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(a) Flat graph with 30 nodes and 65
links.

(b) Power Graph rendering computed using the
heuristic of Royer et al. [12]: 7 modules, 36 links.

(c) Power Graph computed using Beam Search (see 5.1) finds 15
modules to reduce the link count to 25.

Figure 1: Three renderings of a network of dependencies between methods, properties and fields in a software system. In the Power Graph
renderings an edge between a node and a module implies the node is connected to every member of the module. An edge between two modules
implies a bipartite clique. In this way the Power Graph shows the precise connectivity of the directed graph but with much less clutter.

ABSTRACT

Drawings of highly connected (dense) graphs can be very difficult
to read. Power Graph Analysis offers an alternate way to draw a
graph in which sets of nodes with common neighbours are shown
grouped into modules. An edge connected to the module then im-
plies a connection to each member of the module. Thus, the entire
graph may be represented with much less clutter and without loss
of detail. A recent experimental study has shown that such lossless
compression of dense graphs makes it easier to follow paths. How-
ever, computing optimal power graphs is difficult. In this paper, we
show that computing the optimal power-graph with only one mod-
ule is NP-hard and therefore likely NP-hard in the general case. We
give an ILP model for power graph computation and discuss why
ILP and CP techniques are poorly suited to the problem. Instead, we
are able to find optimal solutions much more quickly using a cus-
tom search method. We also show how to restrict this type of search
to allow only limited back-tracking to provide a heuristic that has
better speed and better results than previously known heuristics.

1 INTRODUCTION

In real-world applications such as biology and software engineer-
ing it is common to find network structures that are too dense to
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visualise in a way that individual links can still be followed. Such
graphs occur frequently in nature as power-law or small-world net-
works. In practice, very dense graphs are often visualised in a way
that focuses less on high-fidelity readability of edges and more on
highlighting highly-connected nodes or clusters of nodes through
techniques such as force-directed layout or abstraction determined
by community detection [8]. Dense edge clutter may be allevi-
ated to better show node labels by rendering the edges very faintly
or with aggregate techniques like bundling [6]. Though such ap-
proaches may give a rough indication of the general graph structure
they make following precise edge paths difficult or impossible.

Such path following is even more difficult when graphs are di-
rected. Distinguishing direction on edges allows for up to twice as
many distinct edges in the graph. For people trying to understand
the graphs to accurately follow directed paths, edge curves must be
drawn in enough isolation that any indications of direction (such as
tapering, arrowheads or gradients [5]) are clearly visible.

Recently, alternative approaches have been suggested that at-
tempt to retain the fidelity of individual edge paths by introducing
drawing conventions that allow a large number of actual edges to be
precisely implied by a small set of composite edges. In particular,
so-called Power Graph Analysis constructs a hierarchy over nodes,
such that nodes with similar neighbour sets are placed in the same
group or module. An edge connected to the module then implies a
connection to each member of the module. Power Graph Analysis
utilises lossless compression since—by contrast with bundling or
community-based clustering—no information is lost in the render-
ing. That is, the technique can be said to be information faithful [9]
such that the full graph can be reconstructed by careful inspection
of the drawing. Figure 1 gives a small example of the application of
Power Graph Analysis techniques to a small software dependency
graph.

Power Graph Analysis has been shown to have practical applica-
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tion to visualising biological networks [12], detecting communities
in social and biological networks [14] and more recently in software
dependency diagrams [3]. A recent user study has shown that—for
path-finding tasks—power-graph style groupings were more read-
able than flat graphs, even for people with very little training [3].

Relatively little attention has been devoted to algorithms for find-
ing power graph decompositions, i.e. the best choice of modules in
the power graph. Royer et al. [12] give a heuristic for finding the
decomposition and Dwyer et al. [3] give a constraint programming
formulation for finding the optimal decomposition with respect to
various criteria, such as fewer edges or fewer edges crossing group
boundaries. Unfortunately, an empirical evaluation of the two al-
gorithms given in [3] reveals that the heuristic of [12] is not very
effective at finding an optimal solution while the constraint pro-
gramming approach is too slow for practical use, taking days to run
for larger graphs. Thus, we need better methods to find power graph
decompositions. This is the subject of this paper. In particular, we
focus on finding power-graphs that are optimal or approximately
optimal with respect to the number of edges in the decomposition.

In Section 3 we prove that the problem of minimising the number
of edges in a power graph decomposition with only one group is
NP-hard. This is strong evidence that the general problem is NP-
hard, though specific proofs for unrestricted modules and different
goal criteria are needed.

In Section 4 we look at declarative models of the Power Graph
problem for input into general-purpose solvers. In particular, we
offer some refinements to the Constraint Programming model in-
troduced in [3] (Section 4.1) and propose a new Integer Linear Pro-
gramming model (Section 4.2).

In Section 5 we explore explicit search methods. In Section 5.1
we introduce a beam-search based approximate method that pro-
duces power graphs for a given flat graph, that are much closer to
optimal than previous greedy heuristics. In Section 5.2 we extend
this method to a full-backtracking search strategy that is able to find
optimal power graphs relatively efficiently using a lower-bound cal-
culation to cut branches of the search that are not useful. Our exper-
iments (Section 6) show that this approach is orders of magnitude
faster than solving the declarative models using generic solvers.

2 BACKGROUND AND DEFINITIONS

Royer et al. [12] coined the term Power Graph Analysis to describe
a technique for reducing edge clutter by introducing a module hier-
archy over an undirected graph, such that edges connected to mod-
ules imply a connection to every child of the module. More for-
mally, for a directed graph G = (V,E) a power graph configuration
is a set of modules M where each module m ∈M is a subset of V .
We assume that M includes the set of trivial modules {{v} | v ∈V}.
Our use of the term module is due to the similarity with modules
considered in Modular Decomposition. Like Modular Decomposi-
tion, modules can be nested to form a hierarchy and if two mod-
ules overlap one must be fully contained in the other. That is, for
m,n ∈ M, if m

⋂
n 6= /0 then n ⊂ m or m ⊂ n. As in Modular De-

composition, a power graph decomposition is drawn with a set of
representative edges R uniquely specified by E and M, such that a
representative edge between two modules represents a complete bi-
partite graph in E over the children of the two modules. That is, for
two modules m and n, a representative edge (m,n) ∈ R represents
the set of edges rep(m,n) = {(u,v) | u ∈ m,v ∈ n}. In drawings of
power graphs, the set of representative edges R must be minimal,
i.e. @e1,e2 ∈ R s.t. rep(e1)⊂ rep(e2).

Unlike Modular Decomposition, however, the power graph def-
inition above allows a representative edge to span module bound-
aries. For example, in Figure 2(b), the edge from node 5 to module
{0,2,4} implies that E contains edges (5,0),(5,2),(5,4) but says
nothing about any modules containing node 5. This permits greater
compression than modular decomposition, but can also cause con-

(a) A small graph with 23 edges.

(b) A power graph decomposition of the same graph
can be drawn with only 7 edges.

Figure 2: A small example of power-graph decomposition.

fusion when reading the diagram, as considered by Dwyer et al. [3].
Royer et al. introduced a simple heuristic for obtaining the power

graph decomposition for a given graph in O(|V |3|E| log |E|) time.
Their procedure involved first computing a “candidate module hier-
archy” over the nodes in the graph by repeated greedy matching of
nodes or modules with similar Jaccard index between their neigh-
bour sets. A second iterative phase involves greedily instantiating
the module that reduces the most edges. This is repeated until no
more edge reduction is possible.

This algorithm is reasonably fast but—as we show in Section
6—produces results that are far from optimal. The Beam Search
method described in Section 5.1 has faster run-time (depending on
a beam size parameter) and finds solutions that are very close to
optimal. Furthermore, in Section 5.2, we show that it is easy to
introduce backtracking into this explicit search method, to produce
a search that returns an optimal solution. Such a complete search
is orders of magnitude faster than the best we have been able to
achieve with generic solvers applied to declarative models, despite
extensive experimentation with redundant constraints to limit the
search space in those models, as described in Section 4.

3 COMPLEXITY ANALYSIS

In this section we show that computing the optimal power-graph
with a single module is NP-complete for undirected bipartite
graphs. It then follows that the result holds for directed graphs
in general. As an optimal module for a single module case need
not be a module in the optimal power-graph with multiple modules
(see Figure 3), it seems likely that it is hard in the general case
too. Finding an optimal single module is equivalent to finding a
biclique subgraph (A,B) (here A and B denote the two independent
sets of nodes) that maximises the edge savings, that is, |A||B|− |A|,
|A| ≤ |B|. The largest part, B, is taken to be the single module.
This problem is different to the Maximum Vertex Biclique Problem
(MVBP) that finds an induced biclique that maximises the number
of nodes, |A|+ |B|, and to the Maximum Edge Biclique Problem
(MBP) that finds a biclique subgraph that maximises the number of



Figure 3: The optimal solution for a single module (shaded) is not in
the optimal solution for two modules (dashed lines).

Figure 4: The construction G′.

edges, |A||B|. For example, a biclique with |A1| = 3 and |B1| = 4
has more edges than a biclique with |A2| = 1 and |B2| = 11, but
B2 gives the maximum edge savings. Similarly, a biclique with
|A1|= 1 and |B1|= 9 has more nodes than a biclique with |A2|= 3
and |B2| = 6, but B2 give the maximum edge savings. Although
MVBP can be solved in polynomial time for bipartite graphs [4,
Comments on GT24][16], it is NP-complete for general graphs
[15]. MBP was shown to be NP-Complete in [11] using a reduc-
tion based on the reduction used to show the NP-completeness of
the Balanced Complete Bipartite Subgraph problem in [7]. We use
this reduction to show that finding the optimal single module is NP-
complete.

We define the problem MSMP (Maximum Single Module Prob-
lem) as follows: Given a bipartite graph G = (V1,V2,E) and k ∈ N,
does G contain a module that achieves an edge saving ≥ k.

Theorem 3.1 MSMP is NP-complete.

Proof It is clear that MSMP is in NP. We reduce from CLIQUE [4]
to MSMP using the transformation given in [11]. Let G = (V,E)
and k ∈ N be an instance of CLIQUE. Without loss of generality
we assume k = |V |/2 ≥ 5. We construct a bipartite graph G′ =
(V1,V2,E ′) (see Figure 4) such that G′ contains a module with edge
savings ≥ k3− k2− k if and only if G contains a clique of size k.
Let V1 = V and V2 = E ∪W where W is a set of

(k
2
)

new nodes
and E ′ = {{v,e} : v ∈ V,e ∈ E and v not incident to e} ∪ {{v,w} :
v ∈V,w ∈W}. It is clear that this construction can be performed in
polynomial time.

If G contains a clique C of size k then (A,B) where A = V −C
and B = W ∪E(C) is a biclique subgraph of G′. For k ≥ 5, |B| =
2
(k

2
)
≥ |A| = k. Selecting B as a module gives an edge savings of

|A||B|− |A|= k3− k2− k.
Suppose G has no clique of size ≥ k. We show that any module

in G′ gives a saving of < k′ = k3− k2− k. Let (A,B) be a maximal
biclique in G′, A ⊆ V1 and B ⊆ V2. We note that any maximal bi-
clique has W ⊆ B and as |A| ≤ |V |= 2k ≤ |W | ≤ |B| when k ≥ 5, B
would be the optimal module.

Now B=W ∪B′ where B′ corresponds with the edges in G whose
endpoints are not in A. So |B′| ≤ (|V | − |A|)(|V | − |A| − 1)/2 =
(2k−|A|)(2k−|A|−1)/2.

There are two cases.

Case 1 |A|> k: Suppose |A|= k+ c, c ∈ (0,k]. Then

|A||B|− |A| ≤ (k+ c)
(

k(k−1)
2

+
(k− c)(k− c−1)

2

)
− (k+ c)

= k3− k2− k− k
2

(
c2 + c

)
+

c
2

(
c2 + c−2

)
< k3− k2− k.

Case 2 |A| ≤ k: Suppose |A| = k− c, c ∈ [0,k]. Now as G
has no clique of size ≥ k, the number of edges in the subgraph of
G induced by V −A (and hence |B′|) is ≤ (k−2)(k+c)2

2(k−1) by Turán’s
theorem [13]. So

|A||B|− |A| ≤(k− c)
(

k(k−1)
2

+
(k−2)(k+ c)2

2(k−1)

)
− (k− c)

≤k3− k2− k

− 1
2(k−1)

(
(c2 +1)k2−2c2k+ c(c2−1)(k−2)

)
<k3− k2− k

for k ≥ 5. �

4 DECLARATIVE MODELS

In this section we investigate how two standard generic methods for
solving combinatorial optimisation problems, constraint program-
ming and integer liner programming (ILP), can be applied to solve
the optimal power graph decomposition problem. The advantage of
using such generic approaches is that they allow the model to be rel-
atively easily specified in a declarative language such as MiniZinc 1

and then run with powerful state-of-the-art solvers.

4.1 Constraint Programming
Our starting point is the constraint programming formulation for
finding the optimal power graph decomposition given in [3]. The
input to the model is the number of vertices nv, a Boolean array
edge which is the adjacency matrix for the edges in the original
graph, a limit on the number of modules ml and an upper bound ub
on the objective function. To solve the complete problem we can
set ml = nv and ub = ∞.

The main decision variables in the problem are the number of
modules anm and the Boolean array module[v,m] which gives the
vertices v in each module m, i.e. module[v,m]↔ v ∈m. There are 3
kinds of modules. Modules 1...nv are trivial. We constrain these to
have a single vertex in them, i.e. module v is the trivial module {v}.
Modules nv+1...anm are real modules while modules anm+1..nm
are dummy modules where nm = nv+ml. The dummy modules are
constrained to be empty.

We require that the modules form a hierarchy: this is enforced
by requiring for all modules m and n, m ⊆ n∨ n ⊆ m∨m∩ n = /0.
The formulation makes use of Boolean array mcontains[m,n] which
is constrained to hold if module m contains module n.

Our objective function is to minimise the number of edges in the
power graph. For any fixed choice of modules there is a unique best
choice of edges in the power graph. We compute for each pair of
nodes m and n if there is a possible edge between them. There is
a possible edge between m and n iff: (1) for all u ∈ m and for all
v ∈ n, (u,v) ∈ E, and (2) m = n or m∩ n = /0. From this we can
compute the actual edges in the power graph. This is any possible
edge (m,n) which is not dominated by some other possible edge
(m′,n′) where (m′,n′) dominates (m,n) if m⊆ m′ and n⊆ n′.

We extended the model from [3] with a number of redundant
and symmetry breaking constraints that significantly improved its
efficiency.

1http://minizinc.org/

http://minizinc.org/


1. To stop arbitrary re-ordering of the modules we added the
symmetry breaking constraint that the real and dummy mod-
ules were in decreasing lexicographic order using the standard
global function lex greatereq.

2. We added the redundant constraint that if two vertices have
the same ingoing and outgoing edges then they should be in
exactly the same set of modules: clearly this is true in an op-
timal solution.

3. We added a redundant formulation of module containment
based on the observation that the scalar product sp[m,n] of
two modules m and n is |m| iff m⊆ n.

4. We added a redundant constraint that every module must have
at least one potential edge from it: i.e. there is at least one
node that has an edge to all of the nodes in the module.

4.2 Integer Linear Programming (ILP)
In our next approach we explored the use of ILP. Mathematical pro-
gramming techniques like ILP can often outperform constraint pro-
gramming on particular problems. A disadvantage, when compared
to constraint programming, is it can be difficult to formulate a given
problem as a mathematical program. Here we formulate an integer
linear program that minimizes the number of edges. A more de-
tailed description of the model can be found in the Appendix.
Input and Parameters
n is the number of vertices of the input graph G.
V = {0,1, . . . ,n−1} represents the vertices of the input graph G.
e(u,v) represents the edges of the input graph G as an incidence
matrix. That is, e(u,v) = 1 if (u,v) is an edge of G and e(u,v) = 0
otherwise.
m is the number of modules with at least two elements (we consider
each singleton vertex to belong to its own module).
M = {0,1, . . . ,n+m−1} represents the set of all modules.
Integer decision variables
sav[m1,m2] the number of edges that may be removed from G (to
then be replaced by a single edge) if the modules m1 and m2 are
added.
Binary decision variables
mod[v,m] takes the value 1 if and only if vertex v belongs to the
module m.
ind[v,m] takes the value 1 if and only if (v,u) is an edge, for all u in
the module m.
bic[m1,m2] takes the value 1 if and only if, for every vertex v ∈ m1
and every vertex u ∈ m2, the pair (u,v) is an edge in G.
dis[m1,m2] takes the value 1 if and only if the modules m1 and m2
are disjoint sets of vertices.
sub[m1,m2] takes the value 1 if and only if the module m1 is a
proper subset of the module m2.
mInd[v,m1,m2] takes value 1 if and only if v ∈ m1 and ind[v,m2] =
1.
vMod[v,m1,m2] takes value 1 if and only if v ∈ m1 and v ∈ m2.
sVer[v1,v2,m1,m2] takes value 1 if and only if (v1,v2) is an edge
with v1 ∈ m1 and v2 ∈ m2 and the edge (v1,v2) can be removed if
m1 and m2 are added.
sMod[m1,m2] takes value 1 if and only if sav[m1,m2]> 0.
Objective
Maximise

∑{sav[m1,m2]− sMod[m1,m2] | m1,m2 ∈M, m1 6= m2}.

Constraints
The majority of the constraints in our ILP model are purely to cor-
rectly define binary decision variables and so we have omitted them
for brevity.

Figure 5: The search space of module configurations for a given
graph is a tree structure. Here we highlight several nodes in the very
large search space of module configurations for the graph shown in
Figure 2. A solid arrow indicates a direct child relationship in the
search tree. That is, the child configuration is obtained from a single
merge operation from the parent. A dotted arrow indicates the target
configuration is reachable from the source via multiple merges.

1. dis[m1,m2]+ sub[m1,m2]+ sub[m2,m1] = 1, m1 6= m2 ∈M.

2. ∑{sVer[v1,v2,m1,m2] | m1,m2 ∈ M,m1 6= m2} ≤ 1,
v1,v2 ∈ V .

3. sav[m1,m2] ≤ ∑{sVer[v1,v2,m1,m2] | v1,v2 ∈ V,v1 6= v2},
m1 6= m2 ∈M.

4. sMod[m1,m2]≤ sav[m1,m2], m1 6= m2 ∈M.

5. sav[m1,m2]≤ n2sMod[m1,m2], m1 6= m2 ∈M.

6. ∑
v∈V

mod[v,m1] = 1, m1 ∈V .

7. mod[m1,m1] = 1, m1 ∈V .

Constraint 1 states that for any two distinct modules m1 and m2,
either m1 and m2 are disjoint, or one is a proper subset of the other.
Constraint 2 says that no edge can be counted twice in the saving
calculation. Constraint 3 defines the variables sav[m1,m2]. Con-
straints 4 and 5 defines sMod[m1,m2]. Constraints 6 and 7 force
each vertex to be a singleton module.

5 EXPLICIT SEARCH METHODS

As defined in Section 2, for a given flat graph, a configuration is a
set of modules, where each module is a set of vertices of the graph
and other modules such that the modules form a hierarchy. The
objective is to find a configuration that minimises the number of
edges.

A configuration can be constructed by adding one module at a
time. The order in which the modules are added has no effect, so
we impose a constraint that only top-level modules are added – that
is, if the configuration is {m1,m2, . . . ,mn}, then a new module must
not be a subset of any mi.

The set of possible module configurations is then a tree, with the
configuration containing only trivial modules (the flat graph) at the
root, as illustrated in Figure 5. Each node in the tree has one child
for each module that can be added to that configuration.

To prevent multiple paths to the same configuration, we impose
an arbitrary ordering on the children of a node, and force that if m1



and m2 are two sibling child modules such that m1 appears to the
left of m2, then the module m1 may not appear in any configuration
in the subtree of m2.

Thus, this tree will contain every possible configuration of mod-
ules, and a search for the best configuration may simply do a full
traversal of the tree; however, this is impractically slow. In the re-
mainder of this section we describe how to improve the efficiency
of this search.

5.1 Beam Search
Using the above definitions, we can define greedy heuristics to ob-
tain a power-graph configuration with significantly fewer represen-
tative edges than are required to draw the flat graph.

To limit the branching at each search-tree node t associated with
a configuration C, we restrict children of t to be those obtainable
through a merge of two top-level modules in C. That is, a merge of
modules m and n creates a new configuration C′ = C∪{{v} | v ∈
m∪n}.

A simple best-first search is—for a given starting configuration
C with nt top-level modules—to try all possible merges to give
{C′1, . . . ,C′nt (nt−1)} children and then simply take the one with the
fewest representative edges to be the next configuration. We repeat
until no further improvement is possible.

Since the set of representative edges R used to draw the power
graph must be minimal, such a merge operation may leave m or
n with no associated representative edges, i.e. rep(m, ) = /0 or
rep( ,n) = /0. Since a module with no associated edge in R serves
no purpose, we remove such modules from the merge result C′.

In practice, a full merge is not required just to calculate the re-
duction in edges achieved by the merge. Consider a merge of two
modules m and n in C with representative edges R(C) giving a con-
figuration C′ with edges R(C′). If the outgoing and incoming neigh-
bour sets in R of m are given by N+(m) and N−(m), then the num-
ber of edges in R(C′) will be precisely:

nedges(m,n) = |R(C)|− |N+(m)∩N+(n)|− |N−(m)∩N−(n)|

Applied to a graph G = (V,E), O(|V |) such greedy merges are
possible before no more improvement is possible. Since a given
module may include all edges in its neighbour set, computing
nedges(m,n) can be O(|E| log |E|) and to find the best possible
merge this must be computed for all pairs of modules. Therefore,
a naı̈ve implementation could take O(|V |3|E| log |E|) time though
in practice the number of modules that must be considered and the
size of their neighbour sets diminishes quickly.

Beam search [10, p. 195] gives us a way to introduce some lim-
ited backtracking into this best-first strategy. Instead of only con-
sidering the single best merge at each iteration, we maintain a beam
of the k best solutions found so far. The full process is shown in
Algorithm 1.

One detail in this algorithm is the check before insert of a config-
uration into the beam that we have not already considered a config-
uration that is structurally identical. This is done by maintaining a
hashset S with signatures of configurations previously inserted into
the beam. For a configuration C the signature sig(C) is obtained by
a canonical (ordered) traversal of the module hierarchy.

5.2 Optimal Search
We can show certain properties of the configuration tree that will
help us to eliminate regions of the tree without missing any optimal
configurations. First, we restrict the definition of “optimal” to be a
configuration that has no redundant modules. That is, if two con-
figurations C and C∪{m} have the same objective cost, only C can
be considered optimal.

Adding a module cannot increase the number of edges. Any new
edge added to the graph must replace some existing edges. A new

Data: A starting configuration of modules C0 with
representative edges R0. A beam size k ≥ 1.

Result: An improved configuration C? with |R?| ≤ |R0|

beam← priority queue of configurations
such that first element in queue has maximum |R|;

push(beam,C0);
S← hashset of signatures of configurations in beam;
repeat

(improved,currentbeam)← (false, copy beam);
foreach C ∈ currentbeam do

merges←{(e,m,n) |
e← nedges(m,n),(m,n) ∈C×C};

kbest← from merges take k triples (e,m,n)
with smallest e where sig(C,(m,n)) 6∈ S;

foreach (e,m,n) ∈ kbest do
b← first (i.e. worst) configuration in beam;
if |beam|< k or |R(b)|> e then

C′←merge(m,n);
push(beam,C′);
insert(S,sig(C′));
improved← true;

end
if |beam|> k then

pop(beam);
end

end
end

until not improved;
return configuration in beam with smallest |R|

Algorithm 1: Beam Search

edge between existing module m and new module n replaces all
previous edges between members of m and members of n. Since
there must be at least one such previous edge, the number of edges
removed is at least the number of edges added.

Every optimal configuration can be reached by a sequence of
improving module additions. That is, every module added reduces
the number of edges.

An outline of the reasoning is as follows. Let the desired optimal
configuration be C = {m1,m2, . . . ,mn}. Starting from the empty
configuration, choose any module that contains no sub-modules.
Adding this module will reduce the number of edges, so add it to
the current configuration. This module must reduce the number of
edges – if it didn’t, then C wouldn’t be optimal. Then after adding
this module, find another module that contains no sub-modules (or
only sub-modules that have already been added) and add that mod-
ule, and so on.

An optimal solution has at most n− 2 modules, where n is the
number of vertices in the flat graph. A configuration can have at
most n− 1 modules. A configuration with n− 1 modules must in-
clude a module that contains all vertices in the graph. However,
such a module is not an improving module and so cannot appear in
an optimal solution. Therefore, an optimal configuration can have
at most n−2 modules.

If adding module m to configuration C would remove e edges,
then adding module m to configuration C′ ⊃ C would remove at
most e edges.

Adding a module m with members {a,b, . . .} to configu-
ration C can only remove edges by replacing existing edges
{(a,v),(b,v), . . .} with a single edge (m,v) (and similar for
opposite-oriented edges). A configuration C′ ⊃C has the same set
of edges as C, except that some edges are replaced by a smaller set
of edges. Therefore, the module m can only replace the same set of



edges {(a,v),(b,v), . . .} or a smaller set where some of those edges
have been merged.

These properties allow us to calculate a lower bound on the best
possible configuration in under a given configuration in the search
tree. Given a configuration C with m modules, we can compute the
minimum number of edges for any configuration that is a superset
of C.

Let c1,c2, . . . ,cn be the modules permitted to be added to con-
figuration C. Each of these can be given a score S(ci) that is
the number of edges removed by adding that module: S(ci) =
E(C)−E(C∪{ci}). Since we can add at most n− 2−m modules
to C, the most edges we can possibly remove from C is the sum of
the best n−2−m scores of the modules c1,c2, . . . ,cn.

Therefore, for a given configuration C we can calculate the score
of a hypothetical configuration C′ ⊃C that has the minimum possi-
ble edges. (The configuration is only hypothetical because it likely
violates the hierarchy restriction on the modules.) If the objective
cost of C′ is no better than the best-known solution, the search can
backtrack immediately from C. An outline of the exhaustive search
algorithm is given in Algorithm 2.

Data: Current configuration, incumbent configuration, flat
graph.

Result: The optimal configuration.

if current configuration is better than incumbent then
record current configuration as incumbent

end
bound← compute bound of current configuration;
if bound is not better than incumbent then

backtrack;
end
if current configuration below module limit then

modules← modules that can be added to current
configuration;
Sort modules with most edge-reducing modules first;
for each module m ∈modules do

Recurse with m added to current configuration;
Upon backtracking, forbid m from modules;

end
end
return incumbent configuration

Algorithm 2: Outline of optimal search.

We can further reduce the number of modules considered at each
step of the search. We only need to consider binary modules—
as produced by the merge operation for the beam search (Sec-
tion 5.1)— which have exactly two members (which themselves
may be either modules or single vertices). The search is still guar-
anteed to find an optimal configuration.

Any optimal configuration has a counterpart that has only bi-
nary modules, and each such binary module reduces the number
of edges. Consider an optimal configuration C, constructed by the
sequence of modules < m1,m2, . . . ,mn >. Let mi be a non-binary
module. We can convert mi into a binary module by grouping to-
gether two of its members arbitrarily. (This newly created sub-
module will have no edges: if it was beneficial for this new sub-
module to have edges, C would not have been optimal.) The new
sub-module is inserted immediately before mi in the construction
sequence. If mi is still not binary, recurse.

All new sub-modules created in this way reduce the number of
edges during construction. We know that adding the non-binary
module mi reduces the number of edges. From this we know that
the members of mi share at least one common predecessor or com-
mon successor. Therefore, any pair of the members of mi share a
common predecessor or successor, and adding a module containing

just that pair will reduce the number of edges. (Any modules that
become redundant during this construction can be removed.)

The consequence of this property is that in the search algorithm,
the modules to be added at each step need only be these binary
modules instead of all possible modules. This greatly reduces the
search space.

6 EXPERIMENTS

6.1 Heuristic Methods

Following Dwyer et al. [3], we generate random scale-free directed
graphs with various numbers of nodes using the model of Bollobás
et al. [1]. To generate a graph with |V | nodes we control for density
such that the number of edges is roughly proportional to 3

2 |V |
3
2 . For

example, a graph with 10 nodes will have around 50 edges, while a
graph with |V |= 100 will have around 1500 edges.

All heuristics were implemented in C# and run on a modern
tablet PC2. The source-code is available under an open-source li-
cense3.

Figure 7 compares the decompositions obtained by applying
our various heuristic powergraph decomposition methods to graphs
generated as described above. It is clear that the Greedy Jaccard
Clustering method [12] (JC) is easily beaten in terms of quality of
the final solution, even by beam search with a beam size k of 1 (i.e.
best-first search with no backtracking at all). Increasing k to 10
does improve the results slightly even—in some cases—returning
the optimal (e.g. see Figure 6(d)). However, this is achieved at a
ten-fold increase in running time (see Figure 8). Increasing k fur-
ther to 100 only occasionally results in a slightly better solution.
Note that with k small compared to the total number of configura-
tions in the search space there is no guarantee that beam search will
return the optimal.

Figures 6(b), (c) and (d) show the renderings of the results ob-
tained for a small instance with 10 nodes and 51 edges. The quality
of the renderings in terms of visual clutter, does seem to reflect the
numbers seen in Figure 7. There is a fairly marked visual improve-
ment between JC (Figure 6(b)) and Beam Search with k=1 (BS1)
(Figure 6(c)), in particular BS1 can be rendered without edge-edge
intersections while for the JC decomposition it is impossible. How-
ever, there is a much less obvious improvement from BS1 to BS10
(Figure 6(d)): the latter has three fewer edges and four fewer edge-
module boundary crossings. The result found by BS10 is, in fact,
the optimal as confirmed by running a full search.

In terms of running time, Beam Search with k = 1 is easily the
fastest method, as seen in Figure 8. Generally, the running time
(and also memory requirements) for beam search grow linearly in
k. For example, BS10 has very close to twice the run time of BS5.
The exception is that the running time of BS1 is significantly less
than 10% that of BS10 since we are able to apply all the merges
entirely in place and no copying of configurations is required nor
checks for structural equivalence of configurations.

6.2 Optimal Methods

We have compared the efficiency of the exhaustive search methods
across a corpus of 10-vertex graphs. The running times on a single
representative graph are given below.

ILP model > 160 CPU hours
CP model without redundant constraints > 72 hours

CP model with redundant constraints 26.6 hours
Optimal Search 8 minutes

Optimal Search (edge-minimization only) 22 seconds

2Intel Ivy Bridge Core i7, up to 2.6GHz
3http://dgmlposterview.codeplex.com

http://dgmlposterview.codeplex.com


(a) Flat graph with |V | = 10, |E| = 51. An orthogonal layout style was
used (Y-Files implementation of topology-shape metrics approach) in an
attempt obtain a layout and routing in which each individual edge path is
traceable. Such traceability is necessary to support discerning reachabil-
ity or path-finding tasks.

(b) Greedy Jaccard Metric decomposition. Decomposition has 5 mod-
ules, 23 edges and 21 crossings between edges and module boundaries.

(c) Beamsearch decomposition k = 1. Decomposition has 6 modules, 19 edges
and 17 crossings between edges and module boundaries.

(d) Optimal decomposition obtained with beam search k = 10 (optimality
proven with method described in Section 5.2). Decomposition has 6 modules,
16 edges and 13 crossings between edges and module boundaries.

Figure 6: Flat and power graph renderings of a graph with 10 nodes and 51 edges. It is interesting to note that the reduction in clutter from
(b) to (c) is fairly obvious, however, the qualitative improvement from (c) to (d) is less dramatic. Layouts were obtained using the yEd software
(http://yfiles.com) using a combination of automatic layout and manual refinement with automatic edge routing.

http://yfiles.com
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Note that the ILP model only tries to minimize edges, while both
variants of the CP model try to break ties by minimising the number
of module boundary crossings and number of modules as in [3]. For
comparison with the CP model, we implemented two variants of the
optimal search: one only minimising edges, and the other breaking
ties in the same way as the CP model. The tie-breaking variant is
slower because it explores a larger search space and must do more
work at each search step to compute boundary crossings.

All exhaustive methods were run on an Intel Core i7 2.67 GHz
CPU. The ILP solver was run in parallel, with 8 cores running for 20
hours. The ILP model was run with the commercial Gurobi4 solver,
and the CP model was run with the lazy-clause generation solver
CPX5. The ILP model and CP model without redundant constraints
failed to find the optimal solution. The other three methods found
the optimal solution and proved it to be optimal.

7 CONCLUSION

This paper has presented a number of results, both practical and the-
oretical. On the practical side, the best-first search method (or beam
search k = 1 or BS1) is much faster than the previous best available
heuristic, the Greedy Jaccard Clustering [12] (JC). For example, a
dense graph with 100 nodes and 1500 edges can be decomposed in
0.35 seconds with BS1 compared to 2.74 seconds for JC. This is a
significant enough performance improvement to enable new scenar-
ios like continuous decomposition of live-streaming dynamic graph
data.

Our experiments have shown that it also computes decomposi-
tions that are much closer to optimal, e.g. for the graph above BS1
achieves a decomposition with 624 edges compared to 1078 for
JC. We have also shown the applicability of the beam search tech-
nique to obtain still more optimal results (e.g. again for the 100
node graph BS10 finds a 612 edge decomposition) in reasonable
time and memory.

For the optimal power graph decomposition problem, we have
contributed the first known ILP model and significant improve-
ments to a previous CP model. While there have been many im-
provements to the compiler and solver technologies for such math-
ematical programming techniques this problem still defies simple,
efficient declarative models. By contrast, we have provided an ex-
plicit search method that is able to find and prove optimality in
minutes compared to days. Truly optimal solutions may not be
necessary for practical power graph visualisation, but being able
to efficiently compute them at least for small instances has proven
invaluable in helping us develop better heuristic methods such as
the beam search. For example, development of the beam search
was in large part motivated by discovering just how bad the Jaccard
clustering method was by comparison to optimal decompositions.

On the theoretical side we give the first known NP-hardness
proof for a power-graph analysis problem (the one module case)
which is strong ground-work for a general NP-hardness proof,
though it is also likely that variations of the problem (such as
slightly different constraints or goal functions) may require sepa-
rate proofs or may even be polynomial time.

8 FURTHER WORK

As mentioned above more complexity analysis is required for the
general power graph problem and its variants.

A related technique for simplifying dense graphs is confluent
graph drawing [2]. Like power-graph decomposition this also in-
volves identifying bipartite components. Current confluent graph
drawing algorithms have tended to focus on the computability of
planar confluent graphs. There has been little focus on developing
methods that can do something reasonable when a planar drawing

4http://www.gurobi.com/
5http://www.opturion.com/cpx.html

http://www.gurobi.com/
http://www.opturion.com/cpx.html


is not possible. We think an optimisation-based approach related
to the techniques described in this paper may have some success in
this regard.

Finally, we need better layout methods for power-graph decom-
positions and clustered graphs generally. The examples in this pa-
per were initially arranged with the Y-Files organic layout method
but required significant manipulation to achieve pleasing alignment
and to minimise crossings between edges.
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APPENDIX

For the published version of this paper these additional details will
be provided as an on-line tech report.

A ILP MODEL

The following is a complete description of the ILP model
used to minimise the number of power edges (or equivalently
to maximise the number of edges saved by adding modules).
Input and Parameters
n is the number of vertices of the input graph G.
V = {0,1, . . . ,n−1} represents the vertices of the input graph G.
e(u,v) represents the edges of the input graph G as an incidence
matrix. That is, e(u,v) = 1 if (u,v) is an edge of G and e(u,v) = 0
otherwise.
m is the number of modules with at least two elements (we consider
each singleton vertex to belong to its own module).
M = {0,1, . . . ,n+m−1} represents the set of all modules.
Integer decision variables
sav[m1,m2] the number of edges that may be removed from G (to
then be replaced by a single edge) if the modules m! and m2 are
added.
Binary decision variables
mod[v,m] takes the value 1 if and only if vertex v belongs to the
module m.
ind[v,m] takes the value 1 if and only if (v,u) is an edge, for all u in
the module m.
bic[m1,m2] takes the value 1 if and only if, for every vertex v ∈ m1
and every vertex u ∈ m2, the pair (u,v) is an edge in G.
dis[m1,m2] takes the value 1 if and only if the modules m1 and m2
are disjoint sets of vertices.
sub[m1,m2] takes the value 1 if and only if the module m1 is a
proper subset of the module m2.
mInd[v,m1,m2] takes value 1 if and only if v ∈ m1 and ind[v,m2] =
1.
vMod[v,m1,m2] takes value 1 if and only if v ∈ m1 and v ∈ m2.
sVer[v1,v2,m1,m2] takes value 1 if and only if (v1,v2) is an edge
with v1 ∈ m1 and v2 ∈ m2 and the edge (v1,v2) can be removed if
m1 and m2 are added.
sMod[m1,m2] takes value 1 if and only if sav[m1,m2]> 0.
Objective
Maximise

∑{sav[m1,m2]− sMod[m1,m2] | m1,m2 ∈M, m1 6= m2}.

Constraints

1. ∑
u∈V

(e(v,u)−1)mod[u,m1]≥ n(ind[v,m]−1), v ∈V , m1 ∈M.

2. ∑
u∈V

(e(v,u)−1)mod[u,m1]≤ ind[v,m1]−1, v ∈V , m1 ∈M.

3. mInd[v,m1,m2]≤ mod[v,m1], v ∈V , m1 6= m2 ∈M.

4. mInd[v,m1,m2]≤ ind[v,m1], v ∈V , m1 6= m2 ∈M.

5. mInd[v,m1,m2] ≥ mod[v,m1] + ind[v,m1]− 1, v ∈ V , m1 6=
m2 ∈M.

6. ∑
v∈V

(mInd[v,m1,m2]−mod[v,m1])≥ n(bic[m1,m2]−1), m1 6=

m2 ∈M.

7. ∑
v∈V

(mInd[v,m1,m2]− mod[v,m1]) ≤ bic[m1,m2]− 1, m1 6=

m2 ∈M.

8. vMod[v,m1,m2]≤ mod[v,m1], v ∈V , m1 6= m2 ∈M.

9. vMod[v,m1,m2]≤ mod[v,m2], v ∈V , m1 6= m2 ∈M.

10. vMod[v,m1,m2] ≥ mod[v,m1] +mod[v,m2]− 1, v ∈ V , m1 6=
m2 ∈M.

11. ∑
v∈V

vMod[v,m1,m2]≤ n(1−dis[m1,m2]), m1 6= m2 ∈M.

12. ∑
v∈V

vMod[v,m1,m2]≥ 1−dis[m1,m2], m1 6= m2 ∈M.

13. dis[m1,m2] = dis[m2,m1], m1 6= m2 ∈M.

14. ∑
v∈V

(vMod[v,m1,m2] − mod[v,m1]) ≥ n(sub[m1,m2] − 1),

m1 6= m2 ∈M.

15. ∑
v∈V

(vMod[v,m1,m2]−mod[v,m1]) ≤ sub[m1,m2]− 1, m1 6=

m2 ∈M.

16. ∑
v∈V

vMod[v,m1,m2] ≤ ( ∑
v∈V

mod[v,m2])− sub[m1,m2], m1 6=

m2 ∈M.

17. dis[m1,m2]+ sub[m1,m2]+ sub[m2,m1] = 1, m1 6= m2 ∈M.

18. sVer[v1,v2,m1,m2]≤ e(v1,v2), v1,v2 ∈V , m1,m2 ∈M.

19. sVer[v1,v2,m1,m2]≤ mod[v1,m1], v1,v2 ∈V , m1,m2 ∈M.

20. sVer[v1,v2,m1,m2]≤ mod[v2,m2], v1,v2 ∈V , m1,m2 ∈M.

21. sVer[v1,v2,m1,m2]≤ bic[m1,m2], v1,v2 ∈V , m1,m2 ∈M.

22. ∑{sVer[v1,v2,m1,m2] | m1,m2 ∈ M,m1 6= m2} ≤ 1, v1,v2 ∈
V .

23. sav[m1,m2] ≤ ∑{sVer[v1,v2,m1,m2] | v1,v2 ∈ V,v1 6= v2},
m1 6= m2 ∈M.

24. sMod[m1,m2]≤ sav[m1,m2], m1 6= m2 ∈M.

25. sav[m1,m2]≤ n2sMod[m1,m2], m1 6= m2 ∈M.

26. ∑
v∈V

mod[v,m1] = 1, m1 ∈V .

27. mod[m1,m1] = 1, m1 ∈V .

Constraints 1 and 2 define the variables ind[v,m]. Constraints 3
– 5 define mInd[v,m1,m2]. Constraints 6 and 7 define bic[m1,m2].
Constraints 8 – 10 define vMod[v,m1,m2]. Constraints 11 – 13 de-
fine dis[m1,m2]. Constraints 14 –16 define sub[m1,m2]. Constraint
17 says that for any two distinct modules m1 and m2, either m1 and
m2 are disjoint, or one is a proper subset of the other. Constraint 18
– 21 defines the variables sVer[v1,v2,m1,m2]. Constraint 22 says
that no edge can be counted twice in the saving calculation. Con-
straint 23 defines the variables sav[m1,m2]. Constraints 24 and 25
defines sMod[m1,m2]. Constraints 26 and 27 force each vertex to
be a singleton module.
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