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Fig. 1. Middle: the pairs of physical marks used during the experiment. Left and right: fitted psychophysical response curves for
spheres and bars respectively, overplotted to show individual curves for all participants.

Abstract—Physical visualizations, or data physicalizations, encode data in attributes of physical shapes. Despite a considerable
body of work on visual variables, “physical variables” remain poorly understood. One of them is physical size. A difficulty for solid
elements is that “size” is ambiguous — it can refer to either length/diameter, surface, or volume. Thus, it is unclear for designers
of physicalizations how to effectively encode quantities in physical size. To investigate, we ran an experiment where participants
estimated ratios between quantities represented by solid bars and spheres. Our results suggest that solid bars are compared based
on their length, consistent with previous findings for 2D and 3D bars on flat media. But for spheres, participants’ estimates are
rather proportional to their surface. Depending on the estimation method used, judgments are rather consistent across participants,
thus the use of perceptually-optimized size scales seems possible. We conclude by discussing implications for the design of data
physicalizations and the need for more empirical studies on physical variables.

Index Terms—Data physicalization, physical visualization, psychophysics, experiment, physical variable

1 INTRODUCTION

Long before the crafting of the first visualizations, humanity has en-
coded and manipulated data in physical form [15]. While paper and
later computer screens took over as the preferred way of presenting
data, physical data representations — or data physicalizations [28] —
are again becoming prevalent. Data physicalizations have been a pop-
ular visualization medium for artists and designers for the past 20
years [62, 15], and recently academia started to formally investigate
their merits. Multiple articles have reported promising findings on the
suitability of data physicalizations for information retrieval [27], for
education purposes [63], for public data communication [38, 59], and
for motivational purposes [55, 31]. Work on data physicalizations is
gaining momentum through emerging technologies such as digital fab-
rication (for static physicalizations) and shape-changing interfaces (for
dynamic physicalizations).

Data physicalizations have been put to many uses. While some find
data physicalization most appropriate for casual visualization [45, 24],
others hold that with advancing technology, data physicalization could
offer an equal level of interactivity and resolution to that of current
desktop systems [28]. In both cases, a key design question is how to
encode data using physical variables and, on a more abstract level,
what the available physical variables are and how they differ from
purely visual variables. For instance, if we want to show rainfall data
physically, should we use physical bar charts (using laser cut or mech-
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anized bars)? How accurately will people perceive the data? Would
it be more or less efficient to show the data encoded as spheres (3D
printed or inflatable)?

For visual variables, there is a large body of previous work investi-
gating the perceptual efficacy of visual encodings to guide a designer’s
choices. The studies by Cleveland and McGill are probably the best
known [10, 11] but many others exist [14, 41, 7, 17, 19, 50, 25, 58].
In contrast, little is known about the effectiveness of physical data en-
codings. Psychologists have studied the perception of volumes, and
most report nonlinear response curves and a considerable amount of
variation between people [1, 16]. Since physicalizations necessarily
encode information in volumetric shapes — all physical objects have
some volume — it could be possible that the perception of physical-
izations would need to be assumed unreliable and that they were only
suitable for special visualization needs where accurate perception of
the data is not pertinent. However, Teghtsoonian [60] demonstrated
that depending on whether people are asked to estimate how large a
stimulus looks or how large a stimulus is, they respond differently and
provide accurate estimates for how large the stimulus is. It is currently
unclear how people interpret sizes of physical stimuli when they ap-
pear in the context of data representations, and whether the variability
of judgments between people is sufficiently low so that a scale correc-
tion would lead to consistently more accurate estimates.

To shed light on these questions, we present a psychophysical in-
vestigation of two physical marks, bars and spheres (Figure 1). We
designed an experiment such that participants were instructed to esti-
mate the quantities represented by the physical marks. We describe
our analysis process to determine how bars and spheres can be used
for data physicalization, what accuracy can be achieved, and in how
far perceptually-optimized scales might be necessary. Our findings
inform designers about how size as a physical variable can be used in
data physicalizations. We conclude by discussing methodology for the
further study of physical variables.
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Fig. 2. Three examples of the use of spheres to represent quantitative information: worry (prayer) beads showing deaths through terrorist attacks
(photo courtesy Loren Madsen); a physicalization of the location and magnitudes of earth quakes created as a school project [37]; and number of
internet users created with the handmade visualization toolkit by Jose Duarte.

Fig. 3. Three examples of the use of bars to represent quantitative information: physical bar charts by Jansen et al. [27]; physical charts by Microsoft
Research [59]; and Tangible CityScape (photo courtesy MIT Tangible Media Group) [21].

2 BACKGROUND

The background for this paper is data physicalization, which we cover
first. 'We then discuss visual variables and contrast the extensive
knowledge about such variables with the rather meager knowledge on
physical variables. We briefly review size as one particular important
parameter for physical variables and discuss the psychophysical meth-
ods used to model the perception of visual variables.

2.1 Data Physicalization

Information has been put into physical form for millennia; the list
curated by Dragicevic and Jansen [15] contains hundreds of exam-
ples, including the 7500 years old Mesopotamian clay tokens to sup-
port counting, representations created by physicists, biologists, and
chemists in the 19th and 20th century, tactile graphics for the visually
impaired, and data sculptures created by artists and designers. A recent
review of the research problems that need to be tackled about physical
representations of data coined the term data physicalization to mean
how “computer-supported physical representations of data (i.e., physi-
calizations) can support cognition, communication, learning, problem
solving, and decision making” [28].

Visualizations encode data in attributes of graphical marks such as
points, lines, and areas. These attributes, for instance, size, color, or
orientation are called visual variables. Similarly, physicalizations en-
code data in attributes of physical marks, and thus we call these at-
tributes physical variables. The effectiveness of physical variables to
represent data has so far not been studied empirically, and we can only
make conjectures based on prior findings about the perception of phys-
ical objects in general (e.g., [1]).

The benefits of turning data into physical form are many and include
increased use of non-visual perception and active touch, support for
thinking through physical manipulation, and increased engagement.
These and other benefits have been previously reviewed [62, 28] and
are related to benefits of shape-changing interfaces [46] and of tangible
interfaces [49]. The benefits of data physicalization have been corrob-
orated in recent empirical studies. For instance, direct active manipu-
lation facilitates information retrieval from physical representations in

comparison to on-screen 3D visualizations [27], physicalizations can
improve memorability of data compared to paper visualizations [54],
and physical representations of physical activity such as running can
motivate behavior [55, 31].

Producing physical representations of data has been a key chal-
lenge, but in recent years it has become much cheaper and faster.
Key technologies have been 3D printing (e.g., [38]), laser cutting
(e.g., [56]), and mechanical actuation (e.g., [57]). In particular, re-
cent work on shape-changing technology has helped make physical-
izations dynamic, for example, as in the systems inFORM [21] and
EMERGE [57].

The combination of benefits and improved technologies has lead to
an increase of work on physical data representations, including work
for casual use [55], work on data sculptures for education [63], and
work on communicating numerical information [27]. The present pa-
per focuses on how to encode information effectively.

2.2 Visual Variables

To appreciate the aims of this paper, it is necessary to contrast the sit-
uation in data physicalization to that of visualization with respect to
the variables used to encode data. For visualization, a large body of
work has catalogued the visual variables that can be used to encode
information and studied their effectiveness. The French cartographer
Jacques Bertin was the first to formalize a language of graphics [3].
He identified three types of visual marks (points, lines, and areas),
and eight variables to vary these marks such that they encode informa-
tion in two-dimensional space: the two dimensions of the plane (x/y
position), size (length, area, or repetition), value (gray scale satura-
tion), texture (grain), color (hue), orientation, and shape. This work
has since been extended and validated, most notably by Cleveland and
McGill [10, 11, 12] and Mackinlay [34].

Even long before Bertin, psychologists, statisticians, and cartog-
raphers studied the effectiveness of various visual encodings. In the
1920’s a debate started on the relative effectiveness of bars and cir-
cles to encode quantitative information [33]. Of these early stud-
ies, the one by Croxton and Stein is best known today [14], inves-
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tigating two-dimensional bars, squares, circles, and cubes. Further,
many studies have charted the relative effectiveness of visual vari-
ables [41, 11, 34, 50]. Position of a graphical mark is widely accepted
as a more effective way of showing quantitative data than the size of
the mark [11, 34]; shape is better at showing nominal data than at
showing quantitative data [34]; extraneous dimensions of visual marks
can diminish accuracy [65] though conflicting evidence exists [41, 50].
This information has proven useful for designers of visualizations be-
cause it helps select the appropriate visual variables for particular data
and to avoid making visualizations that are misleading [47].

2.3 Physical Variables

In contrast, physical variables are much less well understood. We
take physical variable to mean modifications in attributes of physical
marks. For instance, a sphere is the physical equivalent of a graphi-
cal mark and its attributes such as position, size, color, or texture can
be modified to encode information. Figures 2 and 3 show examples
of physicalizations using the physical marks spheres and bars which
encode information mainly in their size.

Candidates for physical variables have been catalogued in the liter-
ature on shape-change [46, 40]. Among others, they include variables
from the visual variables literature, such as orientation or texture. But
these variables are physical, and thus not just perceived visually [28].
Furthermore, the percept transformation [26] likely plays a greater role
due to a more active perception, leading, for example, to frequently
changing viewing angles, which have already been shown to play a
role in the effectiveness of visual variables on large displays [4].

Little is known, about how physical variables perform in relation
to each other. We could make some assumptions based on find-
ings from psychophysical studies on the perception of volumetric
shapes [16, 1, 51]. But much of this prior work refer by “volumes”
to two-dimensional perspective drawings of various shapes. In the
few studies using actual physical stimuli, participants’ heads were usu-
ally fixed [1]. Also, Teghtsoonian found that size judgments depend
on whether participants were asked to estimate how large a stimulus
looks or how large a stimulus is [60]. Such context effects are relevant
to consider when studying the effectiveness of variables for visualiza-
tion or physicalization. It thus seems pertinent to frame experimental
tasks for studies on graph perception in the appropriate context: the
marks to be estimated represent quantities and the task is to make judg-
ments about the represented quantities and not about the marks them-
selves. Furthermore, Schneider and Bissett found that depending on
whether participants are asked to make ratio or difference judgments,
some interpret the task differently which affects their response scale
and thus might explain the observed variety of responses in previous
studies [48].

2.4 Why Study Size?

In this first study on physical variables we focus on size. Size is a
key visual variable and often used in static [27] as well as dynamic
data physicalizations [21, 57] (see also Figures 2 and 3). Depending
on which physical mark is used, size can be interpreted differently
since the attributes of the mark can vary in one, two, or all three di-
mensions. For example, bars vary only in one dimension — height —
whereas spheres vary in all three dimensions. Still, the dimensions
of a sphere can be expressed in a single number, its diameter. More
commonly however, the size of a sphere is indicated by its volume.
Figure 4 illustrates the different growth rates for bars and spheres de-
pending on whether one indicates their size in volume or surface area.

The variance in experimental findings on the size perception of
three dimensional objects [1] suggests that mapping data directly pro-
portional to volumetric units is often problematic. For example, if we
encounter a physicalization that uses spheres as physical marks, how
would people interpret the ratio between two spheres with diameters
of 5cm and 2.5cm? And do people agree on an interpretation or do
estimates vary considerably between people? If people were to agree
on an interpretation, then this could be taken into account when en-
coding data in the size of spheres. In this article, we investigate these
two questions for the size perception of bars and spheres.

200

sphere sphere
5 volume (cm®) surface (cm?)
Py experimentally determined
g 150 volume perception for spheres [Baird 1970]
5}
el
T
25
@ 2100
> o
& E
@
£ bar surface (cm?)
5 50
@
=2
[}
> bar volume (cm?)
0
5 10 15
diameter / height of stimuli
Fig. 4. Comparison of growth for different measures of bars and

spheres.

2.5 Modeling Perception of Visual and Physical Variables

The present paper approaches the study of size through models and
methods from psychophysics. There, human (visual) perception is
commonly modeled through a power law P = bS* with P being the
perceived quantity, S the true quantity (in some unit), a an exponent,
and b a scaling factor. A power law relationship was first described by
Plateau [43] and is known today as ‘Stevens’ power law’ [52]. Most
of the psychophysical literature reports estimates for the parameters
of this model. The advantage of the model is that it helps compare
response curves across studies and for different types of stimuli. How-
ever, the model has been criticized for a variety of reasons, most no-
tably because parameter estimates can vary considerably across stud-
ies (see for example Green and Luce [22]). Poulton [44] discusses in
detail possible biases introduced by psychophysical methods.

Cleveland and McGill contributed a ranking of visual variables,
based their ranking on an analysis of absolute errors of estimates [11],
arguing that variables which exhibit low errors are good choices for
effective encodings of data. While such a classification is clearly use-
ful to choose effective encodings, it does not further investigate badly
performing variables to determine if and why they should indeed be
generally avoided. For example, Cleveland and McGill [12] report
that color (saturation and hue) is estimated most unreliably of all vari-
ables tested. However, this does not mean that visualization designers
should never use color but that they need to consider the limitations of
this variable and use it appropriately. Research into perceptual color
scales provides such guidance (for example [47]).

While the investigation of absolute errors helps to identify effec-
tive variables, it is not a sufficient tool to examine what type of errors
participants made. For example, absolute errors hide whether errors
are generally high but spread around O or whether people systemati-
cally over- or underestimate a variable. One might argue that such a
variable should just be generally avoided — although this is not always
possible for aesthetic or practical purposes (for example, graduated
circles have received much attention by cartographers [18, 19]). Fol-
lowing the observation that circle sizes are commonly underestimated,
Flannery proposed a perceptually-optimized circle scaling [19]. While
Flannery’s proposed circle scaling was later challenged by Cleveland
et al. [9], in general, a scale correction has the purpose of equalizing
the direction of errors such that overestimations become as common
as underestimations.

A theoretical scale correction is not always sufficient to generally
minimize errors in judgment. As Green and Luce pointed out [22],
variation (between people) can be extremely high and Stevens’ expo-
nents in the literature can fall in a wide range (for example, for loud-
ness between 0.15 and 0.6). It is thus important to identify variables
which are always unreliable from those which can be corrected. Two
important factors for assessing the potential effectiveness of a visual
variable are the variability between people and the variability within
a single person (cf. Cleveland et al. who studied these factors for cir-
cles [9]). Variables which are low on both accounts, such as position
and length, are already well accepted as good encodings and widely



used!. Still, a variable can show little variability (between and within
people) but high absolute errors. These errors must then be systematic
such that a perceptual scale correction could be applied. If variability
was only high between people, then an individual correction would be
possible although impractical as the resulting encoding would only be
perceived accurately by the one person to which it was adapted.

3 STUDY RATIONALE

We detailed in the background section several factors due to which
previous psychophysical studies on the judgment of size are not suffi-
cient to inform the design of data physicalizations. In this section we
give a detailed account of the study rationale to further motivate our
choices in the experimental design and to facilitate the design of future
studies on other physical variables. As far as possible, the design of
our experiment is guided by previous experiments notably the classic
studies by Cleveland and McGill [10, 11, 12] and Spence [50]. All
mentions of Cleveland and McGill or Spence in this section refer to
these studies.

3.1 Methodology

Experimental methodologies for the study of graph perception are in-
spired by those common in psychophysics (see Stevens [53] for a dis-
cussion of the different methods and their respective strengths and
shortcomings). A basic distinction is between estimation and produc-
tion methods: estimation requires participants to indicate a judgment
whereas production requires participants to recreate a presented stim-
uli with an adjustable version of the stimuli. For graph perception,
estimation methods are most common. Cleveland and McGill used
the ratio estimation method (RE) whereas Spence used the constant
sum method (CS) [13]. The main difference between these two meth-
ods is the domain in which the judgment task can be performed: RE
is a cross-modality matching task requiring to indicate a ratio between
stimuli as a number (percentage) whereas a CS judgment requires to
indicate on a visual scale the ratio between two stimuli. Consequently,
RE requires a conversion from the visual domain, the experimental
stimulus, into the numeric answering domain, whereas CS remains in
the visual domain but requires a conversion from one type of shape
into another. Spence argued [50] that the latter is a more ecologically
valid task as the reading of graphs commonly includes the visual com-
parison of different quantities and that transforming the percept into a
different modality — numbers — might bias the response.

‘We include both methods, ratio estimation and constant sum in our
experiment to investigate possible differences between the two meth-
ods. Method is thus a factor in our experiment design.

3.2 Choice of Stimuli
3.2.1 Physical Marks

A wide range of different physical marks is possible as experimental
stimuli such as bars, spheres, cubes, cylinders, ellipsoids, or toruses.
We decided to include bars since they are already commonly used [15],
and to investigate whether physical, three dimensional bars exhibit the
same linear response curves as their two dimensional counterparts.
Additionally, we were interested in physical marks which vary in all
three dimensions. We opted for spheres since they have no edges
which people might use to apply simple heuristics; spheres have also
been used in existing data physicalizations [15] (Figure 2). We only
studied these two marks to keep the number of factors and the duration
of the experiment manageable.

3.2.2 Sizes

In ratio estimation experiments, either a ‘complete’ set of compar-
isons between all sizes is possible, or few ‘standard stimuli’ are cho-
sen against which the other sizes are compared. Both Cleveland and
McGill, and Spence opted for the latter and included two or three stan-
dards in their experiments. They found only small effects for the size

'In an analysis of encodings for a study on the memorability of visual-
izations, Borkin et al. report that 45.3% of 2070 analyzed visualizations used
either bars, lines, or points [5], i.e., position or length.

of the standard. A potential side effect of this choice is that partici-
pants are likely to judge stimuli in light of their previous choices for
the same standard, that is, they can build a mental model of the scale
across stimuli presentations. However, when reading graphs, people
are likely to compare different subsets of the graphs thus the ‘stan-
dard’ of comparison constantly changes. Therefore, a more ecologi-
cally valid approach is to use a ‘complete’ set of sizes where the ‘stan-
dard’ stimulus varies between consecutive judgments.

We chose to include eight stimuli sizes of which two are presented
per judgment, and included all possible combinations resulting in
(n—;l)!!(r!) = (8728)!!(2!) = ;‘ggig = 28 pairs (with n being the number
of sizes and r being the number of sizes presented concurrently).

A comparison of the findings of previous studies demonstrates pos-
sible range effects [53, 44]. Depending on the choice of the absolute
difference between the maximum and the minimum stimulus, response
curves can vary, so that experimenters report different exponents for
the power law between actual and perceived size. We account for
range effects with our choice of a complete set of comparisons, that
is participants judge stimuli from different ranges. Also, we indicate
angular stimulus sizes such that future studies can more easily contrast
their findings with ours.

Still, physicalizations can be scaled up in size more easily than on-
screen visualizations. Thus, room-sized or even building-sized physi-
calizations are possible. Such scales are out of the scope of this article,
and we only consider sizes suitable for hand-sized to table-sized phys-
icalizations.

3.2.3 Material

We expect that the choice of material can affect the percept of physical
marks. For the bars, an important criterion was that the edges of the
bar were salient to ensure that it was perceived as a three dimensional
shape and not as a flat bar.

For the spheres, it was important that the material exhibited a light
texture such that the mark had unmistakably a spherical shape and was
not perceived as a flat disk. At the same time the material should not
lead to specular reflections as these have been shown to be beneficial,
at least for shape detection [20]. We chose spheres made of matte
surface cotton pulp (see Figure 5 for a close-up of the texture).

Fig. 5. Close up of the bars and spheres showing their edge saliency
and surface texture.

3.3 Task Framing & Level of Specificity

Teghtsoonian demonstrated previously that size judgments depend on
whether participants are asked to estimate how large a is or how large
it looks [60]. We are interested in the perception of physical variables
(and not the perception of physical stimuli in general), that is in how
physical shapes are interpreted if they occur as marks in the context
of physicalization. We therefore framed the experimental task accord-
ingly: the initial instructions for the experiment therefore specified
that the participant was about to see a series of shapes, and that she
should think about them as representing certain quantities®. Then an

2This task framing is closest to how we expect people would interpret phys-
icalizations they might encounter, for example, in a museum.



example was given of two spheres of different sizes labeled with the
names of two countries>. Participants were then told that throughout
the experiment they will be asked to judge the relative difference, i.e.,
ratio between two shapes, and that they should make “quick visual
judgments and not try to make precise measurements, either mentally
or with a physical object such as a pencil or a finger.” Furthermore, we
specified that there was no time limit but suggested that each judgment
should not take them more than 10 seconds.

3.4 Sensory Modality

Some recent work has suggested that for haptic perception, a shape’s
surface area is a fitting predictor for its perceived size [30]. Work into
cross-modal integration of sensory information shows that the haptic
sense is more sensitive to lower spatial frequencies and the visual sense
to higher spatial frequencies [42]. To avoid possible cross-modal ef-
fects [29], we focus in this article on the visual perception of physical
marks only. While we believe that active touch likely plays an impor-
tant role when exploring data physicalizations [27, 28], we first need
to collect empirical data on the visual perception of physical marks®.
The benefits are twofold: (i) our findings can be compared to previous
work on the visual perception of graphical marks on two-dimensional
surfaces (specifically Cleveland and McGill’s [11] and Spence’s [50]
findings), (ii) later studies including both vision and touch can con-
trast their results against both Kahrimanovic et al.’s findings for haptic
exploration [29, 30] and ours for vision.

4 EXPERIMENT

We now describe the design of our experiment. Further details are
available on the project’s website: yvonnejansen.me/size.

4.1 Design

The experiment included two factors: physical mark (bars and
spheres), and estimation method (RE: ratio estimation and CS: con-
stant sum). Conditions were blocked as follows:
first method (could be either ratio estimation or constant sum):

— 28 ratios of shape A (could be either bars or spheres)

— 28 ratios of shape B
second method:

— 28 ratios of shape A

— 28 ratios of shape B
Bars and spheres were therefore blocked, but always alternated to min-
imize possible transfer effects. Each participant made in total 112 es-
timates.

4.2 Stimuli

We included bars and spheres of eight different sizes respectively (see
Table 1). All possible pairs of solids of different sizes were created
resulting in a total of 28 displays of bars and 28 displays of spheres.
Each pair of marks was mounted on a black foam pad of 15x6cm such
that the centers of all solids were 10cm apart. Cleveland and McGill
spaced their marks 65mm, 130mm, and 195mm. They reported no
discernible difference between the two smaller distances. Talbot et
al. [58] reported an effect of separation for bar charts, particularly for
small reference bars. Our choice might therefore introduce some noise
in our data due to a separation effect dependent on the size of the com-
parison standard. However, correcting for this effect, that is reducing
the separation for smaller stimuli, would have provided participants
with additional information about stimuli sizes. While constant cen-
ter distances and mounting heights can also provide additional insight
into sphere sizes, we followed Spence’s stimulus design [50] and kept
the center distance equal for all stimuli and both physical marks. We
include post-experiment self-reports from participants about their an-
swer strategies.

30ur experiment only included physical stimuli, but the example in the writ-
ten instructions was presented through an annotated photograph.

4While Kahrimanovic et al. [29] study the perception of spheres for both
vision and touch, they only asked participants to judge whether the volume of
two different shapes, e.g., a sphere and a cube, have the same volume.

stimuli sizes

mark/measure 1 2 3 4 5 6 7 8
bars

height (cm) 1 3 5 7 9 11 13 15

angular (deg) 0.5 1.4 2.2 3.1 3.9 4.7 5.4 6.1
spheres

diameter (cm) 1.2 1.8 2.5 3 4 5 6 7

angular (deg) 0.6 0.8 1.1 1.4 1.8 22 2.7 3.1

Table 1. Stimuli sizes in metric units and angular size (angular sizes are
based on the initial seating position but participants were free to move
their head closer or sideways).

4.3 Task & Instructions

Teeghtsonian previously demonstrated that instructions can have a
considerable effect on how participants make their judgments [60].
Since our motivation for this experiment is to inform the design of data
physicalizations, we framed the experimental task accordingly: the in-
structions stated that all shapes should be thought of as representing a
quantity. Specifically we instructed participants to either “indicate the
percentage of the quantity represented by the smaller shape relative to
the larger shape” (ratio estimation method) or to “divide the line such
that the left part represents the quantity represented by the left shape
and the right part represents the quantity of the right shape” (constant
sum method).

4.4 Answer Interfaces for the Two Estimation Methods

Participants entered their estimations using an iPad 2. For the ratio es-
timation method, the tablet displayed a number pad to enter the num-
ber estimate. For the constant sum method, a 12cm long line was
initially displayed. A divider indicator was only displayed once the
participant touched the line. It could be adjusted by sliding the finger
sideways. In contrast to Spence’s implementation of the constant sum
method [50], the line had no scale indicators (see Figure 6 left). We
chose this design to ensure that the task could only be solved in the
visual domain, that is by judging the ratio between the two line seg-
ments without any mental computations. The instructions for using
this interface were the same as those reported by Spence [50].

Type A Type B

During this part of he experiment, your

During this part of the experiment,
shape as a percentage o the larg

5k you 0 provide your answier by indicating the size of the smalier
‘example, while secing a pair o shapes like these:
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Gontinue Continue

Fig. 6. Instructions shown on the iPad for the two estimation methods,
including the priming to interpret marks as representing data.

4.5 Procedure

Participants were welcomed and offered a refreshment (water or cof-
fee) while reviewing the consent form. They were then asked to adjust
the height of their seat such that the top of their head aligned with a
line drawn on a whiteboard on the wall (140cm from the floor). They
were then introduced to the experimental setup and asked to read the
instructions presented on an iPad. All participants thus received the
same written instructions. After participants finished reading the in-
structions, the experimenter placed a first training stimuli at a distance
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of 50cm from the table’s edge, and participants started to familiarize
themselves with the iPad interface to provide their answer. Each exper-
imental condition was preceded by two training stimuli. After partici-
pants confirmed that they were ready to start, the experimenter placed
in succession 28 stimuli in front of them. All participants performed
all four conditions. After finishing participants were debriefed and
completed a short questionnaire to assess their numeracy skills® [32].
The experiment lasted between 40 and 50 min.

4.6 Experimental Setup

Participants were seated at a table covered by a black cloth. The cloth
covered the entire table such that it provided a uniform, contrasted
background to the white experimental stimuli (see Figure 7). The
room’s windows were covered with blinds to avoid change in light-
ing between participants due to the weather. The room was lit with
fluorescent ceiling lights.

Fig. 7. Setup of the experiment.

4.7 Participants

Ten participants were recruited through a mailing list. Previous studies
demonstrated negligible variation for factors such as age [2] or level
of education [11], thus we collected no further information on partic-
ipants’ demographics. Participants were compensated for their time
with a gift voucher of about 20€.

4.8 Dependent Measures

We collected two measures: ratio estimation, and time-on-task. Es-
timates made using the constant sum method were converted to be
comparable to ratio estimations using the following formula:

For constant sum, the relative size of the larger mark €5

depends on the smaller one C57:

csy = 100 —csy

For ratio estimation, the larger shape always represents 100:

re; = 100

To convert, we simply express the smaller shape as a percentage of the larger one:

cs
rey = 22 4100
csy

4.9 Hypotheses

We expected that response curves for bars would follow a simi-
larly linear scale as established for two-dimensional bars on paper or
screens [11, 50]. For spheres, we expected that response curves would
vary considerably across participants as suggested by previous work
on volumetric shapes [1]. Spence [50] reported lower error rates us-
ing the constant sum method than Cleveland and McGill who used the
ratio estimation method [11]. We therefore expected that the constant
sum method would reduce variation across participants.

3Since the ratio estimation method required to provide answers in the form
of percentages, we assessed numeracy as a covariate (only reported online).

5 RESULTS

We report our results® in this section following the analyses performed
for previous studies, particularly Cleveland and McGill’s [10, 12] and
Spence’s [50]. Since our main interest is to inform the design of
data physicalizations and to give estimates for predicting the accuracy
for the perception of quantities, we report uncertainty measures (95%
bootstrapped confidence intervals) and investigate biases (systematic
over- and under estimations) [8].

Unless otherwise noted, the results reported in this section are based
on height for bars and diameter for spheres. This choice allows us to
get a better understanding of the dimensionality of the percepts. For
example, an exponent of 2 indicates a perceived size proportional to
area, and an exponent of 3 indicates a perceived size proportional to
volume. Our numbers can however easily be compared to previous
work since v? o< (d xd x d)* = d*3 (with v: volume, d: diameter).

5.1 Main Factors

Figure 8 shows all data points for the four combinations of esti-
mation method and physical mark. To estimate the Stevens’ expo-
nents, we fitted a nonlinear regression model with one parameter:

estimate = ({71 )¢. Figure 8 shows the fitted curves and indicates the
exponent, a, together with 95% confidence intervals. Furthermore,
variability (residual standard error) is indicated, also with CIL. All in-
dividual data points are plotted with 0.3 transparency such that gray
scale value encodes density of data points.

Estimates of bars follow a more linear response curve (a = 0.941)
than estimates of spheres (a = 1.6). Estimation method had a consid-
erable effect on answer variability: estimates given using the constant
sum method vary about twice as much as estimates made using ratio
estimation contrary to our hypothesis. This is true for both marks, bars
and spheres. Accordingly, participants are more consistent and simi-
lar in their judgments when using ratio estimation. We investigate this
question further later in this section. However, as is common with ra-
tio estimation (cf. [10, 58, 44]), we observed in some participants a
tendency to round their estimate to the nearest multiple of 5.
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Fig. 8. Scatterplots and fitted nonlinear regressions for all factor combi-
nations including variability (residual standard error), and bootstrapped
95% confidence intervals for regression exponent and variability.

%Raw data, R and additional are available at

yvonnejansen.me/size.
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Fig. 9. Time on task for each condition.

Estimates of bars using ratio estimation are in line with previous
studies for the size perception of 2D bars. Spence also reports ex-
ponents of 0.95, that is, the visual perception of physical bars can in
practice be considered as linear.

For spheres, we found an exponent of 1.6. Previously reported ex-
ponents for volumetric shapes vary around 0.7 [1] %6 = 0.533 which
corresponds to 2.1 if ratios are based on diameters. However, it should
be noted that many studies did not use physical stimuli but rather two-
dimensional drawings with various depth cues [1], and that studies
using physical solids at the time commonly fixated participants heads.

We measured how much time people spent on each instance. How-
ever, this can only be interpreted as rough estimates since the exact
presentation time with physical stimuli is less controlled than when
presented on a computer display. Nonetheless, Figure 9 shows boot-
strapped median estimates for the four conditions. The data suggests,
that participants had more difficulty entering their estimates when us-
ing the constant sum method, and that estimating bars was faster than
estimating spheres. Absolute size of stimuli had no noticeable effect
on point estimates or confidence intervals for either shape.

5.2 Individual Response Curves

Figure 8 shows considerable spread of data points around the fit-
ted model. We now investigate individual response curves to exam-
ine whether the variability, found especially with the constant sum
method, is within or between participants. Our results for the con-
stant sum method are peculiar in light of the high accuracy previously
reported by Spence when using this method.

Figure 10 shows an overplot of all individually fit responses. For the
ratio estimation method, we find only little variation of curves between
participants, both for bars and spheres. This indicates that much of the
visible spread around the regression line in Figure 8 is indeed due to
inaccuracy of estimates.

In contrast, for the constant sum method we find much spread, not
only in the raw data but also between the individually fit regression
lines. This finding is contrary to our hypothesis. A possible explana-
tion is that participants had different mental models of the task. In-
deed we find a variety of individual Stevens’ exponents between about
1 (proportional to diameter) to 3.5 which is slightly higher than volu-
metric growth and indicates that the estimates made by this participant
are proportional to the ratio between the actual volumes of the spheres.
Note though that the participant did not make estimates proportional
to volume when using the ratio estimation method.

5.3 Accuracy

To further investigate the observed spread, we now analyze the ac-
curacy of judgments. Cleveland and McGill [8, 11] as well as
Spence [50] indicated accuracy by analyzing absolute errors between
actual sizes and estimates. To compare our findings to those for two-
dimensional graphical marks, we also compute the absolute error of
estimates (estimated value minus an objective measure). The choice
of objective measure affects now the error metric for spheres as illus-
trated by Figure 11 across the different measures volume, diameter,
surface, and fitted regression (a=1.6). As a comparison, we include
the absolute errors reported by Spence [50] which are slightly lower
than those reported by Cleveland and McGill. While bars as physi-
cal marks are comparable in accuracy to two-dimensional graphical
marks, the errors for spheres — if volume encodes the data — are un-
acceptably large. However, by encoding data in other measures of
spheres such as their surface or by using further fitted functions, accu-
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Fig. 10. Spread of individual regression curves with indicated exponents
for the respective extremes.

racy can be immensely improved such that spheres as physical marks
could become a reasonable choice.

bars height — —o—
spheres volume — ———
diameter — —e—
surface —| ——
fitted - —e—

[Spence 1990]

cylinder height — —o-

box height — —e—

bar height — -e-

line (vertical) length — —e-

line (hori.) length — —e—

0 5 10 15 20
absolute error (in %)

Fig. 11. Dot plot of absolute errors for bars and spheres computed

for different objective measures. Error bars indicate 95% bootstrapped
confidence intervals. Data for Spence taken from [50].

5.4 Bias

In addition to average accuracy, it is important to investigate bias (di-
rection of error) in estimates, particularly to test whether these are
dependent on the ratio to judge, that is, whether the bias differs over
the range of different sizes. Figure 12 shows the residuals for the four
combinations of mark and method against height or diameter ratio.
Bars judged with ratio estimation show only little bias to overestima-
tion. Spheres judged with the same method are underestimated for
large differences between marks (small ratios), reaching the maximum
error at ratios of around 50%. The constant sum method introduces an
additional bias towards underestimations.

The curved spread of data points for spheres (ratio estimation) con-
firms that the diameter ratio is not a suitable indicator for perceived
size. Together with the observation from Figure 10 that individual
curves vary only moderately (at least when using ratio estimation), a
perceptually corrected scale for spheres as physical marks seems pos-
sible.
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If we apply the model derived from our data P = S'-9, then a plot of
the residuals normalizes around O (see Figures 13). It is interesting to
note that the perceived size of spheres is even lower than the growth
rate of areas, that is the exponent is < 2. However, our experimentally
derived exponent is an intrinsically good fit for our data. Previous
work on various volumetric shapes report exponents around 0.7 which
translates to 2.1 for sphere diameters. It is thus possible that the actual
perceived size of spheres is proportional to their surface area; a pre-
dictor that has also previously been proposed for the haptic perception
of shapes [30].

5.5 Informal Participant Feedback

During the post-experiment debriefing, we inquired whether partici-
pants consciously employed any strategies for estimating the ratio be-
tween the spheres such as basing their judgments on the distance be-
tween the spheres. No one reported any consistent strategy but three
indicated that for large differences they imagined filling the larger
sphere with multiples of the smaller one. All participants expressed
low confidence in their sphere judgments and three even apologized
for not being “very good at this”.

6 DISCUSSION

We have presented a study of the perception of size for two physical
marks, bars and spheres, using the two most popular estimation meth-
ods to assess graph perception ratio estimation (used by [8, 11]) and
constant sum (used by [50, 39]).

6.1 Bars

Our results show that participants perceive ratios between bars quite
accurately, at least when they are presented isolated; this is consistent
with prior work on the size perception of plates [51]. Talbot et al. [58]
showed for two-dimensional bar charts that separation and distractors
can have an effect. Further studies are therefore necessary to evaluate
possible context effects of distractor bars. Furthermore, we only tested
bars arranged perpendicular to the line of sight of the observer. For
bars that vary in their placement along the line of sight, other factor
such as size constancy play a role. While a considerable amount of
work exists on size constancy and the perception of distances (e.g.,
[35, 61, 36, 23]), it is currently unclear how these findings apply to the
perception of physical marks due to the many factors playing together
in an actual physicalization with more than two data points such as
size, distance, distractors, possible occlusions between marks, or the
visibility of a baseline for comparison.

6.2 Spheres

For spheres our results show that data would be wrongly interpreted if
it was encoded in the volume of a sphere. We found underestimations
of in average 18.6% =+ 1.4% assuming a volume-scale encoding. How-
ever, we also found that if a different scale is applied for encoding,
such as surface-based, the accuracy of sphere perception can be im-
mensely improved to an error rate of 9.3% =+ 1.1% for a surface-scale
and, somewhat unsurprisingly, an experimentally derived perceptual
scaling can make the error rates drop further to 7.7% =+ 0.8%. Since
no prior work exists on how the presence of distractors or separation
for spheres, it is difficult to predict the size of possible effect. More
studies are required to address this question.

6.3 Other Physical Marks

We only studied bars and spheres to represent two classes of phys-
ical marks: bars for marks which only vary in one dimension, and
spheres for marks which vary in all three dimensions. A next step
is to test whether these two marks are indeed representative for these
two classes of physical marks. Previous work on the size perception of
volumes [1] reports overall similar values for different types of shapes.
Recent work on the haptic perception of cubes, spheres, and pyramids
also found surface area to be the best predictor [30]. We can thus hy-
pothesize similar findings for other (regular) marks.

6.4 Alternative Models

We used a simple nonlinear model to fit our data: P = §¢. It is based
on Stevens’ law and provides a reasonably good fit for data sets with
multiple participants (see Figures 8 and 10). While visually checking
the fit for individual regressions, we noticed that some people showed
response curves with a tendency to overestimations at one end of the
range and underestimations at the opposite range. Such response be-
havior can be best described with a logistic curve (an S-shaped curve).
Figure 14 illustrates an overplot of logistic curves fitted per participant.
While the curves for the ratio estimation method are rather similar to
the ones we found with the simpler model, the curves for the con-
stant sum method are more informative than what the simpler model
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Fig. 14. Overplotted individually fit regressions for a logistic curve
model.

showed — especially for bars. While the simpler model indicated an
almost linear response curve for 5 of the 10 participants, the logistic
curves fit the data better and show that for large differences between
the two stimuli (small ratio), 7/10 participants were prone to overes-
timations whereas small differences led to underestimations for 9/10.
The same effect can be observed for spheres where the response bias
for large differences is less pronounced with the constant sum method
then with the ratio estimation method.

While the logistic curve model can be useful for an exploratory
analysis of data, it is less descriptive and parsimonious [64] than the
simpler model. The simplicity of Stevens’ law supports an intuitive in-
terpretation of the exponent: a < 1 indicates a bias to overestimations,
and a > 1 indicates the opposite. For a = 1, we see a linear response
curve. Such an intuitive interpretation is not possible with the logistic
curve model where two parameters interact in a more complex fashion.

6.5 Estimation Methods

The two estimation methods produced notably different results: while
each participant made consistent judgments with both methods, judg-
ments between participants varied immensely for the constant sum
method (see Figure 8). Spence [50] however reported that he observed
a high level of accuracy using this method (higher than Cleveland and
McGill [11]). There are multiple possible explanations for our find-
ings. Spence reports that the experimenter observed participants dur-
ing 10 practice trials and asked them to repeat the practice trials if they
did not perform the task correctly. No information is included about
how often this was the case and which rationale was used to determine
whether participants performed the task correctly.

In contrast to the procedure used by Spence, we only showed a
simple line to the participants without any scale indicators whereas
Spence displayed tick marks on the line and, for half of his partici-
pants, he provided also a number scale next to the tick marks. Thus
it is possible that his participants performed the task by estimating a
number and then searching for it on the scale.

Either way, the constant sum method is of interest for the study
of graph perception as it is a purely visual method whereas the ra-
tio estimation method is a cross-modality matching task [53]. We re-
frain therefore from discouraging the use of the constant sum method
due to our findings but recommend verifying that all participants have
adopted the same mental model of the task. This could be accom-
plished for example by asking them to estimate marks which are not
included in the experiment and by providing them with feedback. Al-
ternatively, during the training trials, the corresponding ratio estimate
number could be displayed when moving the line divider such that par-
ticipants can build the correct mental model of the line. They would
continue to practice until their error rate falls below a certain threshold.

6.6 Implications for the Design of Physicalizations

If a physicalization designer encodes data in the height of a bar, she
can expect that observers will perceive the data almost as accurately
as when using a two-dimensional bar.

The case is different for spheres though. One of the potential ben-
efits of spheres is that wide ranges of data can be encoded. Let us
assume a designer needs to encode values, for example, between 1
and 1000. By encoding data in the volume of a sphere, the range could
be encoded in sphere diameters of about [1.2, 12]. This would lead

though to unacceptable errors of about 20% in average. The use of di-
ameter would lead to slightly lower errors, which are still around 15%,
but lead to huge differences in diameter between spheres. Now if she
instead uses the surface of the spheres for her encoding scale, then
the range of sizes remains within acceptable ranges: [0.6, 18]. From a
practical standpoint, the use of the surface area of a sphere (or possibly
even any physical mark’s surface [30]) seems a reasonable heuristic to
reduce error rates immensely.

Several participants felt the need to apologize during the experiment
that they are “really bad at estimating spheres”. While this is only an
informal observation, and we did not explicitly ask participants to in-
dicate their confidence for each estimate, it is worth studying further.
If we can identify physical marks (or graphical marks) for which par-
ticipants’ judgments are within acceptable error margins but for which
participants feel little confidence in their estimates, then such marks
could be suitable candidates to encode uncertainty (as has been previ-
ously proposed for sketchiness as a visual variable [6]).

7 CONCLUSION

We presented the first study of the perception of size as a physical
variable for two physical marks, bars and spheres. Our results showed
that physical bars achieved almost the same levels of accuracy as two-
dimensional bars. For spheres, the use of a volumetric scale leads
to large error rates of 18.6%. However, the surface area of a sphere
approximates the perceived size of this physical mark reasonably well
such that error rates go down to 9.3%.

Additionally, we presented a series of analysis steps to determine
the suitability of a physical variable to encode data. Most of this analy-
sis relies on a combination of fitting (already widely accepted) models
and visually assessing the variability between subjects, their accuracy,
and finally their estimation biases. If multiple objective measures exist
to describe the physical variable being tested, then all of these should
be tested as possible predictors for the perception of the variable. If
one is found that shows little variation across participants, error rates
within acceptable limits, and no change of bias across the range of val-
ues of the variable, then this measure is a good candidate for a scale
for the physical variable being tested.

Many more possible physical variables need to be tested before
we can establish a similar ranking for them as exists for visual vari-
ables [11]. To support this effort, all data and R scripts used for the
analysis of our data will be available on the project website.
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