
RC22850 (W0307-148) July 22, 2003
Other

IBM Research Report

THREAD ARCS: An Email Thread Visualization

Bernard J. Kerr
IBM Research

One Rogers Street
Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

THREAD ARCS: An Email Thread Visualization
Bernard Kerr

 IBM Research
One Rogers Street

Cambridge, MA 02142
 + 1 617 693 4373

bernard_kerr@us.ibm.com

ABSTRACT

This paper describes Thread Arcs, a novel interactive
visualization technique designed to help people use threads
found in email. Thread Arcs combine the chronology of
messages with the branching tree structure of a conversational
thread in a mixed-model visualization [10] that is stable and
compact. By quickly scanning and interacting with Thread
Arcs, people can see various attributes of conversations and
find relevant messages in them easily. We tested this technique
against other visualization techniques with users own email in a
functional prototype of ReMail, our research group’s
experimental email client. Thread Arcs proved an excellent
match for the types of threads found in users’ email and the
qualities users wanted in small-scale thread visualizations.

KEYWORDS
Thread, email, electronic mail, information visualization, tree
structures, discussions, conversations.

1. INTRODUCTION

The importance of conversation threads in email and tools
for inspecting them has been well documented [6, 10, 12].
The main advantages are seen as giving users a greater
context of the messages they are reading, reminding users
that a conversation is in progress, recording the state of a
discussion, automatically collating related messages,
reducing messages displayed in their inbox, and allowing
users to perform actions such as reading or deleting on a
group of messages [4, 6, 10, 11, 12].

Threads are defined as a collection of individual messages
related to each other by the reply function in email.
Commonly, the first message in a thread is called the root,
any message that is being replied to is called the parent of
that message, and any replies to a message are called
children of that message. The generational depth of a
message is defined as the number of reply-to relationships
away it is from the root message. For example, all messages
that are replies to the root message have a generational depth
of 1. The branching reply-to relationships of threads have
explicit meaning that is significantly different from an ad hoc
or automatically-collected set of messages.

Email threads differ from public discussion threads, such as
those found in Usenet, in a number of ways. Public
discussion threads are often large [8]. In contrast, email
threads are relatively small. Fisher [4] found that threads of
greater than one message account for 35% of average users’
mailboxes and that most threads, 87%, had 4 messages or
less.

Public discussions also have a formal reply mechanism,
while email users often use the last messages they received

from a correspondent as a convenient way to start a new
message. By using existing messages and the reply function
as a makeshift address book they are, in effect, breaking the
formal use of the reply function. This means that chronology
is an important attribute to consider for threads found in
email.

Chronology is also important because email is often time-
sensitive, and it is the way most users see messages arrive in
their inboxes. Email threads are often read backwards
starting with the most recent message, because in email the
last message sent often determines the thread’s
“conversational status” [12] by summing up the current state
of the conversation or by containing questions or tasks that
are still outstanding.

Large scale visualization tools for public discussion threads,
such as Netscan’s “visual dashboards” [8], Loom [3] and
Conversation Map [7], consider a different set of qualities
when presenting thread information than that needed for
email. They contain social structures and conversations that
are very different from egocentric nature of email. For
example, email users probably know all of the people
involved in an email thread personally, while Usenet is more
public and anonymous.

Email threads on the other hand have a different set of
qualities to consider. We believe small-scale, compact
visualizations embedded into personal email clients could
enhance the user experience of email.

In email one of the challenges in displaying these
conversational threads is that they have two conflicting
properties: the arrival sequence of messages and their reply-
to relationship [10]. We describe a visualization technique
that can effectively communicate both of these properties at
once, and explain how we tested this design in an email
prototype, on real threads found in users’ own email.

2. KEY QUALITIES

Here is a list of the seven qualities we considered key to
visualizing threads in an email client and why they are
important.

1. Chronology: Show the arrival sequence of messages

that created this thread. Which message came first?
Which is the most recent message? The importance of
this quality is explained in the introduction.

2. Relationships: Make all of the “reply to” relationships
between messages visible at a glance [10]. What are the
direct relationships to other messages in the thread?
What is this message a response to? Which chain of
messages led to this one? Which messages subsequently

responded to this one? This gives the context for each
message in the thread.

3. Stability: As a thread grows, have each message appear
in the same location. This allows one to return to the
thread in the future and find the same message or to see
easily if any new messages have been added.

4. Compactness: Be compact, since the visualization will
be competing with other space required for email
functionality.

5. Attribute Highlighting: One is able to highlight
specific message attributes in a thread, including all
messages sent by a particular person, unread messages,
or all messages sent on a particular day. This helps one
find particular messages or assess the state of a thread.

6. Scalability: Work for small threads as well as larger
threads found in email. Does the clarity of the
visualization degrade gracefully as more messages
arrive? Can it still be interpreted when it is large and
complex? Since the vast majority of email threads are
typically between 2 and 20 messages [4], a visualization
does not have to scale to hundreds or thousands of
messages.

7. Sense/Scanability: From scanning the visualization
give a sense of the type of conversation present in a
thread. For example, is this thread a back-and-forth
reply chain between two people, or is it a request for
information and responses from a group?

The Thread Arc visualization was designed with these key
qualities in mind.

3. VISUALIZATION

Thread Arcs have a linear layout of message nodes connected
by relationship arcs. In Thread Arcs each circular node
represents a message in the thread. Because the chronology of
the thread is so important we encoded this by position. For
example, for the six-message thread in Figure 1, each node is
equally spaced horizontally in the order of its arrival, with the
first message on the left. This layout also makes for a compact
visualization that is stable.

Figure 2 adds the relationship between messages. Here we
draw arcs connecting each message node to its parent in the
thread.

The density of lines and the intersection of arcs make this
image hard to read. To alleviate this confusion we draw some
of the arcs below the line, as shown in Figure 3, below.

Figure 4 shows the advantages of this technique for a variety of
threads with 5 messages.

From this visualization one can see thread qualities such as the
size of the thread (number of nodes, which also corresponds to
the length of the visualization) and number of responses per
message (the number of arcs leaving a message node). Threads
that have messages which receive two or more replies are
described as bushy while threads that have messages that get
only one reply per message are called narrow. This helps one
visually scan and get a sense of threads that have similar
structures to threads one has seen before.

The width of a Thread Arc is a linear function of the size of the
thread it portrays. We can make a more compact visualization if
we can constrain the height of the arcs so they are flattened out
when they are over a certain height, as shown in Figure 6. This
means that the visualization will only grow horizontally, and
therefore it is easier to fit inside the space constraints of an
email client.

Figure 7 shows the effect of this technique on a larger thread
containing 16 messages.

This technique creates some ambiguity when arcs overlap. This
problem is alleviated by the selection highlighting that is

described under “Interaction” later in this paper, along with the
other attribute highlighting schemes.

The general technique to make Thread Arcs can be summarized
by the pseudo code shown in Figure 8.

Mathematically, for a thread of size n messages, the total
number of possible Thread Arcs ‘t’ that could be constructed
is t(n) = (n-1)! Although the theoretical number of possible
threads is enormous, in practice the actual number of threads
found in email is a small subset. Figure 9 shows all the
possible Thread Arcs that can be built with 2 to 5 messages.

Thread Arcs are designed to be optimal for bushy and narrow
threads of 2 to 20 messages and to degrade gracefully for larger
threads.

The time ordering sequence allows one to see the evolution of
the thread as it grows. For example, Figure 10 shows the
growth of a Thread Arc from 1 to 8 messages. In addition, it
keeps each message in a stable position so that one can return
to the exact location where that message was last seen, despite
recent growth of the thread.

When a new message is added, the height of its arc reflects how
far back in the thread its parent message is, relative to the most
recent message. This helps one see any divergence from the
most recent branch of the discussion.

4. EXISTING VIZUALIZATION TECHNIQUES

Figure 11 shows the evolution of a thread from 1 to 6 messages,
and compares the Thread Arcs visualization to three other
visualization techniques: Tree Diagrams, Tree Tables and
Compact Chronological Tree Tables. Tree Diagrams (B) are a
common way to represent threads. Unlike Thread Arcs, Tree
Diagrams do not show chronology and are not stable. Instead
they emphasize the generational nature of a thread. In a Tree
Diagram, each row is a new generation of messages, and
message nodes are moved to economically pack the nodes as it
grows. For example, as message 4 is added to the Tree
Diagram, message 3 is moved horizontally to make room for
message 4. If one did not return to this thread until it contained
6 messages, it would be unclear which message was now
message 3. A Tree Diagram is also not compact because it can
grow very wide and/or tall, making it hard to dedicate a fixed
space for it in an email client. The same problems apply to the
Tree Table (C).

The Compact Chronology Tree Table (D), described in [6,7],
does show chronology, but it is unstable. Nodes must move in
the horizontal dimension when some new messages arrive, for
example, as message 5 arrives message 4 is moved to its right.
Compact Chronology Tree Tables can grow wide and/or tall
and therefore do not fit the compact visualization requirements.
In addition, positioning the first child of any message directly
below its parent (for example 2 and 3) gives a disproportionate
weight to the first child, making the sibling relationships less
obvious, for example the siblings 2 and 6.

Because Tree Diagrams and Tree Tables don’t show the
chronological attributes of a thread, they also over simplify
their representation. For example, Figure 12 shows how eight
different Thread Arcs (A) are equivalent to one Tree Diagram
(B) or one Tree Table (C).

As a result, Thread Arcs are more likely to make individual
conversations more distinctive and therefore easier for one to
recall the content and the position of important messages
from the shape of the Thread Arc alone.

When we visualize threads in email we need to represent
each message node equally. Other visualization techniques
such as Tree Rings, Icicle Plots, and Tree Maps change the
size of a message in relation to other messages in the thread
based on its position in the tree structure, thereby putting a
lot of visual emphasis on specific messages. These
visualizations are also limited in their ability to be compact
[1].

It should be noted that Thread Arcs are visually similar to
Arc Diagrams [11], which show repeating structures in a
linear list. Thread Arcs, however, differ from Arc Diagrams
in three important respects: first, Thread Arcs show tree
structures. Second, the arcs in Thread Arcs represent a “reply
to” rather than “contains the same sequence as”. Third, they
use arcs above and below the line to help reduce the number
of crossovers, making it easier to see conversation paths.

5. INTERACTION

Thread Arcs in the context of an email client also have
interactive components that allow one to highlight and inspect
thread and message attributes dynamically. This capability
allows one to decide which attributes are relevant to the task at
hand and display them when needed. For example, when one
selects a message to read, the unrelated messages fade out, and
the selection is highlighted with a bright blue hollow circle. Its
parent appears in a lighter blue highlight, and its children are a
darker blue. In Figure 13 below, the children of each selection
(S1, S2, S11) are highlighted as dark blue nodes. From this one
can see that S2 and S11 each have two children. This
highlighting shows specific relationships relative to the
selection. By clicking on the selected message, one can toggle
between this selected state and the highlighting scheme for the
thread.

Highlighting schemes show other message attributes, for
example one’s own contribution to a thread or the
contributions of a set of “important people” one has
specified. These attributes can also be derived from the
thread as a whole. For example, all messages received on the
same day as the last message of the thread can be shaded the
same way. Other attributes that could be useful to visualize
include messages with alerts, positive search results, drafts,
calendar information, attachments, or unread messages.
Some of these attributes can be shown simultaneously, while
others conflict with each other. One can dynamically expose
different attributes, depending on what one is looking for.
For the Remail prototype we used two highlighting schemes:
People Highlighting and the Attribute Shading.

The People Highlighting scheme allows one to highlight
one’s own contributions, the contributions of a set of
“important people”, or any person from the list of the
contributors in the currently selected thread with hollow
circles. From the Attribute Shading schemes one can choose
shades to show the times when messages came in and the
generational depth of each message, or colors showing each
contributor to the thread. These schemes can be activated
independently or in combination, with People Highlighting
superceding the Attribute Shading if there is a conflict. The
hollow circles, shades and colors used for these schemes are
shown in Figure 14 below.

Figure 15 below, illustrates some of these highlighting
schemes for the same thread. P, Personal highlights, shows
one’s contribution to the thread. This attribute is important
because one’s own messages often represent to-do’s [2, 12].

T, Time shading, shows messages sent on the same day in the
same shade of gray. The last five messages in this thread were
sent two days after the thread started. This shading helps users
see threads that have large intervals between messages. This
type of thread has been characterized as one of the harder types
of thread to keep track of [2] because in conventional email
clients the older messages drift out of the inbox list view as
other messages arrive.

C, Contributor shading, shows each contributor to the thread in
a different color. In this example only three people were
involved in this discussion.

G, Generational shading, uses a different shade for each
generation of the thread, showing the depth of the conversation.
This helps users see the branching nature of the Thread Arcs,
which is less apparent from its linear layout. This shading
scheme, with black nodes as the deepest generation,
emphasizes the end of branches, which are the current state of
the email conversations.

6. STUDY

The goal for our study was to learn about the usefulness and
effectiveness of email thread visualizations in users own
email. In particular, the important qualities that users wanted
thread visualizations to show, as described in “Key
Qualities”.

As part of this study we gathered statistics of the size and
shape of threads found in users’ email to give us a better
understanding of the frequency and structure of threads that
thread visualizations need to accommodate.

6.1 METHOD

We recruited 8 participants for our study, 4 male and 4
female. The participants were all software knowledge
workers (Advisory Software Engineer, Human
Factors/Usability Specialist, Software Engineer, Senior
Development Manager, UI Designer, UI Design/Developer,
and Usability Specialist) and were recruited internally. The
participants had intermediate to advanced experience using
Lotus Notes email client and had been using it for 3 to 10
years. Some had previous experience with large email
conversations and discussions databases. None had any
previous knowledge of the Thread Arc visualization. Each
test took 1.5 hours.

6.2 PROCEDURE

The studies consisted of the following stages.

1. Asking questions about users’ backgrounds and email

habits.
2. Introducing users to the concept of a conversation

visualization using paper images of Thread Arcs, Tree
Diagrams and Tree Tables, as show in Figure 16 below.

3. Conducting two card-sorting exercises for the key

qualities and attribute highlighting.
4. Introducing subjects to the three visualization

techniques used in the test via interactive screen
exercises.

5. Having users explore the visualizations with their own
email conversations in a simulated email experience.

6. Repeating the card sorting exercises.
7. Asking the subjects to rate the three visualizations

against the key qualities.
8. Creating a series of large scale printed posters of all of

the threads found in the users email database.

The test was conducted on an IBM ThinkPad laptop T-30
with an optical mouse. Users were asked to think aloud
throughout the test. Audio was captured with a tape recorder
and screen and mouse input was recorded using Camtasia
screen capture software.

At the beginning of each test we used a Java program to
traverse each user’s email database, collate all of his or her
threads, and output them as a set of XML files. This software
implemented an improved version of the complex Zawinski’s
threading algorithm [13] developed originally for Netscape
Messenger. The XML files contained each thread’s structure,
along with each message’s basic email content such as the
“to”, “from”, “ subject”, “time” and the first 100 characters
of the “body”. However we did not collect the read/unread
status of messages. We used this data as the content for stage
5 of the test, where users experienced a simulation of an
email client experience with their own email content. In
addition we could use this information to get statistics on the
size and structure of their email threads.

At stage 3 we asked users to perform two card sorting
exercises to discover:

1. What key qualities users thought were important for a

conversation visualization.
2. What attributes of a message in a conversational thread

they would like to be able to highlight to help users
interpret them.

We had users perform sorts on the key qualities (as
previously described in “Key Qualities”) and one sort for
attribute highlighting schemes (as described in “Interaction”
above). This was a priming exercise which gave the subjects
a better understanding of what a visualization could represent
and a common vocabulary for us to talk about visualization
concepts as the test continued. It also gave us an
understanding of their perceived priorities before the test.
The cards contained titles and a brief textual explanation for
reference and we introduced the cards in random order with a
short verbal explanation. The first set of cards contained the
following key qualities:

• Attribute Highlighting
• Chronology
• Compactness
• Relationships
• Scalability
• Sense/Scanability
• Stability
• Other (additional user suggestions).

The second set contained the attribute highlighting schemes:
• Contributor
• Generational
• Important people
• Marked important (by other people)
• Own contribution
• Time
• Unread
• Other (additional user suggestions).

The sorting tests were repeated in stage 6 to give us users’
preferences after experiencing the potential of thread
visualizations on their own email threads.

At stage 7 of the test we asked the users to rate each of the
visualizations against the key qualities they had ranked
earlier. A three-star system was used to determine their
preferred method, 3 stars to the visualization that performed
best for that quality, 2 stars for the second best, and 1 star for
the worst performer.

The posters created at stage 8 allowed us to quantitatively
analyze the entire spectrum of threads present in a user’s real
email. These posters consisted of 9 different attribute
highlighting schemes for each of the visualization techniques
tested. Users were comfortable with us taking this data away
as it showed only the structure, sizes and shapes of the
threads with no text content, thereby ensuring their
participant’s privacy.

6.3 EMAIL PROTOTYPE

During stage 5 we let users explore these threads in a
simulation of an email client built using Macromedia
Director. Users were able to switch between Thread Arcs,
Tree Diagrams and Tree Tables during the test. Each
visualization used the same user controls, behaviors, colors
and highlighting schemes, so access to and manipulation of
each tree visualization was controlled for. We encouraged
subjects to switch between the different visualizations and
highlighting schemes to get a better understanding of the
type of information each visualizations could convey, and
what they found most useful. We asked the users to perform
small tasks designed to get them to think about the key
qualities and test each visualization against them. For
example, they had to find the last message in this thread, or
figure out how many responses a particular message
received. Other exercises included letting users observe the
stability of a visualization as new messages were added to a
thread. The prototype allowed us to show the evolution of
any of the threads they encountered to see how the
visualization layouts changed as new messages arrived, from
the first to the last message in the thread.

In the email prototype client, shown in Figure 17, two areas
were dedicated to contextual information about threads, the
preview pane and the thread view pane. When a message
was selected in the inbox list, a thread visualization was
displayed in both the preview pane (A) and the thread view
pane (B). In the preview pane there was only a limited
amount of space (180x50 pixels), so when the Thread Arcs
were shown here they were constrained. The visualization in
the preview pane showed a selection highlighting scheme
while the thread view pane showed the current attribute

highlighting scheme. Combined this gave the users more
information about the entire thread than one scheme alone.
These were also interactively linked, so that if a node in the
thread view pane was selected this new selection would be
seen in the preview pane, along with a preview of that
message. Message nodes were 8 pixels in diameter and when
users hovered over them with the mouse they would see the
author, time, and subject for that message.

In the thread view pane, enlarged in Figure 18 below, the
space allocated to the visualization was larger (200x200
pixels). When any visualization was larger than its allocated
space, scrolling was provided. For example the Thread Arcs
could show a thread with 16 messages before scrolling was
needed (and the arc heights were constrained) (C). In
addition there were two drop-down menus (D), which allow
users to apply attribute highlighting schemes. Other
contextual information below this area showed all the
participants in the thread, a combination of the contributors
and the recipients (E). The contributors were defined as the
authors of the messages in the thread, while the recipients
were people who received the messages but were not
contributors. This list dynamically became a legend for the
visualizations when an attribute highlighting scheme was
activated, as shown for the “contributors” highlighting
scheme by the colored nodes to the left of each name (E). At
the bottom, there was also a list of all the messages in the
thread with author and subject (F). Typically the subject lines
of a thread were identical to the first message’s subject line
or would have a “RE:” followed by the subject of the first
message. Instead of repeating this redundant information
these subject lines contained a “+” and the first line of the
body text of that message (this was also the text of the
subject line that appeared on the hover over). The lifespan of
the thread was shown at the bottom of this pane (G).

6.4 RESULTS

We surveyed a total of 42,000 messages in our user’s email
databases, which included sent as well as received messages.
User C’s email database contained 84 000 messages alone
which was too large for our testing algorithm, so we took a
sample 6 months worth of correspondences (3700 messages).
Figure 17 below gives the message sizes collected for each
user.

Figure 21 below, shows the percentage of user’s email
messages for each size of thread from 1 to 20. From this we
see that only 38% of messages were singles or unthreaded
(size 1 thread), the next most common thread size was 3
(16%) and as the size of the thread increases it percentage
decreases. We did find a handful of threads larger that 20 for
each of the users, the biggest was a thread of size 483.

Plotting this data cumulatively, in Figure 22, we see that
50% of our user’s messages are contained in threads of size 2
or less, and that 80% of all the messages in the study were of
size 5 or less.

The percentage of distinct thread structures found in users’
email for each thread size is shown in Figure 23 below.
Other studies have suggested that email threads tend to be
“narrow rather than bushy – that is to say that a message is
much more likely to get one reply than two or more” [10].
From this data it appears that there is a high percentage of
threads that are bushy and there are also a high percentage of
threads that are narrow. For example, of threads of size 5,
26% were bushy and 20% were narrow. For our users’ data
we see this polarization trend continue for larger threads. The
biggest threads found were either bushy or narrow. This
means that the visualizations and the space dedicated for
them needs to accommodate both bushy and narrow threads.
The compact nature of Thread Arcs makes it particular good
at achieving this goal.

Figure 23 also reveals another interesting aspect of thread
structures in this study. We see that users have a tendency to
reply either to the first or to the last message of a thread. For
example, Figure 24 below shows the possible growth of a
thread with 4 messages. When a new message arrives it will
be a reply to any one of the 4 messages currently in the
thread. These 4 possibilities are represented by the 4 columns
in the n-5 section of Figure 23. The first column shows
threads which have their latest message (5th message) as a
reply to the 1st message while the fourth column shows
messages that have their latest message as a reply to the 4th
message. The median values for each of these columns are
3.5, 1, 1.5 and 5.5, which implies that the users have a
tendency to reply to either the first or the last messages in a
thread of size 4. This behavior is interesting because it tends
to support the informal use of the reply function in email,
discussed in the introduction.

Users found all of the key qualities they were asked to
consider important for small-scale thread visualization.
When forced to rank them after their test experience
Relationships and Chronology came out as the most
important, as seen in Figure 25.

The post test ranking order of the attribute highlighting
schemes are shown in Figure 26 below. It is significant that
unread was considered the most important attribute to
highlight even though we were not able to gather or show the
unread status of messages for the test. The importance of
time reinforces the fact that users want to see some form of
chronology as a primary aspect of these visualizations.

The ratings for each of the visualization techniques in
relation to the key qualities are shown in Figure 27. A three
star system was used to determine their preferred method
with 3 stars to the visualization that performed best for that
quality, 2 stars for the second best and 1 star for the worst
performer. The attribute highlighting schemes were identical
for each visualization so we did not ask users to rate it.

6.5 DISCUSSION

Thread Arcs did significantly better than the other
visualizations in chronology, stability and compactness. And
on balance they did a better job at satisfying all of the
qualities that users valued in small scale thread visualization
in email.

As mentioned in the introduction of this paper one of the
challenges in displaying these conversational threads is that
they have two conflicting properties: the arrival sequence of
messages and their reply-to relationship. This study has
confirmed that users find both of these qualities important,
but in addition we have also shown that for small scale
visualizations in the context of an email client there are other
important qualities to be considered. In particular the
compactness and the scalability of visualizations for the size
and structure of threads found in users real email.

Chronology was clearly the most important element for
threads in email, both in terms of key quality ranking and the
attribute highlighting ranking. Thread Arcs had the best
rating on this quality by all users.

It should be noted that the other visualization techniques
could be modified to also emphasizes chronology, as others
have done [8][10]. Unfortunately these techniques result in
sacrifices in the compactness, stability and sense/scanability
of the visualizations as shown in Figure 28 below.

The comparatively low ranking for the Thread Arcs against
the others for the Relationship quality in this study is the
result of three factors. First, Thread Arcs’ primary emphasis
on Chronology results in less emphasis in the Relationships
quality. Second, the users focused on large threads during the
test. When users examined their smaller threads of size 3-5
(80% of their mail) the complexity of the visualization was
trivial to interpret so they concentrated on examining larger
threads, of size 8 and above. Third, users were more familiar
with the other two techniques (tree tables and tree diagrams)
used in the test. Therefore their interpretation was easier for
users, and rating correspondingly higher.

Although rated low in the key qualities rankings,
compactness was a big issue for all users whenever the
visualization extended outside of its dedicated area. Thread
Arcs could accommodate 16 messages (97% of all threads as
seen in Figure 20) without the need to scroll in the preview
pane or the thread view pane. In contrast the Tree Table
needed to be scrolled in the preview pane for any threads
with more than 5 messages. The Tree Diagram performed
better than the Tree Table for wide threads but suffered if the
threads were deep.

However, the need to see the relationships in larger threads
(greater than 5 messages) should not be discounted as many
of the larger threads encountered in this study were important
conversations and visualization became a even more valuable
tool to give context to users.

The poster printout tells us that the polarity of threads
discussed in the distinct figure above continues as threads get
bigger. The result is that one must design for narrow threads
as well as bushy threads.

From the posters we also noted a large number of threads
that had empty message nodes. This was caused by the
Zawinski[13] algorithm used to find the threads in users’
email. This algorithm takes two passes through users’
databases. The first pass uses the message’s reply reference
to join related messages. The second pass then collates any
of these threads which have matching “RE:” based subject
lines at their roots. These empty message nodes will be
created for one of two reasons: One is that an empty node is
created on the first pass if a message, referred to by another
message in a thread, is missing – either deleted or not saved
when sent. Another is that, on the second pass, if two threads
found on the first pass have the same “RE:” based subject
line they are considered to be part of the same thread and if

no root node is found an empty node is created. In this case
the algorithm treats both messages as siblings of the newly
created empty node. See Zawinski[13] for more details of
this method.

The algorithm tends to be aggressive in threading messages
in a bushy fashion, by creating empty nodes for missing
messages. But overall thread distribution is consistent with
others like Fisher and Moody’s [4]. Their threading
algorithm did not have a second pass subject-matching
scheme and therefore their results would increase the number
of size 1 threads and undercount longer threads by not taking
into account any missing messages. More research into
appropriateness of these empty nodes and their interpretation
by users is required.

The important people and contributors highlighting schemes
were ranked 3rd and 4th on the Attribute Highlighting
rankings. Some users described this as the default setting that
they would apply if they had this sort of visualization
technique in their email client. The Marked Important and
Generational attributes were ranked as much less important.
We were surprised to see that one’s own contribution had the
lowest ranking. Users tended to believe that they did not
need to see their own contribution because they already knew
what they had written and there was no need to bring that to
their attention. Users still placed some value on this attribute
and we suspect that in use this would give context to their
involvement in threads and allow them to quickly see any
responses to their own contributions. Taken together one
could consider important people, contributors and own
contribution as a general people attribute highlighting
scheme.

The participants list was also seen as extremely useful
because it allowed people to quickly identify all the people
involved in the conversation and get a better sense of the
context of the thread quickly.

One of the additional highlighting schemes that some of the
users suggested was an indication of changes in the
participants list within the thread. For example if new people
were added to the “To” or “CC:” fields as the thread evolved.
This would allow users to ensure that all participants were
informed or quickly see when new people had been added to
the conversation.

Users liked the subject line modification replacing it with the
first line of the body if the subject was identical to the first
message. Some observed that, for the Thread Arcs, having
the nodes in a line makes it much easier to hover over the
entire set of messages in a single horizontal motion rather
than hunting around a branching structure.
Perhaps one of the most useful aspects of the visualization’s
interactions was the ability of users to quickly navigate, by
clicking on nodes, to other messages in the thread without
having to use their inbox.

All, but one, of the users said that they would like a thread
visualization in their future email clients.

7. FUTURE RESEARCH

Further users studies could provide insights into the types of
tasks users want to perform with threads and modify some of
the design criteria for thread visualizations. We would

predict that different users with different work practices
would produce different thread structures.

Text analysis of the message’s contents could help to expose
other attributes of a thread, for example the highlighting of
search results. We have also been exploring designs for a
thread reading pane, which would give more contextual
thread information when reading a set of thread messages.

Improvements in the Zawinski[13] algorithm are being
considered to improve the accuracy of the threads that are
built on the second pass of the algorithm. Another issue to
resolve is what users would prefer to see when the algorithm
joins threads with missing messages and/or encounters empty
nodes.

Different message sort orders for the layout of the messages in
Thread Arcs have potential benefits. Instead of laying out the
message nodes in strict time sequences we have placed them in
hierarchal and generational orders, as shown in Figure 29. This
removes the strong chronology characteristics of the Thread
Arc but reveals these other attributes of the thread such as the
sub branches of a thread or the generational depth of the
threads. We have found that for very large threads (greater than
100 messages) chronological sorting becomes less useful and
that these other types of sorts can reveal useful properties of the
thread. In particular it reduces the number of overlaps in big
discussions such as Usenet.

8. CONCLUSION

The main contribution of this paper is the description of a tree
visualization technique that can display chronological and
relationship properties simultaneously. Thread Arcs show the
“reply to” relationship, with an emphasis on the chronology of
when the messages arrived. The relationships between
messages are shown with arcs that connect each message to its
parent. By laying out the message nodes linearly, the
visualization not only emphasizes chronology, but also renders
if compact and stable. This stability allows one to observe the
evolution of a thread over time. Other useful properties of
Thread Arcs include the ability to see, at a glance, the size of a
thread and the number of responses to any specific message in
it. There are a number of attribute highlighting schemes that
can be applied to Thread Arcs which help one find important
messages or predict the types of conversations present. We
have also compared Thread Arcs to existing techniques and
described the key qualities that we consider important to thread
visualizations in email. Our user study has confirmed the
importance of chronology in email threads. The study also
showed that Thread Arcs are well suited for the size and type of
conversations found in users’ real email.

ACKNOWLEDGEMENTS

I would like to thank all the people in my research group. In
particular Steven Rohall, Martin Wattenberg, Kushal Dave, Li-

Te Cheng, Eric Wilcox and Maida Eisenberg. I would also like
to thank Deb Maurer and Sandra Kogan for their assistance
with the user testing.

REFERENCES

1. Barlo, T., Neville, P., “A Comparison of 2-D
Visualizations of Hierarchies,” Proceedings of the IEEE
Symposium on Information Visualization 2001.

2. Bellotti, V., Ducheneaut, N., Howard, M., Smith, I.
“Taskmaster: recasting email as task management,”
Workshop: “Redesigning Email for the 21st Century”,
CSCW 2002.

3. Donath, J., Karahalios, K., Viegas, F., “Visualizing
Conversation,” Proceedings of the Hawaii Internationals
Conference on System Sciences 32, January 1999.

4. Fisher, D and Moody, P. “Studies of Automated
Collection of Email Records.” University of Irvine,
Technical Report, UCI-ISR-02-4, 2001.

6. Rohall, S.L., Gruen D., Moody P., and Kellerman S.,
“Email Visualizations to Aid Communications,” Late
Breaking, Hot Topic Proceedings of the IEEE Symposium on
Information Visualization, San Diego, CA, October 22-23,
2001, pp. 12-15.

7. Sack, W., “Conversation Map: A Content-Based Usenet
Newsgroup Browser”, Proceedings of IUI’00, New Orleans,
LA, January 9-12, 2000, pp. 233-240.

8. Smith, M. A., Fiore, A. T., “Visualization Components for
Persistent Conversations”, Proceeding of CHI 01, 31 March-
5 April, 2001.

10. Venolia, G. and Neustaedter, C. “Understanding
Sequence and Reply Relationships within Email
Conversations: A Mixed-Model Visualization,” CHI
2003 Paper, Nov 25, 2002

11. Wattenberg, M. “Arc Diagrams: Visualizing Structure in
Strings,” Proceedings of the IEEE Symposium on
Information Visualization, Boston, MA, October 28-29, 2002
pp. 110-116.

12. Whittaker, S. and Sidner C., “Email Overload: Exploring
Personal Information Management of Email,” Proceedings of
CHI’96, Vancouver, B.C., April 13-18, 1996, pp. 276-283.

13. Zawinski, J. http://www.jwz.org/doc/threading.html

