
Browsing Zoomable Treemaps: Structure-Aware

Multi-Scale Navigation Techniques

Renaud Blanch and Éric Lecolinet

Abstract—Treemaps provide an interesting solution for representing hierarchical data. However, most studies have mainly focused
on layout algorithms and paid limited attention to the interaction with treemaps. This makes it difficult to explore large data sets and
to get access to details, especially to those related to the leaves of the trees. We propose the notion of zoomable treemaps (ZTMs),
an hybridization between treemaps and zoomable user interfaces that facilitates the navigation in large hierarchical data sets. By
providing a consistent set of interaction techniques, ZTMs make it possible for users to browse through very large data sets (e.g.,
700,000 nodes dispatched amongst 13 levels). These techniques use the structure of the displayed data to guide the interaction and
provide a way to improve interactive navigation in treemaps.

Index Terms—Information visualization, multi-scale interaction, structure-aware navigation, zoomable treemaps.

1 INTRODUCTION

Large hierarchical data sets are widespread and many tasks require
users to browse such data. For instance, searching for a file in a file
system or for a web site in a web directory involves tree navigation.
The depth or the breadth of these trees can be quite large: the Open
Directory Project (ODP) [1] contains 694,986 web sites categories on
13 levels while the first author’s own home directory contains more
than 120,000 files on 14 levels.

One major drawback of common ways of representing trees (such as
node-link representations) is that they do not use screen real estate very
efficiently [23, 26]. More recent techniques, such as treemaps [31]
propose an interesting approach to solve this problem. A treemap is a
2D space filling tree visualization that uses most of the available space
for displaying leaves. Nodes are represented as nested rectangles and
their layout reveals the structure of the tree. Besides, the size of these
rectangles can be used to represent a quantitative attribute. Their color
or other graphical properties could also be used to represent other at-
tributes. For instance, the size of each node in the representation of the
Open Directory Project shown in Figure 1-left indicates the number of
links of the corresponding category.

Much attention has been devoted in recent years to enhance the vi-
sual aspect of treemaps (e.g., [34, 14, 7, 9]). However, surprisingly,
few studies paid attention to the improvement of interaction techniques
for navigating treemaps. Yet, treemaps are not very convenient for
exploring large data sets, especially when it is necessary to get ac-
cess to details. The labels of the nodes are likely to be very small,
or even illegible, when large trees are displayed using this technique.
Hence, efficient interaction techniques are necessary for navigating
large treemaps where it is useful to perceive details, such as node la-
bels, or complementary information displayed in the rectangles of the
leaves.

Our article focuses on this point by proposing a set of interaction
techniques that aim at improving the navigation in treemaps. Be-
cause of their recursive nature that makes them inherently multi-scale,
treemaps are natural candidates for being used in the same way as
zoomable user interfaces (ZUIs) [25, 8]. In the following sections,
we propose the concept of zoomable treemaps (ZTMs), an hybridiza-

• Renaud Blanch is with LIG, University of Grenoble 1,
E-mail: renaud.blanch@imag.fr.

• Éric Lecolinet is with École Nationale Supérieure
des Télécommunications (GET), E-mail: eric.lecolinet@enst.fr.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

tion between treemaps and zoomable user interfaces that facilitates the
navigation in large hierarchical data sets.

First, we present the proposed interaction techniques for browsing
through ZTMs and how these techniques use the structure of the data
to improve the navigation. Then we provide details about the imple-
mentation of ZTMs, and compare our contribution to related work.

2 INTERACTION WITH ZOOMABLE TREEMAPS

Browsing very large data sets can make classic treemap interaction
techniques quite inefficient. Similarly, simply making treemaps con-
tinuously zoomable and using traditional ZUI interaction techniques
is not sufficient for browsing data efficiently.

We propose two interaction modes for ZTMs. The first mode is an
improvement of traditional treemap interaction techniques: the navi-
gation relies on the ability to make the visualisation focus on nodes
that are selected interactively. The second mode is an evolution of
ZUIs interaction techniques: it is based on a continuous movement
metaphor in the visualisation space. These two modes respectively al-
low discrete and continuous interactions. We present them in the next
section and we show how they can be seamlessly combined.

2.1 Treemaps Revisited: Discrete Interactions
A reference implementation for treemaps is provided by the Human-
Computer Interaction Lab (HCIL) from the Maryland University [27].
The interaction techniques proposed by other publicly available im-
plementations of treemaps (e.g., Discovery [6]) are very similar to the
one that is provided by this reference implementation. A node can be
selected by clicking on its “title bar” (which must thus reserve enough
space to display the node label). Figure 2-left shows an entire tree
displayed using the HCIL treemap implementation. Selecting a node
changes the view directly, no transition is performed to show the detail
of the selected node (Figure 2-right).

The lack of animated transition is not the single problem of this in-
teraction technique. Displaying nodes label in a “title bar” does not
scale well for very large and deep trees. Reserving a constant amount
of space at each level is quite a space-consuming strategy. As a con-
sequence, the amount of space needed for displaying large trees often
exceeds the available space on the screen. A solution to this problem
is to avoid using title bars as proposed in [17]. Our zoomable treemap
implementation follows the same principle.

This solution has several drawbacks however. First, as they are dis-
played inside nodes, labels belonging to different layers are often su-
perimposed. This problem strongly reduces the readability of node
labels. We will show how this problem can be addressed in the Im-
plementation section. Another problem, that has a direct impact on
interaction, is that nodes cannot be directly selected by pointing at
them. Without a title bar, each pixel that is displayed for representing

Published 14 September 2007.

1248

 1077-2626/07/$25.00 © 2007 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

Figure 1. Tree displayed as a zoomable treemap.
(left) 694,986 categories of the ODP [1],
(right) zoomed view providing details on Arts/Music.

Figure 2. Tree displayed with the HCIL Treemap 4 software.
(left) global view, (right) detail of a node.

a given node also belongs to one of its children (if this node has chil-
dren). Conversely, because of the recursive construction of treemaps
each pixel also belongs to the parent of the node. Thus, a given pixel
does not designate a single node in the tree, but a whole branch of
nodes (from the root to the smallest leaf node that encloses this pixel).
We have taken this problem into account while designing our interac-
tion techniques. They make it possible to navigate in depth as well as
in breadth in the tree structure, and to access any visible node directly.

2.1.1 In Depth Navigation

In depth navigation allows a user to go up and down in the tree. As said
above, the position of the mouse designates a branch of the tree. A left
(resp. right) click drills down (resp. roll up) one level along the branch.
In order to go down or up one level, a current node must be defined.
This reference node is the smallest node that encloses the whole view.
Drilling down selects one child of the reference node, while rolling up
selects its parent.

Figure 31 illustrates this interaction: on the left, the current node
is the root of the tree, which occupies the whole view (black frame).
A mouse click (with the left button) launches the interaction that goes
down one level from where the pointer is currently located (i.e. to the
People child of the current node in this example). An animation is then
triggered (Figure 3-center), that makes the targeted node fill the whole
window (Figure 3-right), and thus become the new reference node.
This animation is performed in such a way that each step involves a
constant scale factor and a constant apparent translation. It aims at
helping the user to keep her spatial orientation.

1 The data set used in the Figures 3–8 is the one that was used for the Great
CHI’97 Browse Off [24].

Figure 3. In depth navigation.
Drilling down one level from the root to the People category.

Figure 4. In breadth navigation.
A click in the margin “flips” to the next node.

2.1.2 In Breadth Navigation

It is also often desirable to navigate in breadth, from a node to its
siblings. For example, users may want to browse through the files
contained in a directory without going back to their common ancestor.
In depth navigation is not appropriate in such a case.

We provide in breadth navigation with the flipping interaction. This
interaction allows to switch quickly from a node to one of its neigh-
bours. To enable this interaction, the view is surrounded with a frame
that displays the neighbourhood of the current node (Figure 4). Click-
ing in this frame (Figure 4-left) triggers an animation (Figure 4-center)
that centers the view on the sibling of the previously current node (Fig-
ure 4-right). This animation is fast enough to be rapidly repeated,
making the user feel like flipping the pages of a book.

2.1.3 Direct Node Selection

The techniques presented so far only make it possible to select nodes
that are on the same layer as the current node, or located one level
above or below. This limitation is a consequence of the fact that a click
cannot designate a specific node in a treemap: each point belongs to a
single leaf node but also to all its ancestors. However, since treemaps
display several layers of the tree simultaneously and provide visual
access to them, a technique to select any visible node is most desirable.
As a solution, we propose direct access node selection by means of
gesture interaction.

Direct node selection permits to select a node by considering a
stroke rather than a position. The selected target is then the smallest
node containing the stroke (Figure 5). When the user starts a stroke,
the smallest node that encloses it is necessarily a leaf of the tree (Fig-
ure 5-1). Then, the cursor can cross a boundary of the current target

1249IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

43

21

Figure 5. Direct acces navigation.
A crossing-based interaction enables direct access to visible nodes.

during the drawing gesture. The target is then changed to the smallest
ancestor node that contains the entire stroke (Figures 5-2, 5-3 and 5-4).
Visual feedback is provided dynamically to display the current target.
Finally, an animation that makes the target fill the view is triggered
when the mouse button is released.

This technique can be seen as crossing-based interaction [3], a kind
of technique that has been recently proposed as an alternative to clas-
sical activation [4, 16]. Using our technique, it is possible to traverse
an arbitrary number of tree layers for accessing a specific node, just by
crossing node borders interactively.

Moreover, the surrounding frame used for the flipping interaction
(that was previously described) finds a second usage here: by making
a stroke starting in the view and ending outside, a border of the node
that fills the view is necessarily crossed. As a consequence its parent is
selected by drawing this stroke. Consequently, the crossing interaction
makes it also possible to roll up in the tree by using a gesture that is
consistent with the other interaction techniques.

2.2 ZUIs Revisited: Continuous Interaction
The previous interaction techniques are discrete in the sense that they
permit the selection of a given node. However, they have a common
limitation: only nodes that are large enough to be displayed when their
parents occupy the whole view can be selected. In large and unbal-
anced trees, or when the window is small, nodes are often very small
compared to their parents. In this case, using a navigation technique
that does not rely on node selection is essential.

We introduce zoomable treemaps to overcome this limitation. Since
treemaps are inherently multi-scale, we propose to consider them
as zoomable spaces. However, the pan-and-zoom navigation of
ZUIs [25, 8] is not well adapted for treemaps. Since treemap layout
algorithms can produce rectangles with variable aspect-ratios, pure ge-
ometric zoom leads to views where the elongated nodes can only par-
tially fit. Figure 6-left shows the effect of a pure geometric zoom: the
rectangles are so thin that it is impossible to display a label inside them
and, as a consequence, users get rapidly lost.

2.2.1 Snap-Zoom

We introduce snap-zoom, an interaction that magnifies the horizontal
and vertical axes by using different scales so that the aspect ratio of
the target node is gradually changed to finally match the window (Fig-
ure 6-right). The scale of the view is controlled by the mouse wheel,
and the zoom effect is centered on the position of the pointer. The re-
sulting effect is a smooth zoom which regularly expands or shrinks the
treemap while deforming it so that the layers that are traversed succes-
sively fit the window one after another. Hence the name snap-zoom.

An interesting aspect is that the actual distribution of the scale be-
tween the horizontal and vertical dimensions is determined by the sys-
tem. The details of this computation are given in the Implementation
section. The scaling uniformly affects the treemap, so that the amount
of information that is mapped on the nodes is always relevant: nodes

Figure 6. Snap-zoom. (left) geometric zoom, (right) snap-zoom.

can thus be visually compared. This contrasts with techniques such as
Fisheye views [18], that do not have this property.

Although the distribution of the scale between the two dimensions
is determined by the system, the control feels natural because the
user manipulates them through a single dimension that has a physi-
cal meaning: the global scale of the document.

2.3 Multiplexing Discrete and Continuous Interaction
The animations used by the discrete interaction technique also change
the scales of the x- and y-axis independently. The discrete and con-
tinuous interaction techniques have a consistent behaviour and can be
mixed seamlessly: snap-zoom and drilling down interactions use the
same transitions between successive layers. But for the continuous in-
teraction techniques, the control of the animation is mapped onto the
scale dimension and controlled by the user as in the StyleCam interac-
tion technique [15].

This homogeneity in performing animations supports the harmo-
nious combination of discrete and continuous interaction. The zoom
menu illustrates this capability.

2.3.1 Zoom Menu

As mentioned before, a given point on the display identifies a branch
of nodes. The zoom menu is a contextual menu that appears when the
user presses the mouse and that shows the labels of the branch nodes
corresponding to the mouse press location. This menu is positioned
in such a way that the cursor appears on the top of the current node
(which is the node that currently occupies the whole window space, as
the Life category in Figure 7-a). The labels of its ancestors are located
above this node in the menu (e.g., Science, Knowledge and Categories,
the tree root in this example). Conversely, the labels of the direct and
indirect children in the branch (e.g., Biology and Biochemistry) appear
below the current node in the zoom menu. The user can select any
node in the branch by dragging the mouse and releasing it on the de-
sired label. The corresponding node is then selected and becomes the
new current node. An animation is then performed. It continuously in-
creases the size of this node until it occupies the whole window space
(Figures 7-c and 7-d).

1250 BLANCH AND LECOLINET: BROWSING ZOOMABLE TREEMAPS: STRUCTURE-AWARE MULTI-SCALE NAVIGATION TECHNIQUES

(a) (b) (c) (d)
Figure 7. Zoom menu, discret mode: (a, b) target selection, then (c, d) animation.

Figure 8. Zoom menu, continuous mode: the interaction controls the animation directly.

In addition to this discrete interaction technique, the zoom menu
also permits continuous interaction. In this case, the zooming level of
the document is continuously controlled by dragging the mouse along
the y-axis (a zoom-out effect is obtained by moving the mouse upwards
in the window, and vice versa). This effect is shown in Figure 8 where
the user moves up in the tree structure by dragging the mouse upwards
in the window.

These two different ways of interacting (through a discrete or con-
tinuous interaction) are always both available. They are triggered in
the same way as the novice and expert modes in Marking menus [22].
If the user presses the mouse and waits for a small delay (about
0.3 ms), the Zoom menu appears and the discrete mode is enabled.
However, the user can also drag the mouse immediately, without wait-
ing for the menu to appear, in which case the continuous mode is trig-
gered (as in expert mode, the menu will not appear in this case). This
interaction technique can also be seen as an improvement of Control
menus [28], an extension of Marking menus that makes it possible to
select and control continuous interactions in a single gesture.

3 IMPLEMENTATION OF ZOOMABLE TREEMAPS

The software prototype developed to test and design our interaction
techniques was written in C++. OpenGL was used for rendering and
GLUT for font and window management. This section will now detail
some interesting implementation aspects. We first present the algo-
rithms our interaction techniques rely on. Techniques for making text
rendering legible are then explained. Finally, we describe several op-
timizations that make it possible to preserve interaction fluidity even
when browsing very large data sets.

3.1 Interactions

Two problems had to be solved to combine the interaction techniques
presented so far in a coherent way. First, discrete interactions are based
on the notion of a current node that occupies the whole window space.
However, continuous interactions can leave the system in a state where
there is no actual current node. This notion must thus be generalized
in order to precisely define the reference node that is used by all inter-
action techniques in all situations. Another issue concerns the effect of
zoom level changes on the horizontal and vertical layout of displayed
data. In fact, nodes are not necessarily zoomed in the same way along
the x- and y-axis in order to optimize their rendering.

3.1.1 Current node selection

The current node can be defined as the largest node that is currently
shown on the window. As seen before, a point on the screen identifies
a branch of the tree that is currently displayed. Hence, by taking into
account the location of the mouse, the current node can be found by
searching along the branch that corresponds to this location. Following
treemaps construction, it is always possible to find a couple of nodes
(p,c) so that c is a child of p, c is completely included in the window
space and p exceeds this area. These two nodes are natural candidates
for defining the “current node”.

Depending on the interaction type and the direction they are per-
forming on, p or c are either chosen as the current node. For instance,
interaction techniques that perform in depth navigation use c if the user
is zooming in, and p if he is zooming out. By convention, p is always
used as the reference node when other interaction techniques are used.

1251IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

3.1.2 Zooming algorithm

Once the current node is determined, the appropriate zoom factor must
be applied in the x- and y-directions. A predefined zooming step is
used when animations are performed, while the zoom factor depends
on mouse movement for user interactions. The surfacic zoom factor
δ s2, must satisfy the following constraints: δ s2 > 1 when zooming in
and δ s2 < 1 when zooming out. This global zoom factor must then
be distributed among x- and y-axis in such a way that the new current
node will have the appropriate aspect ratio to fill the whole window
space. These horizontal and vertical scale factors, δ sx and δ sy, must
respect the constraint δ s2 = δ sx ×δ sy in order to obtain a valid zoom-
ing effect. For this purpose, the global zoom factors for the x- and the
y-axis (Δsx and Δsy) are first computed in such a way that the current
node would fill the window:

Δsx = W/w, Δsy = H/h

with W , H being the width and height of the window and w, h the
initial width and height of the current node.

The scale factor δ s2 is then distributed according to the relative
weight of the two components of the global magnification factor Δs2 =
Δsx ×Δsy. However, as constant speed zooming requires a geometric
progression of scale, the proportions must be considered for the zoom
index, that is to say the logarithm of the scale [20]. With z = log(s)
taken as the zoom index, the following formulas are obtained:

δ zx =
δ z2

Δz2 Δzx, δ zy =
δ z2

Δz2 Δzy and finally:

δ sx = Δsx
t , δ sy = Δsy

t , with t =
logδ s2

logΔs2 .

3.2 Rendering
The visualization of large information sets requires minimization of
the amount of unused space while avoiding visual overload. In order
to solve this difficult but crucial problem, node rendering is performed
by starting with the innermost nodes, so that higher levels are not oc-
cluded by the details contained in lower layers. Four colors are used
in turn, each layer of the hierarchy being rendered using one of them.
These colors belong to a color set designed in such a way that they can
be easily differentiated by human readers [13]. This strategy makes it
possible to improve the readability of node labels contained in higher
layers even if they are superimposed on labels contained in underlying
layers. Readability is also reinforced by surrounding letters with a thin
white outline.

A fading effect is used to make labels located in lower levels less
visible. This effect is controlled in such a way that details get progres-
sively revealed while in depth navigation is being performed. Simi-
larly, higher levels that are located on the top of the current node are
not drawn in order to avoid visual occlusion. For this purpose, lay-
ers are distributed among a virtual z-axis that is perpendicular to the
screen space. The rendered view moves into this 3D space according
to the zooming level. This makes it possible to discard upper layers
automatically thanks to OpenGL capabilities. Since an orthographic
projection is used, the 2D positions of the nodes are not affected by
the variations along the z-axis.

3.3 Optimizations
Three types of optimizations are done in order to obtain frame rates
that are compatible with interactive use (that is to say, a minimum rate
of 10 fps). First, a semantic zoom is used: labels that would not be
readable because of a exceedingly small size are not rendered. This
simple optimization is quite efficient because text rendering is a rather
costly operation. Other optimizations are related to node characteris-
tics. Nodes that are located outside the window are clipped for ob-
vious reasons. Following treemaps construction principles, their chil-
dren can also be discarded. Entire branches can thus be clipped just by
traveling through the tree from its root node. Nodes whose size is less
than a given threshold (e.g., one pixel) are also ignored. This threshold

is dynamically adapted according to the current real time performance
of the system, so that more details are displayed when there is enough
time to improve rendering without compromising interaction fluidity.
This property makes it possible to use our system on a variety of hard-
ware configurations, even those that only provide modest capabilities.

For example, on Figure 1-left, the tree consists of 697,986 nodes
but only 145,841 are bigger than one pixel and displayed, and only
235 labels are shown.

3.4 Prototype
The interaction techniques presented so far have been implemented in
a prototype that is freely available2. A preliminary version was already
presented as a demonstration [12].

4 RELATED WORK

4.1 Zoomable Treemaps
As said in the introduction, a reference implementation of treemaps
is provided by the HCI Lab at the University of Maryland [27]. It
provides a single navigation technique: double clicking on a node or
a subtree border zooms in and a click with the right mouse button
zooms out. Other available treemap implementations (see [32] for a
comprehensive list) are equivalent in terms of interaction. They do not
focus on the interaction issues, probably because visualization of trees
is a challenge by itself. PhotoMesa [7] uses treemaps to display and
browse images in a file system. It allows to zoom continuously, but the
underlying hierarchical structure of the file system is collapsed onto a
flattened view. StepTree [11] uses a continuous zoom to animate the
transitions when the user navigates between levels of the treemap, but
it does not provide her with an interactive control of the scale. Matrix
Zoom [2] provides a smooth pan-and-zoom interaction based on work
by van Wijk and Nuij [33]. This kind of animation would be useful
in our system, but this technique seems hard to adapt to an interaction
that is continuously controlled by the user.

Zoomable interfaces, that were introduced by Perlin and Fox [25]
propose several interaction techniques: portals, panning and zoom-
ing. With zoomable treemaps, we have relaxed the constraint of ge-
ometric magnification. By allowing different scales on the two axes,
our techniques are adapted to any rectangular treemap layout algo-
rithm: slice-and-dice [31], squarified [14], or ordered [9]. Crossing-
based selection and snap-zoom are improvements over classical tech-
niques because they can pass through several layers of the multi-scale
tree in a single interaction. They could be as well adapted to non-
rectangular layouts such as voronoi treemaps [5] or even generalized
treemaps [35] since they only rely on the crossing of borders. Shi et
al. [30] have evaluated a navigation technique where the treemap is
deformed by using a fisheye technique, hence making it possible to
traverse several layers. However, it does not preserve the layout of the
treemap. Elastic hierarchies [36] combine treemaps and node-link di-
agrams to visualize trees. To solve the problem of node selection Zhao
et al. added a tab outside the treemap on which the user can select the
level of detail at which she wants to interact.

4.2 Dealing with Large Trees
Large trees have already been displayed using treemaps [17], but this
work was mostly focused on visualization, rather than interaction.
SpaceTree [26] and revisited degree-of-interest trees [21] are some of
the recent contributions to the interaction with node-link representa-
tions. They both try to effectively use the screen real estate while
providing insights about the non-visible parts of the tree. Displayed
nodes are chosen according to various policies that may depend on
explicit user clicks, textual queries, or a computed degree of interest.
The use of animations to help the user to understand how the layout
changes has been suggested for treemaps by Ghoniem and Fekete [19]
and sophisticated tree animations have been proposed by Plaisant et
al. [26].

Advanced interaction techniques using animation have been pro-
posed for nested representations of trees. With structural zooming [29]

2 The source code is available at: http://iihm.imag.fr/blanch/projects/ztm/.

1252 BLANCH AND LECOLINET: BROWSING ZOOMABLE TREEMAPS: STRUCTURE-AWARE MULTI-SCALE NAVIGATION TECHNIQUES

the user can reveal or hide children of nodes by clicking on them. This
triggers the computation of a new layout that shows the desired nodes,
and an animation is performed so that nodes smoothly reach this lay-
out. McGuffin et al. [23] propose an algorithm to expand-ahead the
tree while the user is navigating inside. Their algorithm computes a
layout that shows a maximum of presumably interesting nodes for a
given user focus. An animation is also used to reach this layout.

5 CONCLUSION & FUTURE DIRECTIONS

We have introduced the concept of zoomable treemaps and a consis-
tent set of interactions for browsing them. They make it possible to
explore very large trees displayed as zoomable treemaps. These inter-
action techniques use the structure of the tree to guide the navigation
and reduce the chance for the user to get lost in the information space.
They do not constrain unnecessarily the user but only assist her free
navigation. They integrate seamlessly discrete and continuous con-
trol. Our first usability tests gave positive results and very encouraging
qualitative feedback. We now plan to conduct a controlled evaluation
to compare our interaction techniques with other tree browsing tech-
niques.

We also want to adapt those techniques for a broader class of de-
vices and of interaction contexts. For example, handheld devices have
very limited screen size and require pen based interaction, and our
zoom menu could be very well adapted for such configurations. On
the other hand, table-top interaction allows collaborative interaction
and large display surfaces (like Bérard’s Magic Table [10]) which may
open a new design space for the interaction with very large data sets.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for their useful
comments and suggestions about this paper. We also would like to
thank J. Coutaz, S. Dupuy-Chessa, and G. Godet-Bar for their help in
preparing the final version of this paper.

This work was supported in part by a grant from the Regional Coun-
cil of Île-de-France.

REFERENCES

[1] Open directory project, 2006. http://www.dmoz.org.
[2] J. Abello and F. van Ham. Matrix Zoom: A visual interface to semi-

external graphs. In Proc. IEEE InfoVis’04, pages 183–190, Washington,
DC, USA, 2004. IEEE Computer Society.

[3] J. Accot and S. Zhai. More than dotting the i’s — foundations for
crossing-based interfaces. In Proc. ACM CHI’02, pages 73–80, 2002.

[4] G. Apitz and F. Guimbretière. CrossY: a crossing-based drawing appli-
cation. In Proc. ACM UIST’04, pages 3–12, 2004.

[5] M. Balzer and O. Deussen. Voronoi treemaps. In Proc. IEEE InfoVis’05,
page 7. IEEE Computer Society, 2005.

[6] T. Baudel. From information visualization to direct manipulation: ex-
tending a generic visualization framework for the interactive editing of
large datasets. In Proc. ACM UIST’06, pages 67–76, 2006.

[7] B. B. Bederson. PhotoMesa: a zoomable image browser using quantum
treemaps and bubblemaps. In Proc. ACM UIST’01, pages 71–80, 2001.

[8] B. B. Bederson and J. D. Hollan. Pad++: a zooming graphical interface
for exploring alternate interface physics. In Proc. ACM UIST’94, pages
17–26, 1994.

[9] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2d space to display hierarchies.
ACM Trans. Graph., 21(4):833–854, 2002.

[10] F. Bérard. The magic table: Computer-vision based augmentation of a
whiteboard for creative meetings. In Proc IEEE PROCAM’03, 2003.

[11] T. Bladh, D. A. Carr, and M. Kljun. The effect of animated transitions on
user navigation in 3D tree-maps. In Proc. IEEE IV’05, pages 297–305,
2005.

[12] R. Blanch and É. Lecolinet. Navigation techniques for zoomable
treemaps. In Adj. Proc.: Demos of ACM UIST’06, pages 49–50, 2006.

[13] C. A. Brewer. ColorBrewer - selecting good color schemes for maps,
2006. http://www.ColorBrewer.org.

[14] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In Proc.
Eurographics & IEEE TCVG Symp. on Visualization, pages 33–42, 2000.

[15] N. Burtnyk, A. Khan, G. W. Fitzmaurice, R. Balakrishnan, and G. Kurten-
bach. StyleCam: Interactive stylized 3D navigation using integrated spa-
tial and temporal controls. In Proc. ACM UIST’02, pages 101–110, 2002.

[16] P. Dragicevic. Combining crossing-based and paper-based interaction
paradigms for dragging and dropping between overlapping windows. In
Proc. ACM UIST’04, pages 193–196, 2004.

[17] J.-D. Fekete and C. Plaisant. Interactive information visualization of a
million items. In Proc. IEEE InfoVis’02, pages 117–123, 2002.

[18] G. W. Furnas. Generalized fisheye views. In Proc. ACM CHI’86, pages
16–23, 1986.

[19] M. Ghoniem and J.-D. Fekete. Animating treemaps. In Proc. Workshop
on Treemap Implementation and Applications. University of Maryland,
2001.

[20] Y. Guiard and M. Beaudouin-Lafon. Target acquisition in multiscale elec-
tronic worlds. Int. J. Human-Computer Studies, 61:875–905, 2004.

[21] J. Heer and S. K. Card. DOITrees revisited: Scalable, space-constrained
visualization of hierarchical data. In Proc. AVI’04, pages 421–424, 2004.

[22] G. P. Kurtenbach. The design and evaluation of marking menus. PhD
thesis, University of Toronto, 1993.

[23] M. J. McGuffin, G. Davison, and R. Balakrishnan. Expand-ahead: a
space-filling strategy for browsing trees. In Proc. IEEE InfoVis’04, pages
119–126, 2004.

[24] K. Mullet, C. Fry, and D. Schiano. On your marks, get set, browse! (the
great CHI’97 browse off), 1997.
http://www.sigchi.org/chi97/proceedings/panel/kem.htm.

[25] K. Perlin and D. Fox. Pad: an alternative approach to the computer inter-
face. In Proc. ACM SIGGRAPH’93, pages 57–64, 1993.

[26] C. Plaisant, J. Grosjean, and B. B. Bederson. SpaceTree: Supporting
exploration in large node link tree, design evolution and empirical evalu-
ation. In Proc. IEEE InfoVis’02, pages 57–64, 2002.

[27] C. Plaisant and B. Shneiderman. Treemap: Home page, 2006.
http://www.cs.umd.edu/hcil/treemap/.

[28] S. Pook, É. Lecolinet, G. Vaysseix, and E. Barillot. Control menus: ex-
cecution and control in a single interactor. In Ext. abs. CHI’00, pages
263–264, 2000.

[29] K. Pulo, P. Eades, and M. Takatsuko. Smooth structural zooming of h-v
inclusion tree layouts. In Proc. CMV’03, 2003.

[30] K. Shi, P. Irani, and B. Li. An evaluation of content browsing techniques
for hierarchical space-filling visualizations. In Proc. IEEE InfoVis’05,
pages 81–88, 2005.

[31] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling ap-
proach. ACM Trans. Graph., 11(1):92–99, 1992.

[32] B. Shneiderman. Treemaps for space-constrained visualization of hierar-
chies, 2006. http://www.cs.umd.edu/hcil/treemap-history/.

[33] J. J. van Wijk and W. A. A. Nuij. A model for smooth viewing and
navigation of large 2D information spaces. IEEE Trans. Vis. Comput.
Graph., 10(4):447–458, 2004.

[34] J. J. van Wijk and H. van de Wetering. Cushion treemaps: Visualization of
hierarchical information. In Proc. IEEE InfoVis’99, pages 73–78, 1999.

[35] R. Vliegen, J. J. van Wijk, and E.-J. van der Linden. Visualizing busi-
ness data with generalized treemaps. IEEE Trans. Vis. Comput. Graph.,
12(5):789–796, 2006.

[36] S. Zhao, M. J. McGuffin, and M. H. Chignell. Elastic hierarchies: com-
bining treemaps and node-link diagrams. In Proc. IEEE InfoVis’05, pages
57–64, 2005.

1253IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

