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Abstract

Information visualization encounters a wide variety of different
data domains. The visualization community has developed repre-
sentation methods and interactive techniques. As a community,
we have realized that the requirements in each domain are often
dramatically different. In order to easily apply existing methods,
researchers have developed a semiology of graphic representations.
We have extended this research into a framework that includes
operators and interactions in visualization systems, such as a
visualization spreadsheet. We discuss properties of this framework
and use it to characterize operations spanning a variety of different
visualization techniques. The framework developed in this paper
enables a new way of exploring and evaluating the design space of
visualization operators, and helps end–users in their analysis tasks.

Keywords: information visualization, operators, user interac-
tions, view/value, framework, spreadsheet, design, extensibility,
visualization systems.

1 Introduction

Why the need for an operator framework? Imagine a visual-
ization application with two views of the same source dataset, say
a HomeFinder application. In one view, the dataset is visualized
using a scatter plot display with dynamic query sliders [2], while
the other view shows the values using a sorted numeric table. Now
let’s use the sliders to filter out some data points. The scatter plot
view changes accordingly. However, a question of semantics arises
for the table view. One possible interpretation of this action is that
the table view is a totally independent view of the original dataset,
and therefore should not change its view. The other possible inter-
pretation is that the original data source is being modified by this
interaction, which means the table view should change accordingly!
Which of these two possibilities is the correct interpretation? Let’s
try to solve this problem of contradictory semantics by examining
the application domain. Assume the user is interested in selecting
homes that fall in her price range. If the user is merely interested
in how the plot view changes while manipulating the price sliders,
we would then argue that the table view should not change at all,
because the task semantics do not require the original data source
to be modified. If the user is actually interested in creating a new
dataset that only contains homes in her price range, then we would
argue that the original dataset is indeed being modified, and there-
fore the table view should change accordingly. Both interpretations
of the interaction are valid under this task scenario! The user needs
a “Do What I Mean” key that requests the behavior she intends.

Problem for End–Users The above example shows that end–
users often have difficulty interacting with visualization systems
because there is a wide ’gulf of execution’—”a difference between
the intentions and the allowable possible actions” [23]. Sometimes
the semantics of operations are imprecise, or worse, impossible to
achieve. The user is often left with no way of predicting the result of
her actions, or may even be incapable of selecting the operation she
desires from among several alternatives. The operation and interac-
tion model often hampers the analysis process because it does not
fulfill the needs of the analysis. We can construct similar scenarios
by examining other data domains, such as visualizing hierarchical
structures such as file systems or organizational charts, slices of a
3D human brain, or world-wide web linkage structures. So this

problem exists even after careful consideration of the application
task domain.

Problem for Designers Information visualization has made great
strides in the development of a semiology of graphical representa-
tion methods [5, 20, 6], but lacks a framework for studying visual-
ization operations. Visualization system designers have three prob-
lems that can be improved by such a framework: operator reuse,
view/value separation, and operand focus.

Operator reuseis an important consideration in developing visu-
alization systems that can be applied to many different application
domains. Consider our Spreadsheet for Information Visualization
system (SIV), for example [8]. Spreadsheet environments are pow-
erful because of a rich set of operators. One of the challenges of
applying a spreadsheet to information visualization is the wide vari-
ety of data domains that are dealt with in information visualization.
Therefore, the flexibility and the generalizability of the spreadsheet
hinge on the application programmers’ ability to extend the spread-
sheet with additional operators as needed for their application do-
main. However, the disparities between different types of operators
and their applicability in different situations make operators diffi-
cult to implement and reuse.

The HomeFinder example emphasizes the difference between
view and value. Thevalue within each cell is the dataset being
visualized. Theviewcontrols the way the data is represented on the
screen. In information visualization, since the data is represented
abstractly on the screen, there is a distinct separation between the
value of the data and the view of the data, and it is especially useful
to represent the same data in many different ways. This is different
from numerical data or other areas of visualization, such as volume
visualization, where there is a tighter coupling between the value
of the data and its visual representation. In HomeFinder, the user
needs the ability to decouple the view and the value, so that they can
be specified and changed independently. We call thisview/value
separation.

In scientific visualization, past work in data–flow networks and
the visualization pipeline helped users to focus on the visualization
process. These models have enabled us to better understand how
operators interact with each other, because they were designed with
the goal of solving the difficult problem of how to provide a user
model for the analysis process.

In different problem–solving situations, users prefer to focus var-
iously on the operations to achieve a single desired result, or on the
operands at various stages in the computation. Instead of focusing
on the process, sometimes the user is more concerned with what
is the state of her data. For example, in numeric spreadsheets, in-
stead of showing the explicit relationships between variables (the
numeric equations), the system hides those relationships in favor
of showing the operands of the formulas. This enables the user to
focus on the intermediate computational results. Numeric spread-
sheets emphasize the operands. This mode of interaction is espe-
cially useful in situations where the next analysis step is not always
immediately apparent. By showing the state of the data, the user
gets visual feedback that helps bridge the gulf of evaluation. The
user can evaluate the result of her last action and choose the next
step based on the results of the computation. Therefore, in addition
to describing the analysis process, we seek a model that allows us
to capture the data states so we can accurately provide feedback and
support these exploratory interactions. We call thisoperand focus.
We need a model that not only describes the data transformation



process such as the visualization pipeline, but that also models the
data states.

So from the viewpoint of end–users and designers, we see that
there is a need to construct a general operator framework—a con-
ceptual model that enables us to clearly classify and organize differ-
ent operators. While we were motivated by our research in the Visu-
alization Spreadsheet [8], this is a general question about the utility
of visualization systems, because it is often unclear how domain–
specific operators are to be integrated into visualization systems.
Without the ability to incorporate domain specific operators, a vi-
sualization toolkit or system would be useless. Furthermore, there
are many operators that are not domain–specific but are not effec-
tively reused in different applications. We need an effective op-
erator framework in order to better understand these issues. The
framework must enable us to better understand the interaction be-
tween data, view, and the operators.

What is an operator framework and how does it help us? An
operator framework is a conceptual model for all possible visual-
ization operations. Byoperation, we mean all user interactions,
whether based on direct manipulation or other interaction. Our mo-
tivation is two–fold: (1) to develop a framework that is sufficiently
clean and simple that it enables end–users to choose which operator
to apply for a desired result, and to predict the results of their inter-
actions with the visualization system; and (2) to develop a general
interaction model for information visualization that helps visual-
ization designers classify and understand the relationships between
operators and the composition of interactions.

The biggest benefit of achieving our goal is establishing a user
conceptual model that allows us to bridge this conceptual gulf of
execution for the end–user. It helps us eliminate errors caused by
imprecise or incorrect conceptual models. It also helps us bridge
the ’gulf of evaluation’—the feedback from the system is “directly
interpretable in terms of the intentions and expectations of the per-
son” [23]. The model helps users in performing the actions appro-
priate to the task.

This model will also enable us to organize operators by clas-
sifying and taxonomizing the space of possible operations. Herb
Simon once said that the inherent value of classification is that, in
understanding any phenomenon, the first step is to “develop a tax-
onomy” [29]. This understanding is what enables us to isolate the
important artifacts for design. In information visualization, an op-
erator framework allows us to build interaction models for new data
domains.

In summary, the operator framework should enable both end–
users and designers to better understand the situations in which op-
erators can be applied, how they can be applied, and what operators
do.

In this paper, we contribute to a new way of thinking about the
operator model that applies over a range of data domains, with some
specific discussion as applied to visualization spreadsheets:

� Establishing a new operator–centric framework for design-
ers to explore the following properties of operators in
visualization systems: view vs. value, domain depen-
dence/independence, breadth of applicability, amount of di-
rect manipulation possible, and implementation choices. In
particular, we show three different operator implementation
choices (inside a data repository such as a DBMS, inside the
visualization system, or outside of both the systems as a sep-
arate module.)

� Developing a new end–user interaction model that establishes
user expectation, thus enabling users to apply and predict the
result of operators and the relationships they establish be-
tween views and values. We form an analysis process model
for users to apply to their task scenario in their particular data
domain.

� Focusing on end–users’ need for viewing intermediate results
in determining subsequent analysis steps. We use a visualiza-
tion state model with multiple data values and views to bridge
the “gulf of execution”.

� Applying this framework to past visualization systems and
techniques, including visualization spreadsheets. We demon-
strate the framework by enumerating the interaction tech-
niques in many past visualization projects.

The rest of the paper is organized as follows. In section 2, we
discuss some related work in this area. In section 3, 4, and 5, we
present our operator model and some analysis and discussion of
its properties. In section 6, we illustrate our model by analyzing
it using multiple existing interaction techniques. Finally, we have
some concluding remarks.

2 Related Work

Many have observed the intricate relationship between the view and
the value associated with that view. In particular, a good observa-
tion was made in [3] that when using a brushing technique with a
group of scatterplots, the effect of an operation on a data point ap-
pears simultaneously on all scatterplots in the other views. They
termed this “coordinated”. This is a simple, yet–powerful, notion
of view and value, where the view is always tied to the underlying
value. This binding is never broken. While this model does not take
multiple data sources into account, the advantage is that the user has
a very concise and clear model of how the system works. The dis-
advantage is that the other opposing semantic is impossible, which
is that the user may just want to temporarily change one view, but
not all of them. For example, the user may simply want to select a
group of data points in one particular view to highlight it to discuss
it outside the context of other scatter plots.

In scientific visualization, many have examined the visualiza-
tion data–flow network for constructing visualizations [31, 14, 35].
Schroeder et. al. [28] described a fairly complete conceptual data-
flow model in the context of scientific visualization for applying op-
erations to generate a visualization. The model consists of a visual-
ization network that can contain multiple sources and sinks. Every
step in the middle of the network consists of filters that have inputs
and outputs.

Similar concepts have led to other work on building opera-
tor models for these kinds of dependency issues. Lee and Grin-
stein [18] presented a conceptual model for database visual explo-
ration, which describes the analysis process as a series of value-to-
value, value-to-view, view-to-value, and view-to-view transforma-
tions. They also describe the concept of generating metadata using
database queries to aid in this process.

Chuah and Roth [11] extends Foley et. al.’s user interaction
framework [13] by incorporating BVI (Basic Visualization Inter-
actions), which is a more detailed characterization of data filters in
the context of information visualization. They also presented a ba-
sic classification taxonomy for BVIs (shown in Figure 1). We were
motivated by this work, and explored to what extent this taxonomy
suits our needs. However, we were unclear about the relationship
between ’set operations’ and ’data operations’, and the semantics of
view/value filtering (’shift’ as defined in Figure 1) appears confus-
ing in this model. the ’encode data’ subtree is dramatically more
complex than ’set–graphical–value’ and ’object–manipulation’ op-
erations. The class of visual mapping operators needs more exami-
nation.

Tweedie [30] presented a data transformation model similar
to [18], a simple interactivity model that basically classifies the
interactions based on the amount of control the user has over the
process, and a simple state model similar to [11].

Past spreadsheet work has focused mostly on data that can read-
ily be visualized with a straight mapping, e.g. numeric, or images.
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Figure 1: Chuah and Roth’s Basic Visualization Interaction taxon-
omy

Levoy [19] describes a tool called “Spreadsheet for Images” that
mentions the importance of data flow in spreadsheet. Levoy also
briefly mentions volume visualization in the context of his tool.
Most of the interactions in his tool are implemented as Tcl [24]
commands, with certain geometric operations implemented using
direct manipulation. Images, however, are rather straight forward
mapping from value to view. In a sense, the view is the value, and
there is very little discern-able differences between the two. There-
fore, the operator model for an image spreadsheet is relatively sim-
ple in comparison to a full–blown visualization system.

As we developed the Visualization Spreadsheet [8], we noticed
some deficiencies of past interaction models. They were not suf-
ficiently detailed for describing operators and interactions in the
spreadsheet. For instance, while the BVI model tied the interac-
tion model with a state model, the state model lacks detail to help
capture domain–specific designs. Moreover, it does not appear to
handle operations with multiple semantics. For example, the filter
example at the beginning of the introduction section suggests that
we could interpret dynamic query filters as either a value operation
or a view operation. Under the BVI architecture, dynamic querying
is classified as a graphical operation, which does not affect the un-
derlying data. On the other hand, Tweedie’s model was so general
that it offered little evaluation potential in the context of information
visualization systems that have multiple data sources and views.

Most importantly, past models also failed to unify the interaction
model with the visualization process. The visualization pipeline as
described by Stuart Card’s [6] is a rich design space that has yet
to be unified with an interaction model. Chuah and Roth’s work,
which unified the low-level keyboard/mouse interactions, did not
incorporate this visualization pipeline. We need a model that de-
scribes how the graphical, data, and control states are affected by
the operators. Here we are trying to extend past work by unifying a
taxonomy of operators with the visualization pipeline that uniquely
solves the above problems.

3 Operator Model

3.1 Properties of operators

In order to develop an operator framework, we first start by observ-
ing some fundamental properties of operators from the visualization

spreadsheet point of view. One property is whether an operator is
a view or value operator—whether it modifies the underlying data
set or not. The other property is degree of functional similarity
with other operators. These two properties are important because
functional similarity deals with an operator’s degree of applicabil-
ity, and view/value have deep implications regarding the semantics
of the operator.

3.1.1 Functional versus Operational Similarity

In developing our model, we made the first observation that
some operators areoperationally similar across applications—
operations whose underlying implementations are exactly the same
from application to application such as rotations, scaling, transla-
tion, camera position manipulations, geometric object manipula-
tions, and lighting. The entire class of geometric and scene oper-
ators are operationally similar across applications, because we can
make a fundamental assumption that once we obtain a view, we are
dealing with graphic primitives such as lines and polygons that we
can operate on in exactly the same ways. There are other operators
that belong in this class, such as duplicating or deleting a view or
value, and renaming a data source.

We also observed that there are operators that are onlyfunction-
ally similar —operations that are semantically similar across ap-
plications, but the underlying implementation are actually different
for different types of data sets. For example, filtering a data set is
a common and extremely useful operation, but different application
domain have different ways of filtering the data set. Another exam-
ple is the class of algebraic operators such as adding or subtracting
data sets, which is again domain specific. The way we add two for-
sale real estate property list together is not the same as combining
the web linkage structures from two different crawls of the web.

Finally, there are operators that are only application task
dependent—operations that are specially designed for a specific
task in a particular application domain. An example of this class
of operations is an electrical probe inserted during a heart electri-
cal pulse visualization. We could specify the positioning of a probe
using the mouse and trigger a new heart pulse simulation. The sim-
ulation is a domain task specific operation. Another example is a
specific implementation of the HTML document parsing operation
for multi–dimensional scaling to compute similarity of documents.

3.1.2 View versus Value

Another dimension of operators is whether it is view or value–
oriented. Byvalue, we mean the raw data, whereasview is the vi-
sualization end–product. Avalue operatorchanges the data source
by such processes as adding or deleting subsets of the data, filtering
or modifying the raw data, and performing a Fourier Transform on
an image. A value operator fundamentally generates a new data set.

A view operator, on the other hand, changes the visualization
content only. Examples of such operators include 3D rotation,
translation, and zooming, a horizontal or vertical flip of an image,
and changing transparency values of a surface in order to see the
underlying structures better. A view operator fundamentally does
not change the underlying data set.

The distinction between a view and value operator is not always
clear. For instance, the modification of the colormap represents a
raw pixel value modification for an image, and therefore, should be
classified as a value operator. However, in a 3D surface heat map,
the modification of the heat scale appears to be a view change that
does not fundamentally change the underlying surface values. An-
other example is the motivational example from the Introduction
Section. Sometimes we would like to apply filtering to generate a
data set. Other times we just like to temporarily make certain data
points invisible without affecting the underlying data source. The
same filtering operation appears to change its property depending
on the user’s intentions! How do we unify such seemingly contra-



dictory classification of operators according to this important prop-
erty? View/value does not appear to be a black and white property
for operators.

3.2 A Visualization State Model for Operators

Visualization Pipeline The concepts of functional and opera-
tional similarity are related to the concepts of view and value op-
erators. On the one hand, view operations tend to be more oper-
ationally similar across application domains. On the other hand,
value operators tend to appear functionally similar but implemented
differently for each data domain. Even though there are classes of
value operators, such as combining data sets, a value operator must
perform on the specific data structures from the application domain.
But view operators, such as scene, geometric, and pixel operations,
performs on the displayed end–product, which we can assume to
be graphic primitives such as points, lines, polygons, or voxels. We
need a model that fits with this observation. Our discovery is that
the solution to this dilemma comes from a non–intuitive source—
the visualization pipeline.

On one end of the pipeline, we have the data (value), while on
the other end, we have the visualization (view). We propose that
view/value property for operators is a fundamental classification for
what stage the operator is in the visualization pipeline. On the one
end of the spectrum, we have full view operators that can only be
interpreted as view operators, such as rotation. On the other ex-
treme, we have full value operators that can only be interpreted as
value operators, such as expanding an existing data set by adding a
new data set. Operators that are not full view or full value operators
lie in between the two extremes.
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from Stuart Card’s model)

In information visualization, data domains usually contain more
complicated pipelines (a model is shown in Figure 2, which is
slightly expanded from Stuart Card’s information visualization
pipeline). Raw data are usually first processed into some form of
analytical abstraction (a.k.a. metadata, data about data, or infor-
mation) through a data transformation process. This analytical ab-
straction is often further reduced using a visualization transforma-
tion into some form of visual abstraction, which is information con-
tent that is visualizable. Usually this process contains a dimension

reduction step, because the data sets in information visualization
are usually complex and multi-dimensional. An example of visual-
ization transformation is multi-dimensional scaling and clustering.
From the visualization abstraction, there is a further step of visual
mapping transformation that brings a view that is presentable to the
user on the computer display.
State Model In order to accurately emphasize the end–user’s
analysis process as well as the intermediate results, we constructed
a new model based on the visualization pipeline (see Figure 3). The
modifications are two–fold.
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Figure 3: Our visualization operator model

First, while the visualization pipeline handles a large variety of
operators, the model does not take multiple values and multiple
views into account. If two separate data sets go through two dif-
ferent pipelines to contribute to a single visualization, the model
breaks down. In order to ameliorate this problem, we expand the
above pipeline into a network that allows as many values and as
many views as needed. To this extent, our model is similar to data–
flow networks as presented in [28].

Second, the visualization pipeline uses nodes to represent oper-
ators, and edges to represent flow of data. Instead, we use a state
model, where each node represents a certain data state, and each
edge is an operator transforming the data from one state to the next.
Instead of stages, each node in the network is a state describing the
status of the data. Each directed edge from a state to another state
describes the operator that is applied to modify the data. The source
data states are the raw values, whereas the sinks are the views of the
data sets.

In some sense, our model is similar to a dual of the traditional
scientific visualization data–flow network. Our model is not an ex-
act dual, because we use a state model. In data–flow networks, the
data state is not explicitly represented. For example, a different
data set can flow down the same exact pipes. Also, a view rotation
does not take the data to a new state. If we construct an exact dual



of the data–flow network model, we would get nodes that repre-
sent pipelinestages, instead of intermediate resultstates. Our state
model encompasses data–flow concepts, while being more detailed
at the same time. The state model has advantages for some visu-
alization tasks, because it makes the intermediate results explicit
to the user, which enables the user to view intermediate results in
planning later operations.

Let’s examine an example of applying this framework to a spe-
cific application domain—visualization of web site structures (see
right side of Figure 3). The raw data set is a collection of web
pages generated by crawling a web site. We can first perform a
value–filtering operator where we search for documents that con-
tain the word “Hewlett–Packard” or “HP”. This would be an exam-
ple of within data stage operator. We can then use this collection
of web pages and generate a graph network (the analytical abstrac-
tion) from the linkages between pages. This is a data transformation
operation.

Using the network, we can again select only subsets of the edges,
such as choosing only the first three levels of documents from the
root node. This subset operation is an example of a within analyt-
ical abstraction stage operator. We can then create a tree by doing
a breadth first traversal (a visualization transformation operation).
The breadth first traversal generates a visualization abstraction, a
hierarchical tree of the web pages, that can be easily visualized.
There are many visual mapping techniques that can be applied to
this visualization abstraction, such as Cone Tree [27], Disk Tree [9],
TreeMap [16], Hyperbolic Tree [17]. Within View Stage Operators
such as focusing and brushing nodes, or rotating the cone tree can
then be applied to this visualized content.

4 Analysis of Operators with the Framework

4.1 Classification of Operators

Using the above model, we can classify operators according to what
stage the operator is involved in. Note that some operators work
within a single stage, while other operators work across different
stages:

Data Stage Operators (DSO) .
General: value-filtering, subsetting
Domain Algebraic: difference or addition of two data sets
Image: flip, rotate, crop, fourier transform, etc.
Point set: value–filter
Web: collection of web pages generated by crawling a web site

Data Transformation Operators (DTO) .
Textual: computing textual vectors
Grid: iso-surface extraction
Point set: triangulation
Web: hypertext document network

Analytical Abstraction Stage Operators (AASO) .
Vector: select a subset of the vectors
Surface: divide region
Web: select subset of the the nodes in the network

Visualization Transformation Operators (VTO) .
Dimension Reduction: multi-dimensional scaling or principal com-
ponent analysis
Clustering: association rule, multi-modal clustering, spreading ac-
tivation
Network: breadth first traversal, depth first traversal

Visualization Abstraction Stage Operators (VASO) .
Grid: simplify by reducing number of regions
Network: simplify by consolidating nodes
Hierarchy: cut–off depth of tree

Visual Mapping Transformation Operators (VMTO) .
Point set: scatter plot

Multi–dimensional Surfaces: World–within–World,
Hierarchy: Cone trees [27], Hyperbolic Trees [25], TreeMaps [16]
and Disk Trees [9]
Network: GV3D [1], NVB [22], SeeNet [4]
View Stage Operators (VSO) .
Object Manipulation: rotation, translation, scale, zoom
Camera: position and orientation
General: view–filter

4.2 Why is this framework powerful?

This operator model provides a classification that is powerful be-
cause it makes these following properties of operators explicitly
clear:
View vs. Value The closer an operator is to the view end of the
pipeline, the more it takes on view operator properties. Similarly,
the closer an operator is to the value end of the pipeline, the more it
takes on value operator properties.
Operator–centric approach Note that we are explicitly taking
an operator–centric approach. If an operator appears to be able to
operate on multiple types of data, we separate the single operator
idea into several different operator implementations. This approach
is the opposite of the data–centric approach, which favors overload-
ing operators so that they can function with multiple data types. As
an example, if a filter can be viewed as both a value operator as well
as a view operator, we separate these two meanings into a value–
filter and a view–filter operator.
Applicability of operators The breadth (the amount of opera-
tional similarity, or wide–applicability) of an operator is dependent
on how late it comes in the visualization pipeline. All Within-Stage
Operators take their respective data type from the stage, and out-
put the same data type. Moving down the pipeline gets us closer
and closer to a generalized data type that is applicable over a wider
range of data domains. In order of decreasing breadth of applica-
bility, we list some examples of the following different levels of
applicability:

� As mentioned in Section 3.2,view operators, such as rotation,
are applicable across a large set of data domains.

� Visualization Transformation Operatorscan be applied to
data domains with similar goals. For example, multi-
dimensional clustering can be used to reduce the dimension-
ality of any problem that can be formulated using a feature
space. Breadth first traversal can be used to produce a hierar-
chy out of a graph network.

� Visual Mapping Transformation Operatorsare usually ap-
plicable to a wide variety of data types. For example,
glyphs, icons, streamlines can be employed to show multi–
dimensional data at a particular spatial point. Worlds–within–
Worlds [12] can be used to visualize high dimensional sur-
faces. Cone Trees [27], Hyperbolic Trees [17], TreeMaps [16]
and Disk Trees [9] can be used to visualize a wide variety of
hierarchical data.

� Data Transformation operatorsare specific to the particular
data structure from an application domain, because they take
the data structure as input, and output an analytical abstraction
or metadata. Examples include creating text vectors from a
list of documents, or creating a graph network from a web
site.

� Value Operatorsare specific to its associated data type, as dis-
cusssed in Section 3.2.

Direct manipulation The amount of direct manipulation that is
possible in an operator also lies on this visualization pipeline scale.
The closer the operator is to view, the higher the amount of inter-
activity. For example, the geometric position and orientation op-
erators are easily directly manipulated. Variable-to-axis mapping,



a visualization transformation operation is also easily specified us-
ing a point-and-click approach. As we move up the pipeline toward
value operators, the amount of domain–dependency increases, mak-
ing the specification of these operations more and more difficult.
For example, the parsing of a file for data extraction is a data trans-
formation operator, and it is extremely hard to design an interface
that allows the user to specify the file format. Interestingly, MS
Excel has certain amount of automatic parsing capabilities using an
’Import Wizard’. This is because the need to import data is espe-
cially important to its users. Such capabilities are hard to design for
information visualization, because the wide variety of data domains
has different data and information structures. Indeed, for many vi-
sualization systems, the hardest part of the visualization process is
importing the data!
Implementation Choices With the knowledge of the above
model, the choices for the implementation of operators are clearer.
There are three basic choices for implementation:

� inside the visualization system. Examples of operators appro-
priate for this choice are scene operators, camera operators,
color scale operators.

� using queries inside a data management engine, such as a
DBMS database. For example, we can use the full power
of relational algebra to organize and use OnLine Analytical
Processing (OLAP) to analyze and generate the metadata.

� using an analytical engine outside of both the data depository
and the visualization system. Examples are differential equa-
tion solvers for fluid–flow simulations, web crawlers, numer-
ical analysis in Mathematica, Maple, Matlab, business com-
putation using numeric spreadsheet in MS Excel, or image,
sound, video processing in Khoros.

The operator model also helps us in choosing between these
choices. If the operator is closer to the view stage in the pipeline,
then it is most efficient and most easily implemented in the vi-
sualization system. For example, systems such as AVS [33] and
Data Explorer [34] data–flow systems and the Visualization Spread-
sheet [8] implement most, if not all, of its visual mapping transfor-
mation operators and view operators in the visualization.

5 Discussion

5.1 Three classes of users of this framework

Three kinds of people can benefit from this framework. First, vi-
sualization system developers can use this framework to make the
system extensible to the application programmer. For example, we
have applied this framework to our visualization spreadsheet sys-
tem.

Second, once a visualization system has been built, application
programmers can use this model to extend the system to new data
domains. This framework enables programmers to identify oper-
ators that are not domain specific and, hence, that they can easily
reuse.

Last, but not least, this framework provides a clean and concise
model for end–users to understand how to operate a system such as
the visualization spreadsheet, and to predict the results of applying
operators.

5.2 Framework, User, and the Visualization Spread-
sheet

How does this framework help the end–user when using the visual-
ization spreadsheet? The development of this framework enhances
the usability of the spreadsheet by solving the following three prob-
lems.

First, the framework provides a user interaction model so that
users can understand what they have to do to get a visualization.

This is accomplished by incorporating the visualization pipeline
process model. By following the steps in the pipeline, the user can
perform the actions required to create a desired visualization in the
correct order.

Second, the framework establishes users’ expectation of the flow
of changes to the data. This enables users to understand how the
system works, and how the data flow can be manipulated to per-
form the correct analysis action. For example, let us create a set
of textual feature vectors from a set of documents (see the left side
of Figure 3). In one analysis, we choose to do multi–dimensional
scaling, and in another analysis we choose to first create a subset
of these textual vectors before applying a clustering algorithm. Be-
cause both states are dependent on the same data source, if the set
of documents change, both states would change as well. This is
made explicit by the state model.

Third, the framework cleanly solves the operator semantics prob-
lem, because it models the separation between view and value. The
view versus value filtering example mentioned in the introduction
is an excellent example of how the framework forces interaction
designers to realize potential ambiguity in the semantic of opera-
tors. By forcing designers to think about where operators exist in
the pipeline, the operator semantics are made explicit. By having
a cleaner model, the end–user can now choose among several op-
erational semantics that correspond to the correct action that she
desires. The user can interact more accurately because she under-
stands how operators in different stages of the pipeline fit together.

6 Framework Illustrated with Coverage Ex-
amples

In this section, we illustrate the power of the above framework by
applying it to the design of the following visualization techniques.
Using example data domains for each technique, we describe the
operations that are possible using the framework. We also com-
ment on any technique changes we made while making the classifi-
cations. For many of these techniques, we added the two different
view/value filtering semantics. For a list of the acronyms we are
using for the operators, see Section 4.1.

Dynamic Querying [2]
. Example data: Home, Movies sales data
. Analytical abstraction: parsed feature records
. Visualization abstraction: multi–dimensional point sets
. VASO: dynamic value-filtering
. VMTO: scatter plot, choosing variables-to-axes mappings
. VSO: dynamic view-filtering
Comment: could also apply unmapped variable filtering (see [10]
for a discussion).

AlignmentViewer [10]
. Data: similarity reports from comparing a single sequence against
a database of many other sequences
. DTO: parsing textual reports
. Analytical abstraction: alignment records (data structure repre-
senting parsed information)
. DTSO: addition, subtraction between different reports, unmapped
variable value–filtering
. VTO: information extraction from records
. Visualization abstraction: feature point set with vector
. VMTO: comb–glyphs
. VSO: rotation, zoom, focus on a single alignment, detail-on-
demand, animation (by using an iterator over the view–filtering
operation)

Parallel Coordinates [15]
. Example data sets: production run of VLSI chip yield and its de-
fect parameters



. Analytical abstraction: corresponding yield and parameter feature
set
. AASO: choosing a subset of records using dynamic value–
filtering
. Visualization abstraction: point set
. VMTO: parallel coordinate plot
. VSO: dynamic view–filtering

SeeNet [4]
. Example data sets: phone calls made, Internet packet flows, Email
communication patterns
. Analytical abstraction: parsed records of source and destination
and associated feature sets
. AASO: unmapped variable value–filtering, choice of displayed
statistics, record aggregation
. Visualization abstraction: graph network
. VMTO: matrix display, geographical link maps, node maps
. VSO for all three views: sound feedback, unmapped variable
view–filtering (they called it ’conditioning’)
. VSO for nodemaps and linkmaps: size, color, zoom parameter fo-
cusing, identification by brushing, animation speed, line thickness,
line length, dynamic query threshold view–slider
. VSO for nodemaps: symbol size, color sensitivity view–slider
. VSO for matrix display: time and threshold view–slider, permute
rows and columns
Comment: added view/value filtering semantics, aggregation is
mentioned as implemented using data management software (see
discussion about implementation in Section 5), several different
views of the data sets.

ThemeScape and Galaxies [36]
. Data: CNN news stories
. Analytical abstraction: text vectors
. AASO: choose an item and then perform weighted query
. Visualization abstraction: multi-dimensional scaling, principal
component analysis
. VMTO: hills and valleys
. VSO: zoom, rotate, focus on spot
. VSO for ThemeScape: slices
. VSO for Galaxies: animation of scatter plot

Hierarchical Techniques : Cone tree [27], Hyperbolic
Browser [17], TreeMap [16], Disk Tree [9]
. Data: file system, organization charts, web structure
. Analytical abstraction: graph
. AASO: dynamic value–filtering
. VTO: breadth first traversal
. Visualization abstraction: Tree hierarchy
. VMTO: 3D cone layout and hyperbolic tree layout, Disk layout
of tree
. VSO: focus node, hide subtree, orientation and position of tree,
dynamic level–filtering
Comment: multiple techniques for views

Perspective Wall [21]
. Data: schedule, file system
. Analytical abstraction: parsed record set
. AASO: dynamic value–filtering
. Visualization abstraction: linear list with item features
. VMTO: wall panels in 3D with glyphs, focus+context distortion–
based
. VSO: focus on a particular wall, focus an item, dynamic view–
filter, different levels of detail

WebBook and WebForager [7]
. Data: URLs for web pages
. Analytical abstraction: Images of HTML pages generated by get-
ting the web pages
. Visualization abstraction: linear page lists, collection of page lists.
. VASO: aggregation into a book or a pile, place on book shelf (cre-

ating list of lists), crawl from a URL and create a book from the
collection
. VMTO: books with multiple pages, Document Lens, bookshelf,
table, piles
. VSO: focus on a book, focus on a page, flip through pages in a
book, view as a Document Lens, history pile

Table Lens [25, 26]
. Data: baseball player statistics
. Analytical abstraction: numeric records
. AASO: sort
. Visualization abstraction: constructed numeric table
. VMTO: number represented using bars, with focus+context
distortion–based table:
. VSO: change distortion focus

Time Tube [9]
. Data: web structure evolving over time
. Analytical abstraction: evolving graph represented as ordered col-
lection of graph
. VTO: breadth first traversal with global node position over time
. Visualization abstraction: evolving tree as ordered list of trees
. VMTO: Time Tube represented using an aggregation of Disk
Trees (invisible tube–like shelf)
. VSO: gestures for focus on a slice, bring slices back into the Time
Tube, right–click for zooming focus on the connectivity of a node,
rotate slices, brushing on pages by highlight URL on all slices, an-
imation through the slices

Spreadsheet for Images [19]
. Data, analytical and visualization abstraction: pixels, voxels
. DSO: rotate image, filter, change color scale
. View: images from pixels, volumes from voxels (direct mapping
from data to view)
. VSO: rotate image, filter, change color scale, rocking the volume
visualization

FINESSE [32]
. Data: financial data
. DTO: compute call and put option prices
. Analytical abstraction: matrix records, mathematical functions
. AASO: change parameter of functions, change arithmetic rela-
tionships, load, copy, paste, cut, move, clear cell, input math func-
tion
. Visualization abstraction: matrix, computed curves
. VMTO: heat map, surfaces in 3D, 3D bar charts, 2D line plots,
text for filenames, value sliders
. VSO: orientation of geometric objects, common colormap or font,
same geometric orientation, show cell dependency relationships,
picking a data item

Spreadsheet for Information Visualization [8]
. Example data sets: point sets, matrix, sequence similarity reports
. DTO: normalize, parse textual report
. Analytical abstraction: normalized matrix and point sets, value
tuples
. AASO: dynamic value–filter, algebraic set operators
. VTO: Delaunay Triangulation, data feature extraction
. Visualization abstraction: point set, matrix, triangulated surface,
point set with feature vector
. VMTO: heat map, cube visualization, bar visualization, cone tree,
disk tree, glyphs, scatter plot, choosing variable-to-axes mapping
. VSO: dynamic view–filter, object position and orientation, pixel
image addition between cells, geometric object addition between
cells, animation
Comment: allows coordinated direct manipulation, value and view
dependencies between cells, change cells to have same visual map-
ping transformation



7 Conclusion

In the past several years, researchers have made great advances in
information visualization. Semiologies of graphic representation
methods have been developed by various researchers [5, 20, 6] to
gain understanding of the visualization design space. A major dif-
ference between current information visualization work and past
work on graphic design is the development of interactivity. The di-
alog between human and computer enriches the communication of
information.

In this paper, we examined recent work on visualization inter-
action frameworks and then developed a novel operator and user
interaction model. Our state model unifies the data analysis process
and the complex relationship between view and value to character-
ize the interactive and non–interactive operations in a visualization
system. Using the visualization pipeline as a basis, we developed
a way to classify operators. We examined not just view and value,
but how metadata is generated in the analysis process. We also
suggested three possible ways of implementing operators based on
where they are involved in the visualization pipeline. Finally, we
illustrated the usage of this framework by applying it across a large
number of different visualization techniques. We showed that this
visualization operator model allows us to characterize the opera-
tions that are possible in each technique.

Using the state model, this method forms the basis of an evalua-
tion technique for operators in visualizations. By applying this op-
erator analysis to various visualizations, we can point researchers
toward areas where particular operators are missing from a given
system or technique. We can also use this model to compare differ-
ent interaction models in visualizations.

The framework in this paper facilitates a new way of exploring
the space of visualization operators. We hope this will enable other
researchers to characterize various interaction techniques, and cap-
ture design requirements for new application domains, and develop
new and novel operators.
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