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Abstract—Providing appropriate methods to facilitate the analysis of time-oriented data is a key issue in many application domains. In

this paper, we focus on the unique role of the parameter time in the context of visually driven data analysis. We will discuss three major

aspects—visualization, analysis, and the user. It will be illustrated that it is necessary to consider the characteristics of time when

generating visual representations. For that purpose, we take a look at different types of time and present visual examples. Integrating

visual and analytical methods has become an increasingly important issue. Therefore, we present our experiences in temporal data

abstraction, principal component analysis, and clustering of larger volumes of time-oriented data. The third main aspect we discuss is

supporting user-centered visual analysis. We describe event-based visualization as a promising means to adapt the visualization

pipeline to needs and tasks of users.

Index Terms—Time-oriented data, visualization, analysis, user.
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1 INTRODUCTION AND MOTIVATION

CONSIDERING the characteristics of data is vital when

designing visual representations. A salient characteristic

is whether or not data are related to time. That time is an

outstanding dimension is reflected by Shneiderman’s Task by

Data Type Taxonomy [1], where temporal data are identified

as one of seven basic data types. Nowadays, time-oriented
data are ubiquitous in many application domains as, for

example, in business, medicine, history, planning, or project

management. For a long time, visual methods have been

successfully applied to analyze such data. A wide repertoire

of interactive techniques for visualizing data sets with

temporal dependencies is available. However, many current

visualization frameworks have not yet considered time as a

special dimension but rather as a common quantitative
parameter. According to Thomas and Cook [2], it is in general

a problem that “Most visualization software is developed with

incomplete information about the data and tasks... New methods are

needed for constructing visually based systems that simplify the

development process and result in better targeted applications.”
In this paper, we point out challenges that arise when

visualizing time-oriented data and take a look at possible

solutions to these challenges. To find solutions, it is

absolutely mandatory to take into account the following

three major aspects:

. visualization,

. analysis, and

. user.

In Section 2, we focus on visualization methods for time-
oriented data. We will show that the term time-oriented data
comprises several types of data with different meanings
and applications. Designing or applying visual representa-
tions can only be successful if one is aware of these different
types. This will be demonstrated with several examples of
visualization techniques that stem from our own work or
are available in the literature.

Usually, time-oriented data are large—not only in terms
of the number of data items but also in terms of the number
of observed attributes. Ordinary visualizations of such data
can lead to overcrowded and cluttered displays and are
therefore of limited use. Data abstractions can help to gain
insight even into larger data sets. This is the point where
analytical methods come into play. In Section 3, we will
illustrate (again by examples) the usefulness of combining
visual and analytical methods particularly related to time-
oriented data.

In order to achieve better targeted applications, users
and their tasks and needs must not be neglected, as it is still
often the case in today’s visualization tools. Apparently,
interaction is a key to adapting visual and analytical
methods to the user’s task at hand. However, not all
parameters are intuitive and easy to set. Particularly, in
cases where complex visual analysis processes have to be
steered, having some form of user support or guidance
turns out to be helpful. Section 4 discusses how such a
support can be realized. The basic idea is to find events in
the data and to trigger automatic parameter adjustments.

In the last section (Section 5), we will briefly recapitulate
our discussions and derive possible directions for future

work on visual analysis of time-oriented data.

2 VISUALIZING TIME-ORIENTED DATA

When we speak of time-oriented data, we basically mean
data that are somehow connected to time. Certainly, this
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vague description is not sufficient when users have to
choose or developers have to devise appropriate visualiza-
tion methods. An essential requirement for achieving
expressive and effective visualization is to consider the
characteristics of the data to be presented, which, in our
case, are particularly related to the dimension of time. A lot
of work has been done to formulate the notion of time in
many areas of computer science, including artificial intelli-
gence, data mining, simulation, modeling, databases, and
more. A theoretical overview, along with many references
to fundamental publications, is provided by Hajnicz [3].
However, as she points out, the terminology is not consistent
across the different fields [3] and, hence, does not integrate
well with visualization. Therefore, we adapted the work by
Frank [4], where he presents principal orthogonal design
dimensions to characterize different types of times. The
most important criteria from a visualization point of view
are the following:

. Linear time versus cyclic time. Linear time assumes a
starting point and defines a linear time domain with
data elements from past to future. On the other
hand, many natural processes are cyclic, for exam-
ple, the cycle of the seasons. To represent such
phenomena, a cyclic time domain can be applied.
The ordering of points in a strictly cyclic time
domain is meaningless with respect to a cycle, for
example, winter comes before summer, but winter
also succeeds summer.

. Time points versus time intervals. Discrete time points
describe time as abstractions comparable to discrete
euclidean points in space. Time points have no
duration. In contrast to that, interval time uses an
interval-scaled time domain like days, months, or
years. In this case, data elements are defined for
a duration, delimited by two time points. Both
time points and time intervals are called temporal
primitives.

. Ordered time versus branching time versus time with
multiple perspectives. Ordered time domains consider
things that happen one after the other. For branching
time, multiple strands of time branch out, which
facilitates description and comparison of alternative
scenarios (for example, for project planning). This
type of time supports decision-making processes,
where only one alternative will actually happen.
Time with multiple perspectives allows more than
one point of view at observed facts (for example,
eye-witness reports).

Since it is difficult to consider all of the mentioned
aspects in a single visualization technique, the majority of
available visualization methods address specific cases
only—mostly, the visualization of linear time dependencies.
The approaches known in the literature can basically be
differentiated into techniques that visualize time-oriented
data and techniques that visualize time per se. In the
first case, the focus is set on representing data. Mostly
quantitative, but also qualitative time-oriented attributes
are represented with respect to a rather simple time axis (for
example, multivariate data represented with respect to
linear time). The second case focuses on representing

characteristics of the time domain and its temporal
primitives, whereas only rather simple data representations
are considered (for example, Gantt charts to represent
relations between time intervals).

It must be stressed that techniques developed for a
particular time characteristic should not be applied to
visualize data that exhibit different characteristics. Doing
so can result in inexpressive or ineffective visual repre-
sentations and can lead to misunderstandings and false
interpretations. To support the data analysis process via
adequate visualization methods, it is therefore crucial to
analyze the time characteristics of the data set under
investigation.

In what follows, we will illustrate the importance of
choosing and parameterizing a visualization method
properly with respect to given time characteristics. We
will also give examples of visualization techniques that
are suitable for different instances of Frank’s taxonomy
of types of times as presented before. Note that the
considered time characteristics are used for illustrative
purposes and cannot cover all aspects of the complexity of
the dimension of time. Frank’s taxonomy encompasses
more features and, besides that, other taxonomies for
characterizing time and visualization techniques for time-
oriented data exist [5], [6], [7], [8]. We do not intend to
provide a comprehensive overview on all aspects of the
dimension of time but, instead, focus on the importance of
considering the characteristics of time for an integrated
visually driven data analysis.

Linear time versus cyclic time. First, we point out the
crucial influence of linear versus cyclic time characteristics
on the expressiveness of a visualization. Fig. 1 shows three
different visual representations of the same time-oriented
data set, which contains the daily number of cases of
influenza that occurred in the northern part of Germany
during a period of three years. In Fig. 1a, a simple time
series plot is used. Although peaks in time can be easily
recognized when examining this representation, cyclic
behavior of the data can only be guessed, and it is hard to
discern whether repetitive quantitative patterns in fact do
exist. The representation is not particularly helpful in
analyzing data with respect to cyclic temporal patterns.

The Spiral Graph [9] (see also [10] and [11]) is a
visualization technique that focuses on cyclic characteristics
of time-oriented data by using a spirally shaped time axis
(see Figs. 1b and 1c). The main purpose of this technique is
the detection of previously unknown periodic behavior of
the data. This requires appropriate parameterization of the
visualization method. The representation in Fig. 1b is suited
for cyclic time-oriented data, but it is improperly para-
meterized with a cycle length of 27 days; a pattern is not
clearly visible. In contrast to that, Fig. 1c is adequately
parameterized with a cycle length of 28 days and
immediately reveals a periodic pattern present in the
analyzed data. The continuous differences of the number
of cases between Sundays and Mondays are quite obvious.
Apparently, that pattern will also be visible if the cycle
length is set to 7 or 14 days.

Usually, it is difficult to find suitable parameter settings
for unknown data sets. Therefore, it makes sense to support
the detection of patterns either by applying analytical
methods (see Section 3) or by animating smoothly through
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possible parameter settings (that is, different cycle lengths).
In the latter case, periodic behavior of the data becomes
immediately apparent by the emergence of a pattern. When
such a pattern is spotted, the user stops the animation and
an interesting cycle length has been found.

This discussion shows that not only is selecting an
appropriate technique decisive for successful visualization,
but so is the proper parameterization of the chosen
technique. This also implies that interaction facilities are
needed to allow users to reparameterize visualization
methods according to their task at hand. Only then can
visualization take full advantage of the capabilities of the
human perceptual system, for example, in recognizing
patterns and motion.

Time points versus time intervals. Whether temporal
attributes are conceptually modeled as time points or time
intervals is another important characteristic that influences
the appropriateness of visualization methods.

Most of the known visualization techniques that repre-
sent time-oriented data consider time points. An example
for a technique particularly suited for point-based time is
the TimeWheel technique [12]. The TimeWheel is a multiaxes
representation for visualizing multivariate data over time
(see Fig. 2). This is achieved by putting a time axis to a

prominent position in the center of the display. A set of axes
that encode time-dependent attributes is circularly arranged
around the central time axis. For each time point in the
considered data, lines descend from the time axis to the
corresponding points on each of the attribute axes. The
TimeWheel can be rotated to bring different attributes into
the focus. Furthermore, each axis can be equipped with a
slider to zoom into value ranges of interest and, in
particular, to navigate the time axis. Interactive labels can
be activated on demand to facilitate the identification of
data values. Since the TimeWheel uses lines to represent
data for each point in time, it is useful only for multivariate
data that are related to time points; data based on time
intervals cannot be represented.

So far, we have mentioned techniques that visualize
quantitative data values related to time points. Other
approaches focus on representing temporal primitives and
relations among them (for example, LifeLines [15] to
visualize personal histories or the new metaphors for
visualizing temporal queries introduced by Chittaro and
Combi [16]). A technique particularly suited to visualize
temporal intervals (here used to model activities) and their
uncertainties at a high level of detail are the PlanningLines
[14]. PlanningLines consist of two encapsulated bars that
represent the minimum and maximum durations and are
bounded by two caps representing the start and end
intervals (see Fig. 3). Apart from allowing the representa-
tion of possible distributions of start, end, and duration of
an activity, a second important issue is addressed by
PlanningLines—temporal uncertainty. Uncertainty might
be introduced by explicit specification usually connected
with future planning (for example, “The meeting will start
at 11 a.m. and will take approximately one hour”—which
means that it is not quite clear when the meeting will be
over) or is implicitly present in cases where data are given
with respect to different temporal granularities (for exam-
ple, days versus hours). PlanningLines support interactive
zooming and panning, which is particularly useful for fine-
grain plans with large time scales.

Ordered time versus branching time versus time with multiple
perspectives. Although Frank’s taxonomy [4] lists branching
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Fig. 1. Different visual representations of a time-oriented data set describing the number of influenza cases over a period of three years. (a) Time
series plot (periodic pattern is difficult to discern). (b) SpiralGraph encoding 27 days per cycle (improperly parameterized—periodic pattern is hard to
see). (c) SpiralGraph encoding 28 days per cycle (properly parameterized—periodic pattern stands out).

Fig. 2. TimeWheel—Multivariate time-oriented data represented using a
TimeWheel. (a) A 2D TimeWheel [12]. (b) The 3D analog [13].



time and time with multiple perspectives as relevant types
of time, most techniques for visualizing time-oriented data
consider ordered time only.

An example of a visualization technique that assumes an
ordered collection of time points is the ThemeRiver [17]. It
represents the number of occurrences of particular news
topics in print media. Each topic is displayed as a colored
current that changes its width continuously as it flows
through time. The overall image is a river that comprises
all considered topics (see Fig. 4). The ThemeRiver provides
an overview on what topics were important at certain
points in time. Even though the ThemeRiver was originally
invented to visualize thematic changes in document
collections, it is also suitable to represent other quantitative
data. In such cases, it is important to provide interaction
techniques to rearrange the horizontal position of variables
within the river. This is necessary because variables in the
center of the river are perceptually emphasized, whereas
variables represented at the rims of the river diminish in
perceptibility.

The ThemeRiver and most visualization techniques
known in the literature are not suited to represent
branching time or time with multiple perspectives. The
few techniques for representing these types of time are
capable of depicting only univariate qualitative data (for
example, Decision Chart [18] or PlanningLines [14]) or even
visualize temporal primitives only; they cannot represent
multiple time-oriented variables. Here, we see the need for
advanced techniques to effectively visualize multivariate
data exhibiting these specific time characteristics. This is an
interesting direction for future work.

The bottom line of our discussion is that the character-
istics of the parameter time have to be considered when
creating visual representations of time-oriented data. We
also indicated that integrating appropriate interaction
methods is a key concern. Interaction is mandatory to allow
users to reparameterize a visual representation and inter-
action is a must to facilitate different user tasks including
navigation in time, directed and undirected search, com-
parison, and manipulation. Similar to what we said about
visualization methods, interaction facilities also need to be
user and task-specific. For example, if the main task of a
user is to compare multiple time-dependent variables, it
makes sense to provide interaction techniques that allow
navigating the time axis or brushing certain data values in
different views (for example, [19] and [20]). In conclusion,

only an adequately chosen and properly parameterized
visualization technique in combination with user and task-
specific interaction methods can fully support the develop-
ment of insight into time-oriented data.

3 ANALYZING TIME-ORIENTED DATA

In the preceding section, we have indicated that choosing
appropriate techniques, parameterizing them correctly, and
incorporating useful interaction methods are essential
requirements to achieve expressive and effective visual
representations. When dealing with large volumes of data,
additional analytical methods have to be included to derive
higher levels of abstraction of the data. A large variety of
time-series mining techniques have been developed in
recent years.1 Applying these techniques facilitates the
interactive exploration of even huge data sets by starting
with a compact overview image, which avoids overlapping
data, and then adding more details interactively [21].

From a visualizer’s perspective, this fundamental proce-
dure is expressed in Keim’s Visual Analytics Mantra [22]:
“Analyze First—Show the Important—Zoom and Filter, and
Analyze Further—Details on Demand.” Indeed, developing
methods that fully adhere to this mantra (that is, tightly
integrate time-series mining and visualization) is a challen-
ging task for future research.

In what follows, we describe our experiences in integrat-
ing visual and analytical methods. We will illustrate the
usefulness of Keim’s mantra by three examples: the concept
of temporal data abstraction, principal component analysis
(PCA), and clustering. These concepts address different
concerns. Temporal data abstraction reduces value ranges
from quantitative values to qualitative values, which are
much easier to understand. PCA reduces the number of
variables by switching the focus to major trends in the data.
Clustering methods reduce the number of data tuples by
finding expressive representatives for groups of tuples.
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1. A review of the vast body of work in time-series mining is beyond the
scope of this paper. A valuable source for more information is http://
www.cs.ucr.edu/~eamonn/TSDMA/ (accessed March 2007).

Fig. 3. PlanningLines [14]—project plan represented using Planning-

Lines, which allows the depiction of temporal uncertainties via special

glyphs.

Fig. 4. The ThemeRiver [17]—the visual representation uses the

metaphor of a river that flows through time. Currents within the river

represent thematic changes in a document collection.



3.1 Temporal Data Abstraction

Temporal attributes are an important aspect in high-
frequency domains or domains where heterogeneous data
are present (for example, the medical domain, observing
human activities and behavior, or environmental monitor-
ing). The big question is how huge volumes of continuously
assesseddatacanbeanalyzedto easefurtherdecisionmaking.
On one hand, the dataare too large to be interpreted all at once.
On the other hand, the data are more erroneous than usually
expected and some data are missing too. One possibility to
tackle these problems is to apply knowledge-based techni-
ques to derive qualitative values or patterns of current and past
situations, called data abstraction—a term originally intro-
duced by Clancey in his classical proposal on heuristic
classification [23]. The objective of data abstraction in general
is “to create an abstraction that conveys key ideas while suppressing
irrelevant details” [24]. The basic idea is to use qualitative
values or patterns, rather than raw data, for further analysis or
visualization processes [25]. This helps in coping with the
complexity of these processes. To compute data abstractions,
several tasks must be conducted (for example, selecting
relevant information, filtering out unneeded information,
performing calculations, sorting, and clustering). The con-
sequent next step is to provide techniques to visualize data
abstractions in a user and task-specific manner.

Temporal data abstraction represents an important sub-
group where the processed data are time oriented. We
distinguish the basic temporal abstraction methods (for
example, state, gradient, and rate) and more complex
temporal abstraction methods. The basic abstraction state
corresponds to a classification (or computational transfor-
mation) of data values. Gradient corresponds to the sign of
the derivative of a data value and rate complies with
the magnitude of the derivative during an interval (for
example, abstractions: high, decreasing, and fast for a

temperature variable). Basic temporal data abstractions

alone are not always sufficient to deal with time-oriented

data because these abstractions are unable to tackle shifting

contexts, different expectations concerning the develop-

ment of variables, or detection of more complex patterns.

Higher order temporal abstraction methods are needed

to derive unified qualitative values and patterns. Therefore,

we have investigated methods of complex temporal

abstraction.
VIE-VENT [26] addresses context-sensitive and expecta-

tion-guided temporal abstraction methods in a medical

application domain. The developed methods incorporate

knowledge about data points, data intervals, and expected

qualitative trend patterns to arrive at unified qualitative

descriptions. They are based on context-aware schemata for

data point transformation (see Fig. 5) and curve fitting to

express the dynamics of and the reaction to different

degrees of data abnormalities. Smoothing and adjustment

mechanisms are used to keep qualitative descriptions

stable in case of shifting contexts or data oscillating near

thresholds. For example, during intermittent positive

pressure ventilation (IPPV), the transformation of the

quantitative value PtcCO2 ¼ 56mmHg results in a qualita-

tive PtcCO2 value of “substantially above target range.”2

During intermittent mandatory ventilation (IMV), however,

56mmHg represents the “target value.” Qualitative PtcCO2

values and schemata of curve fitting are subsequently used

to decide if the value progression happens too fast, at a

normal rate, or too slowly (see Fig. 6).
Qualitative descriptions and patterns as derived by

temporal abstraction methods are heavily data dependent.

The methods developed in the VIE-VENT system are one

way to deal with cases of oscillating data where abstrac-

tions and, hence, interpretations are frequently changing.

Another solution is presented in the The Spread [27]. It

implements a time-oriented data abstraction method to

derive steady qualitative descriptions from oscillating

high-frequency data. We distinguish the following steps

of processing and abstracting the data:
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2. PtcCO2 ¼ transcutaneous partial pressure of carbon dioxide.

Fig. 5. VIE-VENT’s schemata for data-point transformation [26] of
PtcCO2 during IPPV (left) and IMV (right). The qualitative data point
categories are given in the middle column. For example, a PtcCO2 value
of 60 will be transformed to “substantially above target range (s2)” during
IPPV and to “slightly above target range (s1)” during IMV.

Fig. 6. VIE-VENT [26]—The user interface of VIE-VENT. The left-hand
side region shows the blood gas measurements, their corresponding
qualitative temporal abstraction on the top, and the actual and
recommended ventilator settings below. The right-hand side region
gives plots of the most important variables over the last four hours (for
example, transcutaneously assessed blood gas measurements and
ventilator settings).



1. Eliminating data errors. Sometimes up to 40 percent of
the input data are obviously erroneous; that is, the
data exceed the limits of plausible values.

2. Clarifying the curve. Transform the still noisy data into
a steady curve with some additional information
about the distribution of the data along that curve.

3. Qualifying the curve. Abstract quantitative values to
qualitative values like “normal” or “high” and join
data points with equal qualitative values to time
intervals.

The Spread provides parameters to adjust the abstraction
process (for example, length of time window, permitted
gaps, or points of changing the qualitative value). As an
example, consider a physician who is observing continu-
ously assessed measurements and wants to find time
intervals of different qualitative regions like “PtcCO2 is

high for 5 minutes.” When looking at the raw data, which
typically oscillates, the physician will certainly have
difficulties in finding reasonably long time spans with
stable values. The Spread is able to support the physician in
making qualitative assessments of the time intervals she is
interested in (see Fig. 7).

Temporal abstraction methods as provided in the VIE-
VENT and The Spread are generic methods that can be used
for different purposes. In the Midgaard project [28], these
methods have been extended by several visualization
techniques to enhance the understanding of qualitative
and quantitative characteristics of a given time-oriented
data set. The challenges were not only to support the user in
exploring the data with different tasks in mind but also to
capture as much temporal information as possible on a
limited display space without loss of overview and details.
We provide different levels of abstractions for time-oriented
data. Switching between these levels results in a smoothly
integrated semantic zoom functionality (see Fig. 8 and the
left-hand side of Fig. 9). Our methods were designed to
allow users to interact with data and time (for example,
browsing and searching the time axis). The visualization of
temporal aspects comprises three linked time axes (see
Fig. 9). The first one (bottom) provides a fixed overview of
the underlying data and their full temporal range. Selecting
a subrange in that time axis defines the temporal bounds for
the second (middle) and the third (top) time axis. By
interactively adjusting the subrange, users can easily zoom

and pan in time.

The described basic and complex temporal abstraction

methods are very useful in tackling the complexity of

analyzing and interpreting huge volumes of time-oriented

data. We have explored the usefulness of our methods by

cooperating with medical experts, who found it easy to

capture severe or stable health conditions of patients.
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Fig. 7. The Spread [27]—The thin line shows the raw data. The red area
depicts the Spread; the blue rectangles represent the derived temporal
intervals of steady qualitative values. Increased oscillation leads to
increased width of the spread but not to a change of the qualitative
value. The lower part of the figure shows the used parameter settings.

Fig. 8. Midgaard [28]—Steps of resizing/zooming the representation of a

data stream from a broad overview with qualitative values to the fine

structure with quantitative details (top to bottom).

Fig. 9. The user interface of Midgaard [28]—the upper left part shows
different measurements (for example, blood gas measurements and
blood pressure) and their corresponding temporal abstractions. The right
part explains the additional patient’s information, and the lower left part
explains the time axis interaction: The selected subrange at the bottom
time axis can be moved and rescaled to pan and zoom the time range
shown in the middle and top time axes.



Moreover, these abstractions can be used for further
reasoning or in guideline-based care for a simplified
representation of treatment plans.

Using data abstraction is a current research topic more
than ever [29]. The advantage of abstract descriptions or
patterns is their unified applicability in various applications
scenarios, regardless of the origin of the data to be
visualized.

3.2 Principal Component (PC)-Based Analysis

As already mentioned, time-oriented data are often of
multivariate nature. PCA [30] is a technique frequently
applied to reduce the number of variables and to detect
structure in multivariate data sets [31]. As such, PCA
represents another approach to data abstraction. Different
from the previously discussed approaches, which work on
the original data space to derive qualitative data abstrac-
tions, PCA results in a transformation of the original data
space into a different domain—the principal component space.
The goal of this transformation is to make important trends
in the data directly accessible.

The extraction of PCs amounts to a variance-maximizing
rotation of the original variable space. That is, the original
data space is transformed in such a way that the first PC
resembles most of the original data set’s variance, the second
PC resembles most of the remaining variance, and so on.
Identifying these factors leads to a more compressed
description of correlations in the data and, thus, to a better
understanding of underlying features and trends. Since the
PCA provides PCs ordered by their significance, it also
offers an excellent basis for dimension reduction in the case
of multidimensional data. Less relevant factors can be
omitted, leading to a lossy but more compact representation.

In principle, PCA does not distinguish between inde-
pendent and dependent variables in this process: All
variables are weighted and handled equally. As mentioned
before, this often raises problems in the context of time-
oriented data. In particular, the temporal context gets lost
and the interpretation gets hampered. Therefore, it is
preferable to exclude the independent variable “time” from
PCA. Time and computed PCs should be rejoined to restore
the temporal context afterward.

To demonstrate the strengths of combining PCA with
visualization, we will take a look at a simple example. The
data we consider is related to climate research. The basis of
the example is a meteorological data set that contains daily
observations of temperature, precipitation, wind, air pres-
sure, and others for a period of more than 36,500 days

(100 years). To analyze the development of global warming
over the last century, we cooperated with climate research-
ers to derive a data set that focuses on summer weather
conditions only [33]. That condensed data set is on a yearly
basis and comprises five variables: summer warmth (sum of
max temperatures for days with Tmax � 20 �C), summer
days (number of days with Tmax � 25 �C), hot days (number
of days with Tmax � 30 �C), summer mean temperature
(mean of daily average temperature Tavg), and mean of
extreme (mean of daily max temperatures Tmax). All five are
quantitative variables that either count days with specific
weather conditions or contain aggregated temperature
information; their strong correlation has been intended by
the climate researchers involved.

The condensed data set can be visualized with a
ThemeRiver (see Fig. 10). In this graph, constrictions in
the river stand for low data values, which indicate
particularly cold summers. Broad flow snapshots charac-
terize particularly hot summers. On first impression, a
general overview and important characteristics of the data
set are depicted well.

We will now show how PCA and an additional simple
bar chart representation can help to derive further informa-
tion from the data. To find major trends in terms of climate
change, PCA was applied to the condensed data set. Time
was excluded from the analysis to retain the temporal
context. The bar graph in Fig. 11 depicts only the first PC
(that is, PC0) to which all variables contribute. Bars above
the time axis represent hot summers, whereas bars below
the time axis stand for colder summers. Additionally, a
color-coding of PC frequencies was added to enhance
expressiveness: Orange bars represent outliers, whereas
blue bars represent more common conditions (the colors are
not related to temperature). The combination of PCA and
simple visualization succeeds in presenting major trends in
the data very clearly: Average warm summers dominate
the first third of the century, also containing the coldest
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Fig. 10. Visualization of a climate data set using a ThemeRiver [32]
approach. The graph depicts five time-dependent variables: summer
warmth (blue), summer days (violet), hot days (green), summer mean
temperature (yellow), and mean of extreme (white) for a period of more
than 100 years.

Fig. 11. Bar chart visualization of PC0 over time for the data set in
Fig. 10. Upward bars represent warmer conditions, whereas downward
bars stand for colder summers (but not necessarily negative tempera-
tures). Frequencies of data values are mapped onto color to further
distinguish typical (blue) and outlier (orange) years. Major trends are
clearly visible: The first third of the time line is dominated by average
warm summers mixed with the coldest summers; hot summers occur
followed by cold summers in the end of this period; in general, outlier
summers cumulate at the end of the time line.



summers (orange bars below the time axis). Hot outlier
summers cumulating at the end of the century can also be
detected very easily (orange bars above the time axis).
Moreover, two additional converse trends can be identified:
Hot summers occur, followed by colder summers in the end
of this period. In the last third, hot summers preponderate,
with the warmest summers of all. The PC visualization in
Fig. 11 depicts corresponding trends very well. This
demonstrates the value of PC-based temporal abstractions
in the visual analysis of time-dependent data. Nonetheless,
one should recall that our condensed climate data set
represents a special case, where all variables are strongly
correlated. That correlation is the reason why PC0 separates
warm and cold summers so well. When analyzing arbitrary
temporal data sets, further PCs may be necessary to
describe all trends. In such cases, not only is more
responsibility from the user required, but flexible mechan-
isms and controls are also needed to determine variables
that should be considered for PCA and to select PCs that
should be visualized. This calls for an integration of
analytical analysis and visualization in a single tool.

As mentioned above, PCA represents an almost com-
pletely automatic approach for temporal data abstraction.
The advantage is that a user can get an abstracted view on
the data very easily. Nonetheless, it is sometimes hard to
relate patterns visible in PC space to the original data
variables and the abstracted views are not always easy to
interpret. What can help in these cases are approaches to
enhance the readability of PC-based diagrams by incor-
porating additional information or interactive means to
support relating PCs to the original data [34]. Still, there is
room to improve the expressiveness of PC-based visuali-
zation in further research.

3.3 Clustering

After discussing temporal data abstraction and dimension

reduction with PCA, we now want to take a closer look at

data aggregation. Clustering methods provide a basis for

this purpose. Clustering relates to partitioning a data set

into subsets exhibiting a certain similarity. The clustering

process also provides an abstraction of the data. Concen-

trating on the clusters, rather than on individual data values,

allows for an analysis of data sets with a much larger

number of tuples. Appropriate distance or similarity measures

lay the ground for clustering. Distance and similarity

measures are profoundly application dependent. This has

led to a large number of different measures and clustering

algorithms [35]. Selecting appropriate algorithms is typi-

cally difficult. Careful adjustment of parameters and

regular validation of the results are also essential tasks in

the process of clustering. Different to PCA, the variable

“time” is typically included in the clustering process to

reveal clustering with respect to temporal aspects. The

resulting clustering may also lead to a temporal data

abstraction.
Visualization has been frequently applied to validate

and guide the clustering process. Different mining tools
provide cluster algorithms and techniques to visualize the
clustering results. However, most of the techniques for
visualizing clusters neglect the temporal context, thus

making it difficult to analyze data with respect to
fundamental time-oriented tasks (for example, to associate
data values and clusters with particular time steps).

A technique specifically designed for the analysis of
clustered time-oriented data is the Cluster Calendar View
[36] (see Fig. 12). It applies a calendar metaphor to
represent the temporal context. Cluster affiliation is
presented indirectly by color coding. A line plot presents
details on trends subsumed in selected clusters. Fig. 12
shows an example in the context of meteorological data.
In this example, clusters 7 (light blue) and 8 (magenta)
represent typical daily temperature curves and, hence,
dominate the calendar. All the other clusters are more or
less atypical and represent outliers. Furthermore, the color-
coded calendar allows revealing fast changes in cluster
sequences, for example, in the first part of August.
Brushing techniques provide additional support in the
exploration process. For instance, we can highlight clusters
that are similar to a selected cluster. The Cluster Calendar
View facilitates the comparison of cluster representatives
(overview), exploration of the values of a single cluster
representative (abstract detail), and exploration of daily
and monthly values of interest (specific details).

In contrast to the Cluster Calendar View, the Rectangular
View [37] depicts cluster information directly, thus allowing
for the display of data for much larger time frames. The
Rectangular View utilizes a tabletlike layout to present
clusters, as well as cluster centroids. Each cluster is
visualized as a color-coded square. Clusters are positioned
on the tablet from the lower left to the upper right with
respect to their temporal location. Various interaction
techniques extend the functionality. Temporal brushing
allows focusing on specific time steps. Interactive modifica-
tion of the cluster arrangement helps in detecting and
understanding temporal patterns. In Fig. 13, for instance, a
certain periodicity of cluster 2 can be observed when
placing six years per row instead of 10. Although this
cluster appears frequently in columns 1 to 3, it is less
existent in all other columns (0, 4, 5). The implication of a
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Fig. 12. Cluster Calendar View [36], [37]—the plots show cluster

representatives as daily temperature profiles. The calendar view

illustrates by color which days belong to which cluster, that is, show

similar profiles.



quasi-6-year cycle leads to new explanations and models on
the transition from stable climatic states to new ones for the
previously introduced meteorological data set.

In this section, we demonstrated the usefulness of
analytical methods to gain insight into larger volumes of
time-oriented data. Temporal data abstraction aims at
gaining qualitative high-level insights. PCA and clustering
help in handling larger numbers of variables, respectively,
tuples in time-oriented data. All three methods applied to
large time-oriented data sets provide different levels of
abstraction and helps to reveal major trends in the data.

Many more time-series analysis methods are known in
the literature. The information gained by these methods can
be utilized to further support different steps in the analysis
and visualization process to provide additional guidance to
users. For instance, Seo and Shneiderman [38] and Müller
et al. [34] present interactive techniques for data selection
and attribute mapping based on information from cluster-
ing and PCA; Keogh et al. [39] integrate mining methods to
drive interactive visual exploration of time series.

4 USER-CENTERED ANALYSIS VIA EVENTS

The methods presented in the previous sections are useful
tools to facilitate the visualization and analysis of time-
oriented data. We already indicated that this is true only if
the methods are parameterized according to the users’
needs and tasks. This brings us to the third major point of
our discussion—the user. User interaction is a way to
manually parameterize the described visualization and
analysis tools. Many tools provide an interactive graphical
user interface to adjust the parameters of analytical
methods (for example, via sliders or check boxes). Visua-
lization views can usually be adjusted via common view
navigation (zoom, pan, rotation) [40], dynamic queries [39],
and brushing [20].

However, it is not always easy for users to find
parameter values that suit the analysis task at hand.
Particularly, analytical methods often have parameters that
are not self-explanatory and, hence, are not easy to set.

Moreover, the increasing complexity of visualization
methods makes it more difficult for users to parameterize
the visualization properly. What is needed is some form
of support that helps in steering the visual analysis. A
promising concept that addresses the automatic parameter-
ization of visual representations is event-based visualization
[41]. The thought behind this concept is to gain benefit from
incorporating visualization and event methodology. Com-
monly, events are considered happenings of interest that
trigger some automatic actions. This concept is prevalent in
various application fields, including active databases, soft-
ware engineering, and software visualization.

In our understanding, events occur if user-defined
conditions, which are expressed with respect to entities of
a data set, become true. The basic idea of event-based
visualization is 1) to let users specify their interests as event
types (that is, encapsulations of conditions), 2) to determine
if and where these interests match in the data (that is, detect
event instances), 3) and to consider detected event instances
when generating the visual representation. This basic
procedure requires three main steps—1) event specification,
2) event detection, and 3) event representation. We will give
detailed descriptions on each of these steps in the next
paragraphs. Fig. 14 illustrates how event-related compo-
nents can be attached to the visualization pipeline (see [42]),
which internally comprises data analysis, filtering, map-
ping, and rendering. Data analysis and filtering can be
realized by the methods presented in Section 3. How time-
oriented data can be mapped (and rendered) to graphical
representation was shown in Section 2.

4.1 User Interests

The event specification is the step where users describe their
interests. To be able to find actual matches of user interests
in the data, the event specification must be based on formal
descriptions. For this purpose, event formulas have been
developed. These formulas make use of elements of
predicate logic, including variables, predicates, functions,
aggregate functions, logical operators, and quantifiers. The
elements may be used in a well-defined way to create valid
event formulas. We consider different variants of event
types to facilitate the specification of interests with respect
to relational data sets. Tuple event types can be used to
detect interesting data tuples (for example, tuples that show
an exceeded threshold) and attribute event types are useful
for finding attributes of interest (for example, attribute with
the highest average value). For an analysis of time-oriented
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Fig. 13. Rectangular View—visualization of a temporal clustering of
meteorological time-oriented data from the Potsdam observation station.
Thirteen clusters of yearly temperature curves have been extracted from
the data. In this example, changing the periodicity (denoted as decade)
from 10 years (left) to six years (right) helps in identifying a temporal
pattern for cluster 2 (see [37]).

Fig. 14. Model of event-based visualization—the figure shows the major

steps of event-based visualization (event specification, event detection,

and event representation) attached to the well-known visualization

pipeline.



data, this alone is not sufficient. Therefore, sequence event
types are also supported. They enable users to specify
conditions of interest regarding temporally ordered se-
quences of tuples (for example, a sequence of days with
rising stocks). Sequence event types extend the existing
event formulas with sequence-related notations (inspired
by Sadri et al. [43]). A combination of event types to
composite event types is also possible. They are realized via
set operators. Because we rely on extended predicate logic
and set theory, the expressiveness of the introduced event
types is limited to these formalisms. However, the model of
event-based visualization is not limited to certain fixed
event types but can be extended with event types as
required for particular application contexts.

To give a simple example of a sequence event type,
we will formulate the following interest: “Find three
successive days with increases of more than 15 percent in the
number of influenza infections.” This interest is expressed as
fðx; y; zÞdatejz:flu � y:flu � 1:15 ^ y:flu � x:flu � 1:15g. The
first part of the formula defines three variables ðx; y; zÞdate
that are sequenced by date. To express the condition of
interest, these three variables are set into relation using
predicates, functions, and logical connectors.

Certainly, common users will have difficulties in
describing their interests by using event formulas directly.
To facilitate the specification of interests as formal event
types, we developed a model for user-centered event
specification. This model provides expert, common, and
less-experienced visualization users with different specifi-
cation methods. The three different levels of the model are
direct specification, specification by parameterization, and
specification by selection (see Fig. 15).

Although the model is based on the described event
formulas, the complete functionality of these formulas
is available only to expert users at the level of direct
specification.

To ease the event specification for common users, so-
called event type templates are provided. Basically, the idea
was to hide the complexity of event formulas from users.
Event type templates use an internal event formula that
cannot be changed directly but can be adjusted to the users’
needs via easy to set parameters. An example of an event
type template is a threshold template, where the two
parameters “threshold” and “variable” can be set by users.

An event instance is detected once the chosen variable
exceeds the set threshold. Templates are particularly useful
to encapsulate sequence event types. Interests like an
increase of a “variable” over a certain “period of time”
can be easily adjusted to the task at hand without typing
entirely new event formulas.

The third level of event specification is based on simple
selection. The event specification by selection addresses not
only less-experienced visualization users but also users (for
example, managers) who seek quick access to relevant
information contained in the data to be analyzed. The idea
is to provide a collection of expert-defined event types that
are particularly tailored to the application context. In the
case of time-oriented data, visualization tasks like identi-
fication of certain values in time or detection of behavioral
patterns (for example, the aforementioned increase in cases
of influenza) could be formulated by domain experts.
Predefined event types must be assigned with expressive
labels and descriptions so that users can easily select the
event types they are interested in. It is also helpful to
enhance the event collection with a semantic structure (for
example, by grouping the collection with respect to
different user tasks). Again, to devise such a semantic
structure and to describe it expressively is a task for
domain experts.

4.2 Relevant Data Portions

The event detection step determines whether the interests
defined as event types are present in the data set under
consideration. Conducting the event detection results in a
set of event instances, which describe where in the data
interesting information is located. That is, entities that
comply with user interest are marked as event instances.
For event detection, the variables used in event formulas are
substituted with concrete entities of the data set (tuples,
attributes, or sequences of tuples). In the second step,
predicates, functions, and logical connections are evaluated
so that the event formula as a whole can be evaluated to
either true or false. Since this procedure is very costly in
terms of computation time, efficient methods must be
utilized for the event detection. For detecting interesting
tuples and attributes, the capabilities of relational database
management systems can be utilized. The detection of
sequence events makes use of the optimized pattern search
(OPS) algorithm [43], which has proved to be efficient for
querying sequenced data. If dynamic data (that is, data
that change over time) have to be considered, detection
efficiency becomes crucial. Here, incremental detection
methods can help. Such methods operate on a differential
data set, rather than on the whole data. However,
incremental methods also impose restrictions on possible
event types.

4.3 User Interests in Visual Representations

The last important step of event-based visualization is the
event representation. The goal of this step is to incorporate
detected event instances (which reflect the interests of the
user) into visual representations. We identified three
requirements that have to be accomplished in this regard:
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Fig. 15. User-centered event specification model—Event types can be
specified by using event formulas directly (left) by parameterizing event
type templates (middle) or by selecting from a predefined application-
specific collection of event types (right). The effort required for event
specification decreases in the same order.



1. Communicate the fact that something interesting
has been found.

2. Emphasize interesting data among the rest of the
data.

3. Convey what makes the data interesting.

The most important requirement is that the visual
representation must reflect that something interesting is
contained in the data. This is essential for event-based
visualization of time-oriented data. To meet this require-
ment, easy to perceive visual cues (for example, a red frame
around the visual representation, exclamation marks, or
annotations) are used. Alpha blending can be applied to
fade out past events. The second requirement aims at
emphasizing those parts of the visual representation that
are of interest. Additionally, the visualization should
communicate what makes the highlighted parts interesting
(that is, what is the particular event type). However, facing
arbitrarily definable event formulas, this last requirement is
difficult to accomplish.

We distinguish two basic possibilities for representing
events. On one hand, it makes sense to visualize event
instances, rather than the whole data set. In this way, the
focus is set exclusively on the interests of the user. Since the
number of events is usually smaller than the number of data
items, even large data sets can be analyzed (certainly, the
same holds true for PCs and clusters, as presented in
Section 3). This way of representing events is referred to as
explicit event representation. On the other hand, adjusting the
parameters of visual representations according to occurred
event instances is a promising alternative. By pursuing
what we call implicit event representation, we can automati-
cally set visualization parameters according to interests
detected in the data. If we assume that user interests
are related to user tasks and vice versa, implicit event
representation can help to achieve better targeted visual
representations. The big challenge is to meet the above
stated requirements merely by adapting visualization
parameters. Apparently, the availability of adequate visua-
lization parameters is a prerequisite for implicit event
representation.

To illustrate the potential of event-based visualization,
we will discuss an example. We assume a user who has to
search time-dependent human health data for uncommonly
high numbers of cases of influenza. The task at hand is to
detect where in time these situations have occurred. A
possible way to accomplish this task is to use the Time-
Wheel technique [12]. However, without event integration,
the user will be provided with a TimeWheel that uses a
standard parameterization (see Fig. 16a). The standard view
shows influenza on the upper left axis (light green), while
time is represented on the central axis. Alpha-blending has
been applied by default to reduce visual clutter. From the
TimeWheel in Fig. 16a, one can only guess from the labels of
the axis showing influenza that there are higher numbers of
cases; the alpha-blending made the particular lines almost
invisible (see the question mark). Several interaction steps
are necessary to reparameterize the TimeWheel to accom-
plish the task at hand.

In contrast to that, in an event-based visualization
environment, the user can specify the interest “Find days

with a high number of cases of influenza” as an event type
ðfxjx:flu � 300gÞ to be considered for the current analysis
task. The event type can be stored and may be reused in
further visualization sessions or by other users. If a new
data set is opened or if new tuples are added dynamically
to a time-oriented data set, the event detection is run to
determine whether or not the data conform to the condition
expressed in the event type. If this is the case, event
instances are created for those data portions that fulfill the
condition. To reflect the interest of the data analyst, that
is, to provide an individually adjusted TimeWheel, the
parameters of the visual representation have to be altered.
Parameter changes can be implemented either as instanta-
neous actions or gradual processes (for example, smooth
animation). In our particular example, we use an action
that switches color and transparency of line segments
representing event instances. Days with high numbers of
influenza cases are excluded from alpha-blending and are
drawn in white. Additionally, the TimeWheel is rotated (as
a whole) such that the axis representing influenza is moved
gradually to an exposed position. The application of a
gradual process is important in this case to support users in
maintaining their mental map of the visual representation.
The result of applying parameter changes as a response
to event instances is depicted in Fig. 16b. This figure
illustrates that event-based visualization eases the visual
analysis of time-oriented data significantly since the visual
representation is adapted to the current visualization task.
In the example, the identification of days with higher
numbers of influenza infections is easy.

As the previous example indicates, considering user
interests helps to achieve better targeted visual represen-
tations. By combining event-based methodology with
visualization approaches, we give users the opportunity
to describe their interests. The described event types
address not only tuples and attributes of relational data,
but also sequences of tuples, which are important when
dealing with time-oriented data. By using predicate logic,
a high level of flexibility is achieved; a wide range of
concrete event types can be imagined. It must also be
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Fig. 16. Standard versus automatic parameterization of a TimeWheel.
(a) TimeWheel representing a time-dependent health data set; the
interests of the user are not considered in the standard parameteriza-
tion, which aims at showing the main trends. (b) TimeWheel represent-
ing the same data; the user’s interests were recognized in the data and
have been emphasized via highlighted lines and automatic rotation; the
presentation is better targeted for the user’s task at hand.



mentioned that our approach has been developed to
support directed search, that is, users know what they are
looking for. Being aware of what users are interested in,
we are able to automatically generate visualizations that
are potentially more helpful for the users’ task at hand
than standard representations. By focusing on relevant
parts of the data, we also achieve another level of data
abstraction.

Until now, event-based visualization is not suited to
automatically mine potential events in time-oriented data,
that is, to support undirected search, where users have no
hypotheses about the data. With a tighter integration of
visual and analytical methods, it should be possible to
alleviate this concern. A second challenge for future work
is to find general guidelines on how to realize parameter
changes that indeed highlight event instances. Because the
parameter space of visualization methods is usually very
large and contains many interdependencies, we have to
apply sophisticated methods (for example, as suggested by
House et al. [44]) to find and test appropriate parameter
settings.

5 CONCLUSION

In this paper, we have investigated the role of time-oriented
data in the context of visually driven data analysis. We have
elaborated on the importance of choosing and parameteriz-
ing visualization techniques and interaction functionality
properly with respect to characteristics of the time domain
present in the data. However, in the light of huge data sets,
visualizing all data in a comprehensible manner without
burying possibly important information becomes more and
more challenging. This challenge can be dealt with by
conducting additional data analysis steps; many time-series
analysis approaches are known in literature. By the
examples of temporal data abstraction, PCA, and clustering,
we have illustrated that analytical methods support the
identification of the important in time-oriented data sets.
The third question we addressed concerns the integration of
the user into the visual analysis process. We detailed an
approach to emphasize relevant information, called event-
based visualization. This approach is mainly task driven
and aims at generating better targeted visual representa-
tions of time-oriented data (for example, by the automatic
highlighting of relevant data as well as the hiding of less
relevant data).

Nonetheless, much more work has to be conducted in
the future to support comprehensive visual analysis. This
includes the development of expressive visualization
techniques for all kinds of time-oriented data. Especially,
multivariate data in the context of nonlinear time domains
and interval-based data and temporal uncertainties have to
be considered to an increasing degree. A particularly
challenging problem is to find new ways of describing
tasks of the visual exploration process and to automatically
adapt the whole analysis procedure according to the tasks
at hand. This also includes specific interaction functions for
investigating time dependencies. For example, Doleisch
et al. introduce brushing functions that could be useful in
this regard [20]. Finally, studying tighter combinations of
analysis steps and event-based visualization (for example,

to detect events on temporal data abstractions) could result

in new powerful means for the visual analysis of time-

oriented data.
As a conclusion of our paper, we would like to take a

look at Fig. 17. Each distinct research field shown in the

figure has yielded many powerful approaches. With this

paper, we tried to make a point regarding a better

integration of visual, analytical, and user-centered methods.

We suggest that these aspects are further advanced in a

direction that leads to convergence of user-centered,

visually driven analysis methods for time-oriented data.
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