven

by Edgar Allan Poe
February, 1845

Much I marvelled this un-
gainly fowl to hear dis-
course so plainly, Though
its answer little meaning–
little relevancy bore; For we
cannot help agreeing that
no sublunary being Ever yet
was blessed with seeing bird
above his chamber door—
Bird or beast upon the sculp-
tured bust above his cham-
ber door, With such name as
“Nevermore.”

chapter 7 THE MECHANICS OF SETTING TEXT104

listing 7-1

%!PS-Adobe-2.0
%%Title: margin procedures
%%BeginProcSet: text-procs 1.0 0
% moveto-show
 /SH { %def

moveto show
 } bind def
% rightshow
 /RS { %def

moveto
dup stringwidth neg exch neg exch
rmoveto show

 } bind def
%centershow
 /CS { %def

moveto dup stringwidth
2 div neg exch 2 div neg exch
rmoveto show

 } bind def
%%EndProcSet: text-procs 1.0 0
%%EndProlog
 /Times-Roman findfont 14 scalefont setfont
 (Centered about + current point) 306 140 CS
 (+Flush Left at current point) 72 120 SH
 (Flush Right at current point+) 560 120 RS
 showpage
%%Trailer

JUSTIFICATION

For standard text-setting, the natural letter spacing and word
spacing should be used. Letters may be kerned to improve their
visual spacing (see section 7.6), but the lines of text should usual-
ly not be stretched in any way unless it is necessary to justify the
text.

There are two levels of refinement for justifying a column of
text:

chapter 7 THE MECHANICS OF SETTING TEXT 105

• Provide careful hyphenation and word breaking to get
the lines of text as close as possible to the correct
length.

• Modify the word spacing as necessary to stretch the
text to fit the necessary width of the line.

Under normal circumstances, the inter-letter spacing should not
be modified at all. The legibility of text tends to suffer greatly
when letter spacing is compromised. If hyphenation is not avail-
able, or when it cannot be avoided, both word and letter spacing
can be modified simultaneously with the awidthshow operator.

The appropriate way to modify word spacing is to use the
widthshow operator, which was designed with this purpose in
mind. widthshow prints text just as show does, except that it
modifies the character width of a particular character by the
specified amount while it is printing it. By supplying a small
amount by which to change the width of the space character,
word spacing can be modified quite efficiently and easily. List-
ing 7-2 contains an example of its use.

listing 7-2

%!PS-Adobe-2.0
%%Title: widthshow example
 /F {

findfont exch scalefont setfont
 } bind def
 /W /widthshow load def
%%EndProlog
%%BeginSetup
 /sp 32 def % ASCII space
%%EndSetup
 36 745 moveto
 24 /Times-Italic F
 6 0 sp (PostScript Language Program Design) W
 showpage
%%Trailer

chapter 7 THE MECHANICS OF SETTING TEXT106

The computation that needs to be performed is to determine
the amount by which to modify the width of the space charac-
ter. For justified text, the space modifier (SpaceMod) is the
intended line width (LineWidth) less the width of the existing
string (StringWidth) divided by the number of spaces in the
string (Spaces). This computation can easily be performed by
the host application if the character widths are known.

SpaceMod = (LineWidth - StringWidth)

 Spaces

This SpaceMod quantity is passed directly to the widthshow
operator each time it is called. Notice that this value will be dif-
ferent for every line of text, since there are likely to be differ-
ent numbers of spaces (and different string widths) for each
line.

7.4 HANDLING DIFFERENT FONTS

Justifying lines of text in which there may be font changes (or
point size changes) requiring several instances of show require
more careful computation to determine the exact position of
each of the components.

The larger the string that is provided to show, the more efficient
the driver will be. It is best to break each line into as few pieces
as necessary to accomplish the task. For instance, using
widthshow to modify word spacing is superior to using repeti-
tive moveto and show operations.

Listing 7-3 contains an approach for setting a single line of text
with multiple font changes. The method used is to show all parts
of the line that are in the same font at the same time. This
means first finding, say, all the roman parts of the string and
showing them (put each substring on the stack with its individu-
al x position). Then showing all the bold parts (they could as well
be a completely different font), and so on. This is a somewhat
unusual approach, and requires some careful setup work on the
host system, but it will likely be quite fast when there are many
font changes. It also provides a natural framework for handling
downloadable fonts, since the text is grouped by font used, not

chapter 7 THE MECHANICS OF SETTING TEXT 107

by context on a line. Figure 7.3 shows the output of this pro-
gram.

listing 7-3

%!PS-Adobe-2.0
%%Title: mixed-font text setting
 /FS { %def

findfont exch scalefont
 } bind def
 /SF { %def

Fonts exch get setfont
 } bind def
 /MS { %multiple "show"

counttomark 2 idiv { %repeat
0 moveto show

} repeat pop
mark

 } bind def
 /LINE { %def

gsave
translate
mark % mark is for MS procedure

 } bind def
 /S { %def

moveto show
 } bind def
 /END { %def

pop grestore
 } bind def
%%EndProlog
%%BeginSetup
 /Fonts [%def

12 /Times-Roman FS
12 /Times-Bold FS
12 /Times-Italic FS

] def
%%EndSetup
%%BeginObject: text_block
 0 SF
 save % text block ground state
% first line of text
 72 312 LINE % first line start
 (Here is a line with) 0

chapter 7 THE MECHANICS OF SETTING TEXT108

 (words and) 140.315
 (words.) 238.991
 MS
 2 SF
 (two) 192.971
 (italic) 112.644
 MS
 1 SF
 (bold) 213.311
 (two) 90.984
 MS
 END
% lines 2, 3, and 4 in the text:
 (You shall see them on a beautiful quarto) 72 288 S
 (page, where a neat rivulet of text shall) 72 276 S
 (meander through a meadow of margin.) 72 264 S
% credit for quotation:
 160 240 LINE
 2 SF
 (Richard Brinsley Sheridan) 0
 MS
 END
 restore % to ground state
%%EndObject
 showpage
%%Trailer

figure 7.3

words.words and Here is a line with italic two two bold

You shall see them on a beautiful quarto
page, where a neat rivulet of text shall
meander through a meadow of margin.

Richard Brinsley Sheridan

chapter 7 THE MECHANICS OF SETTING TEXT 109

7.5 LEADING AND POINT SIZE

Leading is the distance between lines of text. In the days of met-
al (lead) type, it referred to actual strips of lead placed between
two rows of type to increase the spacing between them. In con-
temporary computer typesetting, the value typically refers to
the baseline-to-baseline distance between two lines of text,
rather than the distance from the bottom of one line to the top
of the next. Within the context of this book, leading refers to
the distance between baselines.

There are practically no rules governing the height of individual
letterforms in digital fonts. The point size of a font is the metric
by which the font is chosen and set. Originally, the point size of
a lead font was a measure of the slug in which the letterform was
cast. Today, digital outline fonts are not restricted at all in terms
of point size, and the size does not necessarily reflect the
height of the characters, the bounding box, or anything else.
Although information is typically provided for the capital height,
the x-height, and perhaps the ascender and descender heights,
these metrics are not guaranteed to be consistent even across
any individual font, and especially not from one font to anoth-
er. In general, no assumptions should be made about the rela-
tionship between the actual height of characters a font and the
point size. (See figure 7.4.)

figure 7.4

Hjx x-height

descender

point size
capital
height

chapter 7 THE MECHANICS OF SETTING TEXT110

7.6 KERNING AND LIGATURES

Kerning is a modification to inter-letter spacing of text. Kerning
is applied with proportionally spaced typefaces for purely visu-
al reasons: either because it looks better, or because it improves
the legibility of the text.

There are two varieties of kerning: pairwise kerning and track
kerning. Pairwise kerning is an adjustment to the inter-letter
spacing between a particular pair of letters. There is usually a
table of values stored for each font. Since the motivation for
kerning is purely visual, there is no easy way to do it algorithmi-
cally. Track kerning is a change to the inter-letter spacing of an
entire line of text, based on the point size of the font used. For
instance, smaller type should be set slightly wider than normal,
and very large type (display type) should be spaced closer togeth-
er. Again, the reasons are optical. (See figure 7.5.)

figure 7.5

Kerning, at its simplest, involves an adjustment of the current
point after the first character of a pair. This is effectively the
same as temporarily changing the character width, depending
on the following character. The second character is set normal-
ly, although it may itself be a candidate for beginning another
kern pair. The rmoveto operator is suited to adjusting the cur-
rent point, as in the following example. However, it should be
worked carefully into whatever text-setting algorithm is used.

A
AWAY
WAY

standard
letter spacing

tightly kerned
letter spacing

chapter 7 THE MECHANICS OF SETTING TEXT 111

%!PS-Adobe-2.0
%%EndComments
 /S /show load def
 /r /rmoveto load def
%%EndProlog
 /StoneSerif findfont 48 scalefont setfont
 100 100 moveto
 (A) S -5.5 0 r
 (W) S -6.8 0 r
 (A) S -5 0 r
 (Y) S
 showpage

There is a bit of unnecessary interpreter overhead for each char-
acter printed, in this example. This can be tightened up a bit,
using the kshow operator; notice that the values for rmoveto
are based on the user-space coordinate system. If the text were
set at a different point size, these values would be different, as
in the following example:

%!PS-Adobe-2.0
%%EndComments
 /K { %def

{ pop pop 0 rmoveto } exch kshow
 } bind def
%%EndProlog
 /StoneSerif findfont 48 scalefont setfont
 100 100 moveto
 -5 -6.8 -5.5 (AWAY) K
 showpage

This procedure minimizes some of the interpreter overhead,
since fewer name lookups are performed, and since bind is per-
formed on the procedure body. The main drawback of this
approach is that kshow will always execute the procedure
between every pair of characters in the string. If no kerning is
desired, 0 must still be supplied on the stack (resulting in the
unnecessary execution of 0 0 rmoveto). The viability of this
approach depends on the amount of kerning that needs to be
done. If only an occasional pair of characters is kerned, this is
not a good approach. However, if every letter is positioned indi-
vidually, the K procedure above might be a good choice.

chapter 7 THE MECHANICS OF SETTING TEXT112

Another approach to kerning is to use a negative width space
character, and actually put the character in between the pair of
letters to be kerned. The show operator will then automatically
adjust the position based on the width of the kern character.
The only difficulty with this is that in order to provide enough
flexibility in kern values, many space characters of varying
widths are required. It is also more difficult for the composing
application to insert the extra space characters wherever kern-
ing is required.

Listing 7-4 contains a good hybrid approach. A line of text is set
by breaking it into pieces that are as long as possible, and placing
all the strings on the operand stack along with some extra infor-
mation. There are three variations on the theme: stackshow,
which prints several strings on the stack, each with a different
font (supplied on the stack); kernstackshow, which performs
the same operation but permits a value for rmoveto between
strings; kernshow, which permits kerning values but not font
changes. Each of them provides for a fast approach to setting
text, where the component strings are made as long as possible,
depending on the lines of text in the host application.

listing 7-4

%!PS-Adobe-2.0
%%Title: text-procs.ps
%%Creator: Glenn Reid, Adobe Systems
%%EndComments
%%BeginProcSet: general 1.0 0
 /F { findfont exch scalefont setfont } bind def
 /Fdef { findfont exch scalefont def } bind def
 /M /moveto load def
%%EndProcSet: general 1.0 0

%%BeginProcSet: text-procs 1.0 0
% mark (text) fontdict (text) fontdict ... stackshow
 /stackshow { %def
 % reverse stack order first:

2 2 counttomark 2 sub { -2 roll } for
counttomark 2 idiv { %repeat

setfont show
} repeat pop

 } bind def

chapter 7 THE MECHANICS OF SETTING TEXT 113

% mark (Txt) font rX rY ... kernstackshow
 /kernstackshow { %def

4 4 counttomark 2 sub { -4 roll } for
counttomark 4 idiv { %repeat

rmoveto setfont show
} repeat pop

 } bind def

% "kernshow" is like "stackshow" except that it does
% not use a font dictionary for each string. It
% should be used when the kerned text is all set in
% the same font.

% mark (text) rX rY (text) rX rY kernshow
 /kernshow { %def

3 3 counttomark 2 sub { -3 roll } for
counttomark 3 idiv { %repeat

rmoveto show
} repeat pop

 } bind def

 /MM { moveto mark } bind def
%%EndProcSet: text-procs 1.0 0
%%EndProlog
%%BeginSetup
 /F1 50 /StoneSerif Fdef
 /F2 50 /StoneSerif-Semibold Fdef
 /F3 50 /StoneSerif-Italic Fdef
%%EndSetup
%%Page: 1 1
 F1 setfont
 36 430 MM
 (S) 0 0 (W) -4 0 (EPT A)
 -4 0 (W) -8.0 0 (A) -9.25 0 (Y) -6.75 0
 kernshow
 36 380 MM
 (S) F1 0 0 (W) F1 -4 0 (EPT) F1 -4 0
 (A) F3 -4 0 (W) F3 -8.0 0
 (A) F3 -9.25 0 (Y) F3 -6.75 0
 kernstackshow

 showpage
%%Trailer

chapter 7 THE MECHANICS OF SETTING TEXT114

Ligatures are also used to improve the visual quality of text.
These are specially designed characters that comprise two (or
even three) sequential letterforms. For instance, the two letters
f and i, when set together, may be combined into a single shape:
fi. This can affect composition software since the width of the fi
ligature is usually different than the sum of the widths of the f
and i characters. (See figure 7.6; the font is Stone Serif-Italic.) Lig-
atures cannot usually be added to a font—they are part of the
original font design. However, the application should recognize
and replace sequential instances of, say, f and i, with the single fi
ligature character. Spelling checkers, hyphenation tables, and
justification algorithms need to know about them, as well.

figure 7.6

7.7 ENCODING AND CHARACTER SETS

A typical PostScript language font program is a collection of pro-
cedures, each with a particular name, stored into a dictionary.
Each of these procedures, when executed, draws one character
shape. There are other entries in a font dictionary, but all of
them are used to set up or execute one of the character-drawing
procedures.

The collection of character procedures that are stored in a font
is known as the character set of that font. There can be any num-
ber of these character procedures stored in the font dictionary.
There is no limitation (other than available memory) on the
total number of characters. There is, however, a limitation on
how many of them can be accessed at any particular moment.

fig. five
Use of the fi ligature

chapter 7 THE MECHANICS OF SETTING TEXT 115

Access to font characters is controlled through the encoding
mechanism.

The characters in a font currently must be accessed by character
code. A string presented to the show operator can be thought of
simply as a sequence of ASCII bytes, each of which is actually
just an index into the encoding vector for the current font. The
encoding vector is an array of 256 name objects, each of which
should be the name of a procedure stored in the font dictionary.
The show operator actually presents the integer character code
to the BuildChar procedure in each font, and it is up to that pro-
cedure to invoke the correct character description.

This mechanism was deliberately set up to provide an easy way
to change the mapping between the codes in the string and the
characters that are actually selected from the font. Each font dic-
tionary is required (by definefont) to have an array named
/Encoding as one of its top-level entries. To reencode a font,
copy the font dictionary, put in a different Encoding vector,
and rename the font. Listing 7-5 contains a good reencoding
algorithm. It is designed to avoid having to provide redundant
data. A block of sequentially encoded names can be specified by
providing only the initial encoding value—the others are
assigned in sequence.

listing 7-5

%!PS-Adobe-2.0
%%Title: reencode.ps
%%EndComments
 /F { %def

findfont exch scalefont setfont
 } bind def
%%BeginProcSet: reencode 1.0 0
% This file defines a procedure called "R" which
% reencodes a font. It expects three objects on the
% stack:
%
% [array] /NewName /OldName
%
% The array should contain pairs of
% <number> <name>,
% like "32 /space", each of which defines a slot in the
% encoding and the name to put in that slot. Only

chapter 7 THE MECHANICS OF SETTING TEXT116

% those names that are needed to over-ride the
% existing ones should be specified. An encoding
% value (number) may be specified followed by more
% than one name, like "128 /name1 /name2".
% In this case, the names will be sequentially stored
% in the encoding starting at the initial number
% given (128).
 /RE { %def

findfont begin
currentdict dup length dict begin

{ %forall
1 index /FID ne {def} {pop pop} ifelse

} forall
/FontName exch def dup length 0 ne { %if

/Encoding Encoding 256 array copy def
0 exch { %forall

dup type /nametype eq { %ifelse
Encoding 2 index 2 index put
pop 1 add

}{ %else
exch pop

} ifelse
} forall

} if pop
currentdict dup end end
/FontName get exch definefont pop

 } bind def
%%EndProcSet: reencode 1.0 0
%%EndProlog
%%BeginSetup
/stdencoding [39/quotesingle 96/grave
 128/Adieresis/Aring/Ccedilla/Eacute/Ntilde
 /Odieresis/Udieresis/aacute/agrave/acircumflex
 /adieresis/atilde/aring/ccedilla/eacute/egrave/ecircumflex
 /edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
 /ograve/ocircumflex/odieresis/otilde/uacute/ugrave
 /ucircumflex/udieresis/dagger/.notdef/cent/sterling/section
 /bullet/paragraph/germandbls/registered/copyright
 /trademark/acute/dieresis/.notdef/AE/Oslash/.notdef
 /.notdef/.notdef/.notdef/yen/.notdef/.notdef/.notdef/.notdef
 /.notdef/.notdef/ordfeminine/ordmasculine/.notdef/ae/oslash
 /questiondown/exclamdown/logicalnot/.notdef/florin
 /.notdef/.notdef/guillemotleft/guillemotright/ellipsis/.notdef
 /Agrave/Atilde/Otilde/OE/oe/endash/emdash/quotedblleft
 /quotedblright/quoteleft/quoteright/.notdef/.notdef
 /ydieresis/Ydieresis/fraction/currency/guilsinglleft
 /guilsinglright/fi/fl/daggerdbl/periodcentered
 /quotesinglbase/quotedblbase/perthousand/Acircumflex
 /Ecircumflex/Aacute/Edieresis/Egrave/Iacute/Icircumflex
 /Idieresis/Igrave/Oacute/Ocircumflex/.notdef/Ograve
 /Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde

chapter 7 THE MECHANICS OF SETTING TEXT 117

 /macron/breve/dotaccent/ring/cedilla/hungarumlaut
 /ogonek/caron
] def
stdencoding /_StoneSerif /StoneSerif RE
stdencoding /_StoneSerif-Italic /StoneSerif-Italic RE
%%EndSetup
 90 /_StoneSerif-Italic F
 50 220 moveto (fig. \336ve) show
 showpage
%%Trailer

7.8 COMPOSITE CHARACTERS AND ACCENTS

Many languages require accented characters that may not be
included in the standard character set. Most of the necessary
characters can be derived from combining existing glyphs in the
font. These are known as composite characters. Some composite
characters are already included in fonts from Adobe Systems, but
are not encoded. (They are not present in the StandardEncod-
ing vector that is used in most fonts.) These can be accessed by
merely reencoding the font. (See the previous example pro-
gram). However, for character combinations which are not
already included in the font, some extra steps must be taken to
set up the fonts.

7.9 NON-ROMAN FONTS

Many of the assumptions that are made about setting text can
be challenged by a font that does not contain a standard Roman
alphabet as its character set. In particular, a font may in fact be a
collection of graphic objects, each of which can call upon the
entire richness of the PostScript language during its execution.
Notions of point size, leading, and kerning can take on a differ-
ent meaning when fonts are used for such purposes. In many
ways, display typography requires placement of letterforms as
graphic objects, and some of the generalized rules for place-
ment given in this section apply directly to display type.

chapter 7 THE MECHANICS OF SETTING TEXT118

CHARACTER WIDTHS AND ORIGINS

The correct way to think about a character in a PostScript font is
that it is anchored at the character origin, and that the current
point is displaced by the character width vector after the glyph
has been drawn. Remember that character widths in PostScript
fonts have both an x and a y component. The current point may
be modified as appropriate for specific character sequences.

For example, let us look at a few characters from a music nota-
tion font, Sonata. There are characters in the font which are
designed much like accents are designed in other fonts: They are
intended to be used as composite elements to build up other
characters. Figure 7.7 shows three characters from Sonata: the
quarternotehead, the upstem, and the sxflagup. Alongside
them is the composite character that can be built by painting
these characters sequentially. The sixteenth flag character and
the upward stem both have a width displacement of 0 in both x
and y. That means that the current point does not move at all
after the character has been printed. This permits characters to
be superimposed one on top of another. It also provides perfect
registration of the shapes, with no possibility of position round-
off error. The final notehead character does have a width, and
the current point is left just to the right of the notehead charac-
ter after it is printed. Notice also the offset from the origin that
is inherent to the two composite characters. They are designed
to register exactly with the character.

chapter 7 THE MECHANICS OF SETTING TEXT 119

figure 7.7

When the three characters are set together, a sixteenth note
results. Using one additional character (extendflagup) provides
the capability of building arbitrarily complicated notes. In this
case, the current point is adjusted between characters, but is
restricted to vertical movement. The alignment of the charac-
ters is guaranteed by their design. (See figure 7.8.) Working with
text characters which are in fact used more as graphic symbols
than as conventional text requires some careful thought. The
same design guidelines apply for using setfont and show with
Sonata as they would with StoneSerif. The fewer operations
(and the more characters that can be printed at once with a sin-
gle call to show), the better the performance will be.

There are applications for which specialized fonts can be a big
advantage. For instance, CAD/CAM applications may build a
library of symbols that may be used within a diagram. If they are
used as font characters, then the speed of the font cache can
dramatically decrease printing time for diagrams with many sym-
bols. The font should be carefully designed so that it can be used
with maximum efficiency, and the character widths and origins
planned around where the current point should be.

ˇ\ k \kˇ
upstem sxflagup quarternotehead sixteenth note

chapter 7 THE MECHANICS OF SETTING TEXT120

figure 7.8

Arranging characters on a page is the realm of word-processing
or page composition software. In order to work with non-Latin
character sets, many of the built-in assumptions about text must
be relaxed. For example, word wrapping, line spacing, and
hyphenation are very closely tied to languages which read left
to right, which set characters on a common baseline, and which
have very little variation in vertical placement of characters.
Setting text in Arabic, Kanji, Urdu, Mathematics, or other lan-
guages require much more sophisticated placement algorithms
and judgement. Working with these languages in the PostScript
language can be reduced to two characteristic issues:

• Knowing the origin of the characters is crucial to placing
it in the correct position.

• The character width affects the placement of the follow-
ing character.

Adjusting the current point slightly after printing a character is
called kerning when setting most languages with the Roman
alphabet. Kerning is often considered optional and it is a
refinement to typesetting. In other languages, the current
point may need to be adjusted between every two characters on
the page, depending on the context, and it is not considered
optional. This is not really a kerning problem, but an issue of
placement. But the same principles hold as with all typesetting

ß \ˇ
ß

extendflagup
composite
sixty-fourth note

ß
k

chapter 7 THE MECHANICS OF SETTING TEXT 121

done with the PostScript language—if more than one character
can be passed to show at once, there will be a significant perfor-
mance gain over individually placing each character. Some of
the burden for this lies on the type designer, and some on the
careful placement algorithms used by the layout software.

chapter 8 SCANNED IMAGES AND HALFTONES 123

chapter 8

SCANNED IMAGES
AND HALFTONES

“This affair must all be unraveled from within.”
He tapped his forehead. “These little gray cells....”

– Agatha Christie

8.1 INTRODUCTION

The image operator is the mechanism in the PostScript lan-
guage for printing sampled images of any size in up to 256
shades of gray. These images may be printed at any size and ori-
entation with a minimum of calculation. The PostScript language
also has a built-in digital halftoning system that permits full con-
trol of the rendering of gray shades with halftone screens. This
chapter takes an in-depth look at the image operator and the
halftone mechanism.

8.2 THE IMAGE OPERATOR

The image operator takes data representing an image made up
of many small samples and renders it on the current page at a
specified location, size, and rotation. The data represents an
image that is a certain number of samples wide and high
(represented herein by the width and height, respectively).
Each sample is represented by a one-, two-, four-, or eight-bit val-
ue that assigns a shade of gray to that sample. Each sample will
be eventually printed as a black, white, or gray rectangle on the
output page. (Color PostScript devices will have additional oper-
ators to implement full color images.)

The image operator requires five arguments on the operand
stack. These are as follows:

chapter 8 SCANNED IMAGES AND HALFTONES124

• The width of the image, in samples. For an 8-bit deep
image, this number is the same as the number of bytes
in one row of source data.

• The height of the image, in samples (or scan lines).

• The number of bits per sample in the original data. A
black-and-white scanned image has 1 bit per sample, a
grayscale image may have 2, 4, or 8 bits per sample.

• The image matrix, which is a transformation matrix that
maps user space onto the coordinate system implied by
the scanning process in the original data.

• The data acquisition procedure, which fetches sample
data and leaves it on the operand stack as a string object.

HOW IT WORKS

The image operator multiplies width times height times bits per
sample to determine how many bits of data are needed to render
the image. It then executes the data acquisition procedure as
many times as necessary, imaging each string directly into
device space as it is produced by the procedure. The mapping
provided by the image matrix is applied as the data is being
imaged.

THE IMAGE MATRIX

Sampled data (perhaps from a digitized photograph) has an
implicit coordinate system imposed on it by the scanning pro-
cess. The first sample scanned is, in effect, in position 0,0. The
second sample, assuming a horizontal scan, would be in position
1,0 and so on.

When the image operator prints this sampled image in user
space, it assigns a particular position in user space to each sam-
ple. Thus, there is a coordinate transformation between user
space and “sample space” that is involved in the printing of a
sampled image.

The image matrix that is passed to the image operator is the
transformation matrix that provides the transformation

chapter 8 SCANNED IMAGES AND HALFTONES 125

between the region in user space the final printed image should
occupy and the region in sample space that the image originally
occupied.

Since either the user space transformation or the image matrix
may be modified independently, there are an infinite number
of combinations that will produce the desired image. It is best to
hold one of the matrices as a constant entity, and adjust the oth-
er one based on the image being rendered.

Here are some steps that will simplify use of the image matrix,
and provide a generally correct mapping for any image data into
the user coordinate space.

• Use translate, rotate, and scale to alter user space so
that a one-unit square at the origin would occupy a
space on the current page exactly where you want the
image to be printed. That is, if the lower-left corner of
the image is to be 3 inches to the right and 10 inches
above the current user space origin, and the image is to
occupy a space 1 inch wide and 2 inches tall, precede
the call to the image operator with the lines

save
 216 720 translate
 72 144 scale

• Invoke the image operator, supplying an image matrix
that prints the sampled image in the one-unit square at
the origin. This matrix is a very easy one to calculate.
Images scanned bottom-up and top-down require the
following image matrices, respectively:

 [w 0 0 h 0 0] if scanned from the bottom
 [w 0 0 -h 0 h] if scanned from the top

where w and h are the width and height of the sample
data in samples (not points). For a more complete dis-
cussion of the image matrix, see Section 4.7 of the
PostScript Language Reference Manual.

• Provide a data acquisition procedure. This is covered
more fully in the next section.

chapter 8 SCANNED IMAGES AND HALFTONES126

DATA ACQUISITION PROCEDURES

The data acquisition procedure is a PostScript language proce-
dure body used by the image operator. It is the responsibility of
this procedure to obtain some amount of sampled data, put this
data into a string, and leave the string on the operand stack. The
image operator will call the data acquisition procedure as many
times as necessary, each time using the string left on the
operand the stack, until it has received an amount of data equal
to the (width x height x bits-per-sample) as provided to the
image operator.

The image operator processes the data within the string most
significant bit first. Thus, the string

(T)

left on the stack would be interpreted by the image operator as
the string of bits

01010100

This is the binary representation of the decimal number 84, the
ASCII character code of the T character.

These bits would be interpreted 1, 2, 4, or 8 at a time to repre-
sent the gray value of successive samples (as specified by the
bits-per-sample value passed to the image operator).

The data acquisition procedure used in a particular instance
depends upon the amount and nature of the data making up
the image.

When using strings to represent binary data, careful calculation
is necessary to match the amount of data provided to the
amount of data that the image operator expects to receive. This
is especially tricky if 2 or 4 bits per sample are used.

For example, let us suppose an image is 10 samples wide and 8
scan lines high, and each sample consists of 4 bits of grayscale
information. The call to image will look something like this:

10 8 4 [10 0 0 8 0 0] { datastring } image

chapter 8 SCANNED IMAGES AND HALFTONES 127

The width and height of the image are handed directly to the
image operator on the operand stack. The datastring, howev-
er, must be of the appropriate length to match the dimensions
of the image. Strings contain 8-bit bytes. To represent 10 x 8 x 4
bits of image data, 320 bits of information are needed, which
requires a 40 byte string to contain the 320 bits.

SMALL AMOUNTS OF DATA

If the image is made up of a very small amount of data—a few
dozen bytes or less—it may be most convenient to let the data
acquisition procedure place the string directly on the stack.
That is, the procedure may look something like this:

{ <013f8e40ae183d022f> }

The angle brackets in PostScript language syntax denote a hex-
adecimal (base 16) string. Each pair of characters represents, in
hexadecimal, eight bits of information, or a single byte in the
string. Thus, the above example would leave a nine-character
data string on the operand stack, or 72 bits worth of image data.

This form is most appropriate for small images such as printed
representations of screen characters or icon bit maps. The
PostScript Language Tutorial and Cookbook has several examples
of this kind of data acquisition procedure.

LARGE AMOUNTS OF DATA

Printing a scanned photograph or other large sampled image
requires much more data than can be placed in virtual memory
at once. In these cases, the data should be sent to the printer
“in line” with the PostScript program, immediately following
the call to the image operator. The data acquisition procedure
must arrange to read the input stream, placing the incoming
data into a string in conveniently sized increments.

The following program fragment incorporates such a data acquisi-
tion procedure:

/DataString 512 string def
512 340 8 [512 0 0 -340 0 340]
{

chapter 8 SCANNED IMAGES AND HALFTONES128

currentfile DataString readhexstring pop
} bind image
f6b94f...

This program fragment prints an image consisting of 512
columns of 340 rows each, where each image pixel has a gray
scale specified by an 8-bit value. The image matrix indicates that
the data represents an image scanned from the top down.

The readhexstring operator takes a string object and a file
object (in this case the current file, which is the file object that is
currently being read by the PostScript interpreter). It reads
ASCII hexadecimal data from the file and places the data into
the string until either the string is full or the end of file has been
reached. The readhexstring operator returns a string object on
the operand stack containing data read from the file, and a
boolean object which is false if the end of file was reached
before the string was filled and true otherwise.

In the previous example, the boolean value returned by read-
hexstring was popped from the stack for efficiency, since the
procedure will be called many times by the image operator. For
debugging purposes, or for better error recovery, it is best to
interrogate the resulting boolean and provide some sort of error
message if the end-of-file indication was reached prematurely.

The readhexstring operator takes the incoming data two charac-
ters at a time, interpreting each pair and producing a single byte
in the resulting the data string. It ignores all characters that are
not valid hexadecimal digits, so that the data may include tabs,
spaces, newline characters, and so forth.

The ASCII hex representation of the sample data should imme-
diately follow the call to the image operator, as in our example
above. The data acquisition procedure is called repeatedly, tak-
ing characters from the input stream until the entire 512-by-
340-by-8-bit image has been processed. At that point, the input
stream will be passed back to the PostScript interpreter and the
original program can resume.

chapter 8 SCANNED IMAGES AND HALFTONES 129

A COMMON ERROR AND ITS CAUSE

A common problem when using the image operator results
from a mismatch between the amount of data supplied and the
size of the buffer used by the readhexstring operator. In partic-
ular, if the height times width of the image is not evenly divisible
by the size of the buffer, readhexstring will keep reading the
input stream, looking for as much hexadecimal as it can find
(remember that it just skips anything that is not valid hexadeci-
mal data). This usually means that the word showpage (or any
other part of the program) is treated as data, and the a and e
characters from showpage are read into the string buffer as hex-
adecimal values (the others are ignored). If readhexstring
encounters an end-of-file indication, it returns the boolean
false. However, as in the example above, this value is ignored
(by popping it), and the premature end-of-file condition is not
recognized. The symptom of this is that the page simply does
not print. Nothing in this scenario provokes an execution error,
because each component of the system is behaving as it is sup-
posed to—but the result is not what was intended.

SYNTHETIC DATA

The data handed to the image operator can be generated direct-
ly by the program. For example, listing 8-1 supplies a synthetic
data string to the image operator each time the data acquisition
procedure is called; in this case, the string is the same each time
and represents a gray-scale “fountain” with 256 possible gray
levels (although not all of them will be attainable on low-resolu-
tion devices).

This somewhat unusual approach builds a string of 256 bytes,
each of which ranges from 0 to 255 sequentially (the for loop
accomplishes this, although cryptically). When the image oper-
ator uses this string, each image sample is an 8-bit value, and the
values range continuously from 0 to 255 each of these image
samples is interpreted as a gray value which is then rendered
with the halftone mechanism. The actual number of gray levels
achieved in the fountain will depend on the constraints of the
current halftone screen frequency and the resolution of the
output device, but the transition between them will be as
smooth as possible.

chapter 8 SCANNED IMAGES AND HALFTONES130

listing 8-1

%!PS-Adobe-2.0
%%EndComments
 /DataString 256 string def
 /IM { %def

gsave translate scale image grestore
 } bind def
%%EndProlog
 0 1 255 { DataString exch dup put } bind for
 1 256 8 [1 0 0 256 0 0] { DataString }
 72 72 144 36 IM
 showpage
%%Trailer

The translate and scale operations in the IM procedure locate
the image and stretch it to the desired size. The image is ren-
dered as a single sample in width, with a height of 256 samples.
The image matrix provided maps this into the unit square in user
space, and the scale stretches it to be exactly a 1-inch square on
the final page. (See figure 8.1.)

figure 8.1

Note that, although this image is 1 sample wide and 256 samples
high, the printed size of the image is 1 inch square. Remember
that the size of the printed image is determined by the argu-
ments passed to the scale operator, not by the number of rows
and columns in the sampled data.

chapter 8 SCANNED IMAGES AND HALFTONES 131

8.3 DATA COMPRESSION

Since the image operator provides a generalized mechanism for
acquiring data (the data acquisition procedure), the data may be
compressed on the host system and decompressed by the
PostScript interpreter after it has been transmitted to the
PostScript device. This may drastically reduce transmission time,
but it is quite difficult to make the procedure fast enough to real-
ize a net gain in overall evaluation time.

8.4 HALFTONE SCREENS

Traditional printing methods cannot vary the tone or shade of
ink placed on paper. That is, printing technology allows only
one shade of ink to be placed on the paper at a time. Multi-color
jobs are printed in several passes, one for each color, or they sim-
ulate shades of color by halftoning.

Halftoning is familiar to anyone who has looked closely at news-
paper photographs. This technique reproduces shades of gray
in a final print with small black dots whose sizes are determined
by the desired shade of gray. The larger the dots, the darker the
gray that the eye will perceive. Another technique is to use
very thin lines that grow thicker with increasingly dark gray lev-
els.

Traditionally the way this was accomplished was to lay a
halftone screen across the image and photograph the original
through the screen. A halftone screen had a certain number of
black dots or lines per inch, and were referred to by this number
(for instance, a “60 line screen”). This number is reflected in the
frequency parameter that is provided in the PostScript language
halftoning mechanism.

HALFTONING IN THE POSTSCRIPT LANGUAGE

The PostScript language halftone mechanism parallels the tradi-
tional methods both in terminology and in technology. The
“screen” may be specified at various frequencies and angles, and
the shape of the spot can be specified through an executable
function.

chapter 8 SCANNED IMAGES AND HALFTONES132

The PostScript interpreter prints shades of gray with a digital
approximation of true halftoning. The dots that a PostScript
printer produces are grouped into a square called a halftone cell.
On a 300 dot-per-inch printer using a 60-line halftone screen
and an angle of 0 degrees, this cell is 5 device pixels on a side.
Each gray level is rendered by turning more pixels on in the
halftone cell, and a gray area is provided by “tiling” the area
with these halftone cells.

Most PostScript interpreters by default print black within the
halftone cells in such a way that each halftone cell looks like a
single dot that expands as the gray gets darker, as in the foun-
tain in figure 8.1. This is similar to the results of traditional
halftoning; it is known informally as a dot pattern.

CHANGING THE HALFTONE SCREEN

The PostScript language allows you to change the halftone
screen by which it represents grays with the setscreen opera-
tor. This operator takes three arguments:

• Frequency: the number of halftone cells per inch.

• Angle: the angle from the horizontal by which the
halftone cells are rotated.

• Spot Function: a procedure body that defines the shape
of the halftone spot.

In listing 8-3 is a short program that changes the frequency of
the halftone mechanism to 20 lines per linear inch.

chapter 8 SCANNED IMAGES AND HALFTONES 133

listing 8-2

%!PS-Adobe-2.0
%%EndComments
 /F { findfont exch scalefont setfont } bind def
 /setF { %def

currentscreen
4 -2 roll pop % remove existing frequency
3 1 roll setscreen

 } bind def
%%EndProlog
 gsave

20 setF
 .4 setgray
 250 90 moveto
 300 /StoneSerif-Italic F
 (&) show

 grestore
 showpage
%%Trailer

Figure 8.2 shows a gray character rendered the screen frequency
was set to 20 as in listing 8-2.

chapter 8 SCANNED IMAGES AND HALFTONES134

figure 8.2

8.5 THE SPOT FUNCTION

The setscreen operator considers the halftone cell to be cen-
tered on a set of coordinate axes, with the cell extending for
one unit in each direction. (See figure 8.3.) The spot function
supplied to the setscreen operator must calculate a priority for
each location within the halftone cell.

figure 8.3

&
0,1

1,0

0,-1

-1,0

chapter 8 SCANNED IMAGES AND HALFTONES 135

The spot function is handed the x and y coordinates on the
operand stack that represent the location of the center of each
device pixel found in the halftone cell. The function must calcu-
late a priority value in the range -1 to 1 for each position. The
halftone mechanism will turn on spots within the halftone cell
in order from high to low priority.

For example, the following call to setscreen causes the
PostScript interpreter to render gray levels with a line screen,
instead of a dot screen:

%!PS-Adobe-2.0
%%EndProlog
/DataString 256 string def
0 1 255 {

DataString exch dup put
} bind for
40 45 { pop } setscreen
72 72 scale 1 256 8 [1 0 0 256 0 0] {DataString} image
showpage

The spot function in this case consists only of a pop operation.
The function is called with the stack holding the x and y coordi-
nates (with y on top) of a position within the halftone cell. The
pop removes the y coordinate from the stack so that the priority
of any position in the halftone cell is its x coordinate. That is,
the farther to the right a position is within the halftone cell, the
higher its x coordinate and the sooner the printer will print a
spot at that position.

figure 8.4

.8.40-.4-.8

.8.40-.4-.8

.8.40-.4-.8

.8.40-.4-.8

.8.40-.4-.8

chapter 8 SCANNED IMAGES AND HALFTONES136

The resulting priorities for a 5-by-5 halftone cell (the default in
many PostScript interpreters) are shown in figure 8.4. These pri-
orities render gray areas as a series of lines of varying thickness-
es. The gradual blackening of the halftone cell is performed pix-
el by pixel by the PostScript interpreter, with pixels of highest
priority (as determined by this spot function) being blackened
first as the gray level is varied from white to black.

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 137

chapter 9

COMPLEX GRAPHIC
PROBLEM-SOLVING

If the only tool you have is a hammer,
you tend to see every problem as a nail.

– Anon.

9.1 INTRODUCTION

This chapter focuses on some of the more complex graphic imag-
ing problems that may be encountered when implementing a
driver for a graphics application.

Some of the topics covered in this chapter involve graphic oper-
ations that are not indigenous to the PostScript imaging model.
Nonetheless, there are graphics applications that need to ren-
der these effects on PostScript printers. Emphasis is placed on
the most efficient methods for solving these graphics problems
with the standard PostScript language imaging model.

9.2 PATTERN FILLS

Filling a region with a particular pattern currently presents
some difficulty in the PostScript language. The fill operator
invokes the halftone mechanism to fill a region with some par-
ticular color, but the halftone machinery is not intended for
generalized pattern fills. In particular, halftone screens are ren-
dered directly in device space, which makes it difficult to make
the screens device-independent.

The halftone mechanism is the fastest method of providing a
pattern fill as long as the pattern is not changed frequently.
Since the halftone screen is intended to be set once and forgot-
ten, much of the overhead is done when setscreen is invoked.
Even if only one gray level is needed, they may all be computed

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING138

(by calling the spot function as many times as necessary to build
each possible halftone cell). This makes it fairly expensive to
change the halftone screen. Halftone screens are also very
device-dependent by nature, and do not rotate or scale with the
current transformation matrix. Also, the screens are oriented in
device space, and they probably will not work the same way on
different devices.

Another approach to pattern fills is to use a pattern font. A char-
acter (or a number of characters) in a font may be defined to rep-
resent the fill pattern, and a region may be “tiled” by showing
text within the boundaries of the region. Unfortunately, under
most circumstances this requires use of the clip operator to
establish the boundaries of the region to be filled before the pat-
tern text is painted. This presents two difficulties:

• Clipping can be quite slow if the clipping region is com-
plex (the region to be filled with a pattern, in this case).

• The available path space can overflow when clip is
used on a complex path (yielding a limitcheck error).

However, the pattern font provides a general solution to device-
independent pattern fills, and is a recommended approach.

In listing 9-1 are some sample PostScript procedures which
implement pattern filling algorithms. The approach is to define
a font with pattern characters in it, then select one of those
characters for tiling. The actual fill process uses clip to establish
a clipping region, then uses show with rows of pattern charac-
ters to tile the area. Care is taken to assure that the pattern will
lock into device space. This keeps the pattern from scaling or
rotating, and helps guarantee that there will be no stitching
problems between rows of the pattern.

listing 9-1

%!PS-Adobe-2.0
%%Title: patternfill.ps
%%EndComments
%%BeginProcSet: patternfill 1.0 0

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 139

% width height matrix proc key cache
% definepattern -> font
/definepattern { %def

7 dict begin
/FontDict 9 dict def
FontDict begin

/cache exch def
/key exch def
/proc exch cvx def
/mtx exch matrix invertmatrix def
/height exch def
/width exch def
/ctm matrix currentmatrix def
/ptm matrix identmatrix def
/str
(12345678901234567890123456789012)
def

end
/FontBBox [%def

0 0 FontDict /width get
FontDict /height get

] def
/FontMatrix FontDict /mtx get def
/Encoding StandardEncoding def
/FontType 3 def
/BuildChar { %def

pop begin
FontDict begin

width 0 cache { %ifelse
0 0 width height setcachedevice

}{ %else
setcharwidth

} ifelse
0 0 moveto width 0 lineto
width height lineto 0 height lineto
closepath clip newpath
gsave proc grestore

end end
} def
FontDict /key get currentdict definefont

end
} bind def

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING140

% dict patternpath -
% dict matrix patternpath -
/patternpath { %def

dup type /dicttype eq { %ifelse
begin FontDict /ctm get setmatrix

}{ %else
exch begin FontDict /ctm get setmatrix
concat

} ifelse
currentdict setfont
FontDict begin

FontMatrix concat
width 0 dtransform
round width div exch round width div exch
0 height dtransform
round height div exch
round height div exch
0 0 transform round exch round exch
ptm astore setmatrix

pathbbox
height div ceiling height mul 4 1 roll
width div ceiling width mul 4 1 roll
height div floor height mul 4 1 roll
width div floor width mul 4 1 roll

2 index sub height div ceiling cvi exch
3 index sub width div ceiling cvi exch
4 2 roll moveto

FontMatrix ptm invertmatrix pop
{ %repeat

gsave
ptm concat
dup str length idiv { %repeat

str show
} repeat
dup str length mod str exch
0 exch getinterval show

grestore
0 height rmoveto

} repeat
pop

end end
} bind def

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 141

% dict patternfill -
% dict matrix patternfill -
/patternfill { %def

gsave
clip patternpath

grestore
newpath

} bind def

% dict patterneofill -
% dict matrix patterneofill -
/patterneofill { %def

gsave
eoclip patternpath

grestore
newpath

} bind def

% dict patternstroke -
% dict matrix patternstroke -
/patternstroke { %def

gsave
strokepath clip patternpath

grestore
newpath

} bind def

% dict ax ay string patternashow -
% dict matrix ax ay string patternashow -
/patternashow { %def

(0) exch { %forall
2 copy 0 exch put pop dup
false charpath
currentpoint
5 index type /dicttype eq { %ifelse

5 index patternfill
}{ %else

6 index 6 index patternfill
} ifelse
moveto
3 copy pop rmoveto

} forall
pop pop pop
dup type /dicttype ne { pop } if pop

} bind def

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING142

% dict string patternshow -
% dict matrix string patternshow -
/patternshow { %def

0 exch 0 exch patternashow
} bind def

/opaquepatternfill { %def
gsave
1 setgray
fill
grestore
patternfill

} bind def

/square { %def
gsave

moveto
dup 0 rlineto
dup 0 exch rlineto
neg 0 rlineto
closepath
findfont % a pattern font
patternfill

grestore
 } bind def
%%EndProcSet
%%EndProlog

%%BeginSetup
15 15 [300 72 div 0 0 300 72 div 0 0]
{ %definepattern

2 setlinecap
7.5 0 moveto 15 7.5 lineto
0 7.5 moveto 7.5 15 lineto
2 setlinewidth stroke

} bind
/RIGHTdiagonal true definepattern pop

15 15 [300 72 div 0 0 300 72 div 0 0]
{ %definepattern

2 setlinecap
7.5 0 moveto 0 7.5 lineto
15 7.5 moveto 7.5 15 lineto
2 setlinewidth stroke

} bind
/LEFTdiagonal true definepattern pop

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 143

30 30 [300 72 div 0 0 300 72 div 0 0]
{ %definepattern

2 2 scale
2 setlinecap
7.5 0 moveto 15 7.5 lineto
0 7.5 moveto 7.5 15 lineto
7.5 0 moveto 0 7.5 lineto
15 7.5 moveto 7.5 15 lineto
0.5 setlinewidth stroke

} bind
/crosshatch true definepattern pop

%%EndSetup
%%Page: 1 1
 /RIGHTdiagonal 72 460 100 square
 /LEFTdiagonal 72 480 120 square
 /crosshatch 72 500 140 square
 showpage
%%Trailer

9.3 LOGOS, GRIDS, FORMS, AND SPECIAL FONTS

It is often desirable to create a graphic object that will be print-
ed on every page of a document, such as a company logotype, a
printed form (like an income tax form), or perhaps a back-
ground grid of some sort. Depending on the complexity of the
image, this can be accomplished in one of several ways.

The first (and simplest) approach to this problem is to place the
necessary PostScript code to draw the image into a procedure,
and to invoke the procedure at the start of each page. This is the
most general solution, and if the complexity of the image is not
too great, this is the best approach. Listing 9-2 provides a proce-
dure that will produce a simple logotype.

The start of each page can then begin with an invocation of this
logo procedure. This will help save the transmission and scan-
ning overhead for each page, but the object will still need to be
executed on each page.

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING144

listing 9-2

%!PS-Adobe-1.0
%%Title: logo procedure
%%EndComments
 /logo { %def

% draw at current point
gsave

/Times-Roman findfont
48 scalefont setfont
(G) show -13.5 -14.5 rmoveto (R) show

grestore
-4 -8 rmoveto
/Helvetica findfont 11 scalefont setfont
(glenn) show 22 3 rmoveto (reid) show

 } bind def
%%EndProlog
 gsave

100 100 moveto logo
 grestore
 showpage
%%Trailer

The copypage operator is designed to print the current page
without disturbing the contents of the frame buffer into which
the page has been imaged. This permits reusing the image that
already exists on the page. A form of “electronic mask white”
may be used from one page to the next to erase the fields on the
form and print new data in those areas. (This can be accom-
plished simply by setting the current color to white and using
fill.)

The only difficulty with using copypage is that it doesn’t allow
fast PostScript interpreters to take advantage of parallel process-
ing. In most implementations of the PostScript interpreter
there is a provision for writing bits into one part of the frame
buffer while the other end is being imaged onto paper. In
extremely fast printers there may be many different frame
buffers and a high degree of parallel processing. If the user pro-
gram forces reuse of the same frame buffer by using copypage,

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 145

this parallelism may be defeated (and the printer will run much
slower than its rated capacity). There is a trade-off between
using copypage and executing the procedure on each page. The
use of copypage is discouraged in all but the most unusual situa-
tions.

The third approach that can be used to create a reusable graphic
image is to make it a character in a user-defined font. The font
may contain only a single character, or perhaps many such
images. Each image is simply a procedure that is invoked by the
font machinery as if to draw a character shape. The advantage of
this method is that if the image is an appropriate size to fit into
the font cache, then it will be extremely fast. In listing 9-3 is the
logo procedure from the listing 9-2, placed into font format and
invoked by a single-character show operation:

listing 9-3

%!PS-Adobe-2.0
%%Title: logo font example
%%EndComments
 /F { findfont exch scalefont setfont } bind def
%%EndProlog
%%BeginSetup
%%BeginFont: Logo-Font 1.0 0
 12 dict begin % leave one empty slot for FID

/FontName /Logo-Font def
/FontMatrix [1 0 0 1 0 0] def
/FontType 3 def
/FontBBox [-5 -12 85 50] def
/BuildChar { %def

exch begin
70 0 -5 -12 85 50 setcachedevice
Encoding exch get load exec

end
} bind def
/Encoding 256 array %def

dup 0 1 255 { /.notdef put dup } for pop
dup 71 /logo put % "G" character

def
 /logo { %def

% draw at current point
20 0 moveto

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING146

gsave
/Times-Roman findfont
48 scalefont setfont
(G) show -13.5 -14.5 rmoveto (R) show

grestore
-4 -8 rmoveto
/Helvetica findfont 11 scalefont setfont
(glenn) show 22 3 rmoveto (reid) show

 } bind def
 currentdict end
 dup /FontName get exch definefont pop
%%EndFont: Logo-Font
%%EndSetup
%%Page: 1 1
 gsave

100 100 moveto
1.5 /Logo-Font F (G) show

 grestore
 showpage
%%Trailer

GRIDS

Producing a grid of lines can result in some slightly unexpected
results, due to the rounding of line widths as lines are stroked.
(See also Section 5.4.) The following sequence produces a thin
line on the page:

.1 setlinewidth
72 72 moveto
572 72 lineto
stroke

However, the exact thickness of the line depends on where the
moveto and lineto coordinates fall in device space. PostScript
maintains the full precision of coordinates all the way through
to device space, and it is not until the execution of stroke or
fill that decisions are made for painting individual device pix-
els. Figure 9.1 is an illustration with a moveto lineto stroke
sequence for a short line segment. It shows the interior of the
stroked path and the pixels that are blackened by stroke.

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 147

figure 9.1

Two procedures are defined in listing 9-4 (redefinitions of the
moveto and lineto operators) that provide lines of uniform
thickness, although their spacing cannot also be guaranteed.
The crux of these procedures is the use of the transform and
itransform operators.

The coordinates for moveto and lineto are actually transformed
into device space and rounded off to the nearest device pixel
boundary. The coordinates are then inverse-transformed back
into user space, and the subsequent moveto or lineto is execut-
ed. The points are then guaranteed to land on pixel boundaries,
which will cause stroke to produce a line of a uniform thickness
regardless of where on the page the lines are located.

Notice that the coordinates in device space are not inspected in
any way; they are merely rounded off and returned to user
space. This keeps the code from becoming device-dependent,
since no assumptions are made as to the resolution.

Figure 9.2 shows the line that results when the M and L proce-
dures are used instead of moveto and lineto. Since the locations
are rounded to the nearest device pixel, the stroke operation
always encompasses the same number of pixels to either side of
the path, resulting in an even line.

device space

72 72 moveto 72 90 lineto stroke

current path

actual line on paper

stroke path

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING148

listing 9-4

%!PS-Adobe-2.0
%%Title: line thickness example
%%EndComments
 /M { %def

transform
round exch round exch
itransform
moveto

 } bind def
 /L { %def

transform
round exch round exch
itransform
lineto

 } bind def
%%EndProlog
 gsave

.1 setlinewidth
 10 10 800 { %for

pop 0 10 translate
550 0 M 612 0 L
stroke

 } bind for
 grestore
 showpage
%%Trailer

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 149

figure 9.2

9.4 TRANSFORMATION MATRICES

Coordinate system transformations, including translate, rotate,
scale, and concat, are matrix operations that affect the current
transformation matrix that exists between user coordinate
space and device coordinate space. This mapping is represented
by a six-element array (or matrix). All coordinate system transfor-
mations are combined with the existing transformation simply
by multiplying the existing matrix by the elements of the new
transformation.

Scaling and translating are easy. There are specific elements of
the matrix which directly affect these operations:

[Xscale 0 0 Yscale Xtranslate Ytranslate]

In the following code fragments, the first line in each pair is
equivalent to the second line in the pair:

 3 5 scale
[3 0 0 5 0 0] concat

 100 300 translate
[1 0 0 1 100 300] concat

device space

72 72 moveto 72 90 lineto stroke

current path

actual line on paper

stroke path

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING150

 100 200 translate 2 2 scale
[2 0 0 2 100 200] concat

The concat operator allows you to supply a complete matrix
which is to be concatenated with the existing transformation
matrix. Each of the scale and translate operations in the previ-
ous example is easily represented by specifying the appropriate
matrix and using concat. The scale, rotate, and translate oper-
ators are provided for convenience, but are not strictly neces-
sary.

Rotation of the coordinate space is less straightforward. The
entries in the matrix are actually derived by taking the sin or
cos of the desired angle of rotation:

[cos(angle) sin(angle) -sin(angle) cos(angle) 0 0]

The following is an example of the combined effects of transla-
tion and rotation. In order to set “landscape” mode, the coordi-
nate axes must be rotated 90 degrees and translated so that the
origin remains in the lower left-hand corner of the page. Both
of the following PostScript segments will place a standard
“letter” sized paper in landscape mode:

90 rotate
0 -612 translate

612 0 translate
90 rotate

Notice that in both cases the sequence 90 rotate is used, but the
translation component is not the same.

Note:
These coordinate system transformations are not com-
mutative. That is, if the order of evaluation is changed,
different results may be achieved. By convention, land-
scape pages should always be effected by first rotating
(positive angle) then translating (negative Y value):

90 rotate 0 -612 translate

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 151

As a convention, it is best always to accomplish rotation of a
page into a landscape orientation in this manner (positive 90
degrees for the rotation component, then a negative translation
component along the Y axis). This is so that if the page is nested
in another page or scaled, the landscape orientation can be pre-
served easily.

INVERTED COORDINATE SYSTEMS

It is possible to invert the coordinate system so that positive y
values grow downward, for instance. This particular transforma-
tion can be accomplished as follows:

0 792 translate % top of page
1 -1 scale

This moves the origin to the upper left corner of the (letter-
sized) page, and “flips” the y axis. Note that although graphics
can be easily inverted this way, text requires some special atten-
tion to keep it from being inverted, as well. One way to address
this is to use the makefont operator instead of scalefont:

/Times-Roman findfont
[12 0 0 -12 0 0] makefont setfont

The -12 in the scale matrix inverts the text about the y axis,
which will counteract the inversion of the entire user space
coordinate system, causing the text to be right-side up.

Inverting the coordinate system is a specialized approach, and
probably should be used only when it is difficult or impossible to
use the standard orientation.

9.5 COLOR AND COLOR SEPARATIONS

Printing in color using the PostScript language model provides
some very powerful capabilities. Colors can be specified with a
reflectance model using percentages of using cyan, magenta, yel-
low, and black (using the setcmykcolor operator), which corre-
spond to the four colors used in full process color printing. Color
can also be specified using a luminance model, using either the
hue, saturation, and brightness model (with the sethsbcolor oper-

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING152

ator) or the red, green, blue color model (using the setrgbcolor
operator).

For color printing, the reflectance model is generally used, with
cyan, magenta, yellow, and black as the component colors. Col-
or PostScript printers provide direct support for this color model
through the setcmykcolor operator and through related opera-
tors to control four separate halftone screens and transfer func-
tions. A colorimage operator is also provided for rendering full
color images.

Once a color has been specified in the user program, it is ren-
dered through a PostScript language abstraction similar to the
black-and-white halftoning mechanism. A current color is estab-
lished in the graphics state, and all the painting operators use
the current color as they apply paint to the current page. The
PostScript language interpreter is responsible for producing that
color on a given output device. If the device is a screen, the col-
or must be displayed through available screen phosphors. With
color printing devices, the color may be produced by successive
passes of cyan, magenta, yellow, and black, where each pass uses
the appropriate percentage of color as specified by the user pro-
gram.

COLOR SEPARATIONS

If a PostScript program contains color specification, it can be
printed on any PostScript interpreter, and the device will ren-
der the color to the best of its ability. However, for full process
color presses, you may wish to separate the image into its four
components of cyan, magenta, yellow, and black. This can be
done by producing four photographic masters (camera-ready
plates), one for each process color. These plates are actually
printed in black and white using the standard halftoning mecha-
nism, and each plate is then overprinted with the appropriate
process color ink in the final press run.

Color separations may be obtained simply by redefining the col-
or operators to essentially throw away all but a single process col-
or. The file must then be printed in four passes, where each pass
sifts out a different process color. (See listing 9-5.)

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 153

listing 9-5

%!PS-Adobe-2.0
%%Title: separation.ps
 /separations 24 dict def
 separations begin

/cmykprocs [%def
 % cyan

{ pop pop pop 1 exch sub setgray }
 % magenta

{ pop pop exch pop 1 exch sub setgray }
 % yellow

{ pop 3 1 roll pop pop 1 exch sub setgray }
 % black

{ 4 1 roll pop pop pop 1 exch sub setgray }
] def
/screenangles [%def

105 % cyan
75 % magenta
0 % yellow
45 % black

] def
 end % separations
 % setupcolor takes 0, 1, 2, or 3 as its argument,
 % for cyan, magenta, yellow, and black.
 /CYAN 0 def /MAGENTA 1 def
 /YELLOW 2 def /BLACK 3 def
 /setupcolor { %def

userdict begin
dup separations /cmykprocs get exch get
/setcmykcolor exch def
separations /screenangles get exch get
currentscreen

exch pop 3 -1 roll exch
setscreen
/setscreen {} def

end
 } bind def
%%EndProlog
%%BeginSetup
 CYAN setupcolor
%%EndSetup
%%BeginDocument: originalfile.ps

% entire file is placed here.
%%EndDocument
%%Trailer

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING154

The halftone screen angles used are extremely important to
good color separations. Each process color component should be
printed with a different screen angle to minimize color interfer-
ence in the final press run. The exact angles used are device-
dependent and should be determined separately for each differ-
ent PostScript device. The goal is to provide placement of color
spots that will not interfere with one another, and which will
avoid moiré patterns as the screens are overlaid.

SPOT COLOR

Spot color is much different than four-color process printing. If
you imagine real printing presses, the kind you put ink into
instead of toner, you can imagine using a colored ink instead of
using black. That is a good model of spot color. It is a single color
of ink, rather than a color that is composed as some mix of the
four process colors cyan, magenta, yellow, and black.

There are two sides of spot color: specifying the color and actual-
ly printing it. If and when there are devices which permit print-
ing with two or three (or more) individual colors on a single
device, then those colors must be specified by the user program
in much the same way that shades of gray are specified with the
setgray operator. More commonly, spot color will be mastered
on a black-and-white device and printed on a high-speed press
with colored inks. From the PostScript interpreter’s point of
view, it will be printing only in shades of black, although the
masters may eventually be printed with a colored ink when tak-
en to press.

Probably the simplest way to specify spot color is to be able to
selectively print components of a document. For example, if a
user decides that all chapter headings in a book are to be printed
in a particular color of green, and the rest of the book is to be
printed in black, he or she needs some way to print the docu-
ment in two individual passes: the green pass and the black pass.
To produce the green pass, only those objects in the document
which are specified as green should be printed at all (the black
material is simply not printed).

An application program can permit “tagging” of objects to be
one color or another, and provide a mechanism for printing
only selected objects by naming them. In this way the user can

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING 155

selectively print some part of the document to obtain a separa-
tion. The PostScript interpreter, of course, is simply interpret-
ing and printing graphics in some shade of black or white, and
nothing at all is required at the PostScript level.

If the application produces PostScript code that is sufficiently
modular, each graphic element on the page can be bracketed by
the special comments %%BeginObject and %%EndObject.
These comments simply provide a way to name the graphic ele-
ments on the page. A post-processing program could then selec-
tively extract certain elements of the page for printing. (See
the PostScript Document Structuring Conventions document from
Adobe Systems for more information on these comments).

The PostScript imaging model, however, can complicate the real
world of spot color. For instance, if a black rectangle is drawn
and filled and a green circle is printed on top of it, the PostScript
imaging model completely overwrites the black with the green.
However, if the page is printed in two passes, with one pass con-
taining only the black elements and the other pass only the
green ones, the black rectangle will not have a white circle cut
out of it where the green will go. When green ink is actually
printed on top of the black ink on a regular press, some muddy-
ing of the color will result. To be done correctly, the black pass
should have color removed wherever another color would be
overlaid on top of it. This is a much more difficult thing to accom-
plish, and cannot be done by simply printing individual page
elements selectively.

This kind of separation problem can also occur in four-color pro-
cess printing, if the overlaid colors are printed without first
removing any colors which may precede them.

This nuance of color printing can be accommodated at the
PostScript language level simply by redefining some of the color
specification operators. Rather than extracting and printing
individual objects on a page, all of them may be sent to the print-
er. To print a separation, the color operators are redefined to
print black wherever, say, green is specified, and to print with
white if any other color is called for. Then, in any place where
the green would be obscured by another color above it, that sec-
ond color would be printed in white, effectively erasing that
part of the green image. The technique for this is much like that

chapter 9 COMPLEX GRAPHIC PROBLEM-SOLVING156

found in listing 9-5. The difference is the selection pro-
cess—rather than selecting only the cyan pass, some method of
selection by name must be implemented in order to specify the
spot color. The full details of this specification and separation
technique are beyond the scope of this book. For more detailed
information, please contact someone at Adobe Systems.

chapter 10 FILE INTERCHANGE STANDARDS 157

chapter 10

FILE INTERCHANGE
STANDARDS

Many of the greatest things man has achieved
are not the result of consciously directed thought,

and still less the product of a deliberately coordinated effort
of many individuals, but of a process in which the individual

plays a part which he can never fully understand.

– Friedrich August von Hayek

10.1 INTRODUCTION

PostScript language print files that are intended to migrate
between different environments should observe standard struc-
turing conventions, and they should be device independent.
The standardized structure permits document managers to incor-
porate the documents into other systems and to print them in
the appropriate environment. It also makes parallel processing
possible and provides a mechanism for ensuring that fonts and
other resources are supplied as needed.

10.2 CONFORMING DOCUMENTS

A conforming document is a PostScript document file that correct-
ly observes the structuring conventions. There are two aspects
to a conforming document file:

• Comments: The structure of the file should be delineat-
ed (as appropriate) by structure comment conventions.
These are PostScript comments in a specific format that
can be parsed by applications software to determine
the structure and contents of a PostScript file. (See Sec-
tion 6.4.) The comments include an introductory com-

chapter 10 FILE INTERCHANGE STANDARDS158

ment that marks a file as a conforming file (including a
version number).

• Structure: The structure of the file should be in confor-
mance with the file structuring guidelines. This includes
page modularity (pages should be functionally indepen-
dent) and the avoidance (or careful use) of system-level
PostScript language operators such as initgraphics and
erasepage.

The rules for conformance are not particularly limiting. Con-
forming files are, for the most part, ordinary PostScript language
program files. The notion of conformance is introduced as a guar-
antee to applications software that the file plays by the rules.

10.3 HANDLING PRINTER-SPECIFIC FEATURES

In order for PostScript files to be truly portable, any PostScript
code that invokes a specific device attribute (such as a paper
tray or frame buffer) must be clearly segregated in the structure
of the file. Print file managers (or “spoolers”) can take action to
replace a device-dependent module from a program file, but
only if these sections can be identified easily.

In order to provide a general mechanism for invoking printer-
specific features, Adobe Systems has provided PostScript Printer
Description Files, which collectively set forth a machine-parsable
file format containing a representation for the PostScript pro-
gram fragments needed to invoke particular features on each
printer. These files are arranged by keywords for each feature,
and document management software can easily extract the nec-
essary PostScript to set a paper tray, invoke manual feed, or
determine whether or not a certain font is present in ROM.

Document composition software should produce a PostScript
document file that contains an indication of what printer-
specific features are needed (or what features have been
invoked in that file already, and might need to be changed if
the file is sent to a different printer). This indication is in the
form of PostScript comments:

chapter 10 FILE INTERCHANGE STANDARDS 159

%%BeginPaperSize: Ledger
 statusdict begin

ledgertray
 end
%%EndPaperSize

This PostScript language sequence correctly invokes the ledger-
tray operator on any printer that has this operator in status-
dict. If a document manager wishes to send the file to a differ-
ent printer than was originally intended (that may have a slight-
ly different method for invoking the Ledger paper size), it
should remove the code between these comments, and use the
keyword Ledger to find the appropriate PostScript language seg-
ment from the printer description file, with which it will
replace the previous code sequence. Even if it happens to be
sent to another printer for which ledgertray is the appropriate
operator, it doesn’t hurt to replace it.

10.4 SPECIFYING PAPER SIZES

Formatting a document is different from printing a document. A
document formatting program makes decisions about where
page elements will fall on the printed page. However, in the
PostScript language imaging model, the document formatter lays
pages out in user space. It is easy enough to modify the mapping
between user space and device space to achieve almost any
kind of printing need.

Because of this flexibility in printing, there are really two differ-
ent decisions that need to be made to choose a page size. The
first decision is made when the PostScript print file is formatted.
If the intended page size is, say, 11 by 17 inches (ledger paper),
then the numbers in the PostScript file address user space coor-
dinates anywhere from 0 to 1224 in the x direction. Let us draw
a simple box around the intended page to illustrate this. The
box represents a collection of marks that could be an entire doc-
ument on ledger-size paper. The important thing is to have coor-
dinates in the program that are in the range of 1224 in the x
direction. (See listing 10-1.) Notice the use of the comments to
provide information about the program, especially the
%%BoundingBox comment.

chapter 10 FILE INTERCHANGE STANDARDS160

listing 10-1

%!PS-Adobe-2.0
%%BoundingBox: 0 0 1224 792
%
% <width> <height> <llX> <llY> <thick> box
 /box { %def

gsave
setlinewidth moveto
dup 0 exch rlineto
exch 0 rlineto
0 exch neg rlineto
closepath stroke

grestore
 } bind def
%%EndProlog
 1152 720 36 36 3 box
 showpage
%%Trailer

This program prints a rectangular border (with a line thickness
of 3 points) one half inch in each direction from the edges of an
11-by-17 inch page. The rectangle is 10 inches high and 16 inch-
es long. The coordinates in this file represent a decision to lay
out the box on a ledger-sized sheet of paper, in a sense.

The second decision is to print the document. Notice the dis-
tinction between the composition of the document and the act
of printing it. At this stage, a particular printer is chosen. It is
typical to inspect a proof of the document on the screen first,
then perhaps on a medium-resolution printer, and use a high
resolution image-setter for final output. Each device may have a
different capability for rendering a page size as large as 11 x 17
(including, perhaps, not being able to support it at all).

The actual invocation of a specific paper size should be done at
print time. In listing 10-2 is the same example with specific
printing instructions added. In particular, the ledgertray opera-
tor is invoked to print on 11-by-17 inch paper. This code is put
between a %%BeginPaperSize and %%EndPaperSize com-
ment since the code is (by necessity) device dependent.

chapter 10 FILE INTERCHANGE STANDARDS 161

listing 10-2

%!PS-Adobe-2.0
%%BoundingBox: 0 0 1224 792
%%DocumentPaperSizes: Ledger
%%EndComments
% <width> <height> <llX> <llY> <thick> box
 /box { %def
 gsave

setlinewidth moveto
dup 0 exch rlineto
exch 0 rlineto
0 exch neg rlineto
closepath stroke

 grestore
 } bind def
%%EndProlog
%%BeginSetup
%%BeginPaperSize: Ledger
 statusdict begin
/ledgertray where { %ifelse

pop ledgertray
 }{ %else

90 rotate 0 -612 translate
792 1224 div dup scale
% scale down for proofing on letter paper

 } ifelse
 end
%%EndPaperSize
%%EndSetup
%%Page: 1 1
 1152 720 36 36 3 box
 showpage
%%Trailer

Notice that the PaperSize code checks for the existence of the
ledgertray operator (using known) and if it is not found, the
page is printed much smaller to fit on letter-size paper. This
technique can help provide fallbacks for devices which may
contain unknown features (see also Section 10.6,
“CONDITIONAL EXECUTION”).

chapter 10 FILE INTERCHANGE STANDARDS162

10.5 PRINTER QUERIES

A PostScript language printer has the capability of providing a
great deal of information back to the host computer. After all,
PostScript is a complete programming language with full
input/output support across the communications channel. How-
ever, the process of issuing a query to a PostScript interpreter
can present some difficulties.

A query is defined to be a PostScript program whose sole purpose
is to return some information from the PostScript interpreter
back to the host computer. An example of this might be a short
program to enumerate the names of all the fonts currently
stored in the printer. Queries are typically issued even before
the print file is produced, since some decisions may have to be
made based on the available paper sizes and on the resident
fonts. In an interactive environment, the notion of a query is a
little less strict, since virtually every transaction will provide
some information back to the host application.

By querying the printer (or more generally, the PostScript inter-
preter), information can be obtained about the state of the
interpreter. However, if the issuing software expects a particular
bit of returned information, it may become impossible to intro-
duce a print spooler between the composition software and the
printer (unless the spooler could somehow interpret and
answer the queries). See Chapter 12 for more details on writing
print spoolers for PostScript interpreters.

Since the need for querying is acknowledged under some cir-
cumstances, a specific protocol has been establish whereby
queries are isolated into a single job, followed by an end-of-file
indication. In addition, the queries should have well-formed
PostScript comments to provide information to spoolers as to
the nature of the query. In any case, the queries should be kept
to an absolute minimum. Listing 10-3 is an example of a query
job (two individual queries are contained within the job).
Notice the first line of the file, which contains a special nota-
tion to identify the job as a query job:

%!PS-Adobe-2.0 Query

chapter 10 FILE INTERCHANGE STANDARDS 163

This is so that software reading the comments can quickly ascer-
tain that it is a query job. See the PostScript Document Structuring
Conventions for more detail on this.

listing 10-3

%!PS-Adobe-2.0 Query
%%Title: sample query job
%%?BeginFontQuery: Palatino-Roman
 /Palatino-Roman
 dup FontDirectory exch known { %ifelse

1 % yes
 }{

0 % no
 } ifelse == flush pop
%%?EndFontQuery
%%?BeginVMStatus
 vmstatus exch sub == flush pop
%%?EndVMStatus
%%EOF

10.6 CONDITIONAL EXECUTION

When invoking a PostScript operator that may not be present in
all implementations, it is best to put it in a context of conditional
execution. This way the program can provide a reasonable alter-
native if the feature is not present on a given printer. For exam-
ple, listing 10-4 is an invocation of the ledger-size paper tray
that prints the page scaled down on letter-size paper if ledger is
not available.

listing 10-4

%!PS-Adobe-2.0
%%EndComments
%%EndProlog
%%BeginSetup
%%BeginPaperSize: Ledger
 statusdict /ledgertray known { %if

chapter 10 FILE INTERCHANGE STANDARDS164

statusdict begin
ledgertray

 end
 }{ %else

(Ledger not found. Scaling...\n) print
792 1224 div dup scale

 } ifelse
%%EndPaperSize
%%EndSetup
%%Page: 1 1
 showpage
%%Trailer

10.7 FONT AVAILABILITY

One of the most common difficulties encountered when port-
ing PostScript files from one environment to another is the
availability of fonts. If a document is composed to be printed
with a particular font, it basically should not be printed at all if
the font is unavailable (there are some circumstances under
which font substitution is appropriate—see Chapter 4 for more
on this).

A document file should communicate its font needs to other
software through PostScript structure comments. There are a
number of comments which may apply when fonts are used:

%%DocumentFonts: Optima StoneSans Courier
%%DocumentNeededFonts: Optima
%%DocumentSuppliedFonts: StoneSans
%%EndComments
 ...
%%IncludeFont: Optima
 ...
%%BeginFont: StoneSans
 % font description here
%%EndFont

The %%DocumentFonts comment provides a list of all the
fonts that are actually referenced in the document (a findfont

chapter 10 FILE INTERCHANGE STANDARDS 165

is done). The %%DocumentNeededFonts comment is used to
indicate that there is explicit use of the %%IncludeFont com-
ment. It is an indication that the file should be parsed to satisfy a
font request embedded in the file. The %%DocumentSupplied-
Fonts comment is used where an entire font description is con-
tained within the body of the document file (as a downloadable
font). The font itself is delimited by %%BeginFont and
%%EndFont comments, as in the example. Again, the header
comment is provided for information about what is contained in
the body of the file.

When a file is imported, either from another system or as an
illustration in a document, these comments should be parsed to
determine the font needs of the document being imported.
When appropriate, the importing application must locate the
needed fonts and place them in-line in the file, and/or update
its own structure comments to reflect the aggregate font needs
of its own document file and the imported one.

10.8 PUTTING IT ALL TOGETHER

PostScript document files can have many complex require-
ments. This is partly because the possibilities are so rich, and
because the PostScript language is complete. There are large sets
of manuals provided for most programming environments with
convention after convention that need to be followed for com-
patibility even with different versions of a single machine. The
PostScript language spans many systems and architectures and
the conventions for its use are correspondingly relatively sim-
ple. However, they are extremely important, in much the same
way that all programming conventions are important: they help
ensure compatibility across many kinds of products and environ-
ments. If they are observed properly, everyone benefits.

Here are some brief guidelines for structuring documents prop-
erly, and for using the conventions appropriately, and to
reduce some of the complexity to simple rules of thumb:

• If a structuring convention or comment doesn’t make
sense in the environment that you are working in,
don’t use it. For example, omit the %%BoundingBox

chapter 10 FILE INTERCHANGE STANDARDS166

comment if you are issuing a query, and don’t put in the
%%Page comments if the pages aren’t functionally
independent of one another.

• If you include PostScript code that is not clearly docu-
mented as being a standard part of the language, then
mark this code with some kind of %%Begin and
%%End comments, according to the comment conven-
tions.

• If the entire PostScript job is somehow special (a down-
loaded font, a query, or an exitserver job, for example),
mark it at the beginning of the job according to the con-
ventions.

• If you are unsure of whether your file is conforming, try
importing it into another document as an illustration,
and see if it works.

• Don’t execute any of the initialization operators (any
operator that contains init or default, among others).

• As a rule of thumb, don’t execute anything in the pro-
logue (including save), and don’t define anything new
in the script (unless it is a state variable).

• Don’t try to put save and restore around your whole
job, prologue and all. That is done for you. It also makes
the file non-conforming if you do. Do put save and
restore around the individual pages of the script, or
even more frequently, if appropriate.

chapter 11 MERGING FILES FROM DIFFERENT SOURCES 167

chapter 11

MERGING FILES
FROM DIFFERENT SOURCES

Life being all inclusion and confusion, and
art being all discrimination and selection,

the latter, in search of the hard latent value
with which it alone is concerned, sniffs round the

mass as instinctively and unerringly as a
dog suspicious of some buried bone.

– Henry James

11.1 INTRODUCTION

One goal of software integration is to be able to produce com-
plex documents. For instance, a report may need to contain a
graph of data stored in a company database. This involves inte-
grating data into a graphics application and merging it with text.
Often the result of this integration is a printed page or a trans-
parency for an overhead presentation.

In a PostScript environment, this can be accomplished at print
time in much the same way that photographs are added directly
to the plates (“stripped in”) for an offset printer. If the software
used to produce the graphs can produce a PostScript file as out-
put, it can be merged with the PostScript output from a word
processor to print the graph on the same page as the text. Essen-
tially, it means the ability to paste in illustrations composed by
other software.

The nature of the PostScript language makes this work quite
well. The coordinate system can be scaled and translated before
the illustration is executed, and the entire graph can be printed
at some percentage of its original size, and even rotated. Howev-
er, some cooperation between the composing software and the
importing software is necessary to allow it to work smoothly.

chapter 11 MERGING FILES FROM DIFFERENT SOURCES168

This chapter is devoted to the relationship that should exist
between the composing software and the importing software. It
is closely related to Chapter 10, in that the best way to success-
fully merge PostScript files from different sources is to make sure
that all the files are conforming PostScript files.

11.2 USING EXISTING CONTEXT

Every PostScript program executes in the context of an already
executing PostScript program. At the start, a print file executes
within the context of the server loop, which is just another
piece of code. Any given PostScript file may have another com-
plete program file embedded within it, which then executes in
whatever context is presented to it by the outer program.

In order to keep track of who is who, let us define some terms:

• Document File: The document file is a PostScript pro-
gram that may have another program embedded within
it. It is typically simply the output of a page layout pro-
gram or other document-producing software.

• Illustration: This is a program which executes within the
context of another PostScript program. It need not
truly be an illustration, but it is a good way to think of
the relationship.

• Print Job: This refers to the PostScript file that is at the
outermost level of execution. Note that this does not
include the server loop. It is the first user-level print
file.

Every PostScript program should be written as though it were an
illustration, even if it is printed directly rather than imported
into another document. A document file and an illustration do
not differ at the PostScript language level, except that an illus-
tration typically will not consist of more than one page. They
differ at the conceptual level and in terms of how they are
being used. Please refer to Chapter 6 for more details on pro-
gram modularity and independence.

chapter 11 MERGING FILES FROM DIFFERENT SOURCES 169

A PostScript program should only change those elements of the
ground state of the interpreter that are necessary for its own
execution, and it should return the state of the interpreter to
that same condition when it is through executing. The recovery
can be accomplished simply by using save and restore, but it is
the programmer’s responsibility not to disturb any parts of the
machine’s state that do not need to be modified for the task at
hand. In particular, it is important never to initialize the state of
the interpreter.

11.3 ERROR RECOVERY

There is a discussion of error recovery principles in Chapter 14
of this book. In general, it is okay for a document program to
merely report an error in a reasonable fashion, rather than
being expected to recover from it gracefully. For instance, if a
mechanism is put in place that assigns a job name to each illustra-
tion that is embedded in it, then any execution errors which
might result from the execution of those files can be identified
easily by that name. In some cases, a print job cannot do any bet-
ter than this at error recovery. For instance, if the illustration is
actually reading from the current file (as with the image opera-
tor), it may not quit reading at the appropriate place in the file
(if it is not written correctly), and could read past the end of the
illustration and into the rest of the original document.

The stopped operator can be used to catch (almost all) execu-
tion errors in an embedded illustration. In Chapter 14 (listing
14-2) there is a procedure called userexec which is used much
like exec. It takes any executable object (for instance, the file
object returned by currentfile cvx) and executes it in an error-
recovery context. This can be used quite effectively for includ-
ed illustrations, if needed. For most purposes, it is better to iden-
tify the included job by some name, and trust it to execute cor-
rectly. If it doesn’t, the user will know what happened if you
supply the name of the file that was executing when the error
occurred.

chapter 11 MERGING FILES FROM DIFFERENT SOURCES170

11.4 HANDLING SHOWPAGE

Since the showpage operator is common to almost all PostScript
programs, it is not fair to make it illegal in a conforming
PostScript file. Instead, the burden is placed on the including
document to disable showpage when appropriate. In listing 11-
1 is a bit of code that might be wrapped around a program file
that is to be embedded into the current file.

listing 11-1

%!PS-Adobe-2.0
%%Title: include.ps
%%EndComments
%%BeginProcSet: include.ps 1.0 0
 /beginexecute { %def

/level0 save def
/showpage { } def
/jobname exch def

 } bind def
 /endexecute { %def

level0 restore
 } bind def
%%EndProcSet
%%EndProlog
% including "Illustration.ps"
 (Illustration.ps) beginexecute
 0 0 translate % if needed
 1 1 scale % if needed
%%BeginDocument: Illustration.ps
 %!PS-Adobe-2.0
 %%Title: Illustration.ps
 jobname = flush
 %%Trailer
%%EndDocument
 endexecute
 showpage
%%Trailer

This disables the showpage operator for the duration of the exe-
cution of “Illustration.ps,” and reinstates it to its original value

chapter 11 MERGING FILES FROM DIFFERENT SOURCES 171

(whatever it may have been) after the restore. Notice also that
the name of the file is made available in the jobname entry,
which can be reported if an error occurs.

11.5 SCREEN REPRESENTATIONS

In visual page composition systems, it is typically possible to see
on the screen what will eventually print. It is an unusual
approach to be able to print what you cannot see (or edit). This
situation arises whenever printing technology advances more
rapidly than front-end composition systems. In general, it is
powerful to build front-end systems that permit inclusion of
unknown elements that are specific to the printing technology
(a bit image, perhaps).

In most environments, some indication must be given on the
host system wherever an imported file is added by the applica-
tion. As a specific example, a visual page layout program may
have the capability to merge a PostScript file into the output
from the program, but it needs some mechanism for represent-
ing the image on the front end.

There are three approaches to this problem. The first is the sim-
plest, and the last is probably the best:

1. Represent the included file by name. One example of
this is simply an “include” statement in the input file:

 #include "illustration.ps"

In a markup-language approach to document layout,
this is usually the way files are included. A slightly more
sophisticated approach might include displaying a rect-
angle on the screen where the drawing will be placed
(or permitting it to be scaled or moved on the page as it
is being imported).

2. Display a simulated bit image of the illustration on the
screen, but do not print it (send the PostScript file to
the printer instead). This simulated image could be pre-
pared by the software that produced the illustration in

chapter 11 MERGING FILES FROM DIFFERENT SOURCES172

the first place, and must be represented by a conven-
tion to which each application agrees.

3. Interpret the PostScript Code. If the PostScript file can
be executed and displayed directly, no simulation is
required. This can be thought of as a “preview” capabili-
ty if the software does not use the PostScript language
as its display model already.

In each of these approaches, the importing application can han-
dle the file better if it knows that it is a PostScript language illus-
tration. In particular, it can consult the bounding box information
in the file to display the appropriate rectangle, or it can display
the simulated bit image on the screen if it knows where to look
for it.

A current convention in the industry is for a drawing applica-
tion to produce conforming PostScript files with a “preview” bit
image along with them, in a standard format which importing
applications can understand. It is then up to the importing pro-
gram to display the bit image on the screen and keep the
PostScript program to send to the printer.

As the PostScript language becomes more commonplace for
screen drivers, the applications may not need to use the pre-
viewed bit image stored with the file, but may choose to inter-
pret the PostScript code directly.

chapter 12 WRITING A PRINT SPOOLER 173

chapter 12

WRITING A
PRINT SPOOLER

12.1 INTRODUCTION

A print spooler is a program that collects output for a given print-
er or network and saves it for later printing. The file may then
be put in line behind others waiting to print, or it may be print-
ed immediately, but the host application which originally sent
the print job can return to what it was doing, knowing that the
job has been queued (or has printed) successfully.

The advantages of this mechanism are well known. A job may be
reprinted or rescheduled, it may be cancelled, and (best of all)
the host application doesn’t have to wait for it to print.

The difficulties result from the fact that the link between the
application and the printer is made more indirect. Certainly a
front-end program that tries to query the printer to find out
about available resources would be surprised if the device did
not answer. Also, the possibility arises that a job might be
queued for one printer but be actually printed on another
device.

Cooperation is required, as usual, on both ends of an exchange
like this. The host applications must behave appropriately so
that they do not make assumptions about the printer that would
make it difficult or impossible to write a print spooler. The spool-
er must be written in such a way that it is completely transpar-
ent—if the job would have printed without the spooler, it
should print through the spooler as well.

The assumptions in this chapter apply almost exclusively to
PostScript interpreters in batch mode. Any interactive systems
will probably not use print spoolers.

chapter 12 WRITING A PRINT SPOOLER174

12.2 PRINTER MANAGEMENT

PostScript is a programming language. It is conceivable that a
one-line program sent to a standard PostScript interpreter could
cause 2 megabytes of information to be sent back to the host
computer. This is (today) a little unusual for a printer. In some
instances, it is a temptation: “Why should I take the time to
compute something that the printer already knows; I’ll just ask
the printer.” In other instances, the information may be a part
of the standard communication with the printer (for instance, if
an execution error occurs, an error message is sent back to the
host system).

The task of managing a PostScript printer is a larger issue than
simply print spooling. There are resource management issues (is
Optima a resident font, is it on the printer’s local disk, is it avail-
able on a font server, or should it be downloaded?). Handling
and reporting errors, out-of-paper conditions, and paper jams is
the responsibility of the printer management software. Perhaps
print job arbitration and file spooling is another function of this
software, although they are usually separate entities.

12.3 COMMUNICATIONS

The low-level considerations of maintaining two-way communi-
cation with a PostScript device are a critical part of printer man-
agement. There are some aspects of this communication which
differ greatly from other printing devices, and which need
attention in the design phase.

The batch job model under which PostScript printers normally
operate is founded on individual print files. That is, a single job
is defined from the initial byte through the final end-of-file indi-
cation. The end-of-file (EOF) should never be contained in the
document file itself; it is part of the communication dynamics.
In fact, the EOF marker for, say, a serial port is much different
than the EOF indication on a packet network.

The PostScript interpreter will echo an EOF to match each EOF
that it receives. This is a confirmation that the entire file has
been received. A second job should never be sent until the first

chapter 12 WRITING A PRINT SPOOLER 175

one has completely finished executing (including echoing back
the EOF indication).

MESSAGES

PostScript printers tend to generate ASCII text messages back to
the host system. Some of these are in response to status
requests, and some of them appear whether or not you ask for
them. For example, on many devices findfont will return the
font Courier if it cannot find the font asked for. When this sub-
stitution is performed, a message is generated back to the host
computer that looks like this:

StoneSans not found, using Courier.

If a PostScript error is triggered, the standard error handler pro-
duces a message back to the host system containing the name of
the error and the token that triggered it:

%%[Error: typecheck; OffendingCommand: if]%%

Printer management software should be prepared for any kind
of text that may be sent back from the printer. Here is a reason-
able approach for dealing with these messages:

• If the text is thought to be an error message, it should
be communicated back to whatever software submitted
the job to be printed, or displayed for the user to see.

• If the text is not an error message, then it should be
compared to a list of known standard messages that may
be issued by that printer (as listed in the Printer
Description File). Some of these may safely be ignored.

• If the text is not recognized, it should be communicated
back to the application which submitted the job, and/or
saved in a disk file and made accessible to the user.

• Under many circumstances, a disk file containing every-
thing that the printer sent back to the host may be
appropriate, both as an error log and as a way to extract
specific bits of information from the printer.

chapter 12 WRITING A PRINT SPOOLER176

There are messages which are more or less standard depending
on the physical capabilities of the printing device. For example,
following are a number of relatively common (self-explanatory)
messages. These are all very device-specific, and the Printer
Description File should be consulted for a precise list of them
for a given printer, as in the following list:

%%[PrinterError: out of paper]%%
%%[PrinterError: cover open]%%
%%[PrinterError: warming up]%%
%%[PrinterError: out of toner]%%
%%[PrinterError: paper jam]%%
%%[PrinterError: recorder not responding]%%

These messages are similar in syntax to the PostScript execution
error messages, but are only issued when the marking engine is
not ready to print a page for some reason.

As an aside, it is generally not a good idea to issue the executive
operator (available on most devices) while in batch mode. The
executive operator is intended for interactive use; it echoes
back everything typed, permits simple line editing, and pre-
sents a prompt. Batch jobs are not guaranteed to run precisely
the same way in executive mode (due to the nature of com-
mand-line editing) and it is therefore not recommended for
tracking the execution of a file. It is, however, quite handy for
typing short PostScript language sequences and observing the
results.

12.4 USING EXITSERVER

exitserver is a specialized and environment-dependent system
operator available in most devices which support batch
PostScript jobs (it is not part of the standard language
definition). Its purpose is to exit the server loop (described in
section 2.9). The exitserver operator requires a password, and
will result in an invalidpassword error if the incorrect password
is given.

Since the job server loop is generally responsible for cleaning
up the state of the interpreter between jobs, any changes that

chapter 12 WRITING A PRINT SPOOLER 177

are made outside the server loop by using exitserver will remain
as part of the permanent state of the interpreter for all subse-
quent jobs. This only applies to changes to VM (like procedure
definitions), since the stacks and graphics state are cleared after
each job.

Note:
The exitserver operator is a system-level command. It
is not intended for general use by applications pro-
grams. Using exitserver is forbidden in conforming doc-
uments. See section 10.1 for further information on con-
formance specifications.

The exitserver mechanism can be used to download fonts or pro-
cedure bodies that will stay resident in the printer until the
device is powered off. exitserver also is required for changing
any of the persistent parameters such as communications proto-
cols or default conditions (such as the default job timeout value).

Using exitserver initiates a new PostScript job. It should always
be the first line of code in the program. The condition of being
outside the server loop persists until the next end-of-file indica-
tion is read by the interpreter. Any changes made to the state of
VM during the job will remain until the interpreter is restarted.

Here is the necessary PostScript language sequence to exit the
server loop:

serverdict begin
0 exitserver

The exitserver operator resides in the serverdict dictionary,
and this dictionary must be made available in order to execute
exitserver. It is not necessary to use end to remove it from the
dictionary stack—when the new job is started the contents of all
of the stacks are cleared.

In this example, 0 is placed on the operand stack as the pass-
word required by exitserver. This password generally may be
changed by using the setpassword operator.

chapter 12 WRITING A PRINT SPOOLER178

12.5 MANAGING FILES AND FONTS

A print spooler may be called upon to manage external
resources like downloadable fonts or files. For instance, when a
print file is spooled, it typically will not have embedded font
descriptions (downloadable fonts) in the document file itself.
Certainly in a highly distributed environment each workstation
should not have local copies of the fonts.

When a document is submitted for printing, the font require-
ments (resource needs) are communicated along with the docu-
ment, usually in the form of document structuring comments
(see chapter 10 and section 6.4). This list of needed fonts (or
files) is compared to the list of available fonts in the printer, and
any fonts that are not already resident in the device should be
downloaded along with the document file.

There are several specific structuring conventions which apply
in this situation, and it is worth going through them in detail.

%%DocumentFonts

The %%DocumentFonts comment is used in the header sec-
tion of the comments (or it may be deferred to the trailer). It
should give a list of all fonts that are used by the document (if a
findfont is performed on the font name anywhere in the docu-
ment, it should be in this list). Here is an example of its use
(notice the %%+ syntax for continuation; the lines should not
exceed 255 characters in length):

%!PS-Adobe-2.0
%%DocumentFonts: Courier Times-Roman
%%+ StoneSerif
%%+ StoneSerif-SemiboldItalic
%%+ Optima
%%EndComments

This comment may be used first to determine if there are any
font needs that are not resolved within the document. If all the
fonts in this list are determined to be resident in the PostScript
device, no further attention is necessary.

chapter 12 WRITING A PRINT SPOOLER 179

%%IncludeFont
This comment can appear anywhere within the body of a
PostScript document file. It is a resource request. The named
font should be inserted at exactly the point in the file that the
comment is found (if it is determined that the font is not resi-
dent; otherwise %%IncludeFont can be ignored). The list of
fonts for which the %%IncludeFont comment is used is made
available in the document’s header comments section through
the comment %%DocumentNeededFonts. This has the same
syntax as the %%DocumentFonts comment (see listing 12-1).

listing 12-1

%!PS-Adobe-2.0
%%DocumentFonts: Courier Times-Roman
%%+ StoneSerif
%%+ StoneSerif-SemiboldItalic
%%+ Optima
%%DocumentNeededFonts: Optima
%%+ StoneSerif
%%EndComments
%%EndProlog
%%Page: 1 1
 save
%%IncludeFont: Optima
 restore
%%Page: 2 2
 save
%%IncludeFont: Optima
%%IncludeFont: StoneSerif
 restore
%%Trailer

These comments are directives. If they name fonts that are
determined not to be resident in the printer, then the requests
need to be satisfied, or the document will not print successfully.

chapter 12 WRITING A PRINT SPOOLER180

%%BeginFont, %%EndFont

When a downloadable font file is embedded in a document file
(either before it reaches the print spooler, or by the spooler
itself), the font should be bracketed with %%BeginFont and
%%EndFont comments. The %%DocumentSuppliedFonts
comment should be used to indicate the names of any fonts sup-
plied within the body of the document:

%!PS-Adobe-2.0
%%DocumentFonts: Sonata
%%DocumentSuppliedFonts: Sonata
%%EndComments
%%EndProlog
 save
%%BeginFont: Sonata
 % Sonata font file is embedded here
%%EndFont
 restore
%%Trailer

The file should execute correctly without any attention by the
print spooler, since the font is supplied within the document.
However, there are a few ways in which the spooler might
benefit by using these comments:

• The fonts may be collected and stored in the spooler’s
font area for later use with %%IncludeFont comments.

• The fonts may be removed from the print stream if
they are determined to already be resident in the print-
er. However, the fonts should always be replaced by an
instance of %%IncludeFont so that it is reversible.

Whenever a font is added or deleted from a print file, the com-
ments should be adjusted accordingly. %%IncludeFont and
%%BeginFont/%%EndFont are essentially inverses of one
another (each should be replaced by the other, as appropriate).

There are exactly analogous comments and operations defined
for files. Details on these can be found in the specification of
the PostScript Document Structuring Conventions.

chapter 12 WRITING A PRINT SPOOLER 181

12.6 DETERMINING WHAT FONTS ARE AVAILABLE

PostScript printers have many options for storing fonts. They
may be built into the interpreter’s initial VM (in ROM, for
instance), they may be available on a built-in file system, in font
cartridges (a special case of the file system) or available on a net-
work font server. Fonts can also be downloaded to printers on a
semi-permanent basis into user VM (with exitserver). It is not a
trivial task to determine what fonts are available on a given
printer.

Host-resident software should keep track of the fonts that are
resident in a printer, and at best should make its list visible to
(and editable by) the user. Fonts that are built into a printer (in
ROM) are always available, and are detailed in the Printer
Description File for that printer (see Section 12.8).

listing 12-2

%!PS-Adobe-2.0 ExitServer
%%EndComments
 /$timestamp where { %if

pop
(time is:) print $timestamp = flush
stop % stop the current job

 } if
%%BeginExitServer: 0
 serverdict begin 0 exitserver
%%EndExitServer
 /$timestamp (Tue Oct 27 17:53:43 PST 1987) def
%%Trailer
%%EOF

A good approach to managing the list of currently available fonts
is to query the printer for the initial list of fonts, and to keep
that list available. If a font is downloaded to the printer, the list
should be updated. If the printer is restarted, the list should be
re-generated. Noticing that the printer has restarted can be
accomplished by placing a time stamp in the printer, then

chapter 12 WRITING A PRINT SPOOLER182

checking for it each time a new connection to the printer is
opened (listing 12-2).

12.7 HANDLING RESOURCE SHORTAGES

It is possible that a spooler will be presented with a file to print
for which it cannot find (or invoke) all the necessary resources.
For instance, the requested paper size may not be available, or a
needed font. There are basically three ways to handle this situa-
tion:

1. Reject the file (issue an error condition of some kind).

2. Substitute another resource (scale to fit on letter-sized
paper, for instance, or default to a different font).

3. “Trust me.” Sometimes the user knows more than the
software, and it should always be possible to force the
spooler to pass the file through untouched. For
instance, a new font storage device might be in place,
but the spooler may not know how to find those fonts
and will want to substitute Courier.

The substitution option is the most difficult to accomplish, and
may or may not be advisable, depending on the circumstances.
Most people will not be happy if they ask for Univers and you
give them Helvetica. The pages may wind up in the trash any-
way, and it might have been better simply to reject the job in
the first place (and save paper). The software at least should
announce its intentions in a loud voice if it is going to substitute
one resource for another.

In any case, the method used to determine whether or not the
resources are available may not allow for every option and some-
thing like the “trust me” in the list above should be made possi-
ble.

12.8 PRINTER DESCRIPTION FILES

The problem of keeping track of different PostScript printers
and their various features, fonts, and capabilities is not an easy

chapter 12 WRITING A PRINT SPOOLER 183

task. Beyond the core of the PostScript language, there are
many differences between one product and another. The most
important of these differences are formalized in Printer Descrip-
tion Files (available from printer vendors and from Adobe Sys-
tems). These files contain a list of the features of the printers
and the necessary PostScript code to invoke them properly.
Here are the kinds of features which are supported through
these files:

• Paper Sizes. Printers may support various different
paper sizes, paper trays, and even continuous-feed rolls
of paper, which can virtually be any size. These are
detailed in Printer Description files by keywords indi-
cating the paper size. There is also a great deal of infor-
mation on the dimensions and imageable regions of
each paper size.

• Resident Fonts. A list of all the fonts that come standard
in the printer, including the version number and
whether or not it has a standard encoding vector.

• Query Strings: these are miniature PostScript programs
that will query the device for the presence or state of
many of the features found in the file (for example,
whether a particular font is available, or the current
paper tray).

• Available Memory. This provides the amount of memory
available in the initial configuration of the printer.

• Special Resources: this includes the availability of a resi-
dent file system, variable paper sizing, the default exit-
server password, and others.

The details on the format of Printer Description Files are kept in
a separate document entitled PostScript Printer Description Files,
which is available from Adobe Systems.

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT 185

chapter 13

MEMORY AND FILE
RESOURCE MANAGEMENT

While memory holds a seat
In this distracted globe. Remember thee!

Yea, from the table of my memory
I’ll wipe away all trivial fond records.

– William Shakespeare

13.1 MEMORY STRUCTURE

Writable memory in a PostScript interpreter is referred to as vir-
tual memory, or “VM.” It is the memory that is used for all aspects
of program execution that require information storage. VM is
used for storing dictionary entries, downloadable fonts, frame
buffers, the operand stack, string bodies, and anything else that
requires memory.

When a PostScript interpreter starts up, it allocates a large
amount of the available memory for internal processing. The
details of this allocation are device-specific, but in many imple-
mentations they are roughly as follows:

area of virtual memory size in bytes

operand stack 4,000
dictionary stack 160
execution stack 2,000
userdict 4,000
8.5 x 11 inch frame buffer 1,051,875

There is typically anywhere from about 200 kilobyes to several
megabytes of usable VM after the interpreter is initialized. The
vmstatus operator can be used to determine the amount of free
memory in the interpreter.

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT186

13.2 MEMORY ALLOCATION

Memory can be allocated either implicitly or explicitly. Essential-
ly all memory is allocated by the creation of composite objects.
There are several PostScript operators that explicitly allocate
VM:

string array dict
}]

The } and] operators allocate memory in the same way that
array does. Each of them counts down to the topmost mark on
the stack and is equivalent to the PostScript sequence count-
tomark array astore.

Memory is implicitly allocated primarily by the creation of literal
string bodies. For example, the following PostScript segment
allocates approximately 24 bytes of VM:

(This is a literal string) show

Since the show operator consumes the string object on the
operand stack, the string object is lost and the string body is
floating in VM somewhere. The memory allocated is not
reclaimed except by the save and restore operators.

The amount of VM used by any particular PostScript data struc-
ture is implementation-specific. In current PostScript inter-
preters, VM usage is approximately as follows:

operator bytes per
name element

array 8
string 1
dict 20

For example, each of the following allocates 80 bytes of memory
in a current implementation:

80 string

4 dict

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT 187

10 array

[1 2 3 4 5 6 7 8 9 10]

true { %if
exch pop 3 -1 roll exch
show 0 10 rmoveto

} if
It is good to understand the ways in which memory is allocated
in order to be able to conserve it. It is not generally true that you
can first get a program to work and then go back and add some
kind of memory management. Since save and restore are the
mechanism for controlling memory use, and since they affect
more than just the use of memory, this must be designed in from
the start.

13.3 SAVE AND RESTORE

The only way to manage memory is with save and restore. All
VM used since the previous save is reclaimed when restore is
executed, including the contents of dictionaries and arrays. The
save and restore mechanism should be used as often as neces-
sary to reclaim memory.

The save and restore operators affect all other aspects of the
state of the interpreter, including the graphics state. It is best to
use save and restore in an integrated fashion to preserve both
graphics state and the contents of VM between logically inde-
pendent elements of a PostScript program. There is a discussion
of the use of save and restore in Section 6.3 relating to modular
program design.

SAVE OBJECTS

The save and restore mechanism works in a somewhat unusual
fashion. The save operator produces what is known as a save
object. This object is like a coat check coupon—in order to get
your save level back, you must present the save object to the
clerk.

A save object contains a “generation number” that is assigned
sequentially. It is possible to restore to any save level by pre-

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT188

senting the appropriate save object to the restore operator, but
restoring level 1 makes levels 2 and 3 no longer valid (for obvi-
ous reasons).

Since save produces an object and restore requires one, they
can be used somewhat like gsave and grestore. However, the
save object must stay on the operand stack:

save
count 1 eq { (save object is on stack) = } if

restore

Since the save object must be presented to restore, it is usually
better to store it in a dictionary than to leave it on the operand
stack for an extended period of time:

/saveobj save def
count 1 eq { %ifelse

(save object is on stack) =
}{ %else

(save object is NOT on stack) =
} ifelse

saveobj restore

The sequence /saveobj save def seems a little unusual at first.
Since save produces an object on the stack, and since /saveobj
is just a name object resting on the operand stack, it is a simple
definition. The save does not affect the operand stack, and
since the name object is created before the save, it does not
affect the state of VM that is saved. The object is then retrieved
by that name when it is needed later.

THE INVALIDRESTORE ERROR

The restore operator can trigger one error condition which can
be quite difficult to debug: the invalidrestore error. There is
only one condition which will provoke this error, but there are
several ways to achieve it.

The restore operator restores the entire state of memory back
to a previously saved state. All objects in memory which have
been created more recently than that save state are discarded.
The condition which provokes an invalidrestore error is a com-

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT 189

posite object on one of the stacks (operand stack, dictionary
stack, or execution stack) that points to a value in memory some-
where that would be reclaimed by the restore operation. Since
restore does not affect any of the stacks, it is considered to be an
error condition for an object there to have its composite value
removed from under it.

The invalidrestore error can be prevented simply by never
leaving a composite object on any of the stacks that was created
more recently than the last save level (at least, don’t have it on
one of the stacks if you are about to do a restore). The most com-
mon of these, actually, is to leave a dictionary on the dictionary
stack. For example, the following PostScript fragment provokes
the invalidrestore error:

save
/mydict 28 dict def
mydict begin

restore

It is difficult to get a composite object onto the execution stack
that would cause an invalidrestore, but it is possible. Since the
most likely object to find on the execution stack is a procedure
body, this is the place to look (particularly innocent procedure
bodies like those presented to ifelse). The following example
provokes an invalidrestore error because the remainder of the
procedure body in which the restore is found is still on the exe-
cution when restore is executed, but it was created more recent-
ly than the save object.

save
Ypos 36 lt { restore showpage } if

The only way to prevent this is to define the procedure before
the save is executed, or not to execute restore from within the
procedure. For example, the following short procedure
definition fixes the problem:

/restorestate {
Ypos 36 lt { restore showpage } if

} bind def
save
restorestate

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT190

13.4 DOWNLOADABLE FONT PROGRAMS

Downloadable fonts are simply PostScript programs. In general
the programs build a data structure and then register it as a font.
A downloadable font program is conceptually like this:

127 dict begin % allocate a font dictionary
 /FontName /TestFont def
 /BuildChar { } def
 % ...
currentdict end
/TestFont exch definefont pop

The definefont operator takes a font dictionary and registers it
in the list of fonts available to findfont. This includes making an
entry in a dictionary known as FontDirectory which contains
the association between the font name and the font dictionary.
Font dictionaries are allocated from VM in exactly the same way
that any other dictionaries are allocated, and use memory from
the same pool.

The only way to reclaim the memory used by a downloadable
font is with save and restore, since the space occupied by a font
is in the form of a dictionary. Each element of a font dictionary
may require more memory, as well. For instance, the entry in a
font which provides the font matrix requires memory to store
the matrix itself:

/FontMatrix [.001 0 0 .001 0 0] def

This requires about (8*6 = 48) bytes of memory. Note that the 8
bytes or so required for the array object itself was already allocat-
ed to the dictionary in which it is stored. Its existence on the
operand stack requires no further VM. A typical Adobe down-
loadable font dictionary requires approximately 30 kbytes of
VM.

13.5 PACKED ARRAYS

In all but the very first implementation of the PostScript inter-
preter, there is a feature known as packed arrays. This feature is a
storage optimization that permits arrays to be stored in much

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT 191

less space than standard arrays. A packed array is read-only. All
array operators other than put and putinterval will work with
packed arrays. In general, sequential access to packed arrays is as
fast as with normal arrays, but random access is slower. Packed
arrays are typically about 50 to 75 percent smaller than their
unpacked counterparts.

Packed arrays are perfectly suited for procedure bodies, which
are read-only arrays. A typical way to use packed arrays is to turn
the feature on at the beginning of the prologue definitions, and
turn it back off at the end of the prologue, so that all the proce-
dure bodies created in the prologue will be stored as packed
arrays, saving space:

%!PS-Adobe-2.0
%%EndComments
/setpacking where {

/currpack currentpacking def
pop true setpacking

} if
/prologue { packed array procedures } bind def
/setpacking where {

pop currpack setpacking
} if
%%EndProlog
%%Trailer

All procedure bodies constructed while packing is set to true will
be packed arrays. There is also an operator called packedarray
which is analogous to the array operator, except that it con-
structs a packed array object instead of an array object. This is a
more specific operator that can be used to allocate a single
packed array object; the setpacking operator is more appropri-
ate for general use.

13.6 RASTER MEMORY

Frame buffers (or, in some devices, band buffers) are large chunks
of memory set aside as raster memory (or display memory).
Frame buffers are used essentially as device space for some
PostScript interpreters. Frame buffers are typically allocated by
the framedevice operator, although there is already typically a

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT192

default frame buffer in place for each device. The framedevice
operator takes a specified width and height and allocates the
entire chunk of memory necessary for rendering that page size.
It is not a recommended operator, however.

The amount of memory required for a frame buffer can be deter-
mined easily. One byte of memory contains 8 bits of informa-
tion, each of which is used as a pixel in device space (unless it is
a grayscale or color device, in which case there may be many bits
per pixel). An 8-1/2 inch by 11 inch frame buffer on a 300 dot-
per-inch printer requires the following amount of memory:

300 (8.5 x 11)

8

This is 1,051,875 bytes of memory (just over one megabyte).
Changing page sizes therefore can affect the amount of usable
memory that is available for a user job.

13.7 FILE SYSTEMS AND DISK MANAGEMENT

PostScript interpreters that have a file system available can use
this secondary storage for many different purposes. Typically
the font cache is permitted to occupy space on the disk as well
as in the fixed partition of memory normally used for the charac-
ter bitmaps. Additionally, a high-resolution PostScript devices
may use the disk for raster storage when it runs out of space in
memory. Finally, downloadable font programs can usually reside
on the file system.

For the most part, disk management is limited to the user parti-
tion of the file system. This is the space available for download-
ed fonts and other user-defined disk files. The system partition
is used for the font cache and perhaps for raster storage. The
PostScript language supplement for any particular device should
provide details on these operations.

13.8 POSTSCRIPT LANGUAGE FILE OPERATIONS

The PostScript language has full software support for file sys-
tems. There are PostScript operators for opening, reading, writ-

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT 193

ing, and closing file streams present in all implementations of
PostScript interpreters.

Many PostScript devices do not have a file system available to
them directly (unless there is a disk and file system built into the
printer, for instance). However, the input stream and output
stream are treated as file objects, and the file operators may be
used to read and write these streams.

THE STANDARD INPUT STREAM

The input stream is directly accessible to user programs as a file
object. The currentfile operator returns a file object represent-
ing the current input stream. The PostScript interpreter uses
the same file object for interpreting your program, but there is
only one file pointer. This means that the file can contain both
data and executable PostScript language statements.

Listing 13-1 is a short example of how a program can read data
from the current file.

listing 13-1

%!PS-Adobe-2.0
%%Title: currentfile example
 /buff 128 string def
 /F { findfont exch scalefont setfont } def
%%EndProlog
 12 /Helvetica F
 10 10 moveto
 currentfile buff readline
 This line is actually data
 pop show
 showpage
%%Trailer

The interpreter scans and executes the currentfile operator,
which produces a file object and leaves it on the operand stack.
The interpreter then executes buff, which places a string
object on the stack. Then readline is scanned and executed.

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT194

The file pointer for the input stream is left at the point just after
the readline token. When readline is executed, the file object
from which it reads is the one left by currentfile (the standard
input stream). The readline operator picks up exactly where
the interpreter left off, and reads one line of input (In this case,
it reads the string This line is actually data into the input
buffer buff). When readline finishes, it has advanced the file
pointer to a position just after the line of data, and the inter-
preter picks up where readline left off. The interpreter then
scans and executes show, which prints the data string at location
10 10 on the current page.

This technique of reading from the current input stream is used
in many ways. It can be used by a printer emulator to read data
intended for a different printer. It may be used to read bitmap
data for the image operator directly from the input stream
(using readhexstring rather than readline).

Listing 13-2 contains a short program that reads a font program
from the current file and write it to a disk file, assuming that a
file system is available to the PostScript interpreter. The file
name needs to be changed for each different font downloaded
(this is done by a front-end program). Since the program reads
through end-of-file, it must be in a job by itself. Subsequent jobs
can then access the font from the file system simply by calling
findfont. This example uses the font from listing 9-3.

listing 13-2

%!PS-Adobe-2.0
%%Title: writetodisk.ps
%%Creator: Glenn Reid
%%EndComments
 /buff 128 string def
 /fd (fonts/Logo-Font) (w) file def
 { %loop

currentfile buff readstring { %ifelse
fd exch writestring

}{ %else
dup length 0 gt { %ifelse

fd exch writestring
}{ %else

chapter 13 MEMORY AND FILE RESOURCE MANAGEMENT 195

pop
} ifelse
fd closefile
exit

} ifelse
} bind
% file should follow the "loop" token....
loop
%%BeginFont: Logo-Font 1.0 0
 12 dict begin % leave one empty slot for FID

/FontName /Logo-Font def
/FontMatrix [1 0 0 1 0 0] def
/FontType 3 def
/FontBBox [-5 -12 85 50] def
/BuildChar { %def

exch begin
70 0 -5 -12 85 50 setcachedevice
Encoding exch get load exec

end
} bind def
/Encoding 256 array %def

dup 0 1 255 { /.notdef put dup } for pop
dup 71 /logo put % "G" character

def
 /logo { %def

% draw at current point
20 0 moveto
gsave

/Times-Roman findfont
48 scalefont setfont
(G) show -13.5 -14.5 rmoveto (R) show

grestore
-4 -8 rmoveto
/Helvetica findfont 11 scalefont setfont
(glenn) show 22 3 rmoveto (reid) show

 } bind def
 currentdict end
 dup /FontName get exch definefont pop
%%EndFont: Logo-Font

chapter 14 ERROR HANDLING 197

chapter 14

ERROR HANDLING
Reason and experiment have been

indulged, and error has fled before them.

– Thomas Jefferson

14.1 INTRODUCTION

Programs written in the PostScript language are extremely
portable. They are high-level source code intended to be exe-
cuted on any number of different PostScript interpreter, even
if the software that produces the program cannot physically be
hooked up to the particular device.

This chapter addresses some tactics for making PostScript pro-
grams as robust as possible. It does not specifically address print-
er differences and portability issues, which are dealt with in oth-
er chapters. The focus is placed instead on the error handling
capabilities of the PostScript language and how this mechanism
can be used to advantage in applications programs.

14.2 STRATEGIES

The kind of errors that can be caught by an error handling strate-
gy are typically execution errors. Assuming that the program pro-
duced by the application has been debugged to a reasonable
degree, there are only a few possible failure modes which can
arise in the PostScript language environment.

NON-STANDARD OPERATORS

One possible source of error is to make reference to a special-
ized operator that takes advantage of a feature that may not be
present in all implementations of the PostScript interpreter
(typically giving rise to the undefined error). For instance,

chapter 14 ERROR HANDLING198

invoking a printer-specific feature like manual paper feed or a
particular paper tray will not work on a printer which does not
offer that feature. A simple mechanism to avoid this is to use the
known operator to check for the existence of the operator
before you use it:

statusdict /ledgertray known { %ifelse
statusdict begin

ledgertray
end

}{ %else
90 rotate 0 -612 translate
612 792 div dup scale

} ifelse

This tests to see if the ledgertray operator exists in statusdict. If
it does, it is invoked. If it does not, then the standard letter-size
page is placed into landscape mode and scaled down to simulate
the layout of ledgertray. The where operator may also be used
in a similar fashion.

IMPLEMENTATION LIMITS EXCEEDED

A limitcheck error can arise if an internal limitation has been
exceeded by a user program. This can occur, for instance, when
using clip, charpath, or flattenpath. These operators are all sen-
sitive to the resolution of the PostScript device to some extent.
Both clip and charpath provide a flattened path, which means
that all curve segments in the path are reduced to line seg-
ments. The current flatness affects the closeness of the approxi-
mation. There will typically be many more line segments when
flattening a path on a high resolution device than on a low reso-
lution device. For example, figure 14.1 shows a curved path
stroked first with gray at the normal flatness, then in black with
a flatness of five user units (about 100 device units at 1270 dpi).

There are other circumstances and operators which can pro-
voke the limitcheck error, of course. Operations which are sen-
sitive to the resolution or amount of available memory may be
susceptible to provoking a limitcheck error on one PostScript
device but not another. With extremely complex paths, opera-
tors like stroke and fill can provoke limitcheck errors,
although it is rare. This typically only happens when printing at

chapter 14 ERROR HANDLING 199

especially high resolution. The next section describes the use of
the stopped operator, which may be used to catch this kind of
execution error.

Another error which can arise when implementation limits are
exceeded is VMerror. This means simply that the PostScript
interpreter has run out of memory. Unfortunately, this error is
not always caught by all versions of the PostScript interpreter
(depending on what was being executed when it ran out of
memory). One symptom of exceeding the memory of a
PostScript device may be that the interpreter will restart with-
out explanation. VMerrors can be avoided by proper use of
save and restore.

figure 14.1

14.3 THE STOPPED OPERATOR

The stopped operator provides a method for regaining control
of the program when the stop operator is executed. As discussed
in section 14.4, the default behavior of all error operators is to
store some of the state of the machine in an error dictionary and
to execute stop.

The stopped operator takes any executable object on the stack
(usually a procedure body, but it could also be an executable file

chapter 14 ERROR HANDLING200

object). It copies that object to the execution stack (like exec)
and executes it. The stopped operator determines whether or
not stop was executed, places a boolean on the top of the stack,
and returns control to the interpreter. Listing 14-1 is an exam-
ple of using stopped to catch a limitcheck operation on a flat-
tenpath operation.

listing 14-1

%!PS-Adobe-2.0
%%Title: stopped-example
%%EndComments
/STROKE { %def

currentflat
{ %loop

{ flattenpath } stopped { %ifelse
currentflat 1 add setflat
("limitcheck" on "flattenpath":) print
(trying again with flatness of) print
currentflat () cvs = flush

}{ %else
exit

} ifelse
} bind loop
stroke
setflat % restore original flatness

 } bind def
%%EndProlog
%%Page: 1 1
% build a complicated path:
 0 1 30 { %for

12 exch 2 mul translate
20 0 moveto 0 0 20 0 360 arc

 } for
 STROKE
 showpage
%%Trailer

This program will loop until the flattenpath operation suc-
ceeds. When it fails, the flatness is increased slightly and the

chapter 14 ERROR HANDLING 201

procedure tries flattenpath again. This approach can be used to
catch any kind of errors, although it is complicated enough that
it is only encouraged under some circumstances.

Another use of the stopped operator is to catch possible execu-
tion errors in included PostScript files. For instance, if your
application contains a feature for including arbitrary PostScript
files from other applications (or potentially hand-written code),
it might be worthwhile to trap the errors and take some suitable
action. A procedure called userexec is defined in listing 14-2
that will execute any object in the stopped context and return
control to the procedure when it has finished (even if it termi-
nates with an error).

listing 14-2

%!PS-Adobe-2.0
%%Title: userexec.ps
%%Creator: Glenn Reid
%%EndComments
 /buff 512 string def
 /p /print load def
 /bp { buff cvs print } bind def
 /jobdef { %def

errordict begin /jobname exch def end
 } bind def
 /userexec { %def

stopped { %ifelse
$error /newerror get { %if

$error begin
(%%[Error:) print
/errorname load bp
(; OffendingCommand:) p
/command load bp
(; JobName:) p
errordict /jobname known { %ifelse

errordict /jobname get
}{

(stdin)
} ifelse
bp
(]%%\n) print flush

end

chapter 14 ERROR HANDLING202

{ %loop
currentfile buff readline { %ifelse

(%ENDuserexec) eq { exit } if
}{ %else

/UnexpectedEOF % report error
errordict /rangecheck get exec

} ifelse
} loop

} if % if newerror is true
}{ %else

 % end of file must have been reached. Is this an
 % error? Sometimes it means the improper use of
 % "currentfile readstring" and/or "image."

} ifelse
$error /newerror false put

 } bind def
%%EndProlog
 (ORIGjob) jobdef
% execute some included job directly in-line:
/svobj save def
(USERjob) jobdef
currentfile cvx userexec
%%BeginDocument: included.ps
 %!PS
 %%Title: included.ps
 %%For: triggering an error
 /var1 10 def
 /var2 20 def
 %%EndProlog
 %%Page: 1 1
 var1 var2
 triggererror
 more program statements
 which should be ignored
 showpage
 %%Trailer
%%EndDocument
 % should never get this far:
 (USERjob completed.\n) print flush
 stop
%ENDuserexec

% here is where ORIGjob picks up again
 svobj restore % will restore ORIGjob name, too
 (Continuing with) print
 errordict /jobname get print (\n) print flush
%%Trailer

chapter 14 ERROR HANDLING 203

When an error is encountered, the userexec procedure must
flush the rest of the included illustration. This is done by search-
ing the rest of the file for a line containing only the string
%ENDuserexec. This string would have been inserted at the
end of the included code by the document composition soft-
ware. The search is accomplished in this case with the readline
and eq operators.

14.4 THE ERROR HANDLING MECHANISM

The PostScript language has a built-in procedure defined for
each possible error condition. The procedure is invoked by the
error handling mechanism in the PostScript interpreter. The fol-
lowing are the steps that occur when the interpreter triggers an
execution error:

• The error occurs (say it is a limitcheck error).

• The PostScript interpreter finds a procedure named
limitcheck in a dictionary known as errordict and exe-
cutes it.

• The limitcheck procedure captures the contents of
the operand stack, the execution stack, and the dictio-
nary stack and places these into array objects in a sub-
dictionary of errordict known as $error.

• The name of the error (in this case limitcheck) is stored
in the $error dictionary under the name errorname.
Similarly, the OffendingCommand (the object that was
executing at the time of the error) is stored in $error
under the name command.

• The limitcheck procedure then executes stop, and its
job is done.

Whenever stop is executed, control returns to the innermost
stopped context. You can nest stopped contexts. In fact, the
job server loop always executes user jobs with the stopped oper-
ator so that it can regain control when an error occurs.

chapter 14 ERROR HANDLING204

The job server loop contains a standard error handling mecha-
nism that looks for and invokes another standard procedure
called handleerror (it expects to find it in errordict) whenever
the stopped operator returns true. The handleerror procedure
produces the familiar error message (by looking in $error for the
information stored there by the error operators):

%%[Error: limitcheck; OffendingCommand: flattenpath]%%

See the next section for an example of how to redefine the han-
dleerror procedure.

14.5 REDEFINING ERROR PROCEDURES

Any of the individual error procedures can be redefined to be
any arbitrary PostScript procedure. In addition, the higher level
handleerror procedure can be redefined to provide more infor-
mation when an error condition is encountered. One widely
used error handler prints the error message and the contents of
the operand stack on the current page, for example.

Listing 14-3 is a sample program that will redefine an individual
error procedure (in this case, the limitcheck procedure):

listing 14-3

%!PS-Adobe-2.0
%%EndComments
errordict begin

/*limitcheck /limitcheck load def
/limitcheck { %def

(Free VM:) print
vmstatus exch sub
== flush pop
*limitcheck

} bind def
end %errordict
%%Trailer

chapter 14 ERROR HANDLING 205

This procedure produces a message back to the host computer
indicating the amount of free memory in the printer when the
limitcheck error occurred, and then invokes the original lim-
itcheck procedure as well (it has been saved under the name
*limitcheck in this example).

In listing 14-4 is an example redefinition of the handleerror
procedure that produces a stack trace back to the host system
when a PostScript error is triggered:

listing 14-4

%!PS-Adobe-2.0
%%Title: errstack.ps
%%EndComments
%%EndProlog
%%BeginSetup
/orighandleerror
 errordict /handleerror get
def
errordict begin
 /handleerror { %def

orighandleerror
errordict begin $error begin

(STACK:) = flush
currentdict /ostack known {

ostack aload pop
pstack flush clear

 } if
end end

 } bind def
end
%%EndSetup
%%Trailer

This procedure calls the existing error handler, and also returns
a readable representation of the operand stack back to the host
system.

chapter 14 ERROR HANDLING206

14.6 HANDLING ERROR MESSAGES

Software used to drive a PostScript device has a certain responsi-
bility to handle error messages (or other information) sent back
by the PostScript interpreter. The standard (default) condition
of the error handling mechanism in most printers is to produce a
well-defined message back to the host computer and to ignore
everything it receives until the next end-of-file indication. If
the error handler is not redefined, something reasonable must
be done with the error messages. See Chapter 12 for further
information on printer management issues.

Depending on the system configuration, it may not be possible
to pass the error message all the way back to the originator of
the print file. The correct way to notify a user that his or her
print job failed will be very environment-specific. In some cas-
es, it may be appropriate to display the error on the screen of
the host workstation. In others, perhaps the message can be
written into a printer log file, or an electronic mail message sent.
In still others instances, perhaps an error break page can be
printed by the interpreter and sent back to the original source
along with whatever pages of the document might have been
printed correctly.

In many cases, it is probably best to locally redefine the behav-
ior of the error-handling mechanism in the PostScript inter-
preter to suit a particular environment.

chapter 15 DEBUGGING TECHNIQUES 207

chapter 15

DEBUGGING TECHNIQUES
If a string has one end,

then it must have another.

– /usr/games/fortune

15.1 INTRODUCTION

Since the PostScript language is interpreted, it is fairly easy to
debug programs written in the language. However, the fact that
the programs typically are executed on a remote processor (for
example, in a laser printer) can make the process a little more
difficult.

In this chapter, it is assumed that the working environment con-
sists of a host computer connected through some kind of com-
munications interface to a printer containing a PostScript inter-
preter. There are other possible situations, but this is a common
environment and one in which the debugging issues are per-
haps the most difficult.

15.2 ESTABLISHING TWO-WAY COMMUNICATION

The first step in reliably debugging a PostScript application is to
build a solid connection between the host computer and the
printer. There are several levels of communication that need to
be set up and tested.

PostScript language printers should be thought of as computers
when setting up communications channels. In particular, full bi-
directional communication should be expected. At the simplest
level, the printer will send back error messages when an execu-
tion error occurs. It is also possible for a user program to generate
arbitrary amounts of information at the printer and transmit it
back to the host.

chapter 15 DEBUGGING TECHNIQUES208

Since a large part of debugging consists of trying to determine
“what really happened,” establishing solid communications is
always a good first step. This may consist of purchasing or writing
a downloading utility program, or it may mean implementing
the communications layer of your application first.

SERIAL COMMUNICATIONS

There are three main aspects to setting up good serial communi-
cations:

• Get the cable configured correctly.

• Get flow control working properly.

• Be prepared to receive information at any moment
from the PostScript device.

Flow control may be implemented in software (the XON/XOFF
protocol for serial connections, or a network protocol such as
AppleTalk®) or it may be handled by the hardware (the DTR/
DSR protocol, for example). Most PostScript devices are initially
configured for software handshaking, and need explicitly to be
set to handled other kinds of protocols. The following is an
example that will work on most PostScript devices with serial
communications (please consult the particular printer manual
for possible differences):

serverdict begin 0 exitserver
statusdict begin

25 9600 4 setsccbatch
end

In this example, 25 refers to the 25-pin connector (as opposed
to the 9-pin connector, for example). 9600 is the baud rate of
the communications. 4 is a number from 0 to 7 that represents a
combination of parity setting and the handshaking mechanism.
Values from 0 to 3 use software handshaking (XON/XOFF), and
values from 4 to 7 will turn on hardware handshaking instead
(which may not be available on all devices). The setsccbatch
operator establishes the default serial (scc) communications for
the given port in batch mode (as opposed to interactive mode).

chapter 15 DEBUGGING TECHNIQUES 209

PARALLEL COMMUNICATIONS

Parallel ports are not available on all PostScript devices. Parallel
communication ports in general do not support bi-directional
transmissions, so if the parallel port is used, some special care
must be used to receive any messages. Some devices may allow
you to open the serial port explicitly to send information back
to the host, but you have to know about it and it is not support-
ed on all devices (please consult the documentation for the indi-
vidual printer for more specific information). Parallel communi-
cations probably are not the best mode to use for general debug-
ging of PostScript programs.

PACKET NETWORK COMMUNICATIONS

Network connections like AppleTalk® or DECnet™ are avail-
able on some PostScript devices. The details of packet-switched
network communications are too complex to be detailed here.
Probably the best approach is to use existing network software
to establish communication for debugging with this kind of net-
work connection.

15.3 UNDERSTANDING POSTSCRIPT ERRORS

When a PostScript execution error occurs, the default action tak-
en is to issue an error message. This message consists of two ele-
ments:

• The Error name. This is the name of the PostScript error
that occurred—for example, stackunderflow.

• The OffendingCommand. This is the PostScript object
that was being executed at the time of the error.

A PostScript error message is very specific about what happened,
but may not tell you why. For example, the moveto operator
expects to find two numbers on the operand stack, which it
assumes are x and y coordinates in user space. There are only two
possible execution errors that can arise from the moveto opera-
tor (although moveto will happily take any two numbers that it
finds on the stack and make that the current point, regardless of
what the numbers might be—this is a third kind of error):

chapter 15 DEBUGGING TECHNIQUES210

%%[Error: typecheck; OffendingCommand: moveto]%%

%%[Error: stackunderflow; OffendingCommand: moveto]%%

Either too few items are available on the operand stack (causing
stackunderflow) or those items are not numbers (causing a
typecheck). It’s that simple.

Understanding why some PostScript error occurred usually
requires a certain amount of context. For instance, it is helpful
to know some of the following things:

• What items were on the operand stack at the moment
the error occurred?

• At what point in the input file did the error occur?

• What dictionaries were on the dictionary stack?

• What was the current value of some variable or aspect
of the interpreter’s state?

Probably the most useful of these is to determine what objects
are on the operand stack. The contents of the stack usually pro-
vide all the information that is necessary to establish what the
context of the error was (although a stackunderflow error is cer-
tainly an exception to this, since there is nothing on the
operand stack). See Section 15.5 for more details on getting
stack traces.

ERROR: UNDEFINED

One of the more common errors in PostScript programming is
the undefined error. This error is generated by the PostScript
interpreter if a name lookup fails or if an explicit get, or load
cannot find its argument in the context of the current dictio-
nary stack. Here are some possible causes of the undefined
error:

• The name is spelled wrong. PostScript names are case
sensitive. This is probably the most common problem.

chapter 15 DEBUGGING TECHNIQUES 211

• A procedure name was used before it was defined. This
sometimes results when procedures are inadvertently
moved in the file, or when the slash is missing from a
name (see Section 2.4).

• If the name given as the OffendingCommand appears
to be only part of one of the names in your program file,
this may mean that the communications are not solid. If
part of the file is lost on its way to the printer, the inter-
preter may pick up in the middle of a token, and give
an error. Check especially for flow control problems.

• If the get operator is being used at all in the program,
perhaps its arguments are in the wrong order or just
incorrect. Oddly, the OffendingCommand will not be
get, but will be the key that is passed to get.

• If the name being looked up is in a special dictionary
(for instance, statusdict, serverdict, or a local dictio-
nary defined by the program), that dictionary may not
be on the dictionary stack. Automatic name lookup
works only in the context of the dictionary stack. Use
the begin operator to push dictionaries onto the dictio-
nary stack.

• ^D: A control-D character (decimal ASCII 04), is the
end-of-file indication over most serial connections.
However, it is not an end-of-file over networks like
AppleTalk. These should be removed from the file
stream. Actually, they should never be put there to
begin with. (See Section 12.3.) If the byte gets through
to the PostScript interpreter (across AppleTalk, for
instance) it will provoke an undefined error.

ERROR: TYPECHECK

This is probably the most common error in PostScript program-
ming. Typically it results from the incorrect manipulation of
objects on the operand stack. Sometimes this is a result of not
realizing that a given PostScript operator might return some-
thing to you on the stack. Here are some common causes of the
typecheck error:

chapter 15 DEBUGGING TECHNIQUES212

• stringwidth returns both an x and a y value. For most
fonts, the y component is 0. If this value is not needed,
it should be removed from the stack with the pop opera-
tor. Very often an extra integer turns up on the stack
from forgetting how the stringwidth operator works.

• Some operators require several operands. Be careful to
supply all of them, and in the correct order.

• There is a difference between an integer and a real
number. Make sure you supply each operator with the
correct type. This is especially important with the idiv
operator, since early versions of the PostScript inter-
preter graciously permitted real operands as arguments
when they should not have.

• Do not supply an integer where a boolean is required.
0 and 1 are not equivalent to true and false, which are
genuine PostScript objects of type booleantype.

Use the pstack operator to help you debug problems with stack
manipulation. Sometimes the roll or exch operators can help
when operators are in the wrong order, although typically it
means that the operands should have been transmitted in a dif-
ferent order.

15.4 REDEFINING BUILT-IN OPERATORS

Any of the names of PostScript operators may be redefined. This
is done simply by defining a new value for that name in a dictio-
nary other than systemdict. This can be useful for debugging
purposes. (See listing 15-1.)

The redefinitions of moveto and lineto in this example print
messages back to the host each time they are called. The original
definitions of moveto and lineto are still invoked (as *moveto
and *lineto), so the execution of the file is not be disturbed in
any way.

The redefinitions are local to the debug dictionary. As long as
that dictionary is not on the dictionary stack, these definitions

chapter 15 DEBUGGING TECHNIQUES 213

are not available. Placing debug begin at the beginning of a doc-
ument (and end at the end, of course, if the program gets that
far) will cause the file to execute with these helpful debugging
procedures available.

listing 15-1

%!PS-Adobe-2.0
%%Title: pathtrace.ps
%%Creator: Glenn Reid
%%EndComments
 /debug 10 dict def
 debug begin

/str 128 string def
/*moveto /moveto load def
/*lineto /lineto load def

/moveto { %def
(moveto:) print
exch dup str cvs print % X-val
() print exch dup == % Y-val
flush
*moveto % execute real moveto

} bind def
/lineto { %def

(lineto:) print
exch dup str cvs print % X-val
() print exch dup == % Y-val
flush
*lineto % execute real lineto

} bind def
 end
%%EndProlog
 debug begin

100 100 translate
100 100 moveto
200 200 lineto
stroke
showpage

 end
%%Trailer

chapter 15 DEBUGGING TECHNIQUES214

15.5 STACK TRACES

Getting a trace of the operand stack when an error occurs pro-
vides very useful debugging information. The only reliable way
to accomplish this is to redefine the error handling procedure to
“dump the stack” when any error occurs. There is an example in
Section 14.5 (listing 14-4) that redefines the handleerror proce-
dure to produce a stack trace. There is also a widely available
PostScript file known as “ehandler.ps” that provides a slightly
different redefinition of this procedure to actually print the
error and stack trace on the current page when an error occurs.
This is especially useful in that the page image that is already
built can be seen even if showpage has not been reached in the
program file. This can help narrow down exactly where the
error might have occurred. A listing of ehandler.ps is included
in Appendix B.

A stack trace of the operand stack is useful for two reasons. It can
help find the spot in the file that the error occurred by provid-
ing some of the context in which the error was triggered. It also
helps to discover why the error happened. One of the most
common errors in PostScript programs is incorrect manipulation
of the operand stack. Seeing a snapshot of the stack when an
error occurs helps solve this kind of error quickly.

15.6 INTERACTIVE TECHNIQUES

Under some circumstances, it is possible to interact with a
PostScript interpreter directly. In some devices, there is an
operator called executive which will provide an interactive con-
text for PostScript programming. A prompt is provided, and sim-
ple line-editing primitives are supported (such as backspace and
delete-line). This can be a particularly useful environment for
testing simple algorithms or exploring the nature of the
PostScript interpreter.

If a direct connection can be established with the PostScript
interpreter (for instance, by hooking up a simple terminal to
the printer’s communications port), an interactive session can
be initiated by typing ^D (control-D, or end-of-file) followed by
the word executive (and a carriage return). The word executive

chapter 15 DEBUGGING TECHNIQUES 215

will not echo back onto your screen as you type it, but the charac-
ters will be received by the PostScript interpreter. If you type it
correctly, you will see a brief message and a PS> prompt. (If you
don’t, you will get an error.) From that point on (through the
next end-of-file), you will be in interactive mode.

PostScript language commands received by the interpreter in
interactive mode will be interpreted in the same way that batch
files are interpreted, including executing procedures, printing
characters, using showpage; the whole language is at your
fingertips.

15.7 COORDINATE SYSTEM TRANSFORMATIONS

A common error in PostScript language programming that is
difficult to debug is the “off-the-page” error. That is, the
PostScript program may execute correctly, and a page will be
printed, but the page is completely blank. Sometimes the rea-
son for this is that the coordinate system mapping has been
modified in such a way that the image is actually painted off the
page somewhere. This is not an error condition to the PostScript
interpreter. Any part of any image may be off the page.

Remember that, conceptually, it is user space that rotates, not
device space. To simulate this, tape a sheet of paper to the floor
in front of you, and focus your eyes on the lower left corner of
the page. That is the origin of the coordinate system. If you
were to perform a 90 rotate, think of user space rotation 90
degrees counterclockwise (positive rotation is always counter-
clockwise; negative rotation is clockwise). Imagine that your
head is user space. That is, rotate yourself 90 degrees counter-
clockwise over the page. Notice that the Y axis is now along the
short edge of the paper, and it is behind you (if you are still
focusing on that corner). Translations take effect along the cur-
rent axes. For instance, to finish setting landscape mode from
there, it would be necessary to add a 0 -612 translate:

90 rotate
0 -612 translate

If the previous discussion makes no sense to you, don’t worry; it
is just one way to visualize the transformations.

chapter 15 DEBUGGING TECHNIQUES216

The relationship between rotate and scale is not a commutative
one. That is, you cannot reverse the order of evaluation and get
the same result. There is a further discussion of coordinate sys-
tem transformations in Section 9.4.

15.8 DEBUGGING MESSAGES

A helpful technique for locating the place in a program file
where an error occurred is to insert messages at key points in
the file. Listing 15-2 is an example of this technique. These mes-
sages may also be put into procedure bodies, as seen in listing 15-
1, where operators are redefined to return status information.

listing 15-2

%!PS-Adobe-2.0
%%EndComments
 /msg { %def

print (\n) print flush
 } bind def
%%EndProlog
%%Page: 1 1
 (Got past the prologue.) msg
%%Trailer
 (made it to the trailer) msg

appendix A 217

appendix A

ERROR HANDLER
%!PS-Adobe-2.0
% ehandler.ps -- Downloaded Error Break-page handler
% Copyright (c) 1984, 1985, 1986 Adobe Systems Incorporated.
% All Rights Reserved.

0000 % exitserver password
/$brkpage where { %ifelse

pop pop
(Error Handler in place - not loaded again\n)
print flush stop

}{ %else
dup serverdict begin
statusdict begin checkpassword { %ifelse

(Error Handler downloaded.\n)print flush
exitserver

}{ %else
pop
(Bad Password on loading error handler!!!\n)
print flush stop

} ifelse
} ifelse
/$brkpage 64 dict def $brkpage begin
/prnt { %def

dup type /stringtype ne { =string cvs } if
dup length 6 mul
/tx exch def /ty 10 def
currentpoint /toy exch def /tox exch def
1 setgray newpath
tox toy 2 sub moveto
0 ty rlineto tx 0 rlineto
0 ty neg rlineto
closepath fill
tox toy moveto 0 setgray show

} bind def
/nl { %def

currentpoint exch pop lmargin exch moveto
0 -10 rmoveto

} def

appendix A218

/== { /cp 0 def typeprint nl } def
/typeprint {

dup type dup currentdict exch known {exec}{
unknowntype

}ifelse
} readonly def
/lmargin 72 def /rmargin 72 def
/tprint { %def

dup length cp add rmargin gt { nl /cp 0 def } if
dup length cp add /cp exch def
prnt

} readonly def
/cvsprint { =string cvs tprint () tprint } readonly def
/unknowntype { %def

exch pop cvlit (??) tprint cvsprint
} readonly def
/integertype { cvsprint } readonly def
/realtype { cvsprint } readonly def
/booleantype { cvsprint } readonly def
/operatortype { (//) tprint cvsprint } readonly def
/marktype { pop (-mark-) tprint } readonly def
/dicttype { pop (-dictionary-) tprint } readonly def
/nulltype { pop (-null-) tprint } readonly def
/filetype { pop (-filestream-) tprint } readonly def
/savetype { pop (-savelevel-) tprint } readonly def
/fonttype { pop (-fontid-) tprint } readonly def
/nametype { %def

dup xcheck not { (/) tprint } if cvsprint
} readonly def
/stringtype { %def

dup rcheck { %ifelse
(\() tprint tprint (\))tprint

}{ %else
pop (-string-) tprint

} ifelse
} readonly def
/arraytype { %def

dup rcheck { %ifelse
dup xcheck { %ifelse

({) tprint { typeprint } forall (}) tprint
} { %else

([) tprint { typeprint } forall (]) tprint
} ifelse

}{ %else
pop (-array-) tprint

appendix A 219

} ifelse
} readonly def
/packedarraytype { %def

dup rcheck { %ifelse
dup xcheck { %ifelse

({) tprint { typeprint } forall (}) tprint
}{ %else

([) tprint { typeprint } forall (]) tprint
} ifelse

}{ %else
pop (-packedarray-) tprint

} ifelse
} readonly def
/courier /Courier findfont 10 scalefont def
/OLDhandleerror errordict /handleerror get def
end %$brkpage

/handleerror { %put
systemdict begin $error begin $brkpage begin
newerror { %ifelse

/newerror false store
vmstatus pop pop 0 ne { grestoreall } if
initgraphics courier setfont
lmargin 720 moveto (ERROR:) prnt
errorname prnt
nl (OFFENDING COMMAND:) prnt
/command load prnt
$error /ostack known { %if

nl nl (STACK:) prnt nl nl
$error /ostack get aload length { == } repeat

} if
systemdict /showpage get exec
/newerror true store
/OLDhandleerror load end end end exec

}{ %else
end end end

} ifelse
}
dup 0 systemdict put % replace name by actual dict object
dup 4 $brkpage put % replace name by dict object
bind readonly

errordict 3 1 roll put % put proc in errordict as /handleerror

INDEX 223

Non-Alphabetic
%!PS-Adobe- 91
%%BeginFont 166, 182
%%BoundingBox 167
%%DocumentFonts 166, 181
%%DocumentNeededFonts 166, 181
%%DocumentSuppliedFonts 166
%%EndFont 166, 182
%%IncludeFont 166, 181
%%Page 168
%stdin 59

A
addprocs 31
Adobe Illustrator xii
AFM files 103, 104
arc operator 85
array 188
arrowhead procedure 46
ascender 111
ashow 102
attributes 15
awidthshow 70

B
band buffers 193
batch mode 11
baud rate 210
begin operator 213
bi-directional communication 209
bind 28
bounding box 104, 174

C
capital height 111
case sensitive 212
character metric 102
character set 116
character width 103
character widths 51, 102
circle procedure 46
clip operator 53, 140, 200
clipping region 140
comments, structure 91, 98, 159
communications

and spoolers 176
packet network 211
parallel 211
serial 210

composite characters 119
computation 81
computation in PostScript 73
concat 151
concatenating procedures 31

INDEX

conceptual error 95
conforming files 91, 98, 159
context

graphic 78
context dependencies 91
coordinate system 69, 217
coordinate systems 77
copypage 146
curly brace 26
current dictionary 18
current file 59
current font 49
current path 43, 49
current point 75
currentfile operator 59, 171, 195

D
data acquisition procedure 126, 128
data compression 133
data transmission time 81
data, program-generated 90
debugging 209
defaultmatrix 79
defaults

coordinate system 92
current font 93
current page 92
current path 93
default context 92
dictionary stack 93
error handler 208
exitserver password 179

deferred execution 26
definefont 192
descender 111
device space 217
dictionary 2
dictionary stack 213
disk

user partition 194
disk management 194
displays 173
Downloadable fonts 192
driver 79

E
efficiency 11, 81, 83, 85

calculations 80
imaging model translation 79

Einstein, Albert 1
emulator 57

escape sequences 59, 61
fonts 57
line printer 57
using search 59
using stringwidth 61

INDEX224

encoding vector 117
end-of-file 34, 176, 179
error

execution 199, 211
tactics 199
typecheck 213

error handler 207
error handling mechanism 205
error messages 209
error procedures 206
errordict 206
escape character 61
escape sequences 63
exec operator 31
executable array 27
executable name 20
execution environment 93
execution error 199
execution stack 32, 34
execution, deferred 26
executive operator 178, 216
exitserver 178

F
features 160
file formats, existing 68
file object 32, 34, 195
file system 194
flattenpath 200
font cache 55
font management 183
FontDirectory 192
FontMatrix 192
fonts

accented characters 119
and emulators 69
ascender height 111
capital height 111
character bounding box 104
character widths 61
descender height 111
dictionaries 192
downloadable 192
encoding 116
handling different 108
in emulators 57
leading 111
memory use 192
metrics 103
non-Roman 119
point size 111
screen fonts 103
substitution 70
x-height 111

Frame buffers 193
framedevice 193
functional independence 78

G
get operator 212
graphic design 101
graphic imaging model 71
graphics

internal representation 38

graphics problem solving 139
graphics state 92, 189
gray shades 133
grestoreall 79
grids 148
ground state 92

H
halftone

angle 133, 134
cells 134
device dependencies 139
frequency 133, 134
pattern fills 139
pixel priority 137
setscreen operator 134
spot function 133, 134, 137

halftoning 125, 133
handleerror 206, 216
high resolution devices 200

I
illustrations 170
images

bits per pixel 126
data acquisition procedure 126
image matrix 126
matrix 126
parameters 125
premature end-of-file 131
scanned 127
synthetic data 131
using image operator 127

image operator 125
imaging model 37, 57, 71

designing the driver 77
efficiency 79

immediate execution 27
implementation limits 200
income tax form 145
indentation xiii
index 221, 225
initgraphics 79, 93
input stream 32, 195
integration 169
interactive PostScript 216
interpretation overhead 81
interpretation time 85
invalidpassword 178
invalidrestore error 190, 191

J
job 34
job execution 11
jobname 173, 203
justified text 62, 70

K
kerning 101, 106, 112
kernshow procedure 114
kernstackshow procedure 114
key-value pair 28
kshow operator 113

INDEX 225

L
landscape mode 79
leading 111
ledger paper 161
ledgertray 161
legibility 107
letter spacing 106
ligatures 116
limitcheck 53, 140, 200
line weight 148, 149
line wrapping 74
literal name 20
load operator 212
logotypes 145

M
machine-generated code 79
margins 101, 104
matrix operations 151
memory

array object 192
strings 188
VMerror 201

memory, virtual 187
merging files 169
messages, printer 177
modularity 92, 93

graphic modularity 95
save and restore 95

moveto 105

N
name lookup, automatic 20
names

binding 28
nesting, program file 170
newpath 38, 49

O
object properties 96
objects

access attribute 15
attributes 15
composite 13
executable 15
length 15
literal 15
simple 13
type 15

OffendingCommand 211
operand stack 13, 94, 212
operators 19, 21
operators, non-standard 199
optimization 73

rmoveto vs. widthshow 73
output stream 195

P
packed arrays 192
page element 78
page elements 89
page independence 78

page layout 77
page, top of 78
pages

page independence 90
painting operators 38
paper sizes 161
parallel processing 146
parameters 94
pasteup 169
path construction 38
paths 37, 38
pattern fills 139
pattern font 140
performance 85
pixel locking 149
Poe, Edgar Allan 105
point size 111
PostScript Document Structuring

Conventions 98
PostScript error 211
PostScript Interpreter 3
PostScript Printer Description Files 160
preview 174
print flush 218
print format translator 57, 68
printer emulator 57, 196
printer management 176
problems 139
procedure 25, 145
procedure bodies xiii
procedure body 26
procedure definitions 90
procedure sets 89
procedures

concatenating 31
designing prologue 80
short names 82
very large 29

program design 77
programming “style” xii
prologue 89

related to script 80
prologue procedures 80
properties, object 96
pstack operator 214

Q
queries, printer 164
query 164

font 183
query comments 164
queueing 175

R
raster devices 72
rasterization 54, 193
readhexstring 130, 196
readline operator 59, 195
readstring 59
rectangle procedure 44
redefining operators 214
restore 189

and execution stack 191
and the dictionary stack 191

INDEX226

robustness 89
rotate 151, 217
round-off, numeric 80, 149

S
sampled images 125
save

save objects 189
versus gsave 190

save & restore
server loop 34

save & restore 52, 54, 188, 189
scale 151
scan time 82
scanner 23

strings 23
screen fonts 103
script 89

machine-generated 80
search 59, 61
server loop 34, 178
serverdict 179, 213
setcharwidth 55
setsccbatch 210
setscreen 134
show 49, 62, 102, 105, 117
showpage 54, 172
sidebearings 103
spooler 175
stack 4
stack trace 216
stack, data on 44
stack-based 2
stackshow procedure 114
stackunderflow 94, 211, 212
state

using existing 79
statusdict 213
stopped context 205
stopped operator 171, 201
string objects 23
string, literal 188
strings 23
stringwidth 52, 61, 108
stroke 148
style

ease of editing xii
indentation xiii
readability xii

switching fonts 70
syntaxerror 24
systemdict 214

T
tab character 61
text

baseline 49
centered 104
columns 78
flow 104
flush left 104
flush right 104
justified 104
leading 111

line length 104
margins 104, 105

token operator 24
tokenization 23, 81
trailer 89
transform 149
transformation matrices 151
transformations 217
translate 151
translator

optimization 72
typecheck 94, 212, 213
typography 101

U
undefined 212
units 68
user space 217
user-defined font 147
userexec procedure 203

V
variables 15
virtual memory 187
VM 187

dictionary stack 187
execution stack 187
operand stack 187
userdict 187

VMerror 201
vmstatus 187

W
well-formed 89
where operator 200
widths, character 61, 62, 103
widthshow 70, 73, 102, 107
word spacing 70, 107

X
x-height 111

BOOK DESIGN

This book design is borrowed from an earlier design by Robert
Ishi for the PostScript Language Reference Manual and was adapt-
ed by Glenn Reid to the technology at hand and the unique
demands of the book.

The type used is entirely from the Stone family, designed at
Adobe Systems by Sumner Stone, Director of Typography. Chap-
ter headings are set in Stone Sans Semibold 24 point, section head-
ings are set in Stone Sans 12 point, and the body text is set in 10
on 12 point Stone Serif with Italic and SemiBold. All example
PostScript language programs and listings are set in 10 point
Stone Informal, using the regular and Semibold weights.

	Copyright Info
	Table of Contents
	Preface
	Ch1: Overview of PostScript Language
	Ch2: The Execution Model
	Ch3: The Imaging Model
	Ch4: Emulators and Translators
	Ch5: Designing the Page & Program
	Ch6: Program Structure
	Ch7: Setting Text
	Ch8: Scanned Images and Halftones
	Ch9: Complex Graphic Prob-Solving
	Ch10: File Interchange Standards
	Ch11: Merging Files
	Ch12: Writing A Print Spooler
	Ch13: Memory and File Res. Mgmt.
	Ch14: Error Handling
	Ch15: Debugging Techniques
	Apx A: Error Handler
	Index
	Colophon

