
FOCUS: The Interactive Table for
Product Comparison and Selection

Michael Spenke, Christian Beilken, Thomas Berlage

GMD — German National Research Center for Information Technology
FIT.MMK

53754 Sankt Augustin, Germany
E-mail: Spenke@gmd.de

ABSTRACT
FOCUS, the Feature-Oriented Catalog USer interface, is an
interactive table viewer for a common kind of table, namely
the object-attribute table, also called cases-by-attribute table or
relational table. Typical examples of these tables are the Roll
Calls in BYTE where the features and test results of a family
of hardware or software products are compared. FOCUS
supports data exploration by a combination of a focus+context
or fisheye technique, a hierarchical outliner for large attribute
sets, and a general and easy-to-use dynamic query mechanism
where the user simply clicks on desired values found in the
table.

A PC/Windows implementation of FOCUS is publicly
available (http://www.gmd.de/fit/projects/focus.html). It is
suited for tables with up to a few hundred rows and columns,
which are typically stored and maintained by spreadsheet
applications. Since we use a simple data format, existing tables
can be easily inspected with FOCUS.

With the rapidly increasing public interest in on-line services
like the World Wide Web we expect a growing demand for
access to on-line catalogues and databases. FOCUS satisfies
this demand, allowing formulation of simple database queries
with an interface as easy to use as a Web browser.

KEYWORDS: Dynamic Queries, Tables, Spreadsheets,
Focus+Context Technique, Interactive Data Exploration.

INTRODUCTION
Frequently, product information can be presented as an object-
attribute table. Electronic product catalogs, hotel guides, and
even attribute-based selections of image material naturally fit
into this model. With the growing interest in the WWW, the
demand for adequate presentation of such material is
increasing rapidly. Currently, there is no general, powerful,
and easy-to-use mechanism available to visualize and explore

such tables and to select and compare products.

Presenting the data as a static table becomes difficult if there
are more than a dozen objects. Scrolli ng the data is
cumbersome; objects can only be compared if near to each
other; and it is difficult to obtain an overview about what is
available.

Database queries can be used if the table is large, but queries
require some knowledge about what can be expected, and in
order to obtain good results the user must have a clear
understanding as to which kinds of features are important. It is
difficult to get an impression about what is not matched by a
query, i.e., what could be found if the query were posed in
another way.

We have developed FOCUS (the Feature-Oriented Catalog
USer interface). FOCUS enables the user to gain a flexible
overview of an object-attribute table through a combination of
a focus+context or fisheye technique and a hierarchical
outliner for large attribute sets. With a few mouse clicks into
the table, the user can formulate incremental database queries
with immediate feedback after each step and thus restrict the
table to the relevant subset of data. Although there are only
very few interaction techniques, it is possible to express quite
complex database queries.

FOCUS has been implemented in Visual C++ and runs on
PC/Windows platforms. It is freely available and can be used
as a helper application in a Web browser.

RELATED WORK
The Table Lens interface of Rao and Card [8] uses a
focus+context technique to display large tables in a com-
pressed form, but does not support queries. Our table interface
uses a similar technique for the objects (columns): The width
of a column is increased when selected (focused). Multiple
selected columns correspond to multiple focal areas. However,
in order to focus on the relevant attributes (rows), we use a
hierarchical outliner. FOCUS combines the focus+context
technique with incremental database queries andas an
extensionrecognizes identical values in neighboring cells
and prints them only once for a whole range of columns. This
measure considerably increases the readabilit y of the table.

FOCUS follows principles formulated by Ahlberg and
Shneiderman for Dynamic Query Filters [1] such as selection

Appeared in UIST '96
Proceedings of the ACM Symposium on
User Interface Software and Technology

Seattle, November 6-8, 1996
Copyright ACM 1996



2

by pointing (not typing), immediate display of query results,
tight-coupling, output-is-input, and progressive refinement of
search parameters. However, FOCUS can handle grouping and
arbitrarily nested AND/OR queries, and the table format
supports the comparison of alternatives. Moreover, FOCUS is
a generic, domain-independent tool.

Recently, Dynamic Queries has been generalized to be appli-
cation independent, but the restrictions for the possible queries
remain (Ahlberg and Wistrand [2], Chwelos and Mantei [3]).
Fishkin and Stone [4] extend Dynamic Queries by Magic Lens
filters in order to increase their expressiveness.

Goldstein and Roth [6] combine dynamic queries with data
aggregation in order to enable more complex queries. How-
ever, the formulation of complex queries is more difficult than
in FOCUS, because the Aggregate Manipulator and Dynamic
Query components are not seamlessly integrated. Instead they
are presented to the user as two different workspaces and
explicit commands are necessary to transfer information
between these workspaces. We will discuss later how the
example queries of Goldstein and Roth can be expressed more
easily with FOCUS.

Spreadsheets are classical tools to manipulate and compare
tabular data. The filter mechanism of Excel [5] is similar to
FOCUS, but queries in Excel are less expressive and there is
no mechanism to delete irrelevant attributes from the table.
Excel violates the principle of tight-coupling because the value
menus for each attribute also display values that have already
been filtered out.

The PERPLEX spreadsheet of Spenke and Beilken [9] uses
logic programming and can simulate dynamic database queries
but has been designed as a tool for end-user programming and
is therefore too complicated for simple product-selection tasks.

THE INTERACTIVE TABLE
In order to illustrate the FOCUS user interface we have chosen
a comparison of 92 printers as an example. The table appeared
in the November 1994 issue of BYTE [7] and compares 51
different attributes (features), including vendor, price, reso-
lution, supported interfaces, paper sizes, emulations, and
benchmark results. Other printer tests show that there are
many further attributes of potential interest, but, obviously,
they would have consumed too much space. The original table
printed in BYTE occupies four pages using a very small font.

Table Inspection
Figure 1 shows an overview of the printer table as displayed by
FOCUS. Each column represents one of the printers and each
row contains an attribute. A row can span several lines if the
attribute has multiple values (e.g. Supported Interfaces). The
table is shown in overview mode where FOCUS automatically
adjusts the column width so that all printers are visible in the
given window.

One of the column headers has been selected by the user as the
focal column for closer inspection. Although many of the

values in other columns are not readable, the user can at least
estimate the number of printers for each of the five
technologies. One can also observe that all laser and dot matrix
printers are black and white, all thermal printers are color, and
ink jets can be either color or black and white.

Displaying and Inspecting Compact Tables
Within the Price row (as in the other numerical rows) values
are graphically indicated by the height of a bar; the
corresponding numbers are only displayed if there is sufficient
space available. This allows the user to make global
observations even in highly compressed tables. For example,
one can see that ink jet is the cheapest technology.

The column headers are displayed in vertical text if the column
width is smaller than the height of the column headers, which
can be adjusted by the user. Simple yes/no attributes are
displayed as filled and empty circles to save space and to
improve legibility.

In overview mode, adjacent and identical entries are combined
into a single value spanning several columns, both to increase
readability and to highlight similarities.

Multiple columns can be selected and unselected by clicking in
the column header using shift and control as in a standard
selection box. Similar to the focus+context technique described
by Rao and Card [8], multiple selections result in multiple
focal areas. Two or more distant table entries can thus be
compared.

Dragging the mouse through the column header continuously
changes the selection to the column under the mouse cursor.
This is as easy as browsing through a scrollable selection list.

The attributes are structured hierarchically, like the lines of
text in an outliner. Subtrees can be opened and closed by
clicking on the triangle-shaped handles. In this way the user
can focus on the relevant attributes. For example, in Figure 1
the attributes under Emulations are collapsed while those
under Interfaces are expanded.

Sorting
In Figure 1 the printers are alphabetically sorted by Tech-
nology, indicated by the black arrow in the row header. As a
consequence equal attribute values are joined and have to be
displayed only once. By dragging the arrow (or by clicking on
its final position) the table will be sorted by another attribute.
Because we are using a stable sorting algorithm, fragmentation
can be minimized throughout a series of sorts by different
attributes. In our example, the table was sorted first by Price,
second by Color and finally by Technology. Therefore the laser
printers are still sorted by price.

If sorts are performed after a column has been selected, the
user can watch where the selected printer is placed according
to different criteria.



3

Figure 1: An overview of the printer table.



4

Normal Mode
The user can switch to normal mode using the Overview check
box. In normal mode a larger (user-defined) column width is
used and the table can be horizontally scrolled to view all
entries. The table will automatically scroll to the first selected
column, so that the focus is not lost. The normal column width
can be adjusted by dragging the border between two columns.

Columns can also be selected in normal mode. They remain
selected when the user switches back to overview mode, where
they are shown highlighted and expanded (Figure 1).

TABLE RESTRICTION
The primary way to explore a FOCUS table is to restrict the
number of products (columns) to an interesting subset.

Constant Attributes
In Figure 1 the user has selected the value Centronics in the
row Supported Interfaces (with a single mouse click). All cells
in this row containing Centronics are highlighted. The user
can see at a glance that almost all printers have a Centronics
interface.

A value selection also proposes a corresponding query of the
form <attribute> = <value> in the prompt line above the
table. For example, in Figure 1 the query Supported Interfaces
= Centronics is proposed. Pressing the Set button executes the
query, i.e., removes all printers from the table that do not have
a Centronics interface. The complete row appears with a
yellow background to indicate an active restriction (e.g., the
Technology row in Figure 2).

As an abbreviation, instead of first selecting a value and then
pressing the Set button (or return key), the user can simply
double click a value in the table. The most common way of
interacting with FOCUS is by double clicking on desired
values until only a few products of interest remain.

After executing such a query, all but the qualified records
disappear from the table. In order to free a constant attribute
again and to get back the deleted records, the user double
clicks on the single yellow value now shown for the whole
row. The user can also select the yellow value, observe that
<attribute> = <All> is displayed in the prompt line, and press
the Set button.

Figure 2: A restricted table (row Technology originally appears in yellow, row Price ($) in blue).



5

Subsets of Attribute Values
One can also select multiple attribute values within one row
(using shift and/or control clicks as in a standard selection
box). The proposed query then reads <attribute> in
{<value1>,<value2>, ...}, i.e., pressing the Set button will
restrict the table to records where the value of <attribute> is
either <value1> or <value2>... Again a double click can be
used as an abbreviation. The row will be displayed in blue to
indicate that a subset has been chosen.

In Figure 2 only laser printers under $1000 are displayed. To
achieve this, the value Laser was fixed by a double click. It is
displayed on a yellow background. Next, the range of values
smaller than 1000 was selected in the Price row and the Set
button was pressed. The prices are displayed on a blue
background.

The Attribute Menu
In order to release a subset restriction on an attribute again, the
user has to select <All> from the attributes popup menu
(Figure 3a). The menu appears when the mouse is pressed over
the attribute name. Selecting <All> is also equivalent to
freeing a constant attribute by double clicking in the yellow
area where the constant is displayed.

Figure 3a: An attribute menu. Figure 3b: A tear-off menu.

Attributes can also be restricted to a constant value by selecting
that value from the attribute's popup menu. In this menu, only
attribute values appearing in the current restriction are shown.
For example, the result of restricting the selection to ink jets is
that only the smaller prices are shown in the menu for the
Price attribute. (We are following the principle of tight
coupling formulated by Ahlberg and Shneiderman [1]). The
values are always sorted. Therefore, in large tables it is
sometimes easier to find a value in the menu than in the table.

Subset selection and restriction can also be performed in a tear-
off menu (Figure 3b) which pops up when ...{Subset}... is
selected in an attributes menu. This modeless dialog box can
also be used to permanently display the set of possible values of
an attribute.

Excluding Values
Using the Exclude button on the right-hand side of the table,
the user can exclude one or more selected values from the
table. Exclude is equivalent to a negated Set, i.e., a restriction

to the complementary set. Excluding a few values is sometimes
easier than allowing all other values.

Query Representation
Note that FOCUS not only displays the result of a query but
also the user specifications which led to the result: Lines are
displayed in yellow or blue to indicate constant or restricted
attributes. The selected subset can be viewed in the dialog box
of an attribute. Furthermore, a summary of all user
specifications is displayed in the status line at the bottom of the
FOCUS window (Figure 2).

COMPLEX QUERIES
With a minimum of additional user-interface concepts, quite
complex database queries can be defined and executed with a
few mouse clicks. Even though they are simple to state,
complex queries rarely have to be used because their results
can often be directly observed in the table. This distinguishes
FOCUS from database queries because all current objects are
visible before a query is executed.

Disjunctions
When multiple values are selected in different rows, FOCUS
proposes a disjunctive query of the form

<attribute1>=<value1> OR <attribute2>=<value2> ...

In Figure 4 the table has been restricted to thermal printers and
the value 600 has been selected in both the Resolution vertical
and Resolution horizontal rows. Pressing the Set button
removes all records which do not have a resolution of 600 dpi
in at least one of the dimensions.

Figure 4: A disjunction.

Conjunctions
Because subsequent restrictions specified by the user are
implicitly linked by the AND-Operator, the general form of a
FOCUS query is a conjunction of disjunctions:



6

(<attributeA> in {<valueA1>,<valueA2>, ...}
 OR <attributeB> in {<valueB1>,<valueB2>, ...}
 OR ...)

AND

(<attributeC> in {<valueC1>,<valueC2>, ...}
 OR <attributeD> in {<valueD1>,<valueD2>, ...}
 OR ...)

AND ...

User-Defined Attributes
Whenever the user has restricted the table to an interesting
subset of records, he can introduce a new user-defined attribute
that is true for exactly the records in this subset. For example,
the user can choose all laser printers with a high Postscript
speed, select Define New Attribute from the Table menu and
type Fast Laser into a dialog box as the name for the new
attribute. The Fast Laser attribute will appear at the end of the
table (see Figure 5). This is a convenient way to save the result
of a query.

Grouping
When a table has been sorted according to an attribute,
identical values of that attribute will be jointly displayed in one
larger field spanning several columns, i.e., the records are
grouped into classes with identical values. See for example
vertical (dpi) in Figure 5.

Once a grouping of records into classes has been established
(simply by moving the sort arrow), the user can then
summarize the values of a different attribute for each class. For
example, the user can ask for the mean price for each

resolution class. The new attribute Mean Price per vertical
(dpi) is defined by selecting the entry Summary per vertical
(dpi) from the popup menu of Price ($) (see Figure 3a). A
dialog appears where the user can choose between

• Minimum
• Maximum
• Sum
• Mean
• Count

The example in Figure 5 shows the surprising result that the
mean price of fast laser printers in the 300 dpi class is much
higher than in the 600 dpi class.

Queries with grouping are quite difficult to formulate in
normal database query languages. In FOCUS a few mouse
clicks are sufficient and grouping is visualized in a very
natural way.

Of course, in order to determine the minimum or maximum of
a group, it is not even necessary to define a new attribute:
Sorting first according to Price and then according to vertical
(dpi) will show the extreme prices at the edges of each group
(as in Figure 5).

Nested Queries
Using user-defined attributes it is also possible to formulate
more deeply nested queries or disjunctions of conjunctions
such as "Find all color printers under $2000 and all laser
printers under $1000": The user can define two attributes
Cheap+Color and Cheap+Laser and combine them with OR
as described above.

Figure 5: Two new user-defined attributes.



7

Figure 6: Displaying eliminated records and attributes.

AUTOMATIC VERSUS MANUAL DELETION
In the examples discussed so far the Auto Delete button for
records was switched on so that records not matching are
immediately removed from the table. Sometimes, however, it
may be interesting for the user to see which of the records are
filtered out before they are deleted. If Auto Delete mode is
turned off, these refused records are just grayed out (see Figure
6). Later they can be explicitly deleted by pressing the Delete
Refused button.

Figure 6 also contains some rows that have a gray background.
FOCUS automatically determines which attributes still have
different values in the restricted table. Attribute rows where all
qualified records have the same value are grayed out. Also,
section headers are grayed if the whole section is gray, whether
they are open or closed, (see Resolution and Color Speed in
Figure 2 for an example). This helps the user focus on the
relevant differences between the remaining alternatives.

Pressing Delete Identical removes the gray rows. If Auto
Delete is turned on for the attributes, this is performed
automatically after each query.

As a default setting, we recommend Auto Delete Records, but
not Auto Delete Attributes, because users can adjust to the fact
that some records are removed after a query, but may be
slightly confused when attributes suddenly disappear or move
to a new position.

A common technique is to focus on a subset of records first
and then to delete the irrelevant attributes and records. Con-
tinuing from that point with both Auto Delete buttons turned
off, the window contents will remain stable: When queries are
executed to further analyze the subset, some rows and columns
may be grayed, but each cell and each value remains at its
position.



8

Figure 7: The Dynamic HomeFinder database.

DISCUSSION
To compare our approach to Dynamic Queries, we have also
used FOCUS to explore the database of the Dynamic Home-
Finder demo [1]. Figure 7 shows a part of the database.

While the Dynamic HomeFinder can display the complete data
of only one record at a time, FOCUS gives a very informative
overview of the data. Without performing any further queries
one can discover the following facts about the shown homes:

• They are distributed over 7 neighborhoods.
• All neighborhoods but one are in the MD area.
• In Bethesda there are only houses.
• In College Park there are only condos.
• Bethesda is the most expensive neighborhood.
• Fireplaces are found in only two neighborhoods.
• Most homes in Beltsville have 3 Bedrooms.
• No house has more than 6 bedrooms.

And many more ...

Of course, it is appropriate to show the geographical locations
of houses for example with a starfield display, but a general
tool such as FOCUS cannot create this kind of application
dependent visualization.

Goldstein and Roth [6] use a similar real estate database to
discuss two scenarios.

First Scenario
In the first scenario Jennifer searches for houses between
$100,000 and $150,000 with a lot size larger than 5000 sq. ft.
in the neighborhoods Shadyside or Squirrel Hill or (in the
same price range) a lot size larger than 8000 sq. ft. in Point
Breeze. This disjunction of two queries is performed by first
defining two new aggregates, SqHill-Shady and
PtBreezeBigLot, for the two queries. Then a third new ag-
gregate, Interest Houses, is introduced to construct the union
of the two aggregates.

Figure 8: First scenario of Goldstein and Roth [6].



9

Similarly with FOCUS, one can define two new user-defined
attributes: The first query is performed and the result is stored
as a new attribute. Next, the second query is formulated as a
slight modification of the first, and a second attribute is
defined. There is no need to define a third attribute, because an
OR-query can be easily performed by selecting yes (filled
circle) in the two rows for the new attributes. With FOCUS,
fewer user actions are required because there is no need for
commands that transfer information between the Aggregate
Manipulator and the Dynamic Query component.

Using FOCUS Jennifer can actually solve her problem much
more easily without defining new attributes and performing a
formal OR-query (see Figure 8). She could simply restrict the
table to the desired price range and the three neighborhoods. If
the table were then sorted by Lot Size and afterwards by
Neighborhood, Jennifer would see the desired houses at a
glance. This technique, which is closer to browsing than to
formal database queries, is more convenient for the end user
and is ideally supported by FOCUS.

Also in the first scenario, summary statistics are generated for
the remaining houses. Figure 8 shows how the complete
information, distributed over several display areas in the
system of Goldstein and Roth [6], is displayed in one clearly
arranged table. The user only had to sort by #Bedrooms and
then to select Summary per #Bedrooms from the menu of Cost
($). In Figure 8 the mean price per neighborhood has also been
determined.

Second Scenario
In the second scenario John asks for the company and then the
sales agent who sold the most houses from a given subset. To
answer this question, new aggregates are defined. In FOCUS
however, two mouse clicks are sufficient to sort first by Sales
Agent and then by Company: John can see at a glance which
agent of which company spans the most columns.

A WORLD WIDE WEB TABLE BROWSER
FOCUS is ideally suited as a browser for product information
to be distributed on the World Wide Web. Tables on the
WWW share the same problem with their counterparts on
paper: if they grow too large, they become very unwieldy to
manage.

Currently, the only way to display databases on the WWW is
to use a text field to enter a query and to display the query
results as a new page. With FOCUS, medium-sized databases
can be included as full tables within a page and can be
interactively viewed in place.

For this purpose, FOCUS tables have to be registered as a
MIME type. The tables are quite small compared to typical
graphical images. For example, the printer table presented
here occupies only 32 kB as an ASCII file.

There are three different ways of viewing tables on the WWW
with FOCUS:

• Configuring the WWW browser to use FOCUS as an
external viewer for tables. This is the way FOCUS is
currently implemented. The advantage is that FOCUS is

just an arbitrary application and is only loosely related to
the respective Web browser. The disadvantage is that the
table resides in a different window and provides no link
back into the Web.

• Implementing FOCUS as a plug-in for the Web browser.
In this solution the table viewer is more directly integrated
into the Web browser, but the disadvantage is that the
integration is browser-dependent.

• Implementing FOCUS as a JAVA applet. This solution
makes FOCUS platform-independent and usable with most
future Web browsers.

We would like to create a new standard for handling product
selection in the WWW. It is therefore in our interest to make
FOCUS as widely available as possible.

REQUIREMENTS FOR DATA STRUCTURE
FOCUS is applicable to a wide range of tables. The basic
precondition is that the table has to be indexed by products and
attributes. Such a table is similar to a flat relation.

If there are multiple relations concerning the same entities,
these relations have to be joined to make the result viewable
with FOCUS. Therefore, most relational databases will be
good candidates for presentation by FOCUS.

For product descriptions, subclass relationships frequently exist
between different product categories. That means that for a
specific subclass of products, further descriptive attributes are
needed. In FOCUS, several such subclasses can be integrated
into a single table for comparison by taking the union of all
attributes and by leaving the attribute values empty for all
undefined attributes. In the table they will be displayed as ""
(not applicable). Usually the hierarchical attribute system can
be used in such cases to improve clarity. Attributes for a sub-
class are grouped under a particular header. The user can hide
all these attributes with a single click and redisplay them if
objects of this subclass are selected.

The input to FOCUS is a simple tab-delimited ASCII file.
Such a file can be generated with a minimum of effort from
many popular applications, such as spreadsheets, simple
databases, card files, and even tables in text files.

APPLICATION FIELDS
There are a number of applications that illustrate how FOCUS
can be used. The most common examples are technical
product databases. In these situations, FOCUS supports the
complex selection of suitable products that are described by a
multitude of attributes with no clearly defined evaluation
procedure.

In addition to printers and other computer equipment, typical
product categories include cars, stereo equipment, washing
machines, etc.

Mail-order catalogs include many different products with some
common attributes such as price, order number, and delivery
time, but also contains products with some product-specific
attributes that only apply to certain product classes, such as



10

color, size, and sex for articles of clothing. FOCUS is well
suited for this kind of large sparse tables, because attributes can
be grouped in hierarchical subsections and irrelevant attributes
disappear automatically from the table after selecting a special
product class.

A similar situation exists for a directory of camping sites or a
hotel database. Again, this kind of data can be described by a
number of different attributes, which have vastly different
importance for different customers.

Pharmaceutical products databases are also a domain where
the comparison of different products is very important. Often
there is no optimal drug, so it is necessary to compare different
side effects.

CONCLUSION
We have developed a simple, powerful, and efficient inter-
active viewer for tabular data which is ideally suited for data
exploration and interactive query formulation. FOCUS
seamlessly combines ideas from the Table Lens [8], Dynamic
Queries [1], and the Aggregate Manipulator [6] into one
consistent concept.

The principal features of FOCUS are:

• The whole table (or any subset) is completely visible on a
single page in a highly compressed but still readable form.

• The table can be restricted to an interesting subset through
dynamic queries specified within the table using simple
mouse clicks.

• Complex queries can also easily be specified but are rarely
necessary because of the flexible overview, the sorting
capabilit y, and the hierarchical attribute list.

FOCUS is freely available in the World Wide Web
(http://www.gmd.de/fit/projects/focus.html) and can be used as
a helper application of a WWW browser.

REFERENCES
1. Ahlberg, C. and Shneiderman, B., Visual Information

Seeking: Tight Coupling of Dynamic Query Filters with
Starfield Displays. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems
(Boston, MA, Apr 24–28, 1994), pp. 313–317.

2. Ahlberg, C. and Wistrand, E., IVEE: An Environment for
Automatic Creation of Dynamic Queries Applications. In
Conference Companion of the ACM SIGCHI Conference
on Human Factors in Computing Systems (Denver, CO,
May 7-11, 1995), pp. 15-16.

3. Chwelos, G. and Mantei, M., Design Space of a Generic
Interface for Filtering and Displaying Database Query
Results. In Adjunct Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems
(Boston, MA, Apr 24–28, 1994), pp. 175–176.

4. Fishkin, K. and Stone, M.: Enhanced Dynamic Queries via
Movable Filters. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems
(Denver, CO, May 7-11, 1995), pp. 415-420.

5. Excel User Manual, Version 5.0, Microsoft, 1993.

6. Goldstein, J. and Roth, S. F., Using Aggregation and
Dynamic Queries for Exploring Large Data Sets. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (Boston, MA, Apr 24–28,
1994), pp. 23–29.

7. Kane, J. and McDonough, J., 92 Printers go to Battle. In
BYTE, November 1994, pp. 262-283.

8. Rao, R. and Card, S. K., The Table Lens: Merging
Graphical and Symbolic Representations in an Interactive
Focus+Context Visualization for Tabular Information. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (Boston, MA, Apr 24–28,
1994), pp. 318–322.

9. Spenke, M. and Beilken, C., PERPLEX: A Spreadsheet
Interface for Logic Programming. In Proceedings of the
ACM SIGCHI Conference on Human Factors in Com-
puting Systems (Austin, TX, Apr 30–May 4, 1989), pp.
75–80.


