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Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section3.6.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section3.6.2). State table entries which are
optional are typesetagainst a gray background.

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing
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2 CHAPTER 1. INTRODUCTION

or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.
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1.5 Our View

We view OpenGL as a state machine that controls a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.
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Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL drawsprimitivessubject to a number of selectable modes. Each prim-
itive is a point, line segment, polygon, or pixel rectangle. Each mode may be
changed independently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually ends up in the
framebuffer). Modes are set, primitives specified, and other GL operations de-
scribed by sendingcommandsin the form of function or procedure calls.

Primitives are defined by a group of one or morevertices. A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise.
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2.1. OPENGL FUNDAMENTALS 5

In general, the effects of a GL command on either GL modes or the framebuffer
must be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters as transformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GLcontexts, each of which is an encapsulation of cur-
rent GL state. A client may choose toconnectto any one of these contexts. Issuing
GL commands when the program is notconnectedto acontextresults in undefined
behavior.

The effects of GL commands on the framebuffer are ultimately controlled by
the window system that allocates framebuffer resources. It is the window sys-
tem that determines which portions of the framebuffer the GL may access at any
given time and that communicates to the GL how those portions are structured.
Therefore, there are no GL commands to configure the framebuffer or initialize the
GL. Similarly, display of framebuffer contents on a CRT monitor (including the
transformation of individual framebuffer values by such techniques as gamma cor-
rection) is not addressed by the GL. Framebuffer configuration occurs outside of
the GL in conjunction with the window system; the initialization of a GL context
occurs when the window system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.
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6 CHAPTER 2. OPENGL OPERATION

Finally, command names, constants, and types are prefixed in the GL (bygl,
GL , andGL, respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. We do not specify how floating-point numbers are to be represented
or how operations on them are to be performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in105. The maximum representable magnitude of a floating-point number
used to represent positional or normal coordinates must be at least232; the maxi-
mum representable magnitude for colors or texture coordinates must be at least210.
The maximum representable magnitude for all other floating-point values must be
at least232. x ·0 = 0 ·x = 0 for any non-infinite and non-NaNx. 1 ·x = x ·1 = x.
x + 0 = 0 + x = x. 00 = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GLserver
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GLclient state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
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2.3. GL COMMAND SYNTAX 7

client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from anamefollowed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present, isv , indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from theVertex command:

void Vertex3f( float x, float y, float z );

and

void Vertex2sv( short v[2] );

These examples show the ANSICdeclarations for these commands. In general,
a command declaration has the form1

rtypeName{ε1234}{ε b s i f d ub us ui}{εv}
( [args ,] T arg1 ,. . . , T argN [, args] );

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected.ε indicates no character. The
arguments enclosed in brackets ([args ,] and[, args]) may or may not be present.

1The declarations shown in this document apply to ANSIC. Languages such asC++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.
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8 CHAPTER 2. OPENGL OPERATION

Letter CorrespondingGLType

b byte
s short
i int
f float
d double

ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table2.2for definitions of the GL types.

TheN argumentsarg1 throughargN have typeT, which corresponds to one of the
type letters or letter pairs as indicated in Table2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is notv, thenN is given
by the digit1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character isv, then onlyarg1 is present and it is an array ofN values
of the indicated type. Finally, we indicate anunsigned type by the shorthand of
prepending au to the beginning of the type name (so that, for instance,unsigned
char is abbreviateduchar ).

For example,

void Normal3{fd}( T arg );

indicates the two declarations

void Normal3f( float arg1, float arg2, float arg3 );
void Normal3d( double arg1, double arg2, double arg3 );

while

void Normal3{fd}v( T arg );

means the two declarations

void Normal3fv( float arg[3] );
void Normal3dv( double arg[3] );

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of 14 types (or pointers to one of these). These types are summarized in
Table2.2.
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GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 signed 2’s complement binary integer
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to[0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to[0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to asGLint outside this document, and is not necessarily
equivalent to the C typeint . An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; in other words,
typesintptr andsizeiptr must be sufficiently large as to store any address.
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Figure 2.1. Block diagram of the GL.

2.4 Basic GL Operation

Figure2.1shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in adisplay list for processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Eachfragmentso produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read
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back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError ( void );

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. WhenGetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call toGetError returnsNOERROR, then there has been no detectable
error since the last call toGetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call toGetError returns a value other thanNOERROReach
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NOERRORcodes have been returned. When there are no more
non-NOERRORerror codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes isNOERROR.

Table2.3summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only ifOUTOF MEMORYhas occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every GL
command. First, if a command that requires an enumerated value is passed a sym-
bolic constant that is not one of those specified as allowable for that command, the
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Error Description Offending com-
mand ignored?

INVALID ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of range Yes
INVALID OPERATION Operation illegal in current state Yes
STACKOVERFLOW Command would cause a stack

overflow
Yes

STACKUNDERFLOW Command would cause a stack
underflow

Yes

OUTOF MEMORY Not enough memory left to exe-
cute command

Unknown

TABLE TOOLARGE The specified table is too large Yes

Table 2.3: Summary of GL errors

error INVALID ENUMresults. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for the given command. Second,
if a negative number is provided where an argument of typesizei is specified,
the errorINVALID VALUEresults. Finally, if memory is exhausted as a side effect
of the execution of a command, the errorOUTOF MEMORYmay be generated. Oth-
erwise errors are generated only for conditions that are explicitly described in this
specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
betweenBegin/End pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, current color, current
secondary color, andcurrent fog coordinatemay be used in processing each vertex.
Normals are used by the GL in lighting calculations; the current normal is a three-
dimensional vector that may be set by sending three coordinates that specify it.
Texture coordinates determine how a texture image is mapped onto a primitive.
Multiple sets of texture coordinates may be used to specify how multiple texture
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images are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least two. The number of texture units
supported can be queried with the stateMAXTEXTUREUNITS.

Primary and secondary colors are associated with each vertex (see section3.9).
Theseassociatedcolors are either based on the current color and current secondary
color or produced by lighting, depending on whether or not lighting is enabled.
Texture and fog coordinates are similarly associated with each vertex. Multiple
sets of texture coordinates may be associated with a vertex. Figure2.2summarizes
the association of auxiliary data with a transformed vertex to produce aprocessed
vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, and colors are
sent to the GL, as well as how normals are transformed and how vertices are
mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section2.14.2), and the multiple
current texture coordinate sets. Because color assignment is done vertex-by-vertex,
a processed vertex comprises the vertex’s coordinates, its edge flag, its assigned
colors, and its multiple texture coordinate sets.

Figure2.3shows the sequence of operations that builds aprimitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End Objects

Begin andEnd require one state variable with eleven values: one value for each
of the ten possibleBegin/End objects, and one other value indicating that noBe-
gin/End object is being processed. The two relevant commands are

void Begin( enum mode);
void End( void );
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Figure 2.2. Association of current values with a vertex. The heavy lined boxes rep-
resent GL state. Four texture units are shown; however, multitexturing may support
a different number of units depending on the implementation.
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Figure 2.3. Primitive assembly and processing.

There is no limit on the number of vertices that may be specified between aBegin
and anEnd.

Points. A series of individual points may be specified by callingBeginwith an
argument value ofPOINTS. No special state need be kept betweenBeginandEnd
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints within aBegin/End pair whenBegin is
called withLINE STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’s endpoint and the
second segment’s start point. In general, theith vertex (fori > 1) specifies the
beginning of theith segment and the end of thei − 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified between theBegin/End
pair, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with theLINE LOOPargument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines.Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs withBegin and End when the value
of the argument toBegin is LINES . In this case, the first two vertices between a
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BeginandEnd pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
one is ignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. WhenBegin is called withPOLYGON, the bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see sections2.14.1and3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a Begin/End pair whenBegin is called withTRIANGLE STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. ABegin/End pair enclosing fewer
than three vertices, whenTRIANGLE STRIP has been supplied toBegin, produces
no primitive. See Figure2.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After aBegin( TRIANGLE STRIP) , the pointer is initialized
to point to vertex A. Each vertex sent between aBegin/End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The
vertices of a triangle fan are enclosed betweenBegin andEnd when the value of
the argument toBegin is TRIANGLE FAN.
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Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices betweenBegin andEnd. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c) the
order of each triangle’s edges is independent of the other triangles.

Separate Triangles. Separate triangles are specified by placing vertices be-
tweenBegin andEnd when the value of the argument toBegin is TRIANGLES. In
this case, The3i + 1st, 3i + 2nd, and3i + 3rd vertices (in that order) determine
a triangle for eachi = 0, 1, . . . , n − 1, where there are3n + k vertices between
theBegin andEnd. k is either 0, 1, or 2; ifk is not zero, the finalk vertices are
ignored. For each triangle, vertex A is vertex3i and vertex B is vertex3i + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing betweenBegin and End, whenBegin is
called with QUADSTRIP. If the m vertices between theBegin and End are
v1, . . . , vm, wherevj is thejth specified vertex, then quadi has vertices (in or-
der)v2i, v2i+1, v2i+3, andv2i+2 with i = 0, . . . , bm/2c. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See Figure2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip betweenBegin andEnd is odd, the
final vertex is ignored.
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Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices betweenBeginandEnd.

Separate QuadrilateralsSeparate quads are just like quad strips except that
each group of four vertices, the4j + 1st, the4j + 2nd, the4j + 3rd, and the
4j + 4th, generate a single quad, forj = 0, 1, . . . , n − 1. The total number of
vertices betweenBegin andEnd is 4n + k, where0 ≤ k ≤ 3; if k is not zero, the
final k vertices are ignored. Separate quads are generated by callingBegin with
the argument valueQUADS.

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
eitherboundaryor non-boundary. These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section3.5.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlag( boolean flag );
void EdgeFlagv( boolean *flag );

to change the value of a flag bit. Ifflag is zero, then the flag bit is set toFALSE; if
flag is non-zero, then the flag bit is set toTRUE.

When Begin is supplied with one of the argument valuesPOLYGON,
TRIANGLES, or QUADS, each vertex specified within aBegin and End pair be-
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gins an edge. If the edge flag bit isTRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit isFALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within anyBegin/End pairs are the com-
mands for specifying vertex coordinates, vertex colors, normal coordinates, tex-
ture coordinates, and fog coordinates (Vertex, Color, SecondaryColor, Index,
Normal, TexCoord andMultiTexCoord , FogCoord), the ArrayElement com-
mand (see section2.8), theEvalCoord andEvalPoint commands (see section5.1),
commands for specifying lighting material parameters (Material commands; see
section2.14.2), display list invocation commands (CallList andCallLists; see sec-
tion 5.4), and theEdgeFlagcommand. Executing any other GL command between
the execution ofBegin and the corresponding execution ofEnd results in the er-
ror INVALID OPERATION. ExecutingBeginafterBeginhas already been executed
but before anEnd is executed generates theINVALID OPERATIONerror, as does
executingEnd without a previous correspondingBegin.

Execution of the commandsEnableClientState, DisableClientState, Push-
ClientAttrib , PopClientAttrib , ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryColor-
Pointer, VertexPointer, ClientActiveTexture, InterleavedArrays, and Pixel-
Store is not allowed within anyBegin/End pair, but an error may or may not
be generated if such execution occurs. If an error is not generated, GL operation is
undefined. (These commands are described in sections2.8, 3.6.1, and Chapter6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of theVertex command:

void Vertex{234}{sifd}( T coords);
void Vertex{234}{sifd}v( T coords);

A call to anyVertex command specifies four coordinates:x, y, z, andw. The
x coordinate is the first coordinate,y is second,z is third, andw is fourth. A
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call to Vertex2 sets thex andy coordinates; thez coordinate is implicitly set to
zero and thew coordinate to one.Vertex3 setsx, y, andz to the provided values
andw to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking aVertex command outside of a
Begin/End pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}( T coords);
void TexCoord{1234}{sifd}v( T coords);

specify the current homogeneous texture coordinates, nameds, t, r, andq. The
TexCoord1 family of commands set thes coordinate to the provided single argu-
ment while settingt andr to 0 andq to 1. Similarly,TexCoord2setss andt to the
specified values,r to 0 andq to 1; TexCoord3 setss, t, andr, with q set to 1, and
TexCoord4sets all four texture coordinates.

Implementations support more than one texture unit, and thus more than one
set of texture coordinates. The commands

void MultiTexCoord {1234 }{sifd }(enum texture,T coords)
void MultiTexCoord {1234 }{sifd }v(enum texture,T

coords)

take the coordinate set to be modified as thetextureparameter.textureis a symbolic
constant of the formTEXTUREi, indicating that texture coordinate seti is to be
modified. The constants obeyTEXTUREi = TEXTURE0+ i (i is in the range 0 to
k − 1, wherek is the implementation-dependent number of texture units defined
by MAXTEXTUREUNITS).

TheTexCoord commands are exactly equivalent to the correspondingMulti-
TexCoord commands withtextureset toTEXTURE0.

Gets of CURRENTTEXTURECOORDSreturn the texture coordinate set defined
by the value ofACTIVE TEXTURE.

Specifying an invalid texture coordinate set for thetextureargument ofMulti-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}( T coords);
void Normal3{bsifd}v( T coords);
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Byte, short, or integer values passed toNormal are converted to floating-point
values as indicated for the corresponding (signed) type in Table2.9.

The current fog coordinate is set using

void FogCoord{fd}( T coord);
void FogCoord{fd}v( T coord);

Finally, there are several ways to set the current color and secondary color.
The GL stores a current single-valuedcolor index, as well as a current four-valued
RGBA color and secondary color. Either the index or the color and secondary color
are significant depending as the GL is incolor index modeor RGBA mode. The
mode selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}( T components);
void Color{34}{bsifd ubusui}v( T components);
void SecondaryColor3{bsifd ubusui}( T components);
void SecondaryColor3{bsifd ubusui}v( T components);

TheColor command has two major variants:Color3 andColor4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section2.14.)

The secondary color has only the three value versions. Secondary A is always
set to 0.0.

Versions of theColor andSecondaryColorcommands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section2.14on colors and color-
ing). Values outside[0, 1] are not clamped.

The command

void Index{sifd ub}( T index);
void Index{sifd ub}v( T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

The state required to support vertex specification consists of four floating-point
numbers for each of the texture units supported by the implementation to store the
current texture coordinatess, t, r, and q, three floating-point numbers to store
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the three coordinates of the current normal, one floating-point number to store
the current fog coordinate, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA secondary color, and
one floating-point value to store the current color index. There is no notion of a
current vertex, so no state is devoted to vertex coordinates. The initial values of
s, t, andr of the current texture coordinates are zero; the initial value ofq is one.
The initial current normal has coordinates(0, 0, 1). The initial fog coordinate is
zero. The initial RGBA color is(R,G,B,A) = (1, 1, 1, 1) and the initial RGBA
secondary color is(0, 0, 0, 1). The initial color index is 1.
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2.8 Vertex Arrays

The vertex specification commands described in section2.7 accept data in almost
any format, but their use requires many command executions to specify even simple
geometry. Vertex data may also be placed into arrays that are stored in the client’s
address space. Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command. The client
may specify up to seven plus the value ofMAXTEXTUREUNITS arrays: one each
to store vertex coordinates, normals, colors, secondary colors, color indices, fog
coordinates, one or more texture coordinate sets, and edge flags. The commands

void VertexPointer( int size, enum type, sizei stride,
void *pointer );

void NormalPointer( enum type, sizei stride,
void *pointer );

void ColorPointer( int size, enum type, sizei stride,
void *pointer );

void SecondaryColorPointer( int size, enum type,
sizei stride, void *pointer );

void IndexPointer( enum type, sizei stride, void *pointer );

void FogCoordPointer( enum type, sizei stride,
void *pointer );

void TexCoordPointer( int size, enum type, sizei stride,
void *pointer );

void EdgeFlagPointer( sizei stride, void *pointer );

describe the locations and organizations of these arrays. For each command,
typespecifies the data type of the values stored in the array. Because edge flags
are always typeboolean , EdgeFlagPointerhas notypeargument.size, when
present, indicates the number of values per vertex that are stored in the array.
Because normals are always specified with three values,NormalPointer has no
sizeargument. Likewise, because color indices and edge flags are always spec-
ified with a single value,IndexPointer andEdgeFlagPointeralso have nosize
argument. Table 2.4 indicates the allowable values forsize and type (when
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Command Sizes Types

VertexPointer 2,3,4 short , int , float , double
NormalPointer 3 byte , short , int , float ,

double
ColorPointer 3,4 byte , ubyte , short , ushort ,

int , uint , float , double
SecondaryColorPointer 3 byte , ubyte , short , ushort ,

int , uint , float , double
IndexPointer 1 ubyte , short , int , float ,

double
FogCoordPointer 1 float , double
TexCoordPointer 1,2,3,4 short , int , float , double
EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

present). Fortype the valuesBYTE, SHORT, INT , FLOAT, andDOUBLEindicate
typesbyte , short , int , float , anddouble , respectively; and the values
UNSIGNEDBYTE, UNSIGNEDSHORT, andUNSIGNEDINT indicate typesubyte ,
ushort , anduint , respectively. The errorINVALID VALUEis generated ifsize
is specified with a value other than that indicated in the table.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an arrayelement. The values within each array element are stored se-
quentially in memory. Ifstride is specified as zero, then array elements are stored
sequentially as well. The errorINVALID VALUEis generated ifstride is negative.
Otherwise pointers to theith and(i + 1)st elements of an array differ bystride
basic machine units (typically unsigned bytes), the pointer to the(i + 1)st element
being greater. For each command,pointerspecifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState( enum array );
void DisableClientState( enum array );

with array set to VERTEXARRAY, NORMALARRAY, COLORARRAY,
SECONDARYCOLORARRAY, INDEX ARRAY, FOGCOORDARRAY,
TEXTURECOORDARRAY, or EDGEFLAG ARRAY, for the vertex, normal, color,
secondary color, color index, fog coordinate, texture coordinate, or edge flag array,
respectively.
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The command

void ClientActiveTexture( enum texture);

is used to select the vertex array client state parameters to be modified by
theTexCoordPointer command and the array affected byEnableClientStateand
DisableClientStatewith parameterTEXTURECOORDARRAY. This command sets
the client state variableCLIENT ACTIVE TEXTURE. Each texture unit has a client
state vector which is selected when this command is invoked. This state vector in-
cludes the vertex array state. This call also selects which texture units’ client state
vector is used for queries of client state.

Specifying an invalidtexturegenerates the errorINVALID ENUM. Valid values
of textureare the same as for theMultiTexCoord commands described in sec-
tion 2.7.

Theith element of every enabled array is transferred to the GL by calling

void ArrayElement ( int i );

For each enabled array, it is as though the corresponding command from section2.7
or section2.6.2were called with a pointer to elementi. For the vertex array, the cor-
responding command isVertex[size][ type]v, wheresizeis one of [2,3,4], andtype
is one of [s,i,f,d], corresponding to array typesshort , int , float , anddouble
respectively. The corresponding commands for the edge flag, texture coordinate,
color, secondary color, color index, normal, and fog coordinate arrays areEdge-
Flagv, TexCoord[size][ type]v, Color[size][ type]v, SecondaryColor3[type]v, In-
dex[type]v, Normal3[type]v, and FogCoord[type]v, respectively. If the vertex
array is enabled, it is as thoughVertex[size][ type]v is executed last, after the exe-
cutions of the other corresponding commands.

Changes made to array data between the execution ofBegin and the corre-
sponding execution ofEnd may affect calls toArrayElement that are made within
the sameBegin/End period in non-sequential ways. That is, a call toArrayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying i < 0 results in undefined behavior. Generating the error
INVALID VALUEis recommended in this case.

The command

void DrawArrays ( enum mode, int first, sizei count);

constructs a sequence of geometric primitives using elementsfirst through
first + count − 1 of each enabled array.modespecifies what kind of primi-
tives are constructed; it accepts the same token values as themode parameter of
theBegincommand. The effect of
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DrawArrays ( mode, first, count);

is the same as the effect of the command sequence

if ( mode or count is invalid )
generate appropriate error

else {
int i;
Begin( mode);
for (i=0; i < count ; i++)

ArrayElement ( first+ i);
End();

}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the execution ofDrawArrays ,
if the corresponding array is enabled. Current values corresponding to disabled
arrays are not modified by the execution ofDrawArrays .

Specifyingfirst < 0 results in undefined behavior. Generating the error
INVALID VALUEis recommended in this case.

The command

void MultiDrawArrays ( enum mode, int *first,
sizei *count, sizei primcount);

behaves identically toDrawArrays except thatprimcountseparate ranges of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if ( count[i] > 0)

DrawArrays ( mode, first[i], count[i]);
}

The command

void DrawElements( enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using thecount elements
whose indices are stored inindices. type must be one ofUNSIGNEDBYTE,
UNSIGNEDSHORT, or UNSIGNEDINT , indicating that the values inindicesare in-
dices of GL typeubyte , ushort , or uint respectively.modespecifies what
kind of primitives are constructed; it accepts the same token values as themode
parameter of theBegincommand. The effect of
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DrawElements( mode, count, type, indices);

is the same as the effect of the command sequence

if ( mode, count, or type is invalid )
generate appropriate error

else {
int i;
Begin( mode);
for (i=0; i < count ; i++)

ArrayElement ( indices[i ]);
End();

}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the execution ofDrawEle-
ments, if the corresponding array is enabled. Current values corresponding to
disabled arrays are not modified by the execution ofDrawElements.

The command

void MultiDrawElements ( enum mode, sizei *count,
enum type, void **indices, sizei primcount);

behaves identically toDrawElements except thatprimcountseparate lists of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if ( count[i]) > 0)

DrawElements( mode, count[i], type, indices[i]);
}

The command

void DrawRangeElements( enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form ofDrawElements. mode, count, type, andindicesmatch the
corresponding arguments toDrawElements, with the additional constraint that all
values in the arrayindicesmust lie betweenstart andendinclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by callingGetIntegerv with the symbolic constants
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MAXELEMENTSVERTICESandMAXELEMENTSINDICES . If end − start + 1 is
greater than the value ofMAXELEMENTSVERTICES, or if count is greater than
the value ofMAXELEMENTSINDICES , then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range[start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The errorINVALID VALUEis generated ifend < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for indices to lie outside the range[start, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The command

void InterleavedArrays( enum format, sizei stride,
void *pointer );

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants:V2F,
V3F, C4UBV2F, C4UBV3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F,
T4F V4F, T2F C4UBV3F, T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or
T4F C4F N3F V4F.

The effect of

InterleavedArrays( format, stride, pointer);

is the same as the effect of the command sequence

if ( format or stride is invalid)
generate appropriate error

else {
int str;
setet, ec, en, st, sc, sv, tc, pc, pn, pv, ands as a function

of Table2.5and the value offormat.
str = stride;
if (str is zero)

str = s;
DisableClientState( EDGEFLAG ARRAY) ;
DisableClientState( INDEX ARRAY) ;
DisableClientState( SECONDARYCOLORARRAY) ;
DisableClientState( FOGCOORDARRAY) ;
if ( et) {
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format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UBV2F False True False 4 2 UNSIGNEDBYTE

C4UBV3F False True False 4 3 UNSIGNEDBYTE

C3F V3F False True False 3 3 FLOAT

N3F V3F False False True 3
C4F N3F V3F False True True 4 3 FLOAT

T2F V3F True False False 2 3
T4F V4F True False False 4 4
T2F C4UBV3F True True False 2 4 3 UNSIGNEDBYTE

T2F C3F V3F True True False 2 3 3 FLOAT

T2F N3F V3F True False True 2 3
T2F C4F N3F V3F True True True 2 4 3 FLOAT

T4F C4F N3F V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UBV2F 0 c c + 2f
C4UBV3F 0 c c + 3f

C3F V3F 0 3f 6f
N3F V3F 0 3f 6f
C4F N3F V3F 0 4f 7f 10f
T2F V3F 2f 5f

T4F V4F 4f 8f
T2F C4UBV3F 2f c + 2f c + 5f
T2F C3F V3F 2f 5f 8f
T2F N3F V3F 2f 5f 8f

T2F C4F N3F V3F 2f 6f 9f 12f
T4F C4F N3F V4F 4f 8f 11f 15f

Table 2.5: Variables that direct the execution ofInterleavedArrays. f is
sizeof(FLOAT) . c is 4 timessizeof(UNSIGNED BYTE), rounded up to
the nearest multiple off . All pointer arithmetic is performed in units of
sizeof(UNSIGNED BYTE).
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EnableClientState( TEXTURECOORDARRAY) ;
TexCoordPointer( st, FLOAT, str , pointer) ;

} else {
DisableClientState( TEXTURECOORDARRAY) ;

}
if ( ec) {

EnableClientState( COLORARRAY) ;
ColorPointer( sc, tc, str , pointer + pc) ;

} else {
DisableClientState( COLORARRAY) ;

}
if ( en) {

EnableClientState( NORMALARRAY) ;
NormalPointer( FLOAT, str , pointer + pn) ;

} else {
DisableClientState( NORMALARRAY) ;

}
EnableClientState( VERTEXARRAY) ;
VertexPointer( sv, FLOAT, str , pointer + pv) ;

}

If the number of supported texture units (the value ofMAXTEXTUREUNITS) is
k, then the client state required to implement vertex arrays consists of7+k boolean
values,7+k memory pointers,7+k integer stride values,7+k symbolic constants
representing array types, and3+k integers representing values per element. In the
initial state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are eachFLOAT, and the integers
representing values per element are each four.

2.9 Buffer Objects

The vertex data arrays described in section2.8 are stored in client memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero re-
served for the GL. A buffer object is created by binding an unused name to
ARRAYBUFFER. The binding is effected by calling

void BindBuffer ( enum target, uint buffer);
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Name Type Initial Value Legal Values

BUFFERSIZE integer 0 any non-negative integer
BUFFERUSAGE enum STATIC DRAW STREAMDRAW, STREAMREAD,

STREAMCOPY, STATIC DRAW,
STATIC READ, STATIC COPY,
DYNAMICDRAW, DYNAMICREAD,
DYNAMICCOPY

BUFFERACCESS enum READWRITE READONLY, WRITEONLY,
READWRITE

BUFFERMAPPED boolean FALSE TRUE, FALSE

BUFFERMAPPOINTER void* NULL address

Table 2.6: Buffer object parameters and their values.

with targetset toARRAYBUFFERandbufferset to the unused name. The resulting
buffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in Table2.6.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding totarget is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.

In the initial state the reserved name zero is bound toARRAYBUFFER. There
is no buffer object corresponding to the name zero, so client attempts to modify
or query buffer object state for the targetARRAYBUFFERwhile zero is bound will
generate GL errors.

Buffer objects are deleted by calling

void DeleteBuffers( sizei n, const uint *buffers);

bufferscontainsn names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names inbuffers
are silently ignored, as is the value zero.

The command

void GenBuffers( sizei n, uint *buffers);
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returnsn previously unused buffer object names inbuffers. These names are
marked as used, for the purposes ofGenBuffersonly, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object. If a buffer object is deleted while it is bound, all
bindings to that object in the current context (i.e. in the thread that calledDelete-
Buffers) are reset to zero. Bindings to that buffer in other contexts and other
threads are not affected, but attempting to use a deleted buffer in another thread
produces undefined results, including but not limited to possible GL errors and
rendering corruption. Using a deleted buffer in another context or thread may not,
however, result in program termination.

The data store of a buffer object is created and initialized by calling

void BufferData( enum target, sizeiptr size, const
void *data, enum usage);

with target set toARRAYBUFFER, sizeset to the size of the data store in basic
machine units, anddata pointing to the source data in client memory. Ifdata is
non-null, then the source data is copied to the buffer object’s data store. Ifdata is
null, then the contents of the buffer object’s data store are undefined.

usageis specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAMDRAWThe data store contents will be specified once by the application,
and used at most a few times as the source of a GL drawing command.

STREAMREAD The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAMCOPYThe data store contents will be specified once by reading data from
the GL, and used at most a few times as the source of a GL drawing com-
mand.

STATIC DRAWThe data store contents will be specified once by the application,
and used many times as the source for GL drawing commands.

STATIC READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC COPYThe data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing commands.
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Name Value

BUFFERSIZE size
BUFFERUSAGE usage
BUFFERACCESS READWRITE

BUFFERMAPPED FALSE

BUFFERMAPPOINTER NULL

Table 2.7: Buffer object initial state.

DYNAMICDRAWThe data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing commands.

DYNAMICREAD The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMICCOPYThe data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing com-
mands.

usageis provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table2.7.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprisingN basic machine units be a multiple ofN .

If the GL is unable to create a data store of the requested size, the error
OUTOF MEMORYis generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData( enum target, intptr offset,
sizeiptr size, const void *data );

with targetset toARRAYBUFFER. offsetandsizeindicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units.dataspecifies a
region of client memorysizebasic machine units in length, containing the data that
replace the specified buffer range. AnINVALID VALUEerror is generated ifoffset
or sizeis less than zero, or ifoffset+ sizeis greater than the value ofBUFFERSIZE .

The entire data store of a buffer object can be mapped into the client’s address
space by calling
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Name Value

BUFFERACCESS access
BUFFERMAPPED TRUE

BUFFERMAPPOINTER pointer to the data store

Table 2.8: Buffer object state set byMapBuffer .

void *MapBuffer ( enum target, enum access);

with target set toARRAYBUFFER. If the GL is able to map the buffer object’s
data store into the client’s address space,MapBuffer returns the pointer value
to the data store. If the buffer data store is already in the mapped state,Map-
Buffer returnsNULL, and anINVALID OPERATIONerror is generated. Otherwise
MapBuffer returnsNULL, and the errorOUTOF MEMORYis generated.accessis
specified as one ofREADONLY, WRITEONLY, or READWRITE, indicating the op-
erations that the client may perform on the data store through the pointer while the
data store is mapped.

MapBuffer sets buffer object state values as shown in table2.8.
Non-NULLpointers returned byMapBuffer may be used by the client to mod-

ify and query buffer object data, consistent with the access rules of the mapping,
while the mapping remains valid. No GL error is generated if the pointer is
used to attempt to modify aREADONLYdata store, or to attempt to read from a
WRITEONLYdata store, but operation may be slow and system errors (possibly in-
cluding program termination) may result. Pointer values returned byMapBuffer
may not be passed as parameter values to GL commands. For example, they may
not be used to specify array pointers, or to specify or query pixel or texture image
data; such actions produce undefined results, although implementations may not
check for such behavior for performance reasons.

Calling BufferSubData to modify the data store of a mapped buffer will gen-
erate anINVALID OPERATIONerror.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To
ensure optimal performance, the client should use the mapping in a fashion consis-
tent with the values ofBUFFERUSAGEandBUFFERACCESS. Using a mapping in
a fashion inconsistent with these values is liable to be multiple orders of magnitude
slower than using normal memory.

After the client has specified the contents of a mapped data store, and before
the data in that store are dereferenced by any GL commands, the mapping must be
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relinquished by calling

boolean UnmapBuffer( enum target);

with targetset toARRAYBUFFER. Unmapping a mapped buffer object invalidates
the pointers to its data store and sets the object’sBUFFERMAPPEDstate toFALSE

and itsBUFFERMAPPOINTERstate toNULL.
UnmapBuffer returnsTRUEunless data values in the buffer’s data store have

become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window-system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred,UnmapBuffer returnsFALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state,UnmapBuffer returns
FALSE, and anINVALID OPERATIONerror is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes.

A buffer object binding point is added to the client state associated with
each vertex array type. The commands that specify the locations and or-
ganizations of vertex arrays copy the buffer object name that is bound to
ARRAYBUFFER to the binding point corresponding to the vertex array of the
type being specified. For example, theNormalPointer command copies the
value of ARRAYBUFFERBINDING (the queriable name of the buffer bind-
ing corresponding to the targetARRAYBUFFER) to the client state variable
NORMALARRAYBUFFERBINDING.

Rendering commandsArrayElement , DrawArrays , DrawElements,
DrawRangeElements, MultiDrawArrays , andMultiDrawElements operate as
previously defined, except that data for enabled vertex, variant, and attrib arrays
are sourced from buffers if the array’s buffer binding is non-zero. When an array is
sourced from a buffer object, the pointer value of that array is used to compute an
offset, in basic machine units, into the data store of the buffer object. This offset is

Version 1.5 - October 30, 2003



36 CHAPTER 2. OPENGL OPERATION

computed by subtracting a null pointer from the pointer value, where both pointers
are treated as pointers to basic machine units.

It is acceptable for vertex, variant, or attrib arrays to be sourced from any com-
bination of client memory and various buffer objects during a single rendering
operation.

Attempts to source data from a currently mapped buffer object will generate an
INVALID OPERATIONerror.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENTARRAYBUFFER, indicating thatDrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as theirindicesparameters,
and thatMultiDrawElements is to source its indices from the array of pointers to
arrays passed in as itsindicesparameter.

A buffer object is bound toELEMENTARRAYBUFFERby callingBindBuffer
with targetset toELEMENTARRAYBUFFER, andbufferset to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section2.9.

The commandsBufferData, BufferSubData, MapBuffer , andUnmapBuffer
may all be used withtargetset toELEMENTARRAYBUFFER. In such event, these
commands operate in the same fashion as described in section2.9, but on the buffer
currently bound to theELEMENTARRAYBUFFERtarget.

While a non-zero buffer object name is bound toELEMENTARRAYBUFFER,
DrawElements and DrawRangeElementssource their indices from that buffer
object, using theirindicesparameters as offsets into the buffer object in the same
fashion as described in section2.9.1. MultiDrawElements also sources its in-
dices from that buffer object, using itsindicesparameter as a pointer to an array of
pointers that represent offsets into the buffer object.

Buffer objects created by binding an unused name toARRAYBUFFERand to
ELEMENTARRAYBUFFERare formally equivalent, but the GL may make different
choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.
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2.10 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}( T x1, T y1, T x2, T y2 );
void Rect{sifd}v( T v1[2], T v2[2] );

Each command takes either four arguments organized as two consecutive pairs of
(x, y) coordinates, or two pointers to arrays each of which contains anx value
followed by ay value. The effect of theRectcommand

Rect ( x1, y1, x2, y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2( x1, y1);
Vertex2( x2, y1);
Vertex2( x2, y2);
Vertex2( x1, y2);

End();

The appropriateVertex2 command would be invoked depending on which of the
Rectcommands is issued.

2.11 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their coordinates
are used to produce an image in the framebuffer. We begin with a description of
how vertex coordinates are transformed and how this transformation is controlled.

Figure2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termedobject co-
ordinates. Themodel-viewmatrix is applied to these coordinates to yieldeyeco-
ordinates. Then another matrix, called theprojection matrix, is applied to eye
coordinates to yieldclip coordinates. A perspective division is carried out on clip
coordinates to yieldnormalized devicecoordinates. A finalviewport transforma-
tion is applied to convert these coordinates intowindow coordinates.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting ofx, y, z, andw coordinates (in that order). The model-view and pro-
jection matrices are thus4× 4.
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Figure 2.6. Vertex transformation sequence.

If a vertex in object coordinates is given by


xo

yo

zo

wo

 and the model-view matrix

is M , then the vertex’s eye coordinates are found as


xe

ye

ze

we

 = M


xo

yo

zo

wo

 .

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are


xc

yc

zc

wc

 = P


xe

ye

ze

we

 .

The vertex’s normalized device coordinates are thenxd

yd

zd

 =

xc/wc

yc/wc

zc/wc

 .
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2.11.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels,px andpy, respectively, and its center(ox, oy) (also in pixels). The vertex’s

window coordinates,

xw

yw

zw

, are given by

xw

yw

zw

 =

 (px/2)xd + ox

(py/2)yd + oy

[(f − n)/2]zd + (n + f)/2

 .

The factor and offset applied tozd encoded byn andf are set using

void DepthRange( clampd n, clampd f );

Each ofnandf are clamped to lie within[0, 1], as are all arguments of typeclampd
or clampf . zw is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer. We assume that the fixed-point
representation used represents each valuek/(2m − 1), wherek ∈ {0, 1, . . . , 2m −
1}, ask (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void Viewport ( int x, int y, sizei w, sizei h );

wherex andy give thex andy window coordinates of the viewport’s lower left
corner andw andhgive the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values asox =
x + w/2 andoy = y + h/2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriateGet command (see Chapter6). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensions of the display being
rendered to.INVALID VALUEis generated if eitherw or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state,w andh are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering.ox andoy are set tow/2 andh/2, respectively.n andf are set to0.0 and
1.0, respectively.
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2.11.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode ( enum mode);

which takes one of the pre-defined constantsTEXTURE, MODELVIEW, COLOR, or
PROJECTIONas the argument value.TEXTUREis described later in section2.11.2,
andCOLORis described in section3.6.3. If the current matrix mode isMODELVIEW,
then matrix operations apply to the model-view matrix; ifPROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix {fd}( T m[16] );
void MultMatrix {fd}( T m[16] );

LoadMatrix takes a pointer to a4× 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16

 .

(This differs from the standard row-majorC ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to.Mult-
Matrix takes the same type argument asLoadMatrix , but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. IfC
is the current matrix andM is the matrix pointed to byMultMatrix ’s argument,
then the resulting current matrix,C ′, is

C ′ = C ·M.

The commands

void LoadTransposeMatrix{fd}( T m[16] );
void MultTransposeMatrix {fd}( T m[16] );
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take pointers to4×4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as


a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 .

The effect of

LoadTransposeMatrix[fd] ( m);

is the same as the effect of

LoadMatrix[fd] ( mT );

The effect of

MultTransposeMatrix[fd] ( m);

is the same as the effect of

MultMatrix[fd] ( mT );

The command

void LoadIdentity ( void );

effectively callsLoadMatrix with the identity matrix:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

There are a variety of other commands that manipulate matrices.Rotate,
Translate, Scale, Frustum, andOrtho manipulate the current matrix. Each com-
putes a matrix and then invokesMultMatrix with this matrix. In the case of

void Rotate{fd}( T θ, T x, T y, T z );
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θ gives an angle of rotation in degrees; the coordinates of a vectorv are given by
v = (x y z)T . The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0

0
0 0 0 1

 .

Let u = v/||v|| = (x′ y′ z′ )T . If

S =

 0 −z′ y′

z′ 0 −x′

−y′ x′ 0


then

R = uuT + cos θ(I − uuT ) + sin θS.

The arguments to

void Translate{fd}( T x, T y, T z );

give the coordinates of a translation vector as(x y z)T . The resulting matrix is a
translation by the specified vector:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 .

void Scale{fd}( T x, T y, T z );

produces a general scaling along thex-, y-, andz- axes. The corresponding matrix
is 

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

 .

For

void Frustum( double l, double r, double b, double t,
double n, double f );
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the coordinates(l b − n)T and(r t − n)T specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at(0 0 0)T ). f gives the distance
from the eye to the far clipping plane. If eithern or f is less than or equal to zero,
l is equal tor, b is equal tot, or n is equal tof , the errorINVALID VALUEresults.
The corresponding matrix is

2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −f+n
f−n − 2fn

f−n
0 0 −1 0

 .

void Ortho ( double l, double r, double b, double t,
double n, double f );

describes a matrix that produces parallel projection.(l b − n)T and(r t − n)T

specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively.f gives the distance from the eye
to the far clipping plane. Ifl is equal tor, b is equal tot, or n is equal tof , the
error INVALID VALUEresults. The corresponding matrix is

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n
0 0 0 1

 .

For each texture unit, a4 × 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16




s
t
r
q

 ,

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode toTEXTURE

causes the already described matrix operations to apply to the texture matrix.
There is also a corresponding texture matrix stack for each texture unit. To

change the stack affected by matrix operations, set theactive texture unit selector
by calling
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void ActiveTexture( enum texture);

The selector also affects calls modifying texture environment state, texture coordi-
nate generation state, texture binding state, and queries of all these state values as
well as current texture coordinates and current raster texture coordinates.

Specifying an invalidtexturegenerates the errorINVALID ENUM. Valid values
of textureare the same as for theMultiTexCoord commands described in sec-
tion 2.7.

The active texture unit selector may be queried by callingGetIntegerv with
pnameset toACTIVE TEXTURE.

There is a stack of matrices for each of matrix modesMODELVIEW,
PROJECTION, andCOLOR, and for each texture unit. ForMODELVIEWmode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least2. Texture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix ( void );

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix ( void );

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the errorSTACKUNDERFLOW; pushing a matrix onto a full
stack generatesSTACKOVERFLOW.

When the current matrix mode isTEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at least two4 × 4 matri-
ces for each ofCOLOR; PROJECTION; each texture unit,TEXTURE; and a stack of
at least 324 × 4 matrices forMODELVIEW. Each matrix stack has an associated
stack pointer. Initially, there is only one matrix on each stack, and all matrices
are set to the identity. The initial matrix mode isMODELVIEW. The initial value of
ACTIVE TEXTUREis TEXTURE0.
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2.11.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable( enum target);

and

void Disable( enum target);

with target equal toRESCALENORMALor NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix isM , then the normal is transformed to eye coordi-
nates by:

( nx
′ ny

′ nz
′ q′ ) = ( nx ny nz q ) ·M−1

where, if


x
y
z
w

 are the associated vertex coordinates, then

q =


0, w = 0,

−(nx ny nz )

x
y
z


w , w 6= 0

(2.1)

Implementations may choose instead to transform( nx ny nz ) to eye coor-
dinates using

( nx
′ ny

′ nz
′ ) = ( nx ny nz ) ·Mu

−1

whereMu is the upper leftmost 3x3 matrix taken fromM .
Rescale multiplies the transformed normals by a scale factor

( nx
′′ ny

′′ nz
′′ ) = f ( nx

′ ny
′ nz

′ )

If rescaling is disabled, thenf = 1. If rescaling is enabled, thenf is computed
as (mij denotes the matrix element in rowi and columnj of M−1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)
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f =
1√

m31
2 + m32

2 + m33
2

Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.

Alternatively, an implementation may choose f as

f =
1√

nx
′2 + ny

′2 + nz
′2

recomputingf for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lighting,nf , is computed
as

nf = m ( nx
′′ ny

′′ nz
′′ )

If normalization is disabled, thenm = 1. Otherwise

m =
1√

nx
′′2 + ny

′′2 + nz
′′2

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrixM . In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

2.11.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}( enum coord, enum pname, T param);
void TexGen{ifd}v( enum coord, enum pname, T params);

controls texture coordinate generation.coord must be one of the constantsS, T,
R, or Q, indicating that the pertinent coordinate is thes, t, r, or q coordinate, re-
spectively. In the first form of the command,paramis a symbolic constant speci-
fying a single-valued texture generation parameter; in the second form,paramsis
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a pointer to an array of values that specify texture generation parameters.pname
must be one of the three symbolic constantsTEXTUREGENMODE, OBJECTPLANE,
or EYE PLANE. If pnameis TEXTUREGENMODE, then eitherparamspoints to
or param is an integer that is one of the symbolic constantsOBJECTLINEAR,
EYE LINEAR, SPHEREMAP, REFLECTIONMAP, or NORMALMAP.

If TEXTUREGENMODEindicatesOBJECTLINEAR, then the generation func-
tion for the coordinate indicated bycoord is

g = p1xo + p2yo + p3zo + p4wo.

xo, yo, zo, andwo are the object coordinates of the vertex.p1, . . . , p4 are specified
by callingTexGenwith pnameset toOBJECTPLANEin which caseparamspoints
to an array containingp1, . . . , p4. There is a distinct group of plane equation co-
efficients for each texture coordinate;coord indicates the coordinate to which the
specified coefficients pertain.

If TEXTUREGENMODEindicatesEYE LINEAR, then the function is

g = p′1xe + p′2ye + p′3ze + p′4we

where
( p′1 p′2 p′3 p′4 ) = ( p1 p2 p3 p4 ) M−1

xe, ye, ze, andwe are the eye coordinates of the vertex.p1, . . . , p4 are set by
calling TexGenwith pnameset toEYE PLANEin correspondence with setting the
coefficients in theOBJECTPLANEcase. M is the model-view matrix in effect
whenp1, . . . , p4 are specified. Computed texture coordinates may be inaccurate or
undefined ifM is poorly conditioned or singular.

When used with a suitably constructed texture image, callingTexGen with
TEXTUREGENMODEindicatingSPHEREMAPcan simulate the reflected image of
a spherical environment on a polygon.SPHEREMAPtexture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) byu. Denote the current normal, after transformation to eye
coordinates, byn′. Let r = ( rx ry rz )T , the reflection vector, be given by

r = u− 2n′T
(
n′u

)
,

and letm = 2
√

r2
x + r2

y + (rz + 1)2. Then the value assigned to ans coordinate

(the firstTexGenargument value isS) is s = rx/m + 1
2 ; the value assigned to at

coordinate ist = ry/m + 1
2 . Calling TexGenwith a coordof eitherR or Qwhen

pnameindicatesSPHEREMAPgenerates the errorINVALID ENUM.
If TEXTUREGENMODEindicatesREFLECTIONMAP, compute the reflection

vectorr as described for theSPHEREMAPmode. Then the value assigned to an
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s coordinate iss = rx; the value assigned to at coordinate ist = ry; and the value
assigned to anr coordinate isr = rz. Calling TexGen with a coord of Q when
pnameindicatesREFLECTIONMAPgenerates the errorINVALID ENUM.

If TEXTUREGENMODEindicatesNORMALMAP, compute the normal vectornf

as described in section2.11.3. Then the value assigned to ans coordinate iss =
nf x; the value assigned to at coordinate ist = nf y; and the value assigned to an
r coordinate isr = nf z (the valuesnf x, nf y, andnf z are the components ofnf .)
Calling TexGenwith a coordof Q whenpnameindicatesNORMALMAPgenerates
the errorINVALID ENUM.

A texture coordinate generation function is enabled or disabled usingEn-
able and Disable with an argument ofTEXTUREGENS, TEXTUREGENT,
TEXTUREGENR, orTEXTUREGENQ(each indicates the corresponding texture co-
ordinate). When enabled, the specified texture coordinate is computed according
to the currentEYE LINEAR, OBJECTLINEAR or SPHEREMAPspecification, de-
pending on the current setting ofTEXTUREGENMODEfor that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each ofEYE LINEAR andOBJECTLINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of pi for s are all 0 exceptp1 which is one; fort all thepi are zero exceptp2, which
is 1. The values ofpi for r andq are all 0. These values ofpi apply for both the
EYE LINEAR andOBJECTLINEAR versions. Initially all texture generation modes
areEYE LINEAR.

2.12 Clipping

Primitives are clipped to theclip volume. In clip coordinates, theview volumeis
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc

.

This view volume may be further restricted by as many asn client-defined clip
planes to generate the clip volume. (n is an implementation dependent maximum
that must be at least6.) Each client-defined plane specifies a half-space. The clip
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volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane( enum p, double eqn[4] );

The value of the first argument,p, is a symbolic constant,CLIP PLANEi, wherei is
an integer between 0 andn− 1, indicating one ofn client-defined clip planes.eqn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates:p1, p2, p3, andp4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

( p′1 p′2 p′3 p′4 ) = ( p1 p2 p3 p4 ) M−1

(whereM is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate ifM is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates
( xe ye ze we )T that satisfy

( p′1 p′2 p′3 p′4 )


xe

ye

ze

we

 ≥ 0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genericEnable command and
disabled with theDisable command. The value of the argument to either com-
mand isCLIP PLANEi wherei is an integer between 0 andn; specifying a value
of i enables or disables the plane equation with indexi. The constants obey
CLIP PLANEi = CLIP PLANE0+ i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.
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This clipping produces a value,0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex areP and the original vertices’ coordinates areP1

andP2, thent is given by

P = tP1 + (1− t)P2.

The value oft is used in color, secondary color, texture coordinate, and fog coor-
dinate clipping (section2.14.8).

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flagTRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

A line segment or polygon whose vertices havewc values of differing signs
may generate multiple connected components after clipping. GL implementations
are not required to handle this situation. That is, only the portion of the primitive
that lies in the region ofwc > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficients( p′1 p′2 p′3 p′4 ) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(−p′1 −p′2 −p′3 −p′4 ) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.
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2.13 Current Raster Position

Thecurrent raster positionis used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}( T coords);
void RasterPos{234}{sifd}v( T coords);

RasterPos4takes four values indicatingx, y, z, andw. RasterPos3(or Raster-
Pos2) is analogous, but sets onlyx, y, andz with w implicitly set to1 (or only x
andy with z implicitly set to0 andw implicitly set to1).

Gets ofCURRENTRASTERTEXTURECOORDSare affected by the setting of the
stateACTIVE TEXTURE.

The coordinates are treated as if they were specified in aVertex command. The
x, y, z, andw coordinates are transformed by the current model-view and projec-
tion matrices. These coordinates, along with current values, are used to generate
primary and secondary colors and texture coordinates just as is done for a vertex.
The colors and texture coordinates so produced replace the colors and texture co-
ordinates stored in the current raster position’s associated data. If the value of the
fog source (see section3.10) is FOGCOORDSRC, then the current raster distance is
set to the value of the current fog coordinate. Otherwise, the current raster distance
is set to the distance from the origin of the eye coordinate system to the vertex as
transformed by only the current model-view matrix. This distance may be approx-
imated as discussed in section3.10.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section2.11) and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Figure2.7summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of theWindowPos
commands:

void WindowPos{23}{ifds}( T coords);
void WindowPos{23}{ifds}v( const T coords );
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Figure 2.7. The current raster position and how it is set. Four texture units are
shown; however, multitexturing may support a different number of units depending
on the implementation.
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WindowPos3 takes three values indicatingx, y and z, while WindowPos2
takes two values indicatingx andy with z implicitly set to0. The current raster
position,(xw, yw, zw, wc), is defined by:

xw = x

yw = y

zw =


n, z ≤ 0
f, z ≥ 1
n + z(f − n), otherwise

wc = 1

wheren andf are the values passed toDepthRange(see Section2.11.1).
Lighting, texture coordinate generation, and clipping are not performed by the

WindowPos functions. Instead, in RGBA mode, the current raster color and sec-
ondary color are obtained by clamping each component of the current color and
secondary color, respectively, to[0, 1]. In color index mode, the current raster
color index is set to the current color index. The current raster texture coordinates
are set to the current texture coordinates, and the valid bit is set.

If the value of the fog source isFOGCOORDSRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to0.

The current raster position requires six single-precision floating-point values
for itsxw, yw, andzw window coordinates, itswc clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all(0, 0, 0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA color is(1, 1, 1, 1), the associated RGBA secondary color is(0, 0, 0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.
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Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both pri-
mary and secondary vertex colors, which are processed in the same fashion. See
Table2.9for the interpretation ofk.
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Figure 2.9. Processing of color indices.n is the number of bits in a color index.
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GL Type Conversion

ubyte c/(28 − 1)
byte (2c + 1)/(28 − 1)
ushort c/(216 − 1)
short (2c + 1)/(216 − 1)
uint c/(232 − 1)
int (2c + 1)/(232 − 1)
float c

double c

Table 2.9: Component conversions. Color, normal, and depth components, (c),
are converted to an internal floating-point representation, (f ), using the equations
in this table. All arithmetic is done in the internal floating point format. These
conversions apply to components specified as parameters to GL commands and to
components in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table2.2)

2.14 Colors and Coloring

Figures2.8and2.9diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Table2.9sum-
marizes the conversions that take place on R, G, B, and A components depending
on which version of theColor command was invoked to specify the components.
As a result of limited precision, some converted values will not be represented
exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color
(primary color) and current secondary color are used in further processing. After
lighting, RGBA colors are clamped to the range[0, 1]. A color index is converted
to fixed-point and then its integer portion is masked (see section2.14.6). After
clamping or masking, a primitive may beflatshaded, indicating that all vertices of
the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.
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2.14.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section2.14.5.)

Lighting is turned on or off using the genericEnable or Disable commands
with the symbolic valueLIGHTING. If lighting is off, the current color and cur-
rent secondary color are assigned to the vertex primary and secondary color, re-
spectively. If lighting is on, colors computed computed from the current lighting
parameters are assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(x, y, z, andw) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given byx, y, andz). A direction
parameter consists of three floating-point coordinates (x, y, andz) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in Table2.10. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There aren light sources, indexed byi = 0, . . . , n−1. (n is an implementation
dependent maximum that must be at least 8.) Note that the default values fordcli

andscli differ for i = 0 andi > 0.
Before specifying the way that lighting computes colors, we introduce oper-

ators and notation that simplify the expressions involved. Ifc1 andc2 are col-
ors without alpha wherec1 = (r1, g1, b1) and c2 = (r2, g2, b2), then define
c1 ∗ c2 = (r1r2, g1g2, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. Ifd1 andd2 are directions, then define

d1 � d2 = max{d1 · d2, 0}.

(Directions are taken to have three coordinates.) IfP1 andP2 are (homogeneous,
with four coordinates) points then let

−−−→P1P2 be the unit vector that points fromP1
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Parameter Type Default Value Description
Material Parameters

acm color (0.2, 0.2, 0.2, 1.0) ambient color of material
dcm color (0.8, 0.8, 0.8, 1.0) diffuse color of material
scm color (0.0, 0.0, 0.0, 1.0) specular color of material
ecm color (0.0, 0.0, 0.0, 1.0) emissive color of material
srm real 0.0 specular exponent (range:

[0.0, 128.0])
am real 0.0 ambient color index
dm real 1.0 diffuse color index
sm real 1.0 specular color index

Light Source Parameters
acli color (0.0, 0.0, 0.0, 1.0) ambient intensity of lighti

dcli(i = 0) color (1.0, 1.0, 1.0, 1.0) diffuse intensity of light0
dcli(i > 0) color (0.0, 0.0, 0.0, 1.0) diffuse intensity of lighti
scli(i = 0) color (1.0, 1.0, 1.0, 1.0) specular intensity of light0
scli(i > 0) color (0.0, 0.0, 0.0, 1.0) specular intensity of lighti

Ppli position (0.0, 0.0, 1.0, 0.0) position of lighti
sdli direction (0.0, 0.0,−1.0) direction of spotlight for lighti
srli real 0.0 spotlight exponent for lighti

(range:[0.0, 128.0])
crli real 180.0 spotlight cutoff angle for lighti

(range:[0.0, 90.0], 180.0)
k0i real 1.0 constant attenuation factor for

light i (range:[0.0,∞))
k1i real 0.0 linear attenuation factor for

light i (range:[0.0,∞))
k2i real 0.0 quadratic attenuation factor for

light i (range:[0.0,∞))
Lighting Model Parameters

acs color (0.2, 0.2, 0.2, 1.0) ambient color of scene
vbs boolean FALSE viewer assumed to be at

(0, 0, 0) in eye coordinates
(TRUE) or (0, 0,∞) (FALSE)

ces enum SINGLE COLOR controls computation of colors
tbs boolean FALSE use two-sided lighting mode

Table 2.10: Summary of lighting parameters. The range of individual color com-
ponents is(−∞,+∞).
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to P2. Note that ifP2 has a zerow coordinate andP1 has non-zerow coordinate,
then

−−−→P1P2 is the unit vector corresponding to the direction specified by thex, y,
andz coordinates ofP2; if P1 has a zerow coordinate andP2 has a non-zerow
coordinate then

−−−→P1P2 is the unit vector that is the negative of that corresponding
to the direction specified byP1. If both P1 andP2 have zerow coordinates, then−−−→P1P2 is the unit vector obtained by normalizing the direction corresponding to
P2 −P1.

If d is an arbitrary direction, then let̂d be the unit vector ind’s direction. Let
‖P1P2‖ be the distance betweenP1 andP2. Finally, let V be the point corre-
sponding to the vertex being lit, andn be the corresponding normal. LetPe be the
eyepoint ((0, 0, 0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary colorcpri and a secondary
colorcsec. The values ofcpri andcsec depend on the light model color control,ces.
If ces = SINGLE COLOR, then the equations to computecpri andcsec are

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�−−→VPpli)dcm ∗ dcli

+ (fi)(n� ĥi)srmscm ∗ scli]
csec = (0, 0, 0, 1)

If ces = SEPARATESPECULARCOLOR, then

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�−−→VPpli)dcm ∗ dcli]

csec =
n−1∑
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm ∗ scli

where

fi =

{
1, n�−−→VPpli 6= 0,
0, otherwise,

(2.2)
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hi =

{ −−→VPpli +−−→VPe, vbs = TRUE,
−−→VPpli + ( 0 0 1 )T , vbs = FALSE,

(2.3)

atti =


1

k0i + k1i‖VPpli‖ + k2i‖VPpli‖2
, if Ppli’s w 6= 0,

1.0, otherwise.
(2.4)

spoti =


(−−−→PpliV � ŝdli)srli , crli 6= 180.0,

−−−→PpliV � ŝdli ≥ cos(crli),
0.0, crli 6= 180.0,

−−−→PpliV � ŝdli < cos(crli),
1.0, crli = 180.0.

(2.5)

All computations are carried out in eye coordinates.
The value of A produced by lighting is the alpha value associated withdcm.

A is always associated with the primary colorcpri; the alpha component ofcsec is
always1.

Results of lighting are undefined if thewe coordinate (w in eye coordinates) of
V is zero.

Lighting may operate intwo-sidedmode (tbs = TRUE), in which afront color
is computed with one set of material parameters (thefront material) and aback
color is computed with a second set of material parameters (theback material).
This second computation replacesn with −n. If tbs = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

The selection between back color and front color depends on the primitive of
which the vertex being lit is a part. If the primitive is a point or a line segment,
the front color is always selected. If it is a polygon, then the selection is based on
the sign of the (clipped or unclipped) polygon’s signed area computed in window
coordinates. One way to compute this area is

a =
1
2

n−1∑
i=0

xi
wyi⊕1

w − xi⊕1
w yi

w (2.6)

wherexi
w and yi

w are thex and y window coordinates of theith vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) andi⊕ 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with
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void FrontFace( enum dir );

Settingdir to CCW(corresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates that ifa ≤ 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected. Ifdir is CW, thena is replaced by−a in the
above inequalities. This requires one bit of state; initially, it indicatesCCW.

2.14.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see Table2.10). Sets of lighting
parameters are specified with

void Material {if}( enum face, enum pname, T param);
void Material {if}v( enum face, enum pname, T params);
void Light {if}( enum light, enum pname, T param);
void Light {if}v( enum light, enum pname, T params);
void LightModel {if}( enum pname, T param);
void LightModel {if}v( enum pname, T params);

pnameis a symbolic constant indicating which parameter is to be set (see Ta-
ble 2.11). In the vector versions of the commands,paramsis a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions,paramis a value to
which to set a single-valued parameter. (Ifparamcorresponds to a multi-valued pa-
rameter, the errorINVALID ENUMresults.) For theMaterial command,facemust
be one ofFRONT, BACK, or FRONTANDBACK, indicating that the propertynameof
the front or back material, or both, respectively, should be set. In the case ofLight ,
light is a symbolic constant of the formLIGHTi, indicating that lighti is to have
the specified parameter set. The constants obeyLIGHTi = LIGHT0 + i.

Table2.11gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified withMaterial and Light are converted to floating-point values
(if specified as integers) as indicated in Table2.9 for signed integers. The error
INVALID VALUEoccurs if a specified lighting parameter lies outside the allowable
range given in Table2.10. (The symbol “∞” indicates the maximum representable
magnitude for the indicated type.)

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.
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Parameter Name Number of values
Material Parameters (Material )

acm AMBIENT 4
dcm DIFFUSE 4

acm,dcm AMBIENTANDDIFFUSE 4
scm SPECULAR 4
ecm EMISSION 4
srm SHININESS 1

am, dm, sm COLORINDEXES 3
Light Source Parameters (Light )

acli AMBIENT 4
dcli DIFFUSE 4
scli SPECULAR 4
Ppli POSITION 4
sdli SPOTDIRECTION 3
srli SPOTEXPONENT 1
crli SPOTCUTOFF 1
k0 CONSTANTATTENUATION 1
k1 LINEAR ATTENUATION 1
k2 QUADRATICATTENUATION 1

Lighting Model Parameters (LightModel )
acs LIGHT MODELAMBIENT 4
vbs LIGHT MODELLOCALVIEWER 1
tbs LIGHT MODELTWOSIDE 1
ces LIGHT MODELCOLORCONTROL 1

Table 2.11: Correspondence of lighting parameter symbols to names.
AMBIENTANDDIFFUSE is used to setacm anddcm to the same value.
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The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, ifMu is the upper left 3x3
matrix taken from the current model-view matrixM , then the spotlight direction dx

dy

dz


is transformed to  d′x

d′y
d′z

 = Mu

 dx

dy

dz

 .

An individual light is enabled or disabled by callingEnableor Disablewith the
symbolic valueLIGHTi (i is in the range 0 ton−1, wheren is the implementation-
dependent number of lights). If lighti is disabled, theith term in the lighting
equation is effectively removed from the summation.

2.14.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by callingEnableor Disablewith the symbolic valueCOLORMATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial ( enum face, enum mode);

face is one ofFRONT, BACK, or FRONTANDBACK, indicating whether the front
material, back material, or both are affected by the current color.modeis one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENTANDDIFFUSE and
specifies which material property or properties track the current color. Ifmodeis
EMISSION, AMBIENT, DIFFUSE, orSPECULAR, then the value ofecm, acm, dcm or
scm, respectively, will track the current color. Ifmodeis AMBIENTANDDIFFUSE,
bothacm anddcm track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value whenColorMaterial is not currently
enabled to override that particular value. WhenCOLORMATERIAL is enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

ColorMaterial ( FRONT, AMBIENT)

while COLORMATERIAL is enabled sets the front materialacm to the value of the
current color.
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Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled.  Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled.  Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled.  Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled.  Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To  subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously up-
dated from the current color whileColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The
back material properties are treated identically, except thatfacemust beBACKor
FRONTANDBACK.
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2.14.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the currentColorMaterial mode, a bit indicat-
ing whether or notCOLORMATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take place,Color-
Material is FRONTANDBACKandAMBIENTANDDIFFUSE, and both lighting and
COLORMATERIALare disabled.

2.14.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of lighti (dcli and scli,
respectively) determine color index diffuse and specular light intensities,dli and
sli from

dli = (.30)R(dcli) + (.59)G(dcli) + (.11)B(dcli)

and
sli = (.30)R(scli) + (.59)G(scli) + (.11)B(scli).

R(x) indicates the R component of the colorx and similarly forG(x) andB(x).
Next, let

s =
n∑

i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

whereatti andspoti are given by equations2.4 and2.5, respectively, andfi and
ĥi are given by equations2.2 and2.3, respectively. Lets′ = min{s, 1}. Finally,
let

d =
n∑

i=0

(atti)(spoti)(dli)(n�
−−→VPpli).

Then color index lighting produces a valuec, given by

c = am + d(1− s′)(dm − am) + s′(sm − am).

The final color index is
c′ = min{c, sm}.
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The valuesam, dm and sm are material properties described in Tables2.10
and2.11. Any ambient light intensities are incorporated intoam. As with RGBA
lighting, disabled lights cause the corresponding terms from the summations to be
omitted. The interpretation oftbs and the calculation of front and back colors is
carried out as has already been described for RGBA lighting.

The valuesam, dm, and sm are set withMaterial using a pname of
COLORINDEXES. Their initial values are0, 1, and1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

2.14.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and sec-
ondary colors are clamped to the range[0, 1].

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with2n − 1, wheren is the number of
bits in a color in the color index buffer (buffers are discussed in chapter4).

2.14.7 Flatshading

A primitive may beflatshaded, meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These
colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. Table2.12summarizes the
possibilities.

Flatshading is controlled by

void ShadeModel( enum mode);

modevalue must be either of the symbolic constantsSMOOTHor FLAT. If modeis
SMOOTH(the initial state), vertex colors are treated individually. Ifmodeis FLAT,
flatshading is turned on.ShadeModelthus requires one bit of state.

2.14.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected
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Primitive type of polygoni Vertex

single polygon (i ≡ 1) 1
triangle strip i + 2
triangle fan i + 2
independent triangle 3i

quad strip 2i + 2
independent quad 4i

Table 2.12: Polygon flatshading color selection. The colors used for flatshading
the ith polygon generated by the indicatedBegin/End type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numbered1 throughn, wheren is the number of vertices between the
Begin/End pair.

by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two verticesP1 andP2 of an unclipped edge be
c1 andc2. The value oft (section2.12) for a clipped pointP is used to obtain the
color associated withP as

c = tc1 + (1− t)c2.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

2.14.9 Final Color Processing

For an RGBA color, each color component (which lies in[0, 1]) is converted
(by rounding to nearest) to a fixed-point value withm bits. We assume that
the fixed-point representation used represents each valuek/(2m − 1), where
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k ∈ {0, 1, . . . , 2m − 1}, as k (e.g. 1.0 is represented in binary as a string of
all ones).m must be at least as large as the number of bits in the corresponding
component of the framebuffer.m must be at least 2 for A if the framebuffer does
not contain an A component, or if there is only 1 bit of A in the framebuffer. A
color index is converted (by rounding to nearest) to a fixed-point value with at least
as many bits as there are in the color index portion of the framebuffer.

Because a number of the formk/(2m − 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one ofColorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: ifm is less than the number of bitsb with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significantb bits of the converted
value must equal the specified value.
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Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure3.1diagrams the rasterization process.

A grid square along with its parameters of assigned colors,z (depth), fog coor-
dinate, and texture coordinates is called afragment; the parameters are collectively
dubbed the fragment’sassociated data. A fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment’scenter, which is offset by(1/2, 1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled. Points
may be given differing diameters and line segments differing widths. A point, line
segment, or polygon may be antialiased.
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Figure 3.1. Rasterization.
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3.1 Invariance

Consider a primitivep′ obtained by translating a primitivep through an offset(x, y)
in window coordinates, wherex andy are integers. As long as neitherp′ nor p is
clipped, it must be the case that each fragmentf ′ produced fromp′ is identical to
a corresponding fragmentf from p except that the center off ′ is offset by(x, y)
from the center off .

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significantb bits (to the left of the binary point)
of the color index are used for antialiasing;b = min{4,m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
theseb bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called afragment squareand has lower left corner
(x, y) and upper right corner(x+1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.
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A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 andf2 are two fragments, and the portion off1 covered by some prim-
itive is a subset of the corresponding portion off2 covered by the primitive,
then the coverage computed forf1 must be less than or equal to that com-
puted forf2.

2. The coverage computation for a fragmentf must be local: it may depend
only onf ’s relationship to the boundary of the primitive being rasterized. It
may not depend onf ’s x andy coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section5.6), allowing a user to make an image quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. When the framebuffer includes a multisample buffer, it does not include
depth or stencil buffers, even if the multisample buffer does not store depth or
stencil values. Color buffers (left, right, front, back, and aux) do coexist with the
multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the
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base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLEBUFFERS is one, the rasterization of all primi-
tives is changed, and is referred to as multisample rasterization. Otherwise,
primitive rasterization is referred to as single-sample rasterization. The value
of SAMPLEBUFFERS is queried by callingGetIntegerv with pname set to
SAMPLEBUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value withSAMPLESbits.
The value ofSAMPLESis an implementation-dependent constant, and is queried by
callingGetIntegerv with pnameset toSAMPLES.

Second, each fragment includesSAMPLESdepth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinates,SAMPLEScolor and depth values,
SAMPLESsets of texture coordinates, and a coverage value with a maximum of
SAMPLESbits.

Multisample rasterization is enabled or disabled by callingEnable or Disable
with the symbolic constantMULTISAMPLE.

If MULTISAMPLEis disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLEis enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer hasSAMPLESlocations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
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screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section3.1 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points

The rasterization of points is controlled with

void PointSize( float size);

sizespecifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the errorINVALID VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

derived size = clamp

(
size ∗

√(
1

a + b ∗ d + c ∗ d2

))
whered is the eye-coordinate distance from the eye,(0, 0, 0, 1) in eye coordinates,
to the vertex, anda, b, andc are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section3.12) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

width =

{
derived size derived size ≥ threshold
threshold otherwise

(3.1)

and the fade factor is computed as follows:

fade =

 1 derived size ≥ threshold(
derived size

threshold

)2
otherwise

(3.2)

The distance attenuation function coefficientsa, b, andc, the bounds of the first
point size range clamp, and the point fadethreshold, are specified with

void glPointParameter{if}( enum pname, float param);
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void glPointParameter{if}v( enum pname, const
float *params);

If pname is POINT SIZE MIN or POINT SIZE MAX, then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greater than
the upper bound, the point size after clamping is undefined. Ifpname is
POINT DISTANCEATTENUATION, then paramspoints to the coefficientsa, b,
and c. If pname is POINT FADETHRESHOLDSIZE , then param specifies,
or params points to the point fadethreshold. Values of POINT SIZE MIN,
POINT SIZE MAX, or POINT FADETHRESHOLDSIZE less than zero result in the
error INVALID VALUE.

Point antialiasing is enabled or disabled by callingEnableor Disablewith the
symbolic constantPOINT SMOOTH. The default state is for point antialiasing to be
disabled.

3.3.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating itsxw andyw coordinates
(recall that the subscripts indicate that these arex andy window coordinates) to
integers. This(x, y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than1.0 depends on the state of point an-
tialiasing. If antialiasing is disabled, the actual width is determined by rounding
the supplied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased point width. This implementation-dependent
value must be no less than the implementation-dependent maximum antialiased
point width, rounded to the nearest integer value, and in any event no less than1.
If rounding the specified width results in the value0, then it is as if the value were
1. If the resulting width is odd, then the point

(x, y) = (bxwc+
1
2
, bywc+

1
2
)

is computed from the vertex’sxw andyw, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(x, y) = (bxw +
1
2
c, byw +

1
2
c);
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Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on(x, y). See figure3.2.

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point, with
texture coordinatess, t, andr replaced withs/q, t/q, andr/q, respectively. Ifq is
less than or equal to zero, the results are undefined.

If antialiasing is enabled, then point rasterization produces a fragment for each
fragment square that intersects the region lying within the circle having diameter
equal to the current point width and centered at the point’s(xw, yw) (figure 3.3).
The coverage value for each fragment is the window coordinate area of the in-
tersection of the circular region with the corresponding fragment square (but see
section3.2). This value is saved and used in the final step of rasterization (sec-
tion 3.11). The data associated with each fragment are otherwise the data associ-
ated with the point being rasterized, with texture coordinatess, t, andr replaced
with s/q, t/q, andr/q, respectively. Ifq is less than or equal to zero, the results
are undefined.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
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Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the
point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.
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width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in Chapter6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths0.1, 0.2, . . . , 1.9, 2.0 are supported.

3.3.2 Point Rasterization State

The state required to control point rasterization consists of one floating-point value
specifying the point width, three floating point values specifying the minimum and
maximum point size and the point fade threshold size, three floating point values
specifying the distance attenuation coefficients, and a bit indicating whether or not
antialiasing is enabled.

3.3.3 Point Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect the
region lying within the circle having diameter equal to the current point width and
centered at the point’s(xw, yw). Coverage bits that correspond to sample points
that intersect the circular region are 1, other coverage bits are 0. All data associ-
ated with each sample for the fragment are the data associated with the point being
rasterized.

Point size range and number of gradations are equivalent to those supported for
antialiased points.

3.4 Line Segments

A line segment results from a line stripBegin/End object, a line loop, or a se-
ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

void LineWidth ( float width );

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is1.0. Values less than or equal to0.0 generate
the errorINVALID VALUE. Antialiasing is controlled withEnable and Disable
using the symbolic constantLINE SMOOTH. Finally, line segments may be stippled.
Stippling is controlled by a GL command that sets astipple pattern(see below).
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3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as eitherx-major
or y-major. x-major line segments have slope in the closed interval[−1, 1]; all
other line segments arey-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only forx-major segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragmentf with center at win-
dow coordinatesxf andyf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | < 1/2.}

Essentially, a line segment starting atpa and ending atpb produces those frag-
mentsf for which the segment intersectsRf , except ifpb is contained inRf . See
figure3.4.

To avoid difficulties when an endpoint lies on a boundary ofRf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Letpa andpb have window
coordinates(xa, ya) and(xb, yb), respectively. Obtain the perturbed endpointsp′a
given by(xa, ya) − (ε, ε2) andp′b given by(xb, yb) − (ε, ε2). Rasterizing the line
segment starting atpa and ending atpb produces those fragmentsf for which the
segment starting atp′a and ending onp′b intersectsRf , except ifp′b is contained in
Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments whenδ is substituted forε for any0 < δ ≤ ε.

Whenpa andpb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding topb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in eitherx or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.
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Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

3. For anx-major line, no two fragments may be produced that lie in the same
window-coordinate column (for ay-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) ory-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given
by pr = (xd, yd) and letpa = (xa, ya) andpb = (xb, yb). Set

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (3.3)

(Note thatt = 0 at pa andt = 1 at pb.) The value of an associated datumf for
the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, or thes, t, or r texture
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coordinate (the depth value, windowz, must be found using equation3.5, below),
is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)αa/wa + tαb/wb
(3.4)

wherefa andfb are the data associated with the starting and ending endpoints of
the segment, respectively;wa andwb are the clipw coordinates of the starting
and ending endpoints of the segments, respectively.αa = αb = 1 for all data
except texture coordinates, in which caseαa = qa andαb = qb (qa andqb are
the homogeneous texture coordinates at the starting and ending endpoints of the
segment; results are undefined if either of these is less than or equal to 0). Note
that linear interpolation would use

f = (1− t)fa/αa + tfb/αb. (3.5)

The reason that this formula is incorrect (except for the depth value) is that it inter-
polates a datum in window space, which may be distorted by perspective. What is
actually desired is to find the corresponding value when interpolated in clip space,
which equation3.4does. A GL implementation may choose to approximate equa-
tion 3.4with 3.5, but this will normally lead to unacceptable distortion effects when
interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple ofFFFF16. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command

void LineStipple( int factor, ushort pattern);

defines aline stipple. patternis an unsigned short integer. Theline stippleis taken
from the lowest order 16 bits ofpattern. It determines those fragments that are
to be drawn when the line is rasterized.factor is a count that is used to modify
the effective line stipple by causing each bit inline stippleto be usedfactor times.
factor is clamped to the range[1, 256]. Line stippling may be enabled or disabled
usingEnableor Disablewith the constantLINE STIPPLE. When disabled, it is as
if the line stipple has its default value.
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Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stipplep, the line repeat countr, and an
integer stipple counters. Let

b = bs/rc mod 16,

Then a fragment is produced if thebth bit of p is 1, and not produced otherwise.
The bits ofp are numbered with0 being the least significant and15 being the
most significant. The initial value ofs is zero;s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point).s is reset to 0 whenever
aBeginoccurs, and before every line segment in a group of independent segments
(as specified whenBegin is invoked withLINES ).

If the line segment has been clipped, then the value ofs at the beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than1. If rounding
the specified width results in the value0, then it is as if the value were1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for anx-major line, the minor direction is
y, and for ay-major line, the minor direction isx) and replicating fragments in
the minor direction (see figure3.5). Let w be the width rounded to the nearest
integer (if w = 0, then it is as ifw = 1). If the line segment has endpoints
given by(x0, y0) and(x1, y1) in window coordinates, the segment with endpoints
(x0, y0− (w− 1)/2) and(x1, y1− (w− 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of heightw (a row of fragments of lengthw for
a y-major segment) is produced at eachx (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’sx location is zero; otherwise, the whole
column is produced.
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width = 2 width = 3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure3.6;
see also section3.2). Equation3.4is used to compute associated data values just as
with non-antialiased lines; equation3.3 is used to find the value oft for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered from0 to n, starting with the rectangle
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Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given underLine Stipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced
is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings ofPolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line width is1.0. The initial value
of the line stipple isFFFF16 (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
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each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in theAntialiasing portion of section3.4.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in section3.4.2, where “fragment” is replaced by “rectangle”.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation3.3,
then using the result to evaluate equation3.5. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equation3.3 at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.4. The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a polygonBegin/End object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals, or aRect command.
Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled withEnable andDisablewith the sym-
bolic constantPOLYGONSMOOTH. The analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon isback facing
or front facing. This determination is made by examining the sign of the area com-
puted by equation2.6of section2.14.1(including the possible reversal of this sign
as indicated by the last call toFrontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with theCullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. TheCullFacemode is set by calling

void CullFace( enum mode);

modeis a symbolic constant: one ofFRONT, BACKor FRONTANDBACK. Culling
is enabled or disabled withEnable or Disable using the symbolic constant
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CULL FACE. Front facing polygons are rasterized if either culling is disabled or
theCullFace mode isBACKwhile back facing polygons are rasterized only if ei-
ther culling is disabled or theCullFace mode isFRONT. The initial setting of the
CullFacemode isBACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is calledpoint sampling. The two-dimensional projection obtained by taking
the x andy window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Definebarycentric coordinatesfor a triangle. Barycentric coordinates are
a set of three numbers,a, b, andc, each in the range[0, 1], with a + b + c = 1.
These coordinates uniquely specify any pointp within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

wherepa, pb, andpc are the vertices of the triangle.a, b, andc can be found as

a =
A(ppbpc)
A(papbpc)

, b =
A(ppapc)
A(papbpc)

, c =
A(ppapb)
A(papbpc)

,

whereA(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, andn.

Denote a datum atpa, pb, or pc asfa, fb, or fc, respectively. Then the valuef
of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

aαa/wa + bαb/wb + cαc/wc
(3.6)

wherewa, wb andwc are the clipw coordinates ofpa, pb, andpc, respectively.
a, b, andc are the barycentric coordinates of the fragment for which the data are
produced.αa = αb = αc = 1 except for textures, t, andr coordinates, for which
αa = qa, αb = qb, andαc = qc (if any of qa, qb, or qc are less than or equal
to zero, results are undefined).a, b, andc must correspond precisely to the exact
coordinates of the center of the fragment. Another way of saying this is that the
data associated with a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, equation3.6may be approximated by

f = afa/αa + bfb/αb + cfc/αc;
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this may yield acceptable results for color values (itmustbe used for depth val-
ues), but will normally lead to unacceptable distortion effects if used for texture
coordinates.

For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f =
n∑

i=1

aifi

wheren is the number of vertices in the polygon,fi is the value of thef at vertex
i; for eachi 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of theai may differ from

fragment to fragment, but at vertexi, aj = 0, j 6= i andai = 1.
One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.6 should be iterated independently and a division performed for each frag-
ment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipple( ubyte *pattern );

patternis a pointer to memory into which a32× 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in section3.6.4 for
DrawPixels; it is as if theheightandwidthpassed to that command were both equal
to 32, thetypewereBITMAP, and theformat wereCOLORINDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If xw andyw are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern(xw mod 32, yw mod 32) is 1.
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Polygon stippling may be enabled or disabled withEnable or Disable using
the constantPOLYGONSTIPPLE. When disabled, it is as if the stipple pattern were
all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section3.11. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in section3.5.1, however,
is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode( enum face, enum mode);

face is one ofFRONT, BACK, or FRONTANDBACK, indicating that the rasterizing
method described bymodereplaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
modeis one of the symbolic constantsPOINT, LINE , or FILL . Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed within aBegin(POINT) andEnd pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see section2.6.2). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edges.)FILL is the default mode of polygon rasterization, cor-
responding to the description in sections3.5.1, 3.5.2, and3.5.3. Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.
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Polygon antialiasing applies only to theFILL state ofPolygonMode. For
POINT or LINE , point antialiasing or line segment antialiasing, respectively, ap-
ply.

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset( float factor, float units);

factor scales the maximum depth slope of the polygon, andunits scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factorandunitsmay be either positive or negative.

The maximum depth slopem of a triangle is

m =

√(
∂zw

∂xw

)2

+
(

∂zw

∂yw

)2

(3.7)

where(xw, yw, zw) is a point on the triangle.m may be approximated as

m = max
{∣∣∣∣ ∂zw

∂xw

∣∣∣∣ , ∣∣∣∣∂zw

∂yw

∣∣∣∣} . (3.8)

If the polygon has more than three vertices, one or more values ofm may be used
during rasterization. Each may take any value in the range [min,max], wheremin
andmax are the smallest and largest values obtained by evaluating Equation3.7
or Equation3.8for the triangles formed by all three-vertex combinations.

The minimum resolvable differencer is an implementation constant. It is the
smallest difference in window coordinatez values that is guaranteed to remain
distinct throughout polygon rasterization and in the depth buffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, butzw values that differ byr, will have distinct depth values.

The offset valueo for a polygon is

o = m ∗ factor + r ∗ units. (3.9)

m is computed as described above, as a function of depth values in the range [0,1],
ando is applied to depth values in the same range.
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Boolean state valuesPOLYGONOFFSETPOINT, POLYGONOFFSETLINE , and
POLYGONOFFSETFILL determine whethero is applied during the rasterization
of polygons inPOINT, LINE , andFILL modes. These boolean state values are
enabled and disabled as argument values to the commandsEnableandDisable. If
POLYGONOFFSETPOINT is enabled,o is added to the depth value of each frag-
ment produced by the rasterization of a polygon inPOINT mode. Likewise, if
POLYGONOFFSETLINE or POLYGONOFFSETFILL is enabled,o is added to the
depth value of each fragment produced by the rasterization of a polygon inLINE

or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.6 Polygon Multisample Rasterization

If MULTISAMPLEis enabled and the value ofSAMPLEBUFFERSis one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGONSMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section3.5.1, including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and theCullFacemode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in section3.5.1, using the approximation to equa-
tion 3.6 that omitsw components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment
center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only to theFILL state ofPolygon-
Mode. For POINT andLINE , the rasterizations described in sections3.3.3(Point
Multisample Rasterization) and3.4.4(Line Multisample Rasterization) apply.
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3.5.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of thePolygonModesetting for each of
front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial state forPolygonMode is
FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using theDrawPixels command (described in section3.6.4). Some of the param-
eters and operations governing the operation ofDrawPixels are shared byRead-
Pixels(used to obtain pixel values from the framebuffer) andCopyPixels(used to
copy pixels from one framebuffer location to another); the discussion ofReadPix-
elsandCopyPixels, however, is deferred until Chapter4 after the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining toDrawPixelsalso pertain toReadPixelsor CopyPixels.

A number of parameters control the encoding of pixels in client memory (for
reading and writing) and how pixels are processed before being placed in or after
being read from the framebuffer (for reading, writing, and copying). These param-
eters are set with three commands:PixelStore, PixelTransfer, andPixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation ofDrawPixelsandReadPixels(as well as
other commands; see sections3.5.2, 3.7, and3.8) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see section5.4). Pixel storage modes are set with

void PixelStore{if}( enum pname, T param);

pnameis a symbolic constant indicating a parameter to be set, andparam is the
value to set it to. Table3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the errorINVALID VALUE.
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Parameter Name Type Initial Value Valid Range

UNPACKSWAPBYTES boolean FALSE TRUE/FALSE

UNPACKLSB FIRST boolean FALSE TRUE/FALSE

UNPACKROWLENGTH integer 0 [0,∞)
UNPACKSKIP ROWS integer 0 [0,∞)
UNPACKSKIP PIXELS integer 0 [0,∞)
UNPACKALIGNMENT integer 4 1,2,4,8
UNPACKIMAGEHEIGHT integer 0 [0,∞)
UNPACKSKIP IMAGES integer 0 [0,∞)

Table 3.1:PixelStoreparameters pertaining to one or more ofDrawPixels, Col-
orTable, ColorSubTable, ConvolutionFilter1D , ConvolutionFilter2D , Separa-
bleFilter2D, PolygonStipple, TexImage1D, TexImage2D, TexImage3D, Tex-
SubImage1D, TexSubImage2D, andTexSubImage3D.

The version ofPixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set toFALSE if
the passed value is0.0 andTRUEotherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set toFALSE if the passed value is0 andTRUEotherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optionalimaging subset. The imaging
subset includes both new commands, and new enumerants allowed as parame-
ters to existing commands. If the subset is supported,all of these calls and enu-
merants must be implemented as described later in the GL specification. If the
subset is not supported, calling any unsupported command generates the error
INVALID OPERATION, and using any of the new enumerants generates the error
INVALID ENUM.

The individual operations available only in the imaging subset are described in
section3.6.3. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sectionsColor Table Specification, Alternate Color Table Specification

Version 1.5 - October 30, 2003



92 CHAPTER 3. RASTERIZATION

Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, andPost Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section6.1.7.

2. Convolution, including all commands and enumerants described in sub-
sectionsConvolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section6.1.8.

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification andColor Matrix Transformation , as
well as the simple query commands described in section6.1.6.

4. Histogram and minmax, including all commands and enumerants described
in subsectionsHistogram Table Specification, Histogram State and
Proxy State, Histogram, Minmax Table Specification, andMinmax , as
well as the query commands described in section6.1.9and section6.1.10.

The imaging subset is supported only if theEXTENSIONSstring includes the
substring"ARB imaging" . QueryingEXTENSIONSis described in section6.1.11.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operation ofDrawPixels (section3.6.4), ReadPix-
els (section4.3.2), andCopyPixels(section4.3.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}( enum param, T value);

paramis a symbolic constant indicating a parameter to be set, andvalueis the value
to set it to. Table3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in the errorINVALID VALUE.
The same versions of the command exist as forPixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v( enum map, sizei size, T values);
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Parameter Name Type Initial Value Valid Range

MAPCOLOR boolean FALSE TRUE/FALSE

MAPSTENCIL boolean FALSE TRUE/FALSE

INDEX SHIFT integer 0 (−∞,∞)
INDEX OFFSET integer 0 (−∞,∞)
x SCALE float 1.0 (−∞,∞)
DEPTHSCALE float 1.0 (−∞,∞)
x BIAS float 0.0 (−∞,∞)
DEPTHBIAS float 0.0 (−∞,∞)
POSTCONVOLUTIONx SCALE float 1.0 (−∞,∞)
POSTCONVOLUTIONx BIAS float 0.0 (−∞,∞)
POSTCOLORMATRIX x SCALE float 1.0 (−∞,∞)
POSTCOLORMATRIX x BIAS float 0.0 (−∞,∞)

Table 3.2:PixelTransfer parameters.x is RED, GREEN, BLUE, or ALPHA.

map is a symbolic map name, indicating the map to set,sizeindicates the size of
the map, andvaluesis a pointer to an array ofsizemap values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions ofPixelMap is called. A table entry is converted
to the appropriate type when it is specified. An entry giving a color component
value is converted according to table2.9. An entry giving a color index value
is converted from an unsigned short integer or unsigned integer to floating-point.
An entry giving a stencil index is converted from single-precision floating-point
to an integer by rounding to nearest. The various tables and their initial sizes
and entries are summarized in table3.3. A table that takes an index as an ad-
dress must havesize = 2n or the errorINVALID VALUEresults. The maximum
allowablesizeof each table is specified by the implementation dependent value
MAXPIXEL MAPTABLE, but must be at least 32 (a single maximum applies to all
tables). The errorINVALID VALUE is generated if asize larger than the imple-
mented maximum, or less than one, is given toPixelMap.

Color Table Specification

Color lookup tables are specified with

void ColorTable( enum target, enum internalformat,
sizei width, enum format, enum type, void *data );
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Map Name Address Value Init. Size Init. Value

PIXEL MAPI TO I color idx color idx 1 0.0
PIXEL MAPS TO S stencil idx stencil idx 1 0
PIXEL MAPI TO R color idx R 1 0.0
PIXEL MAPI TO G color idx G 1 0.0
PIXEL MAPI TO B color idx B 1 0.0
PIXEL MAPI TO A color idx A 1 0.0
PIXEL MAPR TO R R R 1 0.0
PIXEL MAPG TO G G G 1 0.0
PIXEL MAPB TO B B B 1 0.0
PIXEL MAPA TO A A A 1 0.0

Table 3.3:PixelMap parameters.

target must be one of theregular color table names listed in table3.4 to define
the table. Aproxy table name is a special case discussed later in this section.
width, format, type, anddata specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments toDrawPixels (see sec-
tion 3.6.4), with height taken to be 1. The maximum allowablewidth of a table
is implementation-dependent, but must be at least 32. Theformats COLORINDEX,
DEPTHCOMPONENT, andSTENCIL INDEX and thetypeBITMAP are not allowed.

The specified image is taken from memory and processed just as ifDrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the fourCOLORTABLE SCALEparameters,
biased by the fourCOLORTABLE BIAS parameters, and clamped to[0, 1]. These
parameters are set by callingColorTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with thebase internal formatspecified by (or derived from)inter-
nalformat, in the same manner as for textures (section3.8.1). internalformatmust
be one of the formats in table3.15or table3.16, other than theDEPTHformats in
those tables.

The color lookup table is redefined to havewidth entries, each with the speci-
fied internal format. The table is formed with indices0 throughwidth − 1. Table
locationi is specified by theith image pixel, counting from zero.

The errorINVALID VALUEis generated ifwidth is not zero or a non-negative
power of two. The errorTABLE TOOLARGEis generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling
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Table Name Type

COLORTABLE regular
POSTCONVOLUTIONCOLORTABLE

POSTCOLORMATRIX COLORTABLE

PROXYCOLORTABLE proxy
PROXYPOSTCONVOLUTIONCOLORTABLE

PROXYPOSTCOLORMATRIX COLORTABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

void ColorTableParameter{if}v( enum target, enum pname,
T params);

targetmust be a regular color table name.pnameis one ofCOLORTABLE SCALE

or COLORTABLE BIAS . paramspoints to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on anyColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.

The command

void CopyColorTable( enum target, enum internalformat,
int x, int y, sizei width );

defines a color table in exactly the manner ofColorTable, except that table data
are taken from the framebuffer, rather than from client memory.targetmust be a
regular color table name.x, y, andwidthcorrespond precisely to the corresponding
arguments ofCopyPixels(refer to section4.3.3); they specify the image’swidth
and the lower left(x, y) coordinates of the framebuffer region to be copied. The
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image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumenttypeset toCOLORandheightset to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described forColorTable, beginning
with scaling byCOLORTABLE SCALE. Parameterstarget, internalformatandwidth
are specified using the same values, with the same meanings, as the equivalent
arguments ofColorTable. format is taken to beRGBA.

Two additional commands,

void ColorSubTable( enum target, sizei start, sizei count,
enum format, enum type, void *data );

void CopyColorSubTable( enum target, sizei start, int x,
int y, sizei count);

respecify only a portion of an existing color table. No change is made to theinter-
nalformator widthparameters of the specified color table, nor is any change made
to table entries outside the specified portion.target must be a regular color table
name.

ColorSubTableargumentsformat, type, anddatamatch the corresponding ar-
guments toColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise,CopyColorSubTableargumentsx, y, and
countmatch thex, y, andwidtharguments ofCopyColorTable. Both of theColor-
SubTablecommands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by theinternalformatof
the table, not by an argument to the command.

Argumentsstartandcountof ColorSubTableandCopyColorSubTablespec-
ify a subregion of the color table starting at indexstart and ending at index
start + count − 1. Counting from zero, thenth pixel group is assigned to the
table entry with indexcount + n. The errorINVALID VALUE is generated if
start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
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RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-
clude scale and bias parameters. WhenColorTable is executed withtargetspeci-
fied as one of the proxy color table names listed in table3.4, the proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated byColorTable called with target set to the
corresponding regular table name (COLORTABLE is the regular name correspond-
ing to PROXYCOLORTABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. CallingColorTable with a proxy
targethas no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried usingGetColorTable. The
error INVALID ENUMis generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D ( enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *data );

targetmust beCONVOLUTION2D. width, height, format, type, anddataspecify an
image in memory with the same meaning and allowed values as the corresponding
parameters toDrawPixels. The formats COLORINDEX, DEPTHCOMPONENT, and
STENCIL INDEX and thetypeBITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensionalCONVOLUTIONFILTER SCALE parameters and biased by the four
two-dimensionalCONVOLUTIONFILTER BIAS parameters. These parameters are
set by callingConvolutionParameterfv as described below. No clamping takes
place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with thebase internal formatspecified by (or derived from)inter-
nalformat, in the same manner as for textures (section3.8.1). internalformatmust
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be one of the formats in table3.15or table3.16, other than theDEPTHformats in
those tables.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinatesi, j such thati increases from left to
right, starting at zero, andj increases from bottom to top, also starting at zero.
Image locationi, j is specified by theN th pixel, counting from zero, where

N = i + j ∗ width

The error INVALID VALUE is generated ifwidth or height is greater
than the maximum supported value. These values are queried withGet-
ConvolutionParameteriv, setting target to CONVOLUTION2D and pname to
MAXCONVOLUTIONWIDTHor MAXCONVOLUTIONHEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v( enum target, enum pname,
T params);

with target CONVOLUTION2D. pnameis one ofCONVOLUTIONFILTER SCALE

or CONVOLUTIONFILTER BIAS . paramspoints to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D ( enum target, enum internalformat,
sizei width, enum format, enum type, void *data );

target must beCONVOLUTION1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts.datamust point to a one-dimensional image, however.

The image is extracted from memory and processed as ifConvolutionFilter2D
were called with aheight of 1, except that it is scaled and biased by the one-
dimensionalCONVOLUTIONFILTER SCALE and CONVOLUTIONFILTER BIAS

parameters. These parameters are specified exactly as the two-dimensional
parameters, except thatConvolutionParameterfv is called with target
CONVOLUTION1D.

The image is formed with coordinatesi such thati increases from left to right,
starting at zero. Image locationi is specified by theith pixel, counting from zero.

The errorINVALID VALUEis generated ifwidth is greater than the maximum
supported value. This value is queried usingGetConvolutionParameteriv, setting
targetto CONVOLUTION1D andpnameto MAXCONVOLUTIONWIDTH.
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Special facilities are provided for the definition of two-dimensionalsepa-
rable filters – filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D( enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

target must beSEPARABLE2D. internalformatspecifies the formats of the table
entries of the two one-dimensional images that will be retained.row points to a
widthpixel wide image of the specifiedformatandtype. columnpoints to aheight
pixel high image, also of the specifiedformatandtype.

The two images are extracted from memory and processed as ifConvolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separableCONVOLUTIONFILTER SCALEand
CONVOLUTIONFILTER BIAS parameters. These parameters are specified exactly
as the one-dimensional and two-dimensional parameters, except thatConvolution-
Parameteriv is called withtargetSEPARABLE2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.

The command

void CopyConvolutionFilter2D( enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner ofConvolutionFilter2D ,
except that image data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTION2D. x, y, width, andheightcorrespond precisely
to the corresponding arguments ofCopyPixels(refer to section4.3.3); they specify
the image’swidth andheight, and the lower left(x, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed toCopyPixelswith argumenttypeset toCOLOR,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described forConvolutionFilter2D ,
beginning with scaling byCONVOLUTIONFILTER SCALE. Parameterstarget, in-
ternalformat, width, andheightare specified using the same values, with the same
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meanings, as the equivalent arguments ofConvolutionFilter2D . formatis taken to
beRGBA.

The command

void CopyConvolutionFilter1D( enum target,
enum internalformat, int x, int y, sizei width );

defines a one-dimensional filter in exactly the manner ofConvolutionFilter1D ,
except that image data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTION1D. x, y, andwidth correspond precisely to the
corresponding arguments ofCopyPixels(refer to section4.3.3); they specify the
image’swidth and the lower left(x, y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed toCopyPixelswith argumenttypeset toCOLORandheightset to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described forConvolutionFilter1D ,
beginning with scaling byCONVOLUTIONFILTER SCALE. Parameterstarget, in-
ternalformat, andwidth are specified using the same values, with the same mean-
ings, as the equivalent arguments ofConvolutionFilter2D . format is taken to be
RGBA.

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode toCOLORcauses the matrix operations described in sec-
tion 2.11.2to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with
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void Histogram( enum target, sizei width,
enum internalformat, boolean sink);

target must beHISTOGRAMif a histogram table is to be specified.target value
PROXYHISTOGRAMis a special case discussed later in this section.width speci-
fies the number of entries in the histogram table, andinternalformatspecifies the
format of each table entry. The maximum allowablewidth of the histogram table
is implementation-dependent, but must be at least 32.sinkspecifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution ofHistogram, the specified histogram
table is redefined to havewidth entries, each with the specified internal format.
The entries are indexed 0 throughwidth− 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The errorINVALID VALUEis generated ifwidth is not zero or a non-negative
power of 2. The errorTABLE TOOLARGEis generated if the specified histogram
table is too large for the implementation. The errorINVALID ENUMis generated if
internalformatis not one of the formats in table3.15or table3.16, or is 1, 2, 3, 4,
or any of theDEPTHor INTENSITY formats in those tables.

A GL implementation may vary its allocation of internal component resolution
based on anyHistogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
formatRGBA, with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. WhenHistogram is executed withtargetset toPROXYHISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
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set to zero. If the histogram table would be accomodated byHistogram called
with target set toHISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. CallingHistogram with target
PROXYHISTOGRAMhas no effect on the actual histogram table.

There is no image associated withPROXYHISTOGRAM. It cannot be used as
a histogram, and its image must never queried usingGetHistogram. The error
INVALID ENUMresults if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax ( enum target, enum internalformat,
boolean sink);

target must beMINMAX. internalformatspecifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

The errorINVALID ENUMis generated ifinternalformatis not one of the for-
mats in table3.15or table3.16, or is 1, 2, 3, 4, or any of theDEPTHor INTENSITY

formats in those tables. The resulting table always has 2 entries, each with values
corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is set toRGBA

and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in fig-
ure3.7. We describe the stages of this process in the order in which they occur.

Pixels are drawn using

void DrawPixels( sizei width, sizei height, enum format,
enum type, void *data );

format is a symbolic constant indicating what the values in memory represent.
width andheightare the width and height, respectively, of the pixel rectangle to
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Figure 3.7. Operation ofDrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be enabled
or disabled. RGBA and color index pixel paths are shown; depth and stencil pixel
paths are not shown.

Version 1.5 - October 30, 2003



104 CHAPTER 3. RASTERIZATION

typeParameter Corresponding Special
Token Name GL Data Type Interpretation

UNSIGNEDBYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNEDSHORT ushort No
SHORT short No
UNSIGNEDINT uint No
INT int No
FLOAT float No
UNSIGNEDBYTE 3 3 2 ubyte Yes
UNSIGNEDBYTE 2 3 3 REV ubyte Yes
UNSIGNEDSHORT5 6 5 ushort Yes
UNSIGNEDSHORT5 6 5 REV ushort Yes
UNSIGNEDSHORT4 4 4 4 ushort Yes
UNSIGNEDSHORT4 4 4 4 REV ushort Yes
UNSIGNEDSHORT5 5 5 1 ushort Yes
UNSIGNEDSHORT1 5 5 5 REV ushort Yes
UNSIGNEDINT 8 8 8 8 uint Yes
UNSIGNEDINT 8 8 8 8 REV uint Yes
UNSIGNEDINT 10 10 10 2 uint Yes
UNSIGNEDINT 2 10 10 10 REV uint Yes

Table 3.5:DrawPixelsandReadPixelstypeparameter values and the correspond-
ing GL data types. Refer to table2.2 for definitions of GL data types. Special
interpretations are described near the end of section3.6.4.

be drawn. data is a pointer to the data to be drawn. These data are represented
with one of seven GL data types, specified bytype. The correspondence between
the twentytype token values and the GL data types they indicate is given in ta-
ble 3.5. If the GL is in color index mode andformat is not one ofCOLORINDEX,
STENCIL INDEX, orDEPTHCOMPONENT, then the errorINVALID OPERATIONoc-
curs. If typeis BITMAP andformat is notCOLORINDEX or STENCIL INDEX then
the errorINVALID ENUMoccurs. Some additional constraints on the combinations
of formatandtypevalues that are accepted is discussed below.
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Format Name Element Meaning and OrderTarget Buffer

COLORINDEX Color Index Color
STENCIL INDEX Stencil Index Stencil
DEPTHCOMPONENT Depth Depth
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RGB R, G, B Color
RGBA R, G, B, A Color
BGR B, G, R Color
BGRA B, G, R, A Color
LUMINANCE Luminance Color
LUMINANCEALPHA Luminance, A Color

Table 3.6:DrawPixels andReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as
an index, formats yield components.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes (GL
data typesbyte andubyte ), signed or unsigned short integers (GL data types
short andushort ), signed or unsigned integers (GL data typesint anduint ),
or floating point values (GL data typefloat ). These elements are grouped into
sets of one, two, three, or four values, depending on theformat, to form a group.
Table3.6summarizes the format of groups obtained from memory; it also indicates
those formats that yield indices and those that yield components.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. IfUNPACKSWAPBYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series ofrows, with the first element of the first group
of the first row pointed to by the pointer passed toDrawPixels. If the value of
UNPACKROWLENGTHis not positive, then the number of groups in a row iswidth;
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Element Size Default Bit Ordering Modified Bit Ordering
8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements whenUNPACKSWAPBYTES is
enabled. These reorderings are defined only when GL data typeubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

otherwise the number of groups isUNPACKROWLENGTH. If p indicates the loca-
tion in memory of the first element of the first row, then the first element of theN th
row is indicated by

p + Nk (3.10)

whereN is the row number (counting from zero) and k is defined as

k =

{
nl s ≥ a,
a/s dsnl/ae s < a

(3.11)

wheren is the number of elements in a group,l is the number of groups in
the row,a is the value ofUNPACKALIGNMENT, ands is the size, in units of GL
ubyte s, of an element. If the number of bits per element is not1, 2, 4, or 8 times
the number of bits in a GLubyte , thenk = nl for all values ofa.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACKROWLENGTH, UNPACKSKIP ROWS, andUNPACKSKIP PIXELS . Before
obtaining the first group from memory, the pointer supplied toDrawPixels is effec-
tively advanced by(UNPACKSKIP PIXELS)n+(UNPACKSKIP ROWS)k elements.
Thenwidthgroups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advanced byk elements.heightsets
of widthgroups of values are obtained this way. See figure3.8.

Calling DrawPixels with a type of UNSIGNEDBYTE 3 3 2,
UNSIGNEDBYTE 2 3 3 REV, UNSIGNEDSHORT5 6 5,
UNSIGNEDSHORT5 6 5 REV, UNSIGNEDSHORT4 4 4 4,
UNSIGNEDSHORT4 4 4 4 REV, UNSIGNEDSHORT5 5 5 1,
UNSIGNEDSHORT1 5 5 5 REV, UNSIGNEDINT 8 8 8 8,
UNSIGNEDINT 8 8 8 8 REV, UNSIGNEDINT 10 10 10 2, or
UNSIGNEDINT 2 10 10 10 REV is a special case in which all the compo-
nents of each group are packed into a single unsigned byte, unsigned short, or
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Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed byUNPACKfor DrawPixelsand byPACK for ReadPixels.

unsigned int, depending on the type. The number of components per packed pixel
is fixed by the type, and must match the number of components per group indicated
by theformatparameter, as listed in table3.8. The errorINVALID OPERATIONis
generated if a mismatch occurs. This constraint also holds for all other functions
that accept or return pixel data usingtypeandformatparameters to define the type
and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables3.9, 3.10, and3.11. Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end withREVreverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.
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typeParameter GL Data Number of Matching
Token Name Type Components Pixel Formats

UNSIGNEDBYTE 3 3 2 ubyte 3 RGB

UNSIGNEDBYTE 2 3 3 REV ubyte 3 RGB

UNSIGNEDSHORT5 6 5 ushort 3 RGB

UNSIGNEDSHORT5 6 5 REV ushort 3 RGB

UNSIGNEDSHORT4 4 4 4 ushort 4 RGBA,BGRA

UNSIGNEDSHORT4 4 4 4 REV ushort 4 RGBA,BGRA

UNSIGNEDSHORT5 5 5 1 ushort 4 RGBA,BGRA

UNSIGNEDSHORT1 5 5 5 REV ushort 4 RGBA,BGRA

UNSIGNEDINT 8 8 8 8 uint 4 RGBA,BGRA

UNSIGNEDINT 8 8 8 8 REV uint 4 RGBA,BGRA

UNSIGNEDINT 10 10 10 2 uint 4 RGBA,BGRA

UNSIGNEDINT 2 10 10 10 REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

UNSIGNEDBYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDBYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9:UNSIGNEDBYTE formats. Bit numbers are indicated for each compo-
nent.
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UNSIGNEDSHORT5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDSHORT5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNEDSHORT4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDSHORT4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNEDSHORT5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDSHORT1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10:UNSIGNEDSHORTformats
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UNSIGNEDINT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDINT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNEDINT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDINT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11:UNSIGNEDINT formats
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Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table3.12

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with a typeof BITMAP is a special case in which the data
are a series of GLubyte values. Eachubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value ofUNPACKLSB FIRST is FALSE; other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in eachubyte are not significant.

The first element of the first row is the first bit (as defined above) of theubyte
pointed to by the pointer passed toDrawPixels. The first element of the second
row is the first bit (again as defined above) of theubyte at locationp + k, where
k is computed as

k = a

⌈
l

8a

⌉
(3.12)

There is a mechanism for selecting a sub-rectangle of elements from aBITMAP

image as well. Before obtaining the first element from memory, the pointer sup-
plied toDrawPixels is effectively advanced byUNPACKSKIP ROWS∗ k ubyte s.
ThenUNPACKSKIP PIXELS 1-bit elements are ignored, and the subsequentwidth
1-bit elements are obtained, without advancing theubyte pointer, after which the
pointer is advanced byk ubyte s. heightsets ofwidth elements are obtained this
way.

Conversion to floating-point

This step applies only to groups of components. It is not performed on indices.
Each element in a group is converted to a floating-point value according to the ap-
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propriate formula in table2.9(section2.14). For packed pixel types, each element
in the group is converted by computingc / (2N − 1), wherec is the unsigned inte-
ger value of the bitfield containing the element andN is the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if theformatis LUMINANCEor LUMINANCEALPHA. If the
format is LUMINANCE, then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If theformat is LUMINANCEALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to 1.0. If any of R, G, or B is missing from the group, each
missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in section3.6.5. After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by2n − 1, wheren is the number of bits in an index buffer.
For RGBA components, each element is clamped to[0, 1]. The resulting values are
converted to fixed-point according to the rules given in section2.14.9(Final Color
Processing).

For a depth component, an element is first clamped to[0, 1] and then converted
to fixed-point as if it were a windowz value (see section2.11.1, Controlling the
Viewport).
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Stencil indices are masked by2n − 1, wheren is the number of bits in the
stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom( float zx, float zy );

Let (xrp, yrp) be the current raster position (section2.13). (If the current raster
position is invalid, thenDrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (section4.1.1) or scissor (section4.1.2)
tests.) If a particular group (index or components) is thenth in a row and belongs to
themth row, consider the region in window coordinates bounded by the rectangle
with corners

(xrp + zxn, yrp + zym) and (xrp + zx(n + 1), yrp + zy(m + 1))

(eitherzx or zy may be negative). Any fragments whose centers lie inside of this
rectangle (or on its bottom or left boundaries) are produced in correspondence with
this particular group of elements.

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster
position’s associated raster distance, and texture coordinates are taken from the
current raster position’s associated texture coordinates. Texture coordinatess, t,
andr are replaced withs/q, t/q, andr/q, respectively. Ifq is less than or equal to
zero, the results are undefined. Groups arising fromDrawPixels with a formatof
STENCIL INDEX are treated specially and are described in section4.3.1.

3.6.5 Pixel Transfer Operations

The GL defines four kinds of pixel groups:

1. RGBA component:Each group comprises four color components: red, green,
blue, and alpha.

2. Depth component:Each group comprises a single depth component.

Version 1.5 - October 30, 2003



114 CHAPTER 3. RASTERIZATION

3. Color index:Each group comprises a single color index.

4. Stencil index:Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel group
in an image. Many operations are applied only to pixel groups of certain kinds; if
an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups. Each
component is multiplied by an appropriate signed scale factor:REDSCALEfor an
R component,GREENSCALEfor a G component,BLUE SCALEfor a B component,
andALPHASCALEfor an A component, orDEPTHSCALEfor a depth component.
Then the result is added to the appropriate signed bias:REDBIAS , GREENBIAS ,
BLUE BIAS , ALPHABIAS , or DEPTHBIAS .

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index is a
floating-point value, it is converted to fixed-point, with an unspecified number of
bits to the right of the binary point and at leastdlog2(MAXPIXEL MAPTABLE)e
bits to the left of the binary point. Indices that are already integers remain so; any
fraction bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted by|INDEX SHIFT | bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offsetINDEX OFFSETis added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped ifMAPCOLORis
FALSE. First, each component is clamped to the range[0, 1]. There is a table associ-
ated with each of the R, G, B, and A component elements:PIXEL MAPR TO R for
R, PIXEL MAPG TO G for G, PIXEL MAPB TO B for B, andPIXEL MAPA TO A

for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value
to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.
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Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLORINDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components:PIXEL MAPI TO R,
PIXEL MAPI TO G, PIXEL MAPI TO B, andPIXEL MAPI TO A. Each of these
tables must have2n entries for some integer value ofn (n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with2n − 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, and ifMAPCOLORis enabled,
then the index is looked up in thePIXEL MAPI TO I table (otherwise, the index
is not looked up). Again, the table must have2n entries for some integern. The
index is first rounded to the nearest integer; the result is ANDed with2n − 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. IfMAPSTENCIL is enabled, then
the index is looked up in thePIXEL MAPS TO S table (otherwise, the index is not
looked up). The table must have2n entries for some integern. The integer index
is ANDed with2n − 1, and the resulting value used as an address into the table.
The integer value in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLORTABLE is enabled. If a zero-width table is enabled, no lookup is
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Base Internal Format R G B A

ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCEALPHA Lt Lt Lt At

INTENSITY It It It It

RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup.Rt, Gt, Bt, At, Lt, andIt are color table values
that are assigned to pixel componentsR, G, B, andA depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

performed.
The internal format of the table determines which components of the group

will be replaced (see table3.13). The components to be replaced are converted
to indices by clamping to[0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. IfCONVOLUTION1D

is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passed toTexImage1D, TexSubImage1D, Copy-
TexImage1D, andCopyTexSubImage1D. If CONVOLUTION2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed toDrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubImage2D, andCopyTexSubImage3D.
If SEPARABLE2D is enabled, andCONVOLUTION2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below asRs, Gs, Bs, andAs.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted asRf , Gf , Bf , Af , Lf , andIf in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
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Base Filter Format R G B A

ALPHA Rs Gs Bs As ∗Af

LUMINANCE Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As

LUMINANCEALPHA Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As ∗Af

INTENSITY Rs ∗ If Gs ∗ If Bs ∗ If As ∗ If

RGB Rs ∗Rf Gs ∗Gf Bs ∗Bf As

RGBA Rs ∗Rf Gs ∗Gf Bs ∗Bf As ∗Af

Table 3.14: Computation of filtered color components depending on filter image
format.C ∗ F indicates the convolution of image componentC with filter F .

on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table3.14.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variablesWf andHf refer to the dimensions of the convolution
filter. The variablesWs andHs refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, whereC refers to the filtered
result,Cf refers to the one- or two-dimensional convolution filter, andCrow and
Ccolumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter.C ′

s depends on the source image colorCs and the convolution bor-
der mode as described below.Cr, the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in theConvolution Filter Specification subsection of
section3.6.3.

One-dimensional filter:

C[i′] =
Wf−1∑
n=0

C ′
s[i
′ + n] ∗ Cf [n]

Two-dimensional filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′
s[i
′ + n, j′ + m] ∗ Cf [n, m]

Two-dimensional separable filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′
s[i
′ + n, j′ + m] ∗ Crow[n] ∗ Ccolumn[m]
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If Wf of a one-dimensional filter is zero, thenC[i] is always set to zero. Like-
wise, if eitherWf or Hf of a two-dimensional filter is zero, thenC[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}( enum target, enum pname,
T param);

wheretarget is the name of the filter,pnameis CONVOLUTIONBORDERMODE, and
paramis one ofREDUCE, CONSTANTBORDERor REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border modeREDUCEare
reduced byWf − 1 andHf − 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border modeREDUCEare zero throughWs −Wf in width, and zero
throughHs −Hf in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example isTexImage1DandTex-
Image2D, which specify constraints for image dimensions. Even ifTexImage1D
or TexImage2D is called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode isREDUCE, C ′
s equals the source image colorCs and

Cr equals the filtered resultC.
For the remaining border modes, defineCw = bWf/2c andCh = bHf/2c.

The coordinates(Cw, Ch) define the center of the convolution filter.

Border Mode CONSTANTBORDER

If the convolution border mode isCONSTANTBORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the
current convolution border color. Whenever the convolution filter extends be-
yond one of the edges of the source image, the constant-color border pixels are
used as input to the filter. The current convolution border color is set by call-
ing ConvolutionParameterfv or ConvolutionParameteriv with pnameset to
CONVOLUTIONBORDERCOLORandparamscontaining four values that comprise
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the RGBA color to be used as the image border. Integer color components are
interpreted linearly such that the most positive integer maps to 1.0, and the most
negative integer maps to -1.0. Floating point color components are not clamped
when they are specified.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

whereC[i′] is computed using the following equation forC ′
s[i
′]:

C ′
s[i
′] =

{
Cs[i′], 0 ≤ i′ < Ws

Cc, otherwise

andCc is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is

defined by

Cr[i, j] = C[i− Cw, j − Ch]

whereC[i′, j′] is computed using the following equation forC ′
s[i
′, j′]:

C ′
s[i
′, j′] =

{
Cs[i′, j′], 0 ≤ i′ < Ws, 0 ≤ j′ < Hs

Cc, otherwise

Border Mode REPLICATE BORDER

The convolution border modeREPLICATE BORDERalso produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of theCONSTANTBORDERmode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicatedCw times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicatedCw times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to createCh rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]
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whereC[i′] is computed using the following equation forC ′
s[i
′]:

C ′
s[i
′] = Cs[clamp(i′,Ws)]

and the clamping functionclamp(val, max) is defined as

clamp(val, max) =


0, val < 0
val, 0 ≤ val < max
max− 1, val ≥ max

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[i, j] = C[i− Cw, j − Ch]

whereC[i′, j′] is computed using the following equation forC ′
s[i
′, j′]:

C ′
s[i
′, j′] = Cs[clamp(i′,Ws), clamp(j′,Hs)]

If a convolution operation is performed, each component of
the resulting image is scaled by the correspondingPixelTrans-
fer parameters: POSTCONVOLUTIONREDSCALE for an R com-
ponent, POSTCONVOLUTIONGREENSCALE for a G compo-
nent, POSTCONVOLUTIONBLUE SCALE for a B component, and
POSTCONVOLUTIONALPHASCALE for an A component. The result
is added to the corresponding bias: POSTCONVOLUTIONREDBIAS ,
POSTCONVOLUTIONGREENBIAS , POSTCONVOLUTIONBLUE BIAS , or
POSTCONVOLUTIONALPHABIAS .

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode isREDUCE, and the border color is
(0, 0, 0, 0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by callingEnable or Disable with
the symbolic constantPOSTCONVOLUTIONCOLORTABLE. The post convo-
lution table is defined by callingColorTable with a target argument of
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POSTCONVOLUTIONCOLORTABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in section3.6.5.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factor:POSTCOLORMATRIX REDSCALE

for an R component, POSTCOLORMATRIX GREENSCALE for a G
component, POSTCOLORMATRIX BLUE SCALE for a B component,
and POSTCOLORMATRIX ALPHASCALE for an A component. The
result is added to a signed bias: POSTCOLORMATRIX REDBIAS ,
POSTCOLORMATRIX GREENBIAS , POSTCOLORMATRIX BLUE BIAS , or
POSTCOLORMATRIX ALPHABIAS . The resulting components replace each
component of the original group.

That is, ifMc is the color matrix, a subscript ofs represents the scale term for
a component, and a subscript ofb represents the bias term, then the components

R
G
B
A


are transformed to

R′

G′

B′

A′

 =


Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

Mc


R
G
B
A

+


Rb

Gb

Bb

Ab

 .

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by callingEnable or Disable
with the symbolic constantPOSTCOLORMATRIX COLORTABLE. The post color
matrix table is defined by callingColorTable with a target argument of
POSTCOLORMATRIX COLORTABLE. In all other respects, operation is identical
to color table lookup, as defined in section3.6.5.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.
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Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by callingEnable or Disable with the symbolic constant
HISTOGRAM.

If the width of the table is non-zero, then indicesRi, Gi, Bi, andAi are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to[0, 1] , multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of theHISTOGRAMtable includes red or luminance, the red or
luminance component of histogram entryRi is incremented by one. If the format
of the HISTOGRAMtable includes green, the green component of histogram entry
Gi is incremented by one. The blue and alpha components of histogram entries
Bi andAi are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sinkparameter isFALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by callingEnableor Disablewith the symbolic constantMINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (section2.1.1). There are no semantics defined for the treatment of
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group component values that are outside the representable range.
If the Minmax sink parameter isFALSE, minmax operation has no effect on

the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.6.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then pixel
rectangles are rasterized using the following algorithm. Let(Xrp, Yrp) be the cur-
rent raster position. (If the current raster position is invalid, thenDrawPixels is
ignored.) If a particular group (index or components) is thenth in a row and be-
longs to themth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xrp + Zx ∗ n, Yrp + Zy ∗m)

and
(Xrp + Zx ∗ (n + 1), Yrp + Zy ∗ (m + 1))

whereZx andZy are the pixel zoom factors specified byPixelZoom, and may each
be either positive or negative. A fragment representing group(n, m) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in theConversion to Fragmentssubsection of sec-
tion 3.6.4. All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-
ments to be produced. Each of these fragments has the same associated data. These
data are those associated with thecurrent raster position.
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Figure 3.9. A bitmap and its associated parameters.xbi andybi are not shown.

Bitmaps are sent using

void Bitmap( sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, ubyte *data );

w andh comprise the integer width and height of the rectangular bitmap, respec-
tively. (xbo, ybo) gives the floating-pointx andy values of the bitmap’s origin.
(xbi, ybi) gives the floating-pointx andy increments that are added to the raster
position after the bitmap is rasterized.data is a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in section3.6.4for DrawPixels; it is as if thewidth andheight
passed to that command were equal tow andh, respectively, thetypewereBITMAP,
and theformatwereCOLORINDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figure3.9.

A bitmap sent usingBitmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(xll, yll) = (bxrp − xboc, byrp − yboc)
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and upper right corner at(xll +w, yll +h) wherew andh are the width and height
of the bitmap, respectively. Fragments in the array are produced if the correspond-
ing bit in the bitmap is1 and not produced otherwise. The associated data for each
fragment are those associated with the current raster position, with texture coordi-
natess, t, andr replaced withs/q, t/q, andr/q, respectively. Ifq is less than or
equal to zero, the results are undefined. Once the fragments have been produced,
the current raster position is updated:

(xrp, yrp)← (xrp + xbi, yrp + ybi).

Thez andw values of the current raster position remain unchanged.

Bitmap Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner at(Xrp, Yrp), and its upper
right corner at(Xrp + w, Yrp + h), wherew andh are the width and height of
the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.8 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a fragment’s(s, t, r) coordinates to modify the
fragment’s primary RGBA color. Texturing does not affect the secondary color.

An implementation may support texturing using more than one image at a time.
In this case the fragment carries multiple sets of texture coordinates(s, t, r) which
are used to index separate images to produce color values which are collectively
used to modify the fragment’s RGBA color. Texturing is specified only for RGBA
mode; its use in color index mode is undefined. The following subsections (up
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to and including section3.8.8) specify the GL operation with a single texture and
section3.8.15specifies the details of how multiple texture units interact.

The GL provides a means to specify the details of how texturing of a primitive
is effected. These details include specification of the image to be texture mapped,
the means by which the image is filtered when applied to the primitive, and the
function that determines what RGBA value is produced given a fragment color and
an image value.

3.8.1 Texture Image Specification

The command

void TexImage3D( enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, void *data );

is used to specify a three-dimensional texture image.target must be ei-
ther TEXTURE3D, or PROXYTEXTURE3D in the special case discussed in sec-
tion 3.8.11. format, type, anddatamatch the corresponding arguments toDraw-
Pixels (refer to section3.6.4); they specify the format of the image data, the
type of those data, and a pointer to the image data in host memory. Theformat
STENCIL INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by thewidth and height parameters toTexImage3D.
The values ofUNPACKROWLENGTHandUNPACKALIGNMENTcontrol the row-to-
row spacing in these images in the same manner asDrawPixels. If the value of
the integer parameterUNPACKIMAGEHEIGHT is not positive, then the number
of rows in each two-dimensional image isheight; otherwise the number of rows
is UNPACKIMAGEHEIGHT. Each two-dimensional image comprises an integral
number of rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameterUNPACKSKIP IMAGES. If UNPACKSKIP IMAGES

is positive, the pointer is advanced byUNPACKSKIP IMAGEStimes the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Thendepthtwo-dimensional images are processed, each having a subimage
extracted in the same manner asDrawPixels.

The selected groups are processed exactly as forDrawPixels, stopping just
before final conversion. Each R, G, B, A, or depth value so generated is clamped
to [0, 1].
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Components are then selected from the resulting R, G, B, A, or depth values to
obtain a texture with thebase internal formatspecified by (or derived from)inter-
nalformat. Table3.15summarizes the mapping of R, G, B, A, and depth values to
texture components, as a function of the base internal format of the texture image.
internalformatmay be specified as one of the seven internal format symbolic con-
stants listed in table3.15, as one of thesized internal formatsymbolic constants
listed in table3.16, as one of the specific compressed internal format symbolic con-
stants listed in table3.17, or as one of the six generic compressed internal format
symbolic constants listed in table3.18. internalformatmay (for backwards com-
patibility with the 1.0 version of the GL) also take on the integer values1, 2, 3, and
4, which are equivalent to symbolic constantsLUMINANCE, LUMINANCEALPHA,
RGB, andRGBArespectively. Specifying a value forinternalformatthat is not one
of the above values generates the errorINVALID VALUE.

Textures with a base internal format ofDEPTHCOMPONENTare supported by
texture image specification commands only iftargetis TEXTURE1D, TEXTURE2D,
PROXYTEXTURE1D or PROXYTEXTURE2D. Using this format in conjunction
with any othertargetwill result in anINVALID OPERATIONerror.

Textures with a base internal format ofDEPTHCOMPONENTrequire depth com-
ponent data; textures with other base internal formats require RGBA component
data. The errorINVALID OPERATIONis generated if the base internal format is
DEPTHCOMPONENTandformat is not DEPTHCOMPONENT, or if the base internal
format is notDEPTHCOMPONENTandformat is DEPTHCOMPONENT.

The GL provides no specific compressed internal formats but does provide a
mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value ofNUMCOMPRESSEDTEXTUREFORMATS. The
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value ofCOMPRESSEDTEXTUREFORMATS. The only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. Ifinternalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available,internalformatis instead replaced by
the corresponding base internal format. Ifinternalformatis given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders),internalformatis replaced by the corre-
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Base Internal Format RGBA and Depth Values Internal Components

ALPHA A A

DEPTHCOMPONENT Depth D

LUMINANCE R L

LUMINANCEALPHA R,A L,A
INTENSITY R I

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA and depth pixel components to internal tex-
ture, table, or filter components. See section3.8.13for a description of the texture
componentsR, G, B, A, L, I, andD.

sponding base internal format and the texture image will not be compressed by the
GL.

Theinternal component resolutionis the number of bits allocated to each value
in a texture image. Ifinternalformatis specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, and
depth values to texture components is equivalent to the mapping of the correspond-
ing base internal format’s components, as specified in table3.15, and the memory
allocation per texture component is assigned by the GL to match the allocations
listed in table3.16as closely as possible. (The definition of closely is left up to the
implementation. Implementations are not required to support more than one reso-
lution for each base internal format.) If a compressed internal format is specified,
the mapping of the R, G, B, A, and depth values to texture components is equiv-
alent to the mapping of the corresponding base internal format’s components, as
specified in table3.15. The specified image is compressed using a (possibly lossy)
compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on anyTexImage3D, TexImage2D(see be-
low), or TexImage1D(see below) parameter (excepttarget), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by thedataparameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section3.8.11.
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Sized Base R G B A L I D
Internal Format Internal Format bits bits bits bits bits bits bits

ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
DEPTHCOMPONENT16 DEPTHCOMPONENT 16
DEPTHCOMPONENT24 DEPTHCOMPONENT 24
DEPTHCOMPONENT32 DEPTHCOMPONENT 32
LUMINANCE4 LUMINANCE 4
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4ALPHA4 LUMINANCEALPHA 4 4
LUMINANCE6ALPHA2 LUMINANCEALPHA 2 6
LUMINANCE8ALPHA8 LUMINANCEALPHA 8 8
LUMINANCE12ALPHA4 LUMINANCEALPHA 4 12
LUMINANCE12ALPHA12 LUMINANCEALPHA 12 12
LUMINANCE16ALPHA16 LUMINANCEALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3 G3 B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGB10A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal formats, and
desiredcomponent resolutions for each sized internal format.

Version 1.5 - October 30, 2003



130 CHAPTER 3. RASTERIZATION

Compressed Internal FormatBase Internal Format

(none)

Table 3.17: Specific compressed internal formats. None are defined by OpenGL
1.3; however, several specific compression types are defined in GL extensions.

Generic Compressed Internal FormatBase Internal Format

COMPRESSEDALPHA ALPHA

COMPRESSEDLUMINANCE LUMINANCE

COMPRESSEDLUMINANCEALPHA LUMINANCEALPHA

COMPRESSEDINTENSITY INTENSITY

COMPRESSEDRGB RGB

COMPRESSEDRGBA RGBA

Table 3.18: Generic compressed internal formats.

The image itself (pointed to bydata) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of widthwidth from left to right;heightrows are stacked from bottom
to top forming a single two-dimensional image slice; anddepthslices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of atexelas described by table3.15.
Counting from zero, each resultingN th texel is assigned internal integer coordi-
nates(i, j, k), where

i = (N mod width)− bs

j = (b N

width
c mod height)− bs

k = (b N

width× height
c mod depth)− bs

andbs is the specifiedborderwidth. Thus the last two-dimensional image slice of
the three-dimensional image is indexed with the highest value ofk.

Each color component is converted (by rounding to nearest) to a fixed-point
value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each valuek/(2n − 1), wherek ∈ {0, 1, . . . , 2n − 1}, ask (e.g. 1.0 is
represented in binary as a string of all ones).
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Thelevelargument toTexImage3Dis an integerlevel-of-detailnumber. Levels
of detail are discussed below, underMipmapping . The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID VALUEis generated.

The border argument toTexImage3D is a border width. The significance of
borders is described below. The border width affects the required dimensions of
the texture image: for non-zero width, height, and depth, it must be the case that

ws = 2n + 2bs (3.13)

hs = 2m + 2bs (3.14)

ds = 2l + 2bs (3.15)

for some integersn, m, andl, wherews, hs, andds are the specified imagewidth,
height, anddepth. If any one of these relationships cannot be satisfied, then the
error INVALID VALUEis generated.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTUREBASELEVEL (see section3.8.4), it is as if texturing were disabled.

Currently, the maximum border widthbt is 1. If bs is less than zero, or greater
thanbt, then the errorINVALID VALUEis generated.

The maximum allowable width, height, or depth of a three-dimensional texture
image is an implementation dependent function of the level-of-detail and internal
format of the resulting image array. It must be at least2k−lod+2bt for image arrays
of level-of-detail0 throughk, wherek is the log base 2 ofMAX3D TEXTURESIZE ,
lod is the level-of-detail of the image array, andbt is the maximum border width.
It may be zero for image arrays of any level-of-detail greater thank. The error
INVALID VALUEis generated if the specified image is too large to be stored under
any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least2k−lod + 2bt for image arrays of level
0 throughk, wherek is the log base 2 ofMAXTEXTURESIZE . The maximum al-
lowable width and height of a cube map texture must be the same, and must be at
least2k−lod + 2bt for image arrays level 0 throughk, wherek is the log base 2 of
MAXCUBEMAPTEXTURESIZE .

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section3.8.10.
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The command

void TexImage2D( enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data );

is used to specify a two-dimensional texture image. target must
be one of TEXTURE2D for a two-dimensional texture, or one of
TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, or TEXTURECUBEMAPNEGATIVEZ for
a cube map texture. Additionally,target may be eitherPROXYTEXTURE2D for
a two-dimensional proxy texture orPROXYTEXTURECUBEMAPfor a cube map
proxy texture in the special case discussed in section3.8.11. The other parameters
match the corresponding parameters ofTexImage3D.

For the purposes of decoding the texture image,TexImage2Dis equivalent to
callingTexImage3Dwith corresponding arguments anddepthof 1, except that

• Thedepthof the image is always 1 regardless of the value ofborder.

• Convolution will be performed on the image (possibly changing itswidth
andheight) if SEPARABLE2D or CONVOLUTION2D is enabled.

• UNPACKSKIP IMAGESis ignored.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. TheTEXTURECUBEMAP* targets listed above up-
date their appropriate cube map face 2D texture image. Note that the six cube map
two-dimensional image tokens such asTEXTURECUBEMAPPOSITIVE X are used
when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), theTEXTURECUBEMAPtarget is specified.

When thetarget parameter toTexImage2D is one of the six cube map two-
dimensional image targets, the errorINVALID VALUEis generated if thewidthand
heightparameters are not equal.

Finally, the command

void TexImage1D( enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data );
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is used to specify a one-dimensional texture image.target must be either
TEXTURE1D, or PROXYTEXTURE1D in the special case discussed in sec-
tion 3.8.11.)

For the purposes of decoding the texture image,TexImage1Dis equivalent to
callingTexImage2Dwith corresponding arguments andheightof 1, except that

• Theheightof the image is always 1 regardless of the value ofborder.

• Convolution will be performed on the image (possibly changing itswidth)
only if CONVOLUTION1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable widthbt whether or not a border has been
specified (see figure3.10) 1. If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as thetexture
array. A three-dimensional texture array has width, height, and depth

wt = 2n + 2bt

ht = 2m + 2bt

dt = 2l + 2bt

wherebt is the maximum allowable border width andn, m, andl are defined in
equations3.13, 3.14, and3.15. A two-dimensional texture array has depthdt = 1,
with heightht and widthwt as above, and a one-dimensional texture array has
depthdt = 1, heightht = 1, and widthwt as above.

An element(i, j, k) of the texture array is called atexel(for a two-dimensional
texture,k is irrelevant; for a one-dimensional texture,j andk are both irrelevant).
The texture valueused in texturing a fragment is determined by that fragment’s
associated(s, t, r) coordinates, but may not correspond to any actual texel. See
figure3.10.

If the dataargument ofTexImage1D, TexImage2D, or TexImage3Dis a null
pointer (a zero-valued pointer in the C implementation), a one-, two-, or three-
dimensional texture array is created with the specifiedtarget, level, internalformat,

1 Figure3.10needs to show a three-dimensional texture image.
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Figure 3.10. A texture image and the coordinates used to access it. This is a two-
dimensional texture withn = 3 andm = 2. A one-dimensional texture would
consist of a single horizontal strip.α andβ, values used in blending adjacent texels
to obtain a texture value, are also shown.
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width, height, anddepth, but with unspecified image contents. In this case no pixel
values are accessed in client memory, and no pixel processing is performed. Errors
are generated, however, exactly as though thedatapointer were valid.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D( enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texture array in exactly the manner ofTexIm-
age2D, except that the image data are taken from the framebuffer rather
than from client memory. Currently,target must be one ofTEXTURE2D,
TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, or TEXTURECUBEMAPNEGATIVEZ. x, y,
width, andheightcorrespond precisely to the corresponding arguments toCopyP-
ixels (refer to section4.3.3); they specify the image’swidth andheight, and the
lower left (x, y) coordinates of the framebuffer region to be copied. The im-
age is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumenttypeset toCOLORor DEPTH, depending oninternal-
format, stopping after pixel transfer processing is complete. RGBA data is taken
from the current color buffer while depth component data is taken from the depth
buffer. If depth component data is required and no depth buffer is present, the
error INVALID OPERATIONis generated. Subsequent processing is identical to
that described forTexImage2D, beginning with clamping of the R, G, B, A, or
depth values from the resulting pixel groups. Parameterslevel, internalformat, and
borderare specified using the same values, with the same meanings, as the equiv-
alent arguments ofTexImage2D, except thatinternalformatmay not be specified
as1, 2, 3, or 4. An invalid value specified forinternalformatgenerates the error
INVALID ENUM. The constraints onwidth, height, andborderare exactly those for
the equivalent arguments ofTexImage2D.

When thetarget parameter toCopyTexImage2Dis one of the six cube map
two-dimensional image targets, the errorINVALID VALUEis generated if thewidth
andheightparameters are not equal.

The command
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void CopyTexImage1D( enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

defines a one-dimensional texture array in exactly the manner ofTexImage1D,
except that the image data are taken from the framebuffer, rather than from client
memory. Currently,target must beTEXTURE1D. For the purposes of decoding
the texture image,CopyTexImage1Dis equivalent to callingCopyTexImage2D
with corresponding arguments andheightof 1, except that theheightof the image
is always 1, regardless of the value ofborder. level, internalformat, andborder
are specified using the same values, with the same meanings, as the equivalent
arguments ofTexImage1D, except thatinternalformatmay not be specified as1,
2, 3, or 4. The constraints onwidth andborderare exactly those of the equivalent
arguments ofTexImage1D.

Six additional commands,

void TexSubImage3D( enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, void *data );

void TexSubImage2D( enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data );

void TexSubImage1D( enum target, int level, int xoffset,
sizei width, enum format, enum type, void *data );

void CopyTexSubImage3D( enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D( enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D( enum target, int level,
int xoffset, int x, int y, sizei width );

respecify only a rectangular subregion of an existing texture array. No change
is made to theinternalformat, width, height, depth, or border parameters
of the specified texture array, nor is any change made to texel values out-
side the specified subregion. Currently thetarget arguments ofTexSubIm-
age1Dand CopyTexSubImage1Dmust beTEXTURE1D, the target arguments
of TexSubImage2Dand CopyTexSubImage2Dmust be one ofTEXTURE2D,
TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
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TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, or TEXTURECUBEMAPNEGATIVEZ, and the
target arguments ofTexSubImage3D and CopyTexSubImage3D must be
TEXTURE3D. The levelparameter of each command specifies the level of the tex-
ture array that is modified. Iflevel is less than zero or greater than the base 2 log-
arithm of the maximum texture width, height, or depth, the errorINVALID VALUE

is generated.
TexSubImage3Dargumentswidth, height, depth, format, type, anddatamatch

the corresponding arguments toTexImage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Likewise,TexSubImage2D
argumentswidth, height, format, type, anddata match the corresponding argu-
ments toTexImage2D, andTexSubImage1Dargumentswidth, format, type, and
datamatch the corresponding arguments toTexImage1D.

CopyTexSubImage3Dand CopyTexSubImage2Dargumentsx, y, width,
andheightmatch the corresponding arguments toCopyTexImage2D2. CopyTex-
SubImage1Dargumentsx, y, andwidth match the corresponding arguments to
CopyTexImage1D. Each of theTexSubImagecommands interprets and processes
pixel groups in exactly the manner of itsTexImagecounterpart, except that the as-
signment of R, G, B, A, and depth pixel group values to the texture components
is controlled by theinternalformatof the texture array, not by an argument to the
command. The same constraints and errors apply to theTexSubImagecommands’
argumentformat and theinternalformatof the texture array being respecified as
apply to theformatandinternalformatarguments of itsTexImagecounterparts.

Argumentsxoffset, yoffset, and zoffsetof TexSubImage3Dand CopyTex-
SubImage3Dspecify the lower left texel coordinates of awidth-wide by height-
high bydepth-deep rectangular subregion of the texture array. Thedepthargument
associated withCopyTexSubImage3Dis always 1, because framebuffer memory
is two-dimensional - only a portion of a singles, t slice of a three-dimensional
texture is replaced byCopyTexSubImage3D.

Negative values ofxoffset, yoffset, andzoffsetcorrespond to the coordinates
of border texels, addressed as in figure3.10. Taking ws, hs, ds, and bs to be
the specified width, height, depth, and border width of the texture array, (not the
actual array dimensionswt, ht, dt, andbt), and takingx, y, z, w, h, andd to be
the xoffset, yoffset, zoffset, width, height, anddepthargument values, any of the
following relationships generates the errorINVALID VALUE:

x < −bs

2 Because the framebuffer is inherently two-dimensional, there is noCopyTexImage3Dcom-
mand.
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x + w > ws − bs

y < −bs

y + h > hs − bs

z < −bs

z + d > ds − bs

(Recall thatds, ws, andhs include twice the specified border widthbs.) Count-
ing from zero, thenth pixel group is assigned to the texel with internal integer
coordinates[i, j, k], where

i = x + (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width ∗ height
c mod d

Argumentsxoffsetandyoffsetof TexSubImage2DandCopyTexSubImage2D
specify the lower left texel coordinates of awidth-wide byheight-high rectangular
subregion of the texture array. Negative values ofxoffsetandyoffsetcorrespond
to the coordinates of border texels, addressed as in figure3.10. Taking ws, hs,
and bs to be the specified width, height, and border width of the texture array,
(not the actual array dimensionswt, ht, and bt), and takingx, y, w, andh to
be thexoffset, yoffset, width, andheight argument values, any of the following
relationships generates the errorINVALID VALUE:

x < −bs

x + w > ws − bs

y < −bs

y + h > hs − bs

(Recall thatws andhs include twice the specified border widthbs.) Counting from
zero, thenth pixel group is assigned to the texel with internal integer coordinates
[i, j], where

i = x + (n mod w)

j = y + (b n
w
c mod h)
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The xoffsetargument ofTexSubImage1DandCopyTexSubImage1Dspeci-
fies the left texel coordinate of awidth-wide subregion of the texture array. Neg-
ative values ofxoffsetcorrespond to the coordinates of border texels. Takingws

andbs to be the specified width and border width of the texture array, andx and
w to be thexoffsetandwidthargument values, either of the following relationships
generates the errorINVALID VALUE:

x < −bs

x + w > ws − bs

Counting from zero, thenth pixel group is assigned to the texel with internal integer
coordinates[i], where

i = x + (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. CallingTexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubImage2D, TexSubImage1D, or CopyTexSubImage1Dwill
result in anINVALID OPERATIONerror if xoffset, yoffset, or zoffsetis not equal to
−bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL currently defines no such formats,
but provides mechanisms for GL extensions that do.

The commands

void CompressedTexImage1D( enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, void *data );

void CompressedTexImage2D( enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data );
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void CompressedTexImage3D( enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, void *data );

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. Thetarget, level, internal-
format, width, height, depth, andborderparameters have the same meaning as in
TexImage1D, TexImage2D, andTexImage3D. datapoints to compressed image
data stored in the compressed image format corresponding tointernalformat. Since
the GL provides no specific image formats, using any of the six generic compressed
internal formats asinternalformatwill result in anINVALID ENUMerror.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining theinternalformat token. Com-
pressed texture images are treated as an array ofimageSizeubyte s beginning at
addressdata. All pixel storage and pixel transfer modes are ignored when decoding
a compressed texture image. If theimageSizeparameter is not consistent with the
format, dimensions, and contents of the compressed image, anINVALID VALUE

error results. If the compressed image is not encoded according to the defined
image format, the results of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zerobordervalues. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in anINVALID OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image toCompressedTexImage1D,
CompressedTexImage2D, or CompressedTexImage3Dwill not result in an
INVALID OPERATIONerror if the following restrictions are satisfied:

• datapoints to a compressed texture image returned byGetCompressedTex-
Image (section6.1.4).

• target, level, andinternalformatmatch thetarget, levelandformatparame-
ters provided to theGetCompressedTexImagecall returningdata.

• width, height, depth, border, internalformat, and image-
Size match the values of TEXTUREWIDTH, TEXTUREHEIGHT,
TEXTUREDEPTH, TEXTUREBORDER, TEXTUREINTERNAL FORMAT,
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andTEXTURECOMPRESSEDIMAGESIZE for image levellevel in effect at
the time of theGetCompressedTexImagecall returningdata.

This guarantee applies not just to images returned byGetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

The commands

void CompressedTexSubImage1D( enum target, int level,
int xoffset, sizei width, enum format, sizei imageSize,
void *data );

void CompressedTexSubImage2D( enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data );

void CompressedTexSubImage3D( enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, void *data );

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. Thetarget, level, xoffset, yoffset, zoff-
set, width, height, anddepthparameters have the same meaning as inTexSubIm-
age1D, TexSubImage2D, andTexSubImage3D. data points to compressed im-
age data stored in the compressed image format corresponding toformat. Since
the core GL provides no specific image formats, using any of these six generic
compressed internal formats asformatwill result in anINVALID ENUMerror.

The image pointed to bydata and theimageSizeparameter are interpreted
as though they were provided toCompressedTexImage1D, CompressedTexIm-
age2D, andCompressedTexImage3D. These commands do not provide for im-
age format conversion, so anINVALID OPERATIONerror results ifformat does
not match the internal format of the texture image being modified. If theimage-
Sizeparameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data), anINVALID VALUEerror results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
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pressed form, providing the same image toCompressedTexSubImage1D, Com-
pressedTexSubImage2D, CompressedTexSubImage3Dwill not result in an
INVALID OPERATIONerror if the following restrictions are satisfied:

• datapoints to a compressed texture image returned byGetCompressedTex-
Image (section6.1.4).

• target, level, andformatmatch thetarget, levelandformatparameters pro-
vided to theGetCompressedTexImagecall returningdata.

• width, height, depth, format, and imageSize match the val-
ues of TEXTUREWIDTH, TEXTUREHEIGHT, TEXTUREDEPTH,
TEXTUREINTERNAL FORMAT, and TEXTURECOMPRESSEDIMAGESIZE

for image levellevel in effect at the time of theGetCompressedTexImage
call returningdata.

• width, height, depth, format match the values ofTEXTUREWIDTH,
TEXTUREHEIGHT, TEXTUREDEPTH, and TEXTUREINTERNAL FORMAT

currently in effect for image levellevel.

• xoffset, yoffset, and zoffset are all −b, where b is the value of
TEXTUREBORDERcurrently in effect for image levellevel.

This guarantee applies not just to images returned byGetCompressedTexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSubImage3D, CompressedTexSubImage2D, or
CompressedTexSubImage1Dwill result in anINVALID OPERATIONerror if xoff-
set, yoffset, or zoffsetis not equal to−bs (border width), or ifwidth, height,
and depth do not match the values ofTEXTUREWIDTH, TEXTUREHEIGHT, or
TEXTUREDEPTH, respectively. The contents of any texel outside the region modi-
fied by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

3.8.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}( enum target, enum pname, T param);
void TexParameter{if}v( enum target, enum pname,

T params);
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target is the target, eitherTEXTURE1D, TEXTURE2D, TEXTURE3D, or
TEXTURECUBEMAP. pnameis a symbolic constant indicating the parameter to
be set; the possible constants and corresponding parameters are summarized in ta-
ble 3.19. In the first form of the command,param is a value to which to set a
single-valued parameter; in the second form of the command,paramsis an array
of parameters whose type depends on the parameter being set. If the values for
TEXTUREBORDERCOLORare specified as integers, the conversion for signed inte-
gers from table2.9 is applied to convert the values to floating-point. Each of the
four values set byTEXTUREBORDERCOLORis clamped to lie in[0, 1].

In the remainder of section3.8, denote by lodmin, lodmax, levelbase,
and levelmax the values of the texture parametersTEXTUREMIN LOD,
TEXTUREMAXLOD, TEXTUREBASELEVEL, and TEXTUREMAXLEVEL respec-
tively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

If the value of texture parameterGENERATEMIPMAPis TRUE, specifying or
changing texture arrays may have side effects, which are discussed in theAuto-
matic Mipmap Generation discussion of section3.8.8.

3.8.5 Depth Component Textures

Depth textures can be treated asLUMINANCE, INTENSITY or ALPHAtextures dur-
ing texture filtering and application. The initial state for depth textures treats them
asLUMINANCEtextures.

3.8.6 Cube Map Texture Selection

When cube map texturing is enabled, the( s t r ) texture coordinates are treated
as a direction vector( rx ry rz ) emanating from the center of a cube (theq
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on
( rx ry rz ). The target column in table3.20explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Using thesc, tc, andma determined by the major axis direction as specified in
table3.20, an updated( s t ) is calculated as follows:
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Name Type Legal Values

TEXTUREWRAPS integer CLAMP, CLAMPTO EDGE, REPEAT,
CLAMPTO BORDER,
MIRROREDREPEAT

TEXTUREWRAPT integer CLAMP, CLAMPTO EDGE, REPEAT,
CLAMPTO BORDER,
MIRROREDREPEAT

TEXTUREWRAPR integer CLAMP, CLAMPTO EDGE, REPEAT,
CLAMPTO BORDER,
MIRROREDREPEAT

TEXTUREMIN FILTER integer NEAREST,
LINEAR,
NEARESTMIPMAPNEAREST,
NEARESTMIPMAPLINEAR,
LINEAR MIPMAPNEAREST,
LINEAR MIPMAPLINEAR,

TEXTUREMAGFILTER integer NEAREST,
LINEAR

TEXTUREBORDERCOLOR 4 floats any 4 values in[0, 1]
TEXTUREPRIORITY float any value in[0, 1]
TEXTUREMIN LOD float any value
TEXTUREMAXLOD float any value
TEXTUREBASELEVEL integer any non-negative integer
TEXTUREMAXLEVEL integer any non-negative integer
TEXTURELODBIAS float any value
DEPTHTEXTUREMODE enum LUMINANCE, INTENSITY , ALPHA

TEXTURECOMPAREMODE enum NONE, COMPARER TO TEXTURE

TEXTURECOMPAREFUNC enum LEQUAL, GEQUAL

LESS, GREATER,
EQUAL, NOTEQUAL,
ALWAYS, NEVER

GENERATEMIPMAP boolean TRUEor FALSE

Table 3.19: Texture parameters and their values.
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Major Axis Direction Target sc tc ma

+rx TEXTURECUBEMAPPOSITIVE X −rz −ry rx

−rx TEXTURECUBEMAPNEGATIVEX rz −ry rx

+ry TEXTURECUBEMAPPOSITIVE Y rx rz ry

−ry TEXTURECUBEMAPNEGATIVEY rx −rz ry

+rz TEXTURECUBEMAPPOSITIVE Z rx −ry rz

−rz TEXTURECUBEMAPNEGATIVEZ −rx −ry rz

Table 3.20: Selection of cube map images based on major axis direction of texture
coordinates.

s =
1
2

(
sc

|ma|
+ 1

)

t =
1
2

(
tc
|ma|

+ 1
)

This new( s t ) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sections3.8.7through3.8.9.

3.8.7 Texture Wrap Modes

Wrap modes defined by the values ofTEXTUREWRAPS, TEXTUREWRAPT, or
TEXTUREWRAPR respectively affect the interpretation ofs, t, andr texture co-
ordinates. The effect of each mode is described below.

Wrap Mode REPEAT

Wrap modeREPEATignores the integer part of texture coordinates, using only the
fractional part. (For a numberf , the fractional part isf − bfc, regardless of the
sign off ; recall that thebc function truncates towards−∞.)

REPEATis the default behavior for all texture coordinates.

Wrap Mode CLAMP

Wrap modeCLAMPclamps texture coordinates to range[0, 1].
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Wrap Mode CLAMPTO EDGE

Wrap modeCLAMPTO EDGEclamps texture coordinates at all mipmap levels such
that the texture filter never samples a border texel. The color returned when clamp-
ing is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range[min,max]. The minimum value
is defined as

min =
1

2N

whereN is the size of the one-, two-, or three-dimensional texture image in the
direction of clamping. The maximum value is defined as

max = 1−min

so that clamping is always symmetric about the[0, 1] mapped range of a texture
coordinate.

Wrap Mode CLAMPTO BORDER

Wrap modeCLAMPTO BORDERclamps texture coordinates at all mipmaps such
that the texture filter always samples border texels for fragments whose correspond-
ing texture coordinate is sufficiently far outside the range[0, 1]. The color returned
when clamping is derived only from the border texels of the texture image, or from
the constant border color if the texture image does not have a border.

Texture coordinates are clamped to the range[min,max]. The minimum value
is defined as

min =
−1
2N

whereN is the size (not including borders) of the one-, two-, or three-dimensional
texture image in the direction of clamping. The maximum value is defined as

max = 1−min

so that clamping is always symmetric about the[0, 1] mapped range of a texture
coordinate.

Wrap Mode MIRROREDREPEAT

Wrap modeMIRROREDREPEATfirst mirrors the texture coordinate, where mirror-
ing a valuef computes
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mirror(f) =

{
f − bfc, bfc is even
1− (f − bfc), bfc is odd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMPTO EDGE.

3.8.8 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed tomagnifyor minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factorρ(x, y) and thelevel of detailparameter
λ(x, y), defined as

λ′(x, y) = log2[ρ(x, y)] + clamp(texobjbias + texunitbias)

λ =


lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(3.16)

texobjbias is the value ofTEXTURELODBIAS for the bound texture object (as
described in section3.8.4), andtexunitbias is the value ofTEXTURELODBIAS

for the current texture unit (as described in section3.8.13). The sum of these
values is clamped to the range[−biasmax, biasmax] wherebiasmax is the value of
the implementation defined constantMAXTEXTURELODBIAS .

If λ(x, y) is less than or equal to the constantc (described below in sec-
tion 3.8.9) the texture is said to be magnified; if it is greater, the texture is minified.

The initial values oflodmin and lodmax are chosen so as to never clamp the
normal range ofλ. They may be respecified for a specific texture by callingTex-
Parameter[if] with pname set toTEXTUREMIN LODor TEXTUREMAXLOD re-
spectively.
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Let s(x, y) be the function that associates ans texture coordinate with each
set of window coordinates(x, y) that lie within a primitive; definet(x, y) and
r(x, y) analogously. Letu(x, y) = 2ns(x, y), v(x, y) = 2mt(x, y), andw(x, y) =
2lr(x, y), wheren, m, andl are as defined by equations3.13, 3.14, and3.15with
ws, hs, andds equal to the width, height, and depth of the image array whose level
is levelbase. For a one-dimensional texture, definev(x, y) ≡ 0 andw(x, y) ≡ 0;
for a two-dimensional texture, definew(x, y) ≡ 0. For a polygon,ρ is given at a
fragment with window coordinates(x, y) by

ρ = max


√(

∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2

,

√(
∂u

∂y

)2

+
(

∂v

∂y

)2

+
(

∂w

∂y

)2


(3.17)
where∂u/∂x indicates the derivative ofu with respect to windowx, and similarly
for the other derivatives.

For a line, the formula is

ρ =

√(
∂u

∂x
∆x +

∂u

∂y
∆y

)2

+
(

∂v

∂x
∆x +

∂v

∂y
∆y

)2

+
(

∂w

∂x
∆x +

∂w

∂y
∆y

)2/
l,

(3.18)
where∆x = x2 − x1 and∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints andl =

√
∆x2 + ∆y2. For a point, pixel

rectangle, or bitmap,ρ ≡ 1.
While it is generally agreed that equations3.17and3.18give the best results

when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the idealρ with a functionf(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of|∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and|∂w/∂y|

2. Let

mu = max
{∣∣∣∣∂u

∂x

∣∣∣∣ , ∣∣∣∣∂u

∂y

∣∣∣∣}

mv = max
{∣∣∣∣∂v

∂x

∣∣∣∣ , ∣∣∣∣∂v

∂y

∣∣∣∣}

mw = max
{∣∣∣∣∂w

∂x

∣∣∣∣ , ∣∣∣∣∂w

∂y

∣∣∣∣} .

Thenmax{mu,mv,mw} ≤ f(x, y) ≤ mu + mv + mw.
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Whenλ indicates minification, the value assigned toTEXTUREMIN FILTER

is used to determine how the texture value for a fragment is selected. When
TEXTUREMIN FILTER is NEAREST, the texel in the image array of levellevelbase

that is nearest (in Manhattan distance) to that specified by(s, t, r) is obtained. This
means the texel at location(i, j, k) becomes the texture value, withi given by

i =

{
buc, s < 1
2n − 1, s = 1

(3.19)

(Recall that ifTEXTUREWRAPS is REPEAT, then0 ≤ s < 1.) Similarly, j is found
as

j =

{
bvc, t < 1
2m − 1, t = 1

(3.20)

andk is found as

k =

{
bwc, r < 1
2l − 1, r = 1

(3.21)

For a one-dimensional texture,j andk are irrelevant; the texel at locationi be-
comes the texture value. For a two-dimensional texture,k is irrelevant; the texel at
location(i, j) becomes the texture value.

When TEXTUREMIN FILTER is LINEAR, a 2 × 2 × 2 cube of texels in the
image array of levellevelbase is selected. This cube is obtained by first clamping
texture coordinates as described in section3.8.7(if the wrap mode for a coordinate
is CLAMPor CLAMPTO EDGE) and computing

i0 =

{
bu− 1/2c mod 2n, TEXTUREWRAPS is REPEAT

bu− 1/2c, otherwise

j0 =

{
bv − 1/2c mod 2m, TEXTUREWRAPT is REPEAT

bv − 1/2c, otherwise

and

k0 =

{
bw − 1/2c mod 2l, TEXTUREWRAPR is REPEAT

bw − 1/2c, otherwise

Then

i1 =

{
(i0 + 1) mod 2n, TEXTUREWRAPS is REPEAT

i0 + 1, otherwise
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j1 =

{
(j0 + 1) mod 2m, TEXTUREWRAPT is REPEAT

j0 + 1, otherwise

and

k1 =

{
(k0 + 1) mod 2l, TEXTUREWRAPR is REPEAT

k0 + 1, otherwise

Let
α = frac(u− 1/2)

β = frac(v − 1/2)

γ = frac(w − 1/2)

wherefrac(x) denotes the fractional part ofx.
For a three-dimensional texture, the texture valueτ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

whereτijk is the texel at location(i, j, k) in the three-dimensional texture image.
For a two-dimensional texture,

τ = (1− α)(1− β)τi0j0 + α(1− β)τi1j0 + (1− α)βτi0j1 + αβτi1j1 (3.22)

whereτij is the texel at location(i, j) in the two-dimensional texture image.
And for a one-dimensional texture,

τ = (1− α)τi0 + ατi1

whereτi is the texel at locationi in the one-dimensional texture.
If any of the selectedτijk, τij , or τi in the above equations refer to a border

texel withi < −bs, j < −bs, k < −bs, i ≥ ws − bs, j ≥ hs − bs, or j ≥ ds − bs,
then the border values defined byTEXTUREBORDERCOLORare used instead of the
unspecified value or values. If the texture contains color components, the values of
TEXTUREBORDERCOLORare interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table3.15. If the texture contains depth
components, the first component ofTEXTUREBORDERCOLORis interpreted as a
depth value.
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Mipmapping

TEXTUREMIN FILTER values NEARESTMIPMAPNEAREST,
NEARESTMIPMAPLINEAR, LINEAR MIPMAPNEAREST,
and LINEAR MIPMAPLINEAR each require the use of amipmap. A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of levellevelbase, excluding its bor-
der, has dimensions2n× 2m× 2l, then there aremax{n, m, l}+1 image arrays in
the mipmap. Each array subsequent to the array of levellevelbase has dimensions

σ(i− 1)× σ(j − 1)× σ(k − 1)

where the dimensions of the previous array are

σ(i)× σ(j)× σ(k)

and

σ(x) =

{
2x x > 0
1 x ≤ 0

until the last array is reached with dimension1× 1× 1.
Each array in a mipmap is defined usingTexImage3D, TexImage2D, Copy-

TexImage2D, TexImage1D, orCopyTexImage1D; the array being set is indicated
with the level-of-detail argumentlevel. Level-of-detail numbers proceed from
levelbase for the original texture array throughp = max{n, m, l}+ levelbase with
each unit increase indicating an array of half the dimensions of the previous one as
already described. All arrays fromlevelbase throughq = min{p, levelmax} must
be defined, as discussed in section3.8.10.

The values oflevelbase and levelmax may be respecified for a specific tex-
ture by callingTexParameter[if] with pname set toTEXTUREBASELEVEL or
TEXTUREMAXLEVEL respectively.

The errorINVALID VALUEis generated if either value is negative.
The mipmap is used in conjunction with the level of detail to approximate the

application of an appropriately filtered texture to a fragment. Letc be the value
of λ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values ofλ where
λ > c).

For mipmap filters NEARESTMIPMAPNEAREST and
LINEAR MIPMAPNEAREST, thedth mipmap array is selected, where
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d =


levelbase, λ ≤ 1

2
dlevelbase + λ + 1

2e − 1, λ > 1
2 , levelbase + λ ≤ q + 1

2
q, λ > 1

2 , levelbase + λ > q + 1
2

(3.23)

The rules forNEARESTor LINEAR filtering are then applied to the selected
array.

For mipmap filtersNEARESTMIPMAPLINEAR andLINEAR MIPMAPLINEAR,
the leveld1 andd2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(3.24)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(3.25)

The rules forNEARESTor LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture valuesτ1 and τ2. The final
texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

Automatic Mipmap Generation

If the value of texture parameterGENERATEMIPMAPis TRUE, making any change
to the interior or border texels of thelevelbase array of a mipmap will also compute
a complete set of mipmap arrays (as defined in section3.8.10) derived from the
modified levelbase array. Array levelslevelbase + 1 throughp are replaced with
the derived arrays, regardless of their previous contents. All other mipmap arrays,
including thelevelbase array, are left unchanged by this computation.

The internal formats and border widths of the derived mipmap arrays all match
those of thelevelbase array, and the dimensions of the derived arrays follow the
requirements described in section3.8.10.

The contents of the derived arrays are computed by repeated, filtered reduction
of the levelbase array. No particular filter algorithm is required, though a2x2 box
filter is recommended as the default filter. In some implementations, filter quality
may be affected by hints (section5.6).

Automatic mipmap generation is available only for non-proxy texture image
targets.
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3.8.9 Texture Magnification

When λ indicates magnification, the value assigned toTEXTUREMAGFILTER

determines how the texture value is obtained. There are two possible values
for TEXTUREMAGFILTER : NEARESTandLINEAR. NEARESTbehaves exactly as
NEARESTfor TEXTUREMIN FILTER (equations3.19, 3.20, and3.21 are used);
LINEAR behaves exactly asLINEAR for TEXTUREMIN FILTER (equation3.22is
used). The level-of-detaillevelbase texture array is always used for magnification.

Finally, there is the choice ofc, the minification vs. magnification switch-
over point. If the magnification filter is given byLINEAR and the minification
filter is given byNEARESTMIPMAPNEARESTor NEARESTMIPMAPLINEAR, then
c = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwisec = 0.

3.8.10 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application is consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures, a texture iscompleteif the fol-
lowing conditions all hold true:

• The set of mipmap arrayslevelbase throughq (whereq is defined in the
Mipmapping discussion of section3.8.8) were each specified with the same
internal format.

• The border widths of each array are the same.

• The dimensions of the arrays follow the sequence described in theMipmap-
ping discussion of section3.8.8.

• levelbase ≤ levelmax

• Each dimension of thelevelbase array is positive.

Array levelsk wherek < levelbase or k > q are insignificant to the definition of
completeness.

For cube map textures, a texture iscube completeif the following conditions
all hold true:

• The levelbase arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.
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• Thelevelbase arrays were each specified with the same internal format.

• Thelevelbase arrays each have the same border width.

Finally, a cube map texture ismipmap cube completeif, in addition to being
cube complete, each of the six texture images considered individually is complete.

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map textur-
ing) is enabled for a texture unit at the time a primitive is rasterized, if
TEXTUREMIN FILTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, then it is as if texture mapping
were disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive
is rasterized, and if the bound cube map texture is not cube complete, then it
is as if texture mapping were disabled for that texture unit. Additionally, if
TEXTUREMIN FILTER is one that requires a mipmap, and if the texture is not
mipmap cube complete, then it is as if texture mapping were disabled for that tex-
ture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if amipmap completeset of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays wherelevelbase = 0 andlevelmax = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array.

3.8.11 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each
array has associated with it a width, height (two- and three-dimensional and cube-
map only), and depth (three-dimensional only), a border width, an integer describ-
ing the internal format of the image, six integer values describing the resolutions
of each of the red, green, blue, alpha, luminance, and intensity components of the
image, a boolean describing whether the image is compressed or not, and an in-
teger size of a compressed image. Each initial texture array is null (zero width,
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height, and depth, zero border width, internal format1, with the compressed flag
set toFALSE, a zero compressed size, and zero-sized components). Next, there
are the two sets of texture properties; each consists of the selected minification
and magnification filters, the wrap modes fors, t (two- and three-dimensional
and cubemap only), andr (three-dimensional only), theTEXTUREBORDERCOLOR,
two integers describing the minimum and maximum level of detail, two inte-
gers describing the base and maximum mipmap array, a boolean flag indicating
whether the texture is resident, a boolean indicating whether automatic mipmap
generation should be performed, three integers describing the depth texture mode,
compare mode, and compare function, and the priority associated with each
set of properties. The value of the resident flag is determined by the GL and
may change as a result of other GL operations. The flag may only be queried,
not set, by applications (see section3.8.12). In the initial state, the value as-
signed toTEXTUREMIN FILTER is NEARESTMIPMAPLINEAR, and the value for
TEXTUREMAGFILTER is LINEAR. s, t, andr wrap modes are all set toREPEAT.
The values ofTEXTUREMIN LODandTEXTUREMAXLODare -1000 and 1000 re-
spectively. The values ofTEXTUREBASELEVEL andTEXTUREMAXLEVEL are 0
and 1000 respectively.TEXTUREPRIORITY is 1.0, andTEXTUREBORDERCOLOR

is (0,0,0,0). The values ofDEPTHTEXTUREMODE, TEXTURECOMPAREMODE, and
TEXTURECOMPAREFUNCareLUMINANCE, NONE, andLEQUALrespectively. The
initial value ofTEXTURERESIDENTis determined by the GL.

In addition to the one-, two-, and three-dimensional and the six cube map sets
of image arrays, the partially instantiated one-, two-, and three-dimensional and
one cube map set of proxy image arrays are maintained. Each proxy array includes
width, height (two- and three-dimensional arrays only), depth (three-dimensional
arrays only), border width, and internal format state values, as well as state for
the red, green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties. When
TexImage3D is executed withtargetspecified asPROXYTEXTURE3D, the three-
dimensional proxy state values of the specified level-of-detail are recomputed and
updated. If the image array would not be supported byTexImage3Dcalled with
targetset toTEXTURE3D, no error is generated, but the proxy width, height, depth,
border width, and component resolutions are set to zero. If the image array would
be supported by such a call toTexImage3D, the proxy state values are set exactly
as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way when
TexImage1Dis executed withtargetspecified asPROXYTEXTURE1D, or TexIm-
age2Dis executed withtargetspecified asPROXYTEXTURE2D.

The cube map proxy arrays are operated on in the same manner whenTexIm-
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age2Dis executed with thetarget field specified asPROXYTEXTURECUBEMAP,
with the addition that determining that a given cube map texture is supported with
PROXYTEXTURECUBEMAPindicates that all six of the cube map 2D images are
supported. Likewise, if the specifiedPROXYTEXTURECUBEMAPis not supported,
none of the six cube map 2D images are supported.

There is no image associated with any of the proxy textures. There-
fore PROXYTEXTURE1D, PROXYTEXTURE2D, and PROXYTEXTURE3D, and
PROXYTEXTURECUBEMAPcannot be used as textures, and their images must
never be queried usingGetTexImage. The errorINVALID ENUMis generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, andGetTexParameterivor GetTexParameterfvmay not be called
with a proxy texturetarget. The errorINVALID ENUMis generated if this is at-
tempted.

3.8.12 Texture Objects

In addition to the default texturesTEXTURE1D, TEXTURE2D, TEXTURE3D, and
TEXTURECUBEMAP, named one-, two-, and three-dimensional and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

A texture object is created bybinding an unused name toTEXTURE1D,
TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAP. The binding is effected by
calling

void BindTexture( enum target, uint texture);

with target set to the desired texture target andtextureset to the unused name.
The resulting texture object is a new state vector, comprising all the state values
listed in section3.8.11, set to the same initial values. If the new texture object is
bound toTEXTURE1D, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAP, it is
and remains a one-, two-, three-dimensional, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object to ei-
therTEXTURE1D, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAP. The error
INVALID OPERATIONis generated if an attempt is made to bind a texture object
of different dimensionality than the specifiedtarget. If the bind is successful no
change is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
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state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the initial state, TEXTURE1D, TEXTURE2D, TEXTURE3D,
andTEXTURECUBEMAPhave one-, two-, three-dimensional, and cube map tex-
ture state vectors respectively associated with them. In order that access to these
initial textures not be lost, they are treated as texture objects all of whose names
are 0. The initial one-, two-, three-dimensional, and cube map texture is therefore
operated upon, queried, and applied asTEXTURE1D, TEXTURE2D, TEXTURE3D,
or TEXTURECUBEMAPrespectively while 0 is bound to the corresponding targets.

Texture objects are deleted by calling

void DeleteTextures( sizei n, uint *textures);

texturescontainsn names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to one of the targetsTEXTURE1D, TEXTURE2D,
TEXTURE3D, or TEXTURECUBEMAPis deleted, it is as thoughBindTexture had
been executed with the sametargetandtexturezero. Unused names intexturesare
silently ignored, as is the value zero.

The command

void GenTextures( sizei n, uint *textures);

returnsn previously unused texture object names intextures. These names are
marked as used, for the purposes ofGenTexturesonly, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said to beresident. The command

boolean AreTexturesResident( sizei n, uint *textures,
boolean *residences);

returnsTRUEif all of the n texture objects named intexturesare resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named intexturesis not resident, thenFALSE is returned, and the residence
of each texture object is returned inresidences. Otherwise the contents ofresi-
dencesare not changed. If any of the names intexturesare unused or are zero,
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FALSE is returned, the errorINVALID VALUEis generated, and the contents ofres-
idencesare indeterminate. The residence status of a single bound texture object
can also be queried by callingGetTexParameterivor GetTexParameterfvwith
target set to the target to which the texture object is bound, andpname set to
TEXTURERESIDENT.

AreTexturesResidentindicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures( sizei n, uint *textures,
clampf *priorities );

sets the priorities of then texture objects named intexturesto the values inpriori-
ties. Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by callingTexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfvwith target set to the target to
which the texture object is bound,pname set toTEXTUREPRIORITY, andparam
or params specifying the new priority value (which is clamped to the range [0,1]
before being assigned).PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional texture objects, is shared among all texture units. A texture object
may be bound to more than one texture unit simultaneously. After a texture object
is bound, any GL operations on that target object affect any other texture units to
which the same texture object is bound.

Texture binding is affected by the setting of the stateACTIVE TEXTURE.
If a texture object is deleted, it as if all texture units which are bound to that

texture object are rebound to texture object zero.

3.8.13 Texture Environments and Texture Functions

The command

void TexEnv{if}( enum target, enum pname, T param);
void TexEnv{if}v( enum target, enum pname, T params);

Version 1.5 - October 30, 2003



3.8. TEXTURING 159

sets parameters of thetexture environmentthat specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one ofTEXTUREENVor TEXTUREFILTER CONTROL. pname
is a symbolic constant indicating the parameter to be set. In the first form of the
command,paramis a value to which to set a single-valued parameter; in the sec-
ond form,paramsis a pointer to an array of parameters: either a single symbolic
constant or a value or group of values to which the parameter should be set.

When target is TEXTUREFILTER CONTROL, pname must be
TEXTURELODBIAS . In this case the parameter is a single signed floating
point value,texunitbias, that biases the level of detail parameterλ as described in
section3.8.8.

When target is TEXTUREENV, the possible environment parame-
ters are TEXTUREENVMODE, TEXTUREENVCOLOR, COMBINERGB, and
COMBINEALPHA. TEXTUREENVMODE may be set to one ofREPLACE,
MODULATE, DECAL, BLEND, ADD, or COMBINE. TEXTUREENVCOLOR is set
to an RGBA color by providing four single-precision floating-point values in the
range[0, 1] (values outside this range are clamped to it). If integers are provided
for TEXTUREENVCOLOR, then they are converted to floating-point as specified in
table2.9for signed integers.

The value ofTEXTUREENVMODEspecifies atexture function. The result of
this function depends on the fragment and the texture array value. The precise
form of the function depends on the base internal formats of the texture arrays that
were last specified.

Cf andAf
3 are the primary color components of the incoming fragment;Cs

andAs are the components of the texture source color, derived from the filtered
texture valuesRt, Gt, Bt, At, Lt, andIt as shown in table3.21; Cc andAc are
the components of the texture environment color;Cp andAp are the components
resulting from the previous texture environment (for texture environment 0,Cp and
Ap are identical toCf andAf , respectively); andCv andAv are the primary color
components computed by the texture function.

All of these color values are in the range[0, 1]. The texture functions are spec-
ified in tables3.22, 3.23, and3.24.

If the value ofTEXTUREENVMODEis COMBINE, the form of the texture func-
tion depends on the values ofCOMBINERGBandCOMBINEALPHA, according to
table 3.24. The RGBand ALPHA results of the texture function are then multi-
plied by the values ofRGBSCALEandALPHASCALE, respectively. The results are

3In the remainder of section3.8.13, the notationCx is used to denote each of the three components
Rx, Gx, andBx of a color specified byx. Operations onCx are performed independently for each
color component. TheA component of colors is usually operated on in a different fashion, and is
therefore denoted separately byAx.
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Texture Base Texture source color
Internal Format Cs As

ALPHA (0, 0, 0) At

LUMINANCE (Lt, Lt, Lt) 1
LUMINANCEALPHA (Lt, Lt, Lt) At

INTENSITY (It, It, It) It

RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.21: Correspondence of filtered texture components to texture source com-
ponents.

Texture Base REPLACE MODULATE DECAL

Internal Format Function Function Function

ALPHA Cv = Cf Cv = Cf undefined
Av = As Av = AfAs

LUMINANCE Cv = Cs Cv = CfCs undefined
(or 1) Av = Af Av = Af

LUMINANCEALPHA Cv = Cs Cv = CfCs undefined
(or 2) Av = As Av = AfAs

INTENSITY Cv = Cs Cv = CfCs undefined
Av = As Av = AfAs

RGB Cv = Cs Cv = CfCs Cv = Cs

(or 3) Av = Af Av = Af Av = Af

RGBA Cv = Cs Cv = CfCs Cv = Cf (1−As) + CsAs

(or 4) Av = As Av = AfAs Av = Af

Table 3.22: Texture functionsREPLACE, MODULATE, andDECAL.
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Texture Base BLEND ADD

Internal Format Function Function

ALPHA Cv = Cf Cv = Cf

Av = AfAs Av = AfAs

LUMINANCE Cv = Cf (1− Cs) + CcCs Cv = Cf + Cs

(or 1) Av = Af Av = Af

LUMINANCEALPHA Cv = Cf (1− Cs) + CcCs Cv = Cf + Cs

(or 2) Av = AfAs Av = AfAs

INTENSITY Cv = Cf (1− Cs) + CcCs Cv = Cf + Cs

Av = Af (1−As) + AcAs Av = Af + As

RGB Cv = Cf (1− Cs) + CcCs Cv = Cf + Cs

(or 3) Av = Af Av = Af

RGBA Cv = Cf (1− Cs) + CcCs Cv = Cf + Cs

(or 4) Av = AfAs Av = AfAs

Table 3.23: Texture functionsBLENDandADD.

clamped to[0, 1].

The argumentsArg0, Arg1, and Arg2 are determined by the values of
SRCn RGB, SRCn ALPHA, OPERANDn RGBand OPERANDn ALPHA, wheren = 0,
1, or 2, as shown in tables3.25and 3.26. Cs

n andAs
n denote the texture source

color and alpha from the texture image bound to texture unitn

The state required for the current texture environment, for each texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating theRGBcombiner function and a six-valued integer indicating the
ALPHAcombiner function, six four-valued integers indicating the combinerRGB

andALPHAsource arguments, three four-valued integers indicating the combiner
RGBoperands, three two-valued integers indicating the combinerALPHAoperands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are eachMODULATE, the combinerRGBandALPHAsources
are eachTEXTURE, PREVIOUS, andCONSTANTfor sources 0, 1, and 2 respectively,
the combinerRGBoperands for sources 0 and 1 are eachSRCCOLOR, the combiner
RGBoperand for source 2, as well as for the combinerALPHAoperands, are each
SRCALPHA, and the environment color is(0, 0, 0, 0).

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.
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COMBINERGB Texture Function

REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 + Arg1
ADDSIGNED Arg0 + Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 + Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1
DOT3RGB 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+

(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

DOT3RGBA 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

COMBINEALPHA Texture Function

REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 + Arg1
ADDSIGNED Arg0 + Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 + Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1

Table 3.24:COMBINEtexture functions. The scalar expression computed for the
DOT3RGBandDOT3RGBAfunctions is placed into each of the 3 (RGB) or 4 (RGBA)
components of the output. The result generated fromCOMBINEALPHAis ignored
for DOT3RGBA.
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SRCn RGB OPERANDn RGB Argument

TEXTURE SRCCOLOR Cs

ONEMINUSSRCCOLOR 1− Cs

SRCALPHA As

ONEMINUSSRCALPHA 1−As

TEXTUREn SRCCOLOR Cs
n

ONEMINUSSRCCOLOR 1− Cs
n

SRCALPHA As
n

ONEMINUSSRCALPHA 1−As
n

CONSTANT SRCCOLOR Cc

ONEMINUSSRCCOLOR 1− Cc

SRCALPHA Ac
ONEMINUSSRCALPHA 1−Ac

PRIMARYCOLOR SRCCOLOR Cf

ONEMINUSSRCCOLOR 1− Cf

SRCALPHA Af

ONEMINUSSRCALPHA 1−Af

PREVIOUS SRCCOLOR Cp

ONEMINUSSRCCOLOR 1− Cp

SRCALPHA Ap

ONEMINUSSRCALPHA 1−Ap

Table 3.25: Arguments forCOMBINERGBfunctions.

SRCn ALPHA OPERANDn ALPHA Argument

TEXTURE SRCALPHA As

ONEMINUSSRCALPHA 1−As

TEXTUREn SRCALPHA As
n

ONEMINUSSRCALPHA 1−As
n

CONSTANT SRCALPHA Ac

ONEMINUSSRCALPHA 1−Ac

PRIMARYCOLOR SRCALPHA Af

ONEMINUSSRCALPHA 1−Af

PREVIOUS SRCALPHA Ap

ONEMINUSSRCALPHA 1−Ap

Table 3.26: Arguments forCOMBINEALPHAfunctions.
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3.8.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison func-
tion. Texture parameterTEXTURECOMPAREMODEspecifies the comparison
operands, and parameterTEXTURECOMPAREFUNCspecifies the comparison func-
tion. The format of the resulting texture sample is determined by the value of
DEPTHTEXTUREMODE.

Depth Texture Comparison Mode

If the currently bound texture’s base internal format isDEPTHCOMPONENT, then
TEXTURECOMPAREMODE, TEXTURECOMPAREFUNCandDEPTHTEXTUREMODE

control the output of the texture unit as described below. Otherwise, the texture
unit operates in the normal manner and texture comparison is bypassed.

Let Dt be the depth texture value, in the range[0, 1], andR be the interpolated
texture coordinate clamped to the range[0, 1]. Then the effective texture valueLt,
It, or At is computed as follows:

If the value ofTEXTURECOMPAREMODEis NONE, then

r = Dt

If the value ofTEXTURECOMPAREMODEis COMPARER TO TEXTURE), thenr
depends on the texture comparison function as shown in table3.27.

The resulting r is assigned to Lt, It, or At if the value of
DEPTHTEXTUREMODEis respectivelyLUMINANCE, INTENSITY , or ALPHA.

If the value of TEXTUREMAGFILTER is not NEAREST, or the value of
TEXTUREMIN FILTER is not NEARESTor NEARESTMIPMAPNEAREST, then r
may be computed by comparing more than one depth texture value to the texture
R coordinate. The details of this are implementation-dependent, butr should be a
value in the range[0, 1] which is proportional to the number of comparison passes
or failures.

3.8.15 Texture Application

Texturing is enabled or disabled using the genericEnable and Disable com-
mands, respectively, with the symbolic constantsTEXTURE1D, TEXTURE2D,
TEXTURE3D, or TEXTURECUBEMAPto enable the one-, two-, three-dimensional,
or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If the cube map texture and any of the three-, two-, or one-dimensional
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Texture Comparison FunctionComputed resultr

LEQUAL r =

{
1.0, R ≤ Dt

0.0, R > Dt

GEQUAL r =

{
1.0, R ≥ Dt

0.0, R < Dt

LESS r =

{
1.0, R < Dt

0.0, R ≥ Dt

GREATER r =

{
1.0, R > Dt

0.0, R ≤ Dt

EQUAL r =

{
1.0, R = Dt

0.0, R 6= Dt

NOTEQUAL r =

{
1.0, R 6= Dt

0.0, R = Dt

ALWAYS r = 1.0
NEVER r = 0.0

Table 3.27: Depth texture comparison functions.

textures is enabled, then cube map texturing is used. If all texturing is disabled, a
rasterized fragment is passed on unaltered to the next stage of the GL (although its
texture coordinates may be discarded). Otherwise, a texture value is found accord-
ing to the parameter values of the currently bound texture image of the appropriate
dimensionality using the rules given in sections3.8.6through3.8.9. This texture
value is used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this function
replaces the incoming fragment’s primary R, G, B, and A values. These are the
color values passed to subsequent operations. Other data associated with the in-
coming fragment remain unchanged, except that the texture coordinates may be
discarded.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing
texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11. The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
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TE0

TE1

TE2

TE3

CT0

CT1

CT2

CT3

C’f

CTi  = texture color from texture lookup i

Cf     = fragment primary color input to texturing

C’f   = fragment color output from texturing

TEi  = texture environment i 

Cf

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment color
passed as input to the next texture unit in the pipeline.

tion and the second texture unit’s environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit’s environment function and so on. The tex-
ture unit selected byActiveTexture determines which texture unit’s environment
is modified byTexEnv calls.

If the value ofTEXTUREENVMODEis COMBINE, the texture function associated
with a given texture unit is computed using the values specified bySRCn RGB,
SRCn ALPHA, OPERANDn RGBandOPERANDn ALPHA. If TEXTUREn is specified as
SRCn RGBor SRCn ALPHA, the texture value from texture unitn will be used in
computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit.
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If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section3.8.10) bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the
results of texture blending are undefined.

The required state, per texture unit, is four bits indicating whether each of one-,
two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
cpri (which texturing, if enabled, may have modified) and a secondary colorcsec.

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA colorc. The A component ofc
is taken from the A component ofcpri; the A component ofcsec is unused. The
components ofc are then clamped to the range[0, 1]. If color sum is disabled, then
cpri is assigned toc.

Color sum is enabled or disabled using the genericEnable andDisablecom-
mands, respectively, with the symbolic constantCOLORSUM. If lighting is enabled
the color sum stage is always applied, ignoring the value ofCOLORSUM.

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factorf . Fog is enabled and disabled with theEnableandDisable
commands using the symbolic constantFOG.

This factorf is computed according to one of three equations:

f = exp(−d · c), (3.26)

f = exp(−(d · c)2), or (3.27)

f =
e− c

e− s
(3.28)
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If the fog source, as defined below, isFRAGMENTDEPTH, then c is the eye-
coordinate distance from the eye,(0, 0, 0, 1) in eye coordinates, to the fragment
center. If the fog source isFOGCOORD, thenc is the interpolated value of the fog
coordinate for this fragment. The equation and the fog source, along with eitherd
or e ands, is specified with

void Fog{if}( enum pname, T param);
void Fog{if}v( enum pname, T params);

If pnameis FOGMODE, then param must be, orparamsmust point to an inte-
ger that is one of the symbolic constantsEXP, EXP2, or LINEAR, in which case
equation3.26, 3.27, or 3.28, respectively, is selected for the fog calculation (if,
when3.28is selected,e = s, results are undefined). Ifpnameis FOGCOORDSRC,
thenparammust be, orparamsmust point to an integer that is one of the sym-
bolic constantsFRAGMENTDEPTHor FOGCOORD. If pname is FOGDENSITY,
FOGSTART, or FOGEND, thenparam is or paramspoints to a value that isd, s,
or e, respectively. Ifd is specified less than zero, the errorINVALID VALUEre-
sults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center by|ze|. Further,f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to computef , the result
is clamped to[0, 1] to obtain the finalf .

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, ifCr represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fCr + (1− f)Cf .

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values ofCf are specified by callingFog with pnameequal toFOGCOLOR;
in this caseparamspoints to four values comprisingCf . If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table2.9 for signed integers. Each component ofCf is clamped to[0, 1] when
specified.

In color index mode, the formula for fog blending is

I = ir + (1− f)if

where ir is the rasterized fragment’s color index andif is a single-precision
floating-point value.(1 − f)if is rounded to the nearest fixed-point value with
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the same number of bits to the right of the binary point asir, and the integer por-
tion of I is masked (bitwise ANDed) with2n− 1, wheren is the number of bits in
a color in the color index buffer (buffers are discussed in chapter4). The value of
if is set by callingFog with pnameset toFOGINDEX andparambeing orparams
pointing to a single value for the fog index. The integer part ofif is masked with
2n − 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point valuesd, e, ands, an RGBA fog color and a fog
color index, a two-valued integer to select the fog coordinate source, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOGCOORDSRCis FRAGMENTDEPTH, FOGMODEis EXP, d = 1.0, e = 1.0, and
s = 0.0; Cf = (0, 0, 0, 0) andif = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized fragment
was produced, then the computed coverage value is applied to the fragment. In
RGBA mode, the value is multiplied by the fragment’s alpha (A) value to yield a
final alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in section3.2.

3.12 Multisample Point Fade

If multisampling is enabled and the rasterized fragment results from a point primi-
tive, then the computed fade factor from equation3.2is applied to the fragment. In
RGBA mode, the fade factor is multiplied by the fragment’s alpha value to yield a
final alpha value. In color index mode, the fade factor has no effect.
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Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer are grouped together
into abitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into severallogical buffers. These are thecolor, depth, stencil, and
accumulationbuffers. The color buffer actually consists of a number of buffers:
thefront leftbuffer, thefront right buffer, theback leftbuffer, theback rightbuffer,
and some number ofauxiliary buffers. Typically the contents of the front buffers
are displayed on a color monitor while the contents of the back buffers are invisi-
ble. (Monoscopic contexts display only the front left buffer; stereoscopic contexts
display both the front left and the front right buffers.) The contents of the aux-
iliary buffers are never visible. All color buffers must have the same number of
bitplanes, although an implementation or context may choose not to provide right
buffers, back buffers, or auxiliary buffers at all. Further, an implementation or
context may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B, and,
optionally, A unsigned integer values. The number of bitplanes in each of the color
buffers, the depth buffer, the stencil buffer, and the accumulation buffer is fixed and
window dependent. If an accumulation buffer is provided, it must have at least as
many bitplanes per R, G, and B color component as do the color buffers.

The initial state of all provided bitplanes is undefined.
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Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of(xw, yw) mod-
ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
Figure4.1, in the order in which they are performed. Figure4.1 diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location(xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.
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4.1.2 Scissor Test

The scissor test determines if(xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor( int left, int bottom, sizei width,
sizei height);

If left ≤ xw < left + width andbottom≤ yw < bottom+ height, then the scissor
test passes. Otherwise, the test fails and the fragment is discarded. The test is
enabled or disabled usingEnable or Disable using the constantSCISSORTEST.
When disabled, it is as if the scissor test always passes. If eitherwidth or height
is less than zero, then the errorINVALID VALUEis generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial stateleft = bottom = 0; width andheight are determined
by the size of the GL window. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLEALPHATO COVERAGE, SAMPLEALPHATO ONE, SAMPLECOVERAGE,
SAMPLECOVERAGEVALUE, andSAMPLECOVERAGEINVERT. No changes to the
fragment alpha or coverage values are made at this step ifMULTISAMPLEis dis-
abled, or ifSAMPLEBUFFERSis not a value of one.

SAMPLEALPHATO COVERAGE,
SAMPLEALPHATO ONE, andSAMPLECOVERAGEare enabled and disabled by call-
ing Enable andDisable with cap specified as one of the three token values. All
three values are queried by callingIsEnabled with cap set to the desired token
value. If SAMPLEALPHATO COVERAGEis enabled, a temporary coverage value
is generated where each bit is determined by the alpha value at the corresponding
sample location. The temporary coverage value is then ANDed with the fragment
coverage value. Otherwise the fragment coverage value is unchanged at this point.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.
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Next, if SAMPLEALPHATO ONEis enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.

Finally, if SAMPLECOVERAGEis enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated
in the same manner as the one described above, but as a function of
the value ofSAMPLECOVERAGEVALUE. The function need not be identical,
but it must have the same properties of proportionality and invariance. If
SAMPLECOVERAGEINVERT is TRUE, the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragment coverage.

The values ofSAMPLECOVERAGEVALUE and SAMPLECOVERAGEINVERT

are specified by calling

void SampleCoverage( clampf value, boolean invert );

with value set to the desired coverage value, andinvert set toTRUEor FALSE.
value is clamped to [0,1] before being stored asSAMPLECOVERAGEVALUE.
SAMPLECOVERAGEVALUE is queried by callingGetFloatv with pnameset to
SAMPLECOVERAGEVALUE. SAMPLECOVERAGEINVERT is queried by calling
GetBooleanvwith pnameset toSAMPLECOVERAGEINVERT.

4.1.4 Alpha Test

This step applies only in RGBA mode. In color index mode, proceed to the next
operation. The alpha test discards a fragment conditional on the outcome of a
comparison between the incoming fragment’s alpha value and a constant value.
The comparison is enabled or disabled with the genericEnable andDisablecom-
mands using the symbolic constantALPHATEST. When disabled, it is as if the
comparison always passes. The test is controlled with

void AlphaFunc( enum func, clampf ref );

func is a symbolic constant indicating the alpha test function;ref is a reference
value. ref is clamped to lie in[0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in section2.14.9. For purposes
of the alpha test, the fragment’s alpha value is also rounded to the nearest inte-
ger. The possible constants specifying the test function areNEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning pass the fragment
never, always, if the fragment’s alpha value is less than, less than or equal to, equal
to, greater than or equal to, greater than, or not equal to the reference value, respec-
tively.
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The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference value to be0
and the function to beALWAYS. Initially, the alpha test is disabled.

4.1.5 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location(xw, yw) and a reference
value. The test is controlled with

void StencilFunc( enum func, int ref, uint mask);
void StencilOp( enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with theEnable andDisablecommands, using the
symbolic constantSTENCIL TEST. When disabled, the stencil test and associated
modifications are not made, and the fragment is always passed.

ref is an integer reference value that is used in the unsigned stencil comparison.
It is clamped to the range[0, 2s − 1], wheres is the number of bits in the stencil
buffer. funcis a symbolic constant that determines the stencil comparison function;
the eight symbolic constants areNEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, if the
reference value is less than, less than or equal to, equal to, greater than or equal to,
greater than, or not equal to the masked stored value in the stencil buffer. Thes least
significant bits ofmaskare bitwise ANDed with both the reference and the stored
stencil value. The ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the stored sten-
cil value if this or certain subsequent tests fail or pass.sfail indicates what action
is taken if the stencil test fails. The symbolic constants areKEEP, ZERO, REPLACE,
INCR, DECR, INVERT, INCR WRAP, andDECRWRAP. These correspond to keeping
the current value, setting to zero, replacing with the reference value, incrementing
with saturation, decrementing with saturation, bitwise inverting it, incrementing
without saturation, and decrementing without saturation.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in0, and decrementing0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (below) fails (dpfail), or if it passes (dppass).
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If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed toStencilFunc and StencilOp, and a
bit indicating whether stencil testing is enabled or disabled. In the initial state,
stenciling is disabled, the stencil reference value is zero, the stencil comparison
function is ALWAYS, and the stencilmaskis all ones. Initially, all three stencil
operations areKEEP. If there is no stencil buffer, no stencil modification can occur,
and it is as if the stencil tests always pass, regardless of any calls toStencilOp.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the genericEnable andDisablecom-
mands using the symbolic constantDEPTHTEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc( enum func);

This command takes a single symbolic constant: one ofNEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’szw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s(xw, yw)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s(xw, yw) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s(xw, yw)
location is set to the fragment’szw value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESSand the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.
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4.1.7 Occlusion Queries

Occlusion queries can be used to track the number of fragments or samples that
pass the depth test.

Occlusion queries are associated with query objects.
An occlusion query can be started and finished by calling

void BeginQuery( enum target, uint id );
void EndQuery( enum target);

wheretargetis SAMPLESPASSED. If BeginQuery is called with an unusedid, that
name is marked as used and associated with a new query object.

BeginQuery with a target of SAMPLESPASSEDresets the current samples-
passed count to zero and sets the query active state toTRUEand the active query
id to id. EndQuery with a target ofSAMPLESPASSEDinitializes a copy of the
current samples-passed count into the active occlusion query object’s results value,
sets the active occlusion query object’s result available toFALSE, sets the query
active state toFALSE, and the active query id to 0.

If BeginQuery is called with anid of zero, while another query is already in
progress with the sametarget, or whereid is the name of a query currently in
progress, anINVALID OPERATIONerror is generated.

If EndQuery is called while no query with the sametarget is in progress, an
INVALID OPERATIONerror is generated.

When an occlusion query is active, the samples-passed count increases by
a certain quantity for each fragment that passes the depth test. If the value of
SAMPLEBUFFERSis 0, then the samples-passed count increases by 1 for each
fragment. If the value ofSAMPLEBUFFERSis 1, then the samples-passed count
increases by the number of samples whose coverage bit is set. However, imple-
mentations, at their discretion, are allowed to instead increase the samples-passed
count by the value ofSAMPLESif any sample in the fragment is covered.

If the samples-passed count overflows, i.e., exceeds the value2n − 1 (wheren
is the number of bits in the samples-passed count), its value becomes undefined. It
is recommended, but not required, that implementations handle this overflow case
by saturating at2n − 1 and incrementing no further.

The command

void GenQueries( sizei n, uint *ids );

returnsn previously unused query object names inids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery. Query objects contain one piece of state, an integer result value. This
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result value is initialized to zero when the object is created. Any positive integer
except for zero (which is reserved for the GL) is a valid query object name.

Query objects are deleted by calling

void DeleteQueries( sizei n, const uint *ids );

idscontainsn names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names inidsare silently ignored.

Calling eitherGenQueriesor DeleteQuerieswhile any query of any target is
active causes anINVALID OPERATIONerror to be generated.

The necessary state is a single bit indicating whether an occlusion query is
active, the identifier of the currently active occlusion query, and a counter keeping
track of the number of samples that have passed.

4.1.8 Blending

Blending combines the incomingsourcefragment’s R, G, B, and A values with
the destinationR, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Source and destination values are combined according to theblend equation,
quadruplets of source and destination weighting factors determined by theblend
functions, and a constantblend colorto obtain a new set of R, G, B, and A values,
as described below. Each of these floating-point values is clamped to[0, 1] and
converted back to a fixed-point value in the manner described in section2.14.9.
The resulting four values are sent to the next operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending applies only in RGBA mode; in
color index mode it is bypassed. Blending is enabled or disabled usingEnable or
Disablewith the symbolic constantBLEND. If it is disabled, or if logical operation
on color values is enabled (section4.1.10), proceed to the next operation.

Blend Equation

Blending is controlled by theblend equation, defined by the command

void BlendEquation( enum mode);

In the following discussion,Cs refers to the source color for an incoming frag-
ment,Cd refers to the destination color at the corresponding framebuffer location,
andCc refers to the constant blend color. Individual RGBA components of these
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colors are denoted by subscripts ofs, d, andc respectively.C refers to the new
color resulting from blending.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme given in section2.14.9(Final Color Processing),
as are source (fragment) components. Constant color components are taken to be
floating point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating point. This conversion must leave the values 0 and 1 invariant.
Blending computations are treated as if carried out in floating point.

BlendEquation modeFUNCADDdefines the blending equation as

C = CsS + CdD

whereCs and Cd are the source and destination colors, andS and D are
quadruplets of weighting factors determined by theblend functionsdescribed be-
low.

If modeis FUNCSUBTRACT, the blending equation is defined as

C = CsS − CdD

If modeis FUNCREVERSESUBTRACT, the blending equation is defined as

C = CdD − CsS

If modeis MIN, the blending equation is defined as

C = min(Cs, Cd)

Finally, if modeis MAX, the blending equation is defined as

C = max(Cs, Cd)

The blending equation is evaluated separately for each color component and
the corresponding weighting factors.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparate( enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

void BlendFunc( enum src, enum dst);
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Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0
ONE (1, 1, 1) 1
SRCCOLOR (Rs, Gs, Bs) As

ONEMINUSSRCCOLOR (1, 1, 1)− (Rs, Gs, Bs) 1−As

DST COLOR (Rd, Gd, Bd) Ad

ONEMINUSDST COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRCALPHA (As, As, As) As

ONEMINUSSRCALPHA (1, 1, 1)− (As, As, As) 1−As

DST ALPHA (Ad, Ad, Ad) Ad

ONEMINUSDST ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANTCOLOR (Rc, Gc, Bc) Ac

ONEMINUSCONSTANTCOLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANTALPHA (Ac, Ac, Ac) Ac

ONEMINUSCONSTANTALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRCALPHASATURATE1 (f, f, f)2 1

Table 4.1: RGBand ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 SRCALPHASATURATEis valid only for source RGB and alpha blending func-
tions.
2 f = min(As, 1−Ad).

BlendFuncSeparateargumentssrcRGBanddstRGBdetermine the source and
destination RGB blend functions, respectively, whilesrcAlphaanddstAlphadeter-
mine the source and destination alpha blend functions.BlendFunc argumentsrc
determines both RGB and alpha source functions, whiledstdetermines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in Table4.1.

Blend Color

The constant colorCc to be used in blending is specified with the command

void BlendColor( clampf red, clampf green, clampf blue,
clampf alpha);
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The four parameters are clamped to the range[0, 1] before being stored. The
constant color can be used in both the source and destination blending functions

Blending State

The state required for blending is an integer indicating the blending equation, four
integers indicating the source and destination RGB and alpha blending functions,
four floating-point values to store the RGBA constant blend color, and a bit in-
dicating whether blending is enabled or disabled. The initial blending equation
is FUNCADD. The initial blending functions areONEfor the source RGB and al-
pha functions andZEROfor the destination RGB and alpha functions. The initial
constant blend color is(R,G,B,A) = (0, 0, 0, 0). Initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color forCd. If a color buffer has no A value, then
Ad is taken to be1.

4.1.9 Dithering

Dithering selects between two color values or indices. In RGBA mode, consider
the value of any of the color components as a fixed-point value withm bits to the
left of the binary point, wherem is the number of bits allocated to that component
in the framebuffer; call each such valuec. For eachc, dithering selects a value
c1 such thatc1 ∈ {max{0, dce − 1}, dce} (after this selection, treatc1 as a fixed
point value in [0,1] withm bits). This selection may depend on thexw andyw

coordinates of the pixel. In color index mode, the same rule applies withc being a
single color index.c must not be larger than the maximum value representable in
the framebuffer for either the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragment’sx andy window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer; a color index is rounded to the nearest integer representable in the
color index portion of the framebuffer.

Dithering is enabled withEnableand disabled withDisableusing the symbolic
constantDITHER. The state required is thus a single bit. Initially, dithering is
enabled.
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4.1.10 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(xw, yw) coordinates. The logical operation on color indices is enabled or dis-
abled withEnableor Disableusing the symbolic constantINDEX LOGIC OP. (For
compatibility with GL version 1.0, the symbolic constantLOGIC OPmay also be
used.) The logical operation on color values is enabled or disabled withEnableor
Disableusing the symbolic constantCOLORLOGIC OP. If the logical operation is
enabled for color values, it is as if blending were disabled, regardless of the value
of BLEND.

The logical operation is selected by

void LogicOp( enum op );

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in Table4.2. In this table,s is the value of the incoming fragment
andd is the value stored in the framebuffer. The numeric values assigned to the
symbolic constants are the same as those assigned to the corresponding symbolic
values in the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be given byCOPY,
and to be disabled.

4.1.11 Additional Multisample Fragment Operations

If the DrawBuffer mode isNONE, no change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, the
alpha test, stencil test, depth test, blending, and dithering operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the alpha,
stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffers are not modified at this point.
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Argument value Operation
CLEAR 0
AND s ∧ d
ANDREVERSE s ∧ ¬d
COPY s
ANDINVERTED ¬s ∧ d
NOOP d
XOR s xor d
OR s ∨ d
NOR ¬(s ∨ d)
EQUIV ¬(s xor d)
INVERT ¬d
ORREVERSE s ∨ ¬d
COPYINVERTED ¬s
ORINVERTED ¬s ∨ d
NAND ¬(s ∧ d)
SET all 1’s

Table 4.2: Arguments toLogicOp and their corresponding operations.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLEis disabled, and the value ofSAMPLEBUFFERSis one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the color
sample values are combined to produce a single color value, and that value is writ-
ten into each color buffer that is currently enabled, based on theDrawBuffer mode.
An implementation may defer the writing of the color buffer until a later time,
but the state of the framebuffer must behave as if the color buffer was updated
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as each fragment was processed. The method of combination is not specified,
though a simple average computed independently for each color component is rec-
ommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are written.
This is accomplished with

void DrawBuffer ( enum buf );

buf is a symbolic constant specifying zero, one, two, or four buffers for writing.
The constants areNONE, FRONTLEFT, FRONTRIGHT, BACKLEFT, BACKRIGHT,
FRONT, BACK, LEFT, RIGHT, FRONTANDBACK, andAUX0 throughAUXn, where
n + 1 is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffersfront left, front right,
back left, andback right, and to theauxiliary buffers. Arguments other thanAUXi

that omit reference toLEFT or RIGHT refer to both left and right buffers. Argu-
ments other thanAUXi that omit reference toFRONTor BACKrefer to both front and
back buffers.AUXi enables drawing only toauxiliary buffer i. EachAUXi adheres
to AUXi = AUX0+ i. The constants and the buffers they indicate are summarized
in Table4.3. If DrawBuffer is is supplied with a constant (other thanNONE) that
does not indicate any of the color buffers allocated to the GL context, the error
INVALID OPERATIONresults.

Indicating a buffer or buffers usingDrawBuffer causes subsequent pixel color
value writes to affect the indicated buffers. If more than one color buffer is se-
lected for drawing, blending and logical operations are computed and applied in-
dependently for each buffer. CallingDrawBuffer with a value ofNONEinhibits
the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.
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symbolic front front back back aux
constant left right left right i

NONE

FRONTLEFT •
FRONTRIGHT •
BACKLEFT •
BACKRIGHT •
FRONT • •
BACK • •
LEFT • •
RIGHT • •
FRONTANDBACK • • • •
AUXi •

Table 4.3: Arguments toDrawBuffer and the buffers that they indicate.

The state required to handle buffer selection is a set of up to4 + n bits. 4 bits
indicate if the front left buffer, the front right buffer, the back left buffer, or the
back right buffer, are enabled for color writing. The othern bits indicate which of
the auxiliary buffers is enabled for color writing. In the initial state, the front buffer
or buffers are enabled if there are no back buffers; otherwise, only the back buffer
or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The commands

void IndexMask( uint mask);
void ColorMask( boolean r, boolean g, boolean b,

boolean a );

control the color buffer or buffers (depending on which buffers are currently indi-
cated for writing). The least significantn bits of mask, wheren is the number of
bits in a color index buffer, specify a mask. Where a1 appears in this mask, the
corresponding bit in the color index buffer (or buffers) is written; where a0 ap-
pears, the bit is not written. This mask applies only in color index mode. In RGBA
mode,ColorMask is used to mask the writing of R, G, B and A values to the color
buffer or buffers.r, g, b, anda indicate whether R, G, B, or A values, respectively,
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are written or not (a value ofTRUEmeans that the corresponding value is written).
In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing.

The depth buffer can be enabled or disabled for writingzw values using

void DepthMask( boolean mask);

If maskis non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The command

void StencilMask( uint mask);

controls the writing of particular bits into the stencil planes. The least significants
bits ofmaskcomprise an integer mask (s is the number of bits in the stencil buffer),
just as forIndexMask. The initial state is for the stencil plane mask to be all ones.

The state required for the various masking operations is two integers and a bit:
an integer for color indices, an integer for stencil values, and a bit for depth values.
A set of four bits is also required indicating which color components of an RGBA
value should be written. In the initial state, the integer masks are all ones as are the
bits controlling depth value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When the value ofSAMPLEBUFFERSis one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buffer. The color
mask has no effect on modifications to the color buffers. If the color mask is
entirely disabled, the color sample values must still be combined (as described
above) and the result used to replace the color values of the buffers enabled by
DrawBuffer .

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear( bitfield buf );

is the bitwise OR of a number of values indicating which buffers are
to be cleared. The values areCOLORBUFFERBIT , DEPTHBUFFERBIT ,
STENCIL BUFFERBIT , andACCUMBUFFERBIT , indicating the buffers currently

Version 1.5 - October 30, 2003



186 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE . . .

enabled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends
on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the errorINVALID VALUEis generated.

void ClearColor( clampf r, clampf g, clampf b,
clampf a );

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped to[0, 1] and converted to fixed-point according to the rules
of section2.14.9.

void ClearIndex( float index);

sets the clear color index.indexis converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2m − 1, wherem is the number of bits in a color index value stored in the
framebuffer.

void ClearDepth( clampd d );

takes a floating-point value that is clamped to the range[0, 1] and converted to
fixed-point according to the rules for a windowz value given in section2.11.1.
Similarly,

void ClearStencil( int s );

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

void ClearAccum( float r, float g, float b, float a );

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the range[−1, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in the last section (4.2.2) are also effective. If a buffer is not
present, then aClear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0,0,0,0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.
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Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by theClear mask bitCOLORBUFFERBIT and
theDrawBuffer mode. If theDrawBuffer mode isNONE, the color samples of the
multisample buffer cannot be cleared.

If the Clear mask bitsDEPTHBUFFERBIT or STENCIL BUFFERBIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum( enum op, float value);

(except for clearing it).op is a symbolic constant indicating an accumulation buffer
operation, andvalue is a floating-point value to be used in that operation. The
possible operations areACCUM, LOAD, RETURN, MULT, andADD.

When the scissor test is enabled (section4.1.2), then only those pixels within
the current scissor box are updated by anyAccum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[−1, 1]. UsingACCUMobtains R, G, B, and A components from the buffer currently
selected for reading (section4.3.2). Each component, considered as a fixed-point
value in [0, 1]. (see section2.14.9), is converted to floating-point. Each result is
then multiplied byvalue. The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and the re-
sulting color value replaces the current accumulation buffer color value.

The LOADoperation has the same effect asACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURNoperation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A components byvalue, and clamps the re-
sults to the range[0, 1] The resulting color value is placed in the buffers currently
enabled for color writing as if it were a fragment produced from rasterization, ex-
cept that the only per-fragment operations that are applied (if enabled) are the pixel
ownership test, the scissor test (section4.1.2), and dithering (section4.1.9). Color
masking (section4.2.2) is also applied.
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TheMULToperation multiplies each R, G, B, and A in the accumulation buffer
by valueand then returns the scaled color components to their corresponding ac-
cumulation buffer locations. this casevalueis clamped to the range[−1, 1]. ADDis
the same asMULTexcept thatvalueis added to each of the color components.

The color components operated on byAccum must be clamped only if the
operation isRETURN. In this case, a value sent to the enabled color buffers is first
clamped to[0, 1]. Otherwise, results are undefined if the result of an operation on a
color component is out of the range[−1, 1]. If there is no accumulation buffer, or if
the GL is in color index mode,Accum generates the errorINVALID OPERATION.

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using theDrawPixels and
ReadPixelscommands.CopyPixelscan be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation ofDrawPixels was described in section3.6.4, except if theformat
argument wasSTENCIL INDEX. In this case, all operations described forDraw-
Pixels take place, but window(x, y) coordinates, each with the corresponding
stencil index, are produced in lieu of fragments. Each coordinate-stencil index
pair is sent directly to the per-fragment operations, bypassing the texture, fog, and
antialiasing application stages of rasterization. Each pair is then treated as a frag-
ment for purposes of the pixel ownership and scissor tests; all other per-fragment
operations are bypassed. Finally, each stencil index is written to its indicated loca-
tion in the framebuffer, subject to the current setting ofStencilMask.

The errorINVALID OPERATIONresults if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure4.2. We describe the stages of the pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixels( int x, int y, sizei width, sizei height,
enum format, enum type, void *data );
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Parameter Name Type Initial Value Valid Range

PACKSWAPBYTES boolean FALSE TRUE/FALSE

PACKLSB FIRST boolean FALSE TRUE/FALSE

PACKROWLENGTH integer 0 [0,∞)
PACKSKIP ROWS integer 0 [0,∞)
PACKSKIP PIXELS integer 0 [0,∞)
PACKALIGNMENT integer 4 1,2,4,8
PACKIMAGEHEIGHT integer 0 [0,∞)
PACKSKIP IMAGES integer 0 [0,∞)

Table 4.4:PixelStoreparameters pertaining toReadPixels, GetColorTable, Get-
ConvolutionFilter , GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple, andGetTexImage.

The arguments afterx andy to ReadPixelscorrespond to those ofDrawPixels.
The pixel storage modes that apply toReadPixelsand other commands that query
images (see section6.1) are summarized in Table4.4.

Obtaining Pixels from the Framebuffer

If the formatis DEPTHCOMPONENT, then values are obtained from the depth buffer.
If there is no depth buffer, the errorINVALID OPERATIONoccurs.

If there is a multisample buffer (SAMPLEBUFFERSis 1), then values are ob-
tained from the depth samples in this buffer. It is recommended that the depth
value of the centermost sample be used, though implementations may choose any
function of the depth sample values at each pixel.

If the format is STENCIL INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the errorINVALID OPERATIONoccurs.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled withReadBuffer.

The command

void ReadBuffer( enum src );

takes a symbolic constant as argument. The possible values areFRONTLEFT,
FRONTRIGHT, BACKLEFT, BACKRIGHT, FRONT, BACK, LEFT, RIGHT, andAUX0
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throughAUXn. FRONTandLEFT refer to the front left buffer,BACKrefers to the
back left buffer, andRIGHT refers to the front right buffer. The other constants cor-
respond directly to the buffers that they name. If the requested buffer is missing,
then the errorINVALID OPERATIONis generated. The initial setting forRead-
Buffer is FRONTif there is no back buffer andBACKotherwise.

ReadPixelsobtains values from the selected buffer from each pixel with lower
left hand corner at(x+ i, y + j) for 0 ≤ i < width and0 ≤ j < height; this pixel
is said to be theith pixel in thejth row. If any of these pixels lies outside of the
window allocated to the current GL context, the values obtained for those pixels
are undefined. Results are also undefined for individual pixels that are not owned
by the current context. Otherwise,ReadPixelsobtains values from the selected
buffer, regardless of how those values were placed there.

If the GL is in RGBA mode, andformat is one ofRED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCEALPHA, then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained is
1.0. If format is COLORINDEX and the GL is in RGBA mode then the error
INVALID OPERATIONoccurs. If the GL is in color index mode, andformat is
not DEPTHCOMPONENTor STENCIL INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only ifformat is
neitherSTENCIL INDEX norDEPTHCOMPONENT. The R, G, B, and A values form
a group of elements. Each element is taken to be a fixed-point value in[0, 1] with
m bits, wherem is the number of bits in the corresponding color component of the
selected buffer (see section2.14.9).

Conversion of Depth values

This step applies only ifformat is DEPTHCOMPONENT. An element is taken to be a
fixed-point value in [0,1] withm bits, wherem is the number of bits in the depth
buffer (see section2.11.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.6.5. After the processing described in that section is completed, groups are
processed as described in the following sections.
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typeParameter Index Mask

UNSIGNEDBYTE 28 − 1
BITMAP 1
BYTE 27 − 1
UNSIGNEDSHORT 216 − 1
SHORT 215 − 1
UNSIGNEDINT 232 − 1
INT 231 − 1

Table 4.5: Index masks used byReadPixels. Floating point data are not masked.

Conversion to L

This step applies only to RGBA component groups, and only if theformatis either
LUMINANCEor LUMINANCEALPHA. A value L is computed as

L = R + G + B

whereR, G, andB are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if thetype is not FLOAT, final conversion consists of masking the
index with the value given in Table4.5; if the typeis FLOAT, then the integer index
is converted to a GL float data value.

For an RGBA color, each component is first clamped to[0, 1]. Then the
appropriate conversion formula from table4.6 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory for
DrawPixels. That is, theith group of thejth row (corresponding to theith pixel in
thejth row) is placed in memory just where theith group of thejth row would be
taken from forDrawPixels. SeeUnpacking under section3.6.4. The only differ-
ence is that the storage mode parameters whose names begin withPACK are used
instead of those whose names begin withUNPACK. If the format is RED, GREEN,
BLUE, ALPHA, or LUMINANCE, only the corresponding single element is written.
Likewise if theformatis LUMINANCEALPHA, RGB, or BGR, only the corresponding
two or three elements are written. Otherwise all the elements of each group are
written.
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typeParameter GL Data Type Component
Conversion Formula

UNSIGNEDBYTE ubyte c = (28 − 1)f
BYTE byte c = [(28 − 1)f − 1]/2
UNSIGNEDSHORT ushort c = (216 − 1)f
SHORT short c = [(216 − 1)f − 1]/2
UNSIGNEDINT uint c = (232 − 1)f
INT int c = [(232 − 1)f − 1]/2
FLOAT float c = f

UNSIGNEDBYTE 3 3 2 ubyte c = (2N − 1)f
UNSIGNEDBYTE 2 3 3 REV ubyte c = (2N − 1)f
UNSIGNEDSHORT5 6 5 ushort c = (2N − 1)f
UNSIGNEDSHORT5 6 5 REV ushort c = (2N − 1)f
UNSIGNEDSHORT4 4 4 4 ushort c = (2N − 1)f
UNSIGNEDSHORT4 4 4 4 REV ushort c = (2N − 1)f
UNSIGNEDSHORT5 5 5 1 ushort c = (2N − 1)f
UNSIGNEDSHORT1 5 5 5 REV ushort c = (2N − 1)f
UNSIGNEDINT 8 8 8 8 uint c = (2N − 1)f
UNSIGNEDINT 8 8 8 8 REV uint c = (2N − 1)f
UNSIGNEDINT 10 10 10 2 uint c = (2N − 1)f
UNSIGNEDINT 2 10 10 10 REV uint c = (2N − 1)f

Table 4.6: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representation (f ) to a datum of the specified GL
data type (c) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
query commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See Table2.2.) Equations withN as
the exponent are performed for each bitfield of the packed data type, withN set to
the number of bits in the bitfield.
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4.3.3 Copying Pixels

CopyPixelstransfers a rectangle of pixel values from one region of the framebuffer
to another. Pixel copying is diagrammed in Figure4.3.

void CopyPixels( int x, int y, sizei width, sizei height,
enum type);

typeis a symbolic constant that must be one ofCOLOR, STENCIL, or DEPTH, indi-
cating that the values to be transferred are colors, stencil values, or depth values,
respectively. The first four arguments have the same interpretation as the corre-
sponding arguments toReadPixels.

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in section3.6.5, just as ifRead-
Pixels were called with the corresponding arguments. If thetype is STENCIL

or DEPTH, then it is as if theformat for ReadPixelswere STENCIL INDEX or
DEPTHCOMPONENT, respectively. If thetypeis COLOR, then if the GL is in RGBA
mode, it is as if theformatwereRGBA, while if the GL is in color index mode, it is
as if theformatwereCOLORINDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been givenwidth andheight, beginning with final conversion
of elements. The effectiveformat is the same as that already described.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore, PixelTransfer, andPixelMap. This state has been summarized in
Tables3.1, 3.2, and3.3. The current setting ofReadBuffer, an integer, is also
required, along with the current raster position (section2.13). State set withPixel-
Store is GL client state.
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Figure 4.3. Operation ofCopyPixels. Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

Version 1.5 - October 30, 2003



Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider theRk-valued polynomialp(u) defined by

p(u) =
n∑

i=0

Bn
i (u)Ri (5.1)

with Ri ∈ Rk and

Bn
i (u) =

(
n

i

)
ui(1− u)n−i,

the ith Bernstein polynomial of degreen (recall that00 ≡ 1 and
(n
0

)
≡ 1). Each

Ri is acontrol point. The relevant command is

void Map1{fd}( enum target, T u1, T u2, int stride,
int order, T points);
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target k Values

MAP1VERTEX3 3 x, y, z vertex coordinates
MAP1VERTEX4 4 x, y, z, w vertex coordinates
MAP1INDEX 1 color index
MAP1COLOR4 4 R, G, B, A
MAP1NORMAL 3 x, y, z normal coordinates
MAP1TEXTURECOORD1 1 s texture coordinate
MAP1TEXTURECOORD2 2 s, t texture coordinates
MAP1TEXTURECOORD3 3 s, t, r texture coordinates
MAP1TEXTURECOORD4 4 s, t, r, q texture coordinates

Table 5.1: Values specified by thetargetto Map1. Values are given in the order in
which they are taken.

target is a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in Ta-
ble 5.1. order is equal ton + 1; The errorINVALID VALUEis generated iforder
is less than one or greater thanMAXEVAL ORDER. points is a pointer to a set of
n + 1 blocks of storage. Each block begins withk single-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Table5.1indicates howk depends ontargetand what
thek values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The errorINVALID VALUE results if stride is less than
k. The order of the polynomial,order, is also the number of blocks of storage
containing control points.

u1 andu2 give two floating-point values that define the endpoints of the pre-
image of the map. When a valueu′ is presented for evaluation, the formula used
is

p′(u′) = p(
u′ − u1

u2 − u1
).

The errorINVALID VALUEresults ifu1 = u2.
Map2 is analogous toMap1, except that it describes bivariate polynomials of

the form

p(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)Rij .

The form of theMap2 command is
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Figure 5.1. Map Evaluation.

void Map2{fd}( enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, T points);

target is a range type selected from the same group as is used forMap1, ex-
cept that the stringMAP1 is replaced withMAP2. points is a pointer to(n +
1)(m + 1) blocks of storage (uorder = n + 1 andvorder = m + 1; the er-
ror INVALID VALUE is generated if eitheruorder or vorder is less than one or
greater thanMAXEVAL ORDER). The values comprisingRij are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to bypoints. u1, u2, v1, andv2 define the pre-image rectangle
of the map; a domain point(u′, v′) is evaluated as

p′(u′, v′) = p(
u′ − u1

u2 − u1
,
v′ − v1

v2 − v1
).

The evaluation of a defined map is enabled or disabled withEnable and
Disable using the constant corresponding to the map as described above. The
evaluator map generates only coordinates for texture unitTEXTURE0. The error
INVALID VALUEresults if eitherustride or vstride is less thank, or if u1 is equal
to u2, or if v1 is equal tov2. If the value ofACTIVE TEXTUREis notTEXTURE0,
callingMap{12} generates the errorINVALID OPERATION.

Figure5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}( T arg );
void EvalCoord{12}{fd}v( T arg );
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EvalCoord1 causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordinate,u′. Eval-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinates,u′ andv′, in that order.

When one of theEvalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, it is as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except thatVertex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. IfColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.g.MAP1TEXTURECOORD1 andMAP1TEXTURECOORD2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if eitherMAP2VERTEX3 or MAP2VERTEX4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes yields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled withEnable
andDisablewith the symbolic constantAUTONORMAL. If automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAPVERTEX3, letq = p. ForMAPVERTEX4, letq = (x/w, y/w, z/w),
where(x, y, z, w) = p. Then let

m =
∂q
∂u
× ∂q

∂v
.

Then the generated analytic normal,n, is given byn = m/‖m‖.
The second way to carry out evaluations is to use a set of commands that pro-

vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.
This is done using
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void MapGrid1 {fd}( int n, T u′1, T u′2 );

for a one-dimensional map or

void MapGrid2 {fd}( int nu, T u′1, T u′2, int nv, T v′1,
T v′2 );

for a two-dimensional map. In the case ofMapGrid1 u′1 and u′2 describe an
interval, while n describes the number of partitions of the interval. The error
INVALID VALUE results ifn ≤ 0. For MapGrid2 , (u′1, v

′
1) specifies one two-

dimensional point and(u′2, v
′
2) specifies another.nu gives the number of partitions

betweenu′1 andu′2, andnv gives the number of partitions betweenv′1 andv′2. If
eithernu ≤ 0 or nv ≤ 0, then the errorINVALID VALUEoccurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMesh1( enum mode, int p1, int p2 );

modeis eitherPOINT or LINE . The effect is the same as performing the following
code fragment, with∆u′ = (u′2 − u′1)/n:

Begin( type);
for i = p1 to p2 step1.0

EvalCoord1( i * ∆u′ + u′1);
End();

whereEvalCoord1f or EvalCoord1d is substituted forEvalCoord1 as appro-
priate. If modeis POINT, then type is POINTS; if modeis LINE , then type is
LINE STRIP. The one requirement is that if eitheri = 0 or i = n, then the value
computed fromi ∗∆u′ + u′1 is preciselyu′1 or u′2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2( enum mode, int p1, int p2, int q1,
int q2 );

modemust beFILL , LINE , or POINT. Whenmodeis FILL , then these commands
are equivalent to the following, with∆u′ = (u′2−u′1)/n and∆v′ = (v′2− v′1)/m:

for i = q1 to q2 − 1 step1.0
Begin(QUADSTRIP);

for j = p1 to p2 step1.0
EvalCoord2( j * ∆u′ + u′1 , i * ∆v′ + v′1);
EvalCoord2( j * ∆u′ + u′1 , (i + 1) * ∆v′ + v′1);

End();
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If modeis LINE , then a call toEvalMesh2 is equivalent to

for i = q1 to q2 step1.0
Begin(LINE STRIP);
for j = p1 to p2 step1.0

EvalCoord2( j * ∆u′ + u′1 , i * ∆v′ + v′1);
End(); ;

for i = p1 to p2 step1.0
Begin(LINE STRIP);
for j = q1 to q2 step1.0

EvalCoord2( i * ∆u′ + u′1 , j * ∆v′ + v′1);
End();

If modeis POINT, then a call toEvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step1.0

for j = p1 to p2 step1.0
EvalCoord2( j * ∆u′ + u′1 , i * ∆v′ + v′1);

End();

Again, in all three cases, there is the requirement that0∗∆u′+u′1 = u′1, n∗∆u′+
u′1 = u′2, 0 ∗∆v′ + v′1 = v′1, andm ∗∆v′ + v′1 = v′2.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1( int p );

Calling it is equivalent to the command

EvalCoord1( p * ∆u′ + u′1);

with ∆u′ andu′1 defined as above.

void EvalPoint2( int p, int q );

is equivalent to the command

EvalCoord2( p * ∆u′ + u′1 , q * ∆v′ + v′1);

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification
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consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for eitheru or v, is
implementation dependent (one maximum applies to bothu andv), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordinates(0, 0, 0, 1)
(or the appropriate subset); all normal coordinate maps produce(0, 0, 1); RGBA
maps produce(1, 1, 1, 1); color index maps produce 1.0; and texture coordinate
maps produce(0, 0, 0, 1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D is0 and1.0, respectively; for 2-D, they are(0, 0)
and (1.0, 1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn into
some region of a window. The region is defined by the current model-view and
perspective matrices.

Selection works by returning an array of integer-valuednames. This array
represents the current contents of thename stack. This stack is controlled with the
commands

void InitNames( void );
void PopName( void );
void PushName( uint name);
void LoadName( uint name);

InitNames empties (clears) the name stack.PopNamepops one name off the top
of the name stack.PushNamecausesnameto be pushed onto the name stack.
LoadNamereplaces the value on the top of the stack withname. Loading a name
onto an empty stack generates the errorINVALID OPERATION. Popping a name off
of an empty stack generatesSTACKUNDERFLOW; pushing a name onto a full stack
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generatesSTACKOVERFLOW. The maximum allowable depth of the name stack is
implementation dependent but must be at least 64.

In selection mode, no fragments are rendered into the framebuffer. The GL is
placed in selection mode with

int RenderMode( enum mode);

modeis a symbolic constant: one ofRENDER, SELECT, or FEEDBACK. RENDERis
the default, corresponding to rendering as described until now.SELECTspecifies
selection mode, andFEEDBACKspecifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer( sizei n, uint *buffer );

buffer is a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, andn is an integer indicating the maximum number
of values that can be stored in that array. Placing the GL in selection mode before
SelectBufferhas been called results in an error ofINVALID OPERATIONas does
callingSelectBufferwhile in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by aRasterPoscommand intersects the clip volume (section2.12) then this prim-
itive (or RasterPoscommand) causes a selectionhit. WindowPoscommands al-
ways generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting ofPolygonMode.
When in selection mode, whenever a name stack manipulation command is exe-
cuted orRenderModeis called and there has been a hit since the last time the stack
was manipulated orRenderModewas called, then ahit record is written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinatez values of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was
written. The minimum and maximum (each of which lies in the range[0, 1]) are
each multiplied by232−1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (section3.5.5)
is performed on these values.
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Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceedn, then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by callingRenderModewith an argument value other
thanSELECT. WheneverRenderMode is called in selection mode, it returns the
number of hit records copied into the selection array and resets theSelectBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array untilRenderMode is called. If the selection array overflow flag
was set, thenRenderMode returns−1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset wheneverRenderMode is called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the currentRender-
Mode value. In the initial state, the GL is in theRENDERmode. Another flag is
used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the
maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by callingRen-
derMode with FEEDBACK. When the GL is in feedback mode, no fragments are
written to the framebuffer. Instead, information about primitives that would have
been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBuffer( sizei n, enum type, float *buffer );

buffer is a pointer to an array of floating-point values into which feedback in-
formation will be placed, andn is a number indicating the maximum number
of values that can be written to that array.type is a symbolic constant describ-
ing the information to be fed back for each vertex (see Figure5.2). The error
INVALID OPERATIONresults if the GL is placed in feedback mode before a call
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to FeedbackBufferhas been made, or if a call toFeedbackBuffer is made while
in feedback mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels, if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (section3.5.1) andPolygonModeinterpretation
of polygons (section3.5.4) has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decomposition).x, y, andz coordinates returned
by feedback are window coordinates; ifw is returned, it is in clip coordinates. No
depth offset arithmetic (section3.5.5) is performed on thez values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in Section2.14.8. Only coordinates for texture unit
TEXTURE0are returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

The GL is taken out of feedback mode by callingRenderMode with an ar-
gument value other thanFEEDBACK. When called while in feedback mode,Ren-
derMode returns the number of values placed in the feedback array and resets the
feedback array pointer to bebuffer. The return value never exceeds the maximum
number of values passed toFeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this case,RenderMode returns−1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed
to be written into the feedback buffer beforeRenderMode is called.

Figure5.2gives a grammar for the array produced by feedback. Each primitive
is indicated with a unique identifying value followed by some number of vertices.
A vertex is fed back as some number of floating-point values determined by the
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Type coordinates color texture total values

2D x, y – – 2
3D x, y, z – – 3

3D COLOR x, y, z k – 3 + k

3D COLORTEXTURE x, y, z k 4 7 + k

4D COLORTEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex.k is 1
in color index mode and4 in RGBA mode.

feedbacktype. Table5.2 gives the correspondence between feedbackbuffer and
the number of values returned for each vertex.

The command

void PassThrough( float token);

may be used as a marker in feedback mode.tokenis returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThroughcommands with respect to primitive specification is maintained by
feedback.PassThroughmay not occur betweenBegin andEnd. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feedbacktype. An over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client
state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the
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feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT TOKENvertex

line-segment:
LINE TOKENvertex vertex
LINE RESETTOKENvertex vertex

polygon:
POLYGONTOKENn polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKENvertex

pixel-rectangle:
DRAWPIXEL TOKENvertex
COPYPIXEL TOKENvertex

passthrough:
PASSTHROUGHTOKENf

vertex:
2D:

f f
3D:

f f f
3D COLOR:

f f f color
3D COLORTEXTURE:

f f f color tex
4D COLORTEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax.f is a floating-point number.n is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending withTOKEN
are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedbacktype. LINE TOKEN

andLINE RESETTOKENare identical except that the latter is returned only when
the line stipple is reset for that line segment.
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command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement , DrawArrays , DrawElements, or DrawRangeElementsare ac-
cumulated into a display list.)

A display list is begun by calling

void NewList( uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, andmodeis a
symbolic constant that controls the behavior of the GL during display list creation.
If modeis COMPILE, then commands are not executed as they are placed in the
display list. If modeis COMPILEANDEXECUTEthen commands are executed as
they are encountered, then placed in the display list. Ifn = 0, then the error
INVALID VALUEis generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList ( void );

occurs, after which the GL returns to its normal command execution state. It is
only whenEndList occurs that the specified display list is actually associated with
the index indicated withNewList. The errorINVALID OPERATIONis generated
if EndList is called without a previous matchingNewList, or if NewList is called
a second time before callingEndList . The errorOUTOF MEMORYis generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list mode isCOMPILEANDEXECUTE.

Once defined, a display list is executed by calling

void CallList ( uint n );

n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. Ifn = 0, then the errorINVALID VALUEis generated.

The command

void CallLists( sizei n, enum type, void *lists );

provides an efficient means for executing a number of display lists.n is an in-
teger indicating the number of display lists to be called, andlists is a pointer
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that points to an array of offsets. Each offset is constructed as determined by
lists as follows. First,typemay be one of the constantsBYTE, UNSIGNEDBYTE,
SHORT, UNSIGNEDSHORT, INT , UNSIGNEDINT , or FLOATindicating that the ar-
ray pointed to bylists is an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated). Further,typemay be one of2 BYTES, 3 BYTES, or 4 BYTES, indicat-
ing that the array contains sequences of 2, 3, or 4 unsigned bytes, in which case
each integer offset is constructed according to the following algorithm:

offset← 0
for i = 1 to b

offset← offset shifted left 8 bits
offset← offset + byte
advance to nextbytein the array

b is 2, 3, or 4, as indicated bytype. If n = 0, CallLists does nothing.
Each of then constructed offsets is taken in order and added to a display list

base to obtain a display list number. For each number, the indicated display list is
executed. The base is set by calling

void ListBase( uint base);

to specify the offset.
Indicating a display list index that does not correspond to any display list has no

effect.CallList or CallLists may appear inside a display list. (If themodesupplied
to NewList is COMPILEANDEXECUTE, then the appropriate lists are executed,
but theCallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least64.

Two commands are provided to manage display list indices.

uint GenLists( sizei s );

returns an integern such that the indicesn, . . . , n+s−1 are previously unused (i.e.
there ares previously unused display list indices starting atn). GenLists also has
the effect of creating an empty display list for each of the indicesn, . . . , n+ s− 1,
so that these indices all become used.GenLists returns 0 if there is no group ofs
contiguous previously unused display list indices, or ifs = 0.
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boolean IsList ( uint list );

returnsTRUEif list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists( uint list, sizei range);

wherelist is the index of the first display list to be deleted andrangeis the number
of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not com-
piled into the display list but are executed immediately. These are:GenLists,
DeleteLists, FeedbackBuffer, SelectBuffer, RenderMode, ColorPointer, Fog-
CoordPointer, EdgeFlagPointer, IndexPointer, NormalPointer, TexCoord-
Pointer, SecondaryColorPointer, VertexPointer, ClientActiveTexture, Inter-
leavedArrays, EnableClientState, DisableClientState, PushClientAttrib , Pop-
ClientAttrib , ReadPixels, PixelStore, GenTextures, DeleteTextures, AreTex-
turesResident, GenQueries, DeleteQueries, BindBuffer , DeleteBuffers, Gen-
Buffers, BufferData, BufferSubData, MapBuffer , UnmapBuffer, Flush, Fin-
ish, as well as all of theGet andIs commands (see Chapter6).

GL commands that source data from buffer objects dereference the buffer ob-
ject data in question at display list compile time, rather than encoding the buffer
ID and buffer offset into the display list. Only GL commands that are executed
immediately, rather than being compiled into a display list, are permitted to use a
buffer object as a data sink.

TexImage3D, TexImage2D, TexImage1D, Histogram, and Col-
orTable are executed immediately when called with the correspond-
ing proxy arguments PROXYTEXTURE3D; PROXYTEXTURE2D or
PROXYTEXTURECUBEMAP; PROXYTEXTURE1D; PROXYHISTOGRAM;
and PROXYCOLORTABLE, PROXYPOSTCONVOLUTIONCOLORTABLE, or
PROXYPOSTCOLORMATRIX COLORTABLE.

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the currentListBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.
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5.5 Flush and Finish

The command

void Flush( void );

indicates that all commands that have previously been sent to the GL must complete
in finite time.

The command

void Finish( void );

forces all previous GL commands to complete.Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint ( enum target, enum hint );

target is a symbolic constant indicating the behavior to be controlled, andhint
is a symbolic constant indicating what type of behavior is desired.target may
be one ofPERSPECTIVECORRECTIONHINT, indicating the desired quality of
parameter interpolation;POINT SMOOTHHINT, indicating the desired sampling
quality of points;LINE SMOOTHHINT, indicating the desired sampling quality of
lines; POLYGONSMOOTHHINT, indicating the desired sampling quality of poly-
gons; FOGHINT, indicating whether fog calculations are done per pixel or per
vertex;GENERATEMIPMAPHINT, indicating the desired quality and performance
of automatic mipmap level generation; andTEXTURECOMPRESSIONHINT, indi-
cating the desired quality and performance of compressing texture images.hint
must be one ofFASTEST, indicating that the most efficient option should be cho-
sen; NICEST, indicating that the highest quality option should be chosen; and
DONTCARE, indicating no preference in the matter.

For the texture compression hint, ahint of FASTESTindicates that texture im-
ages should be compressed as quickly as possible, whileNICEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTESTshould be used for one-time texture compression, andNICEST should
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be used if the compression results are to be retrieved byGetCompressedTexIm-
age(section6.1.4) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints isDONTCARE.
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Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set ofGet commands. There are
four commands for obtaining simple state variables:

void GetBooleanv( enum value, boolean *data );
void GetIntegerv( enum value, int *data );
void GetFloatv( enum value, float *data );
void GetDoublev( enum value, double *data );

The commands obtain boolean, integer, floating-point, or double-precision state
variables.valueis a symbolic constant indicating the state variable to return.data
is a pointer to a scalar or array of the indicated type in which to place the returned
data. In addition

boolean IsEnabled( enum value);

can be used to determine ifvalueis currently enabled (as withEnable) or disabled.
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6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. IfGetBooleanvis called,
a floating-point or integer value converts toFALSE if and only if it is zero (oth-
erwise it converts toTRUE). If GetIntegerv (or any of theGet commands below)
is called, a boolean value is interpreted as either1 or 0, and a floating-point value
is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRangevalue, a depth buffer clear value, or a normal coordinate. In these
cases, theGet command converts the floating-point value to an integer according
the INT entry of Table4.6; a value not in[−1, 1] converts to an undefined value.
If GetFloatv is called, a boolean value is interpreted as either1.0 or 0.0, an in-
teger is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the twoDepthRangeparameters are returned in the ordern
followed by f. Similarly, points for evaluator maps are returned in the order that
they appeared when passed toMap1. Map2 returnsRij in the [(uorder)i + j]th
block of values (see page197for i, j, uorder, andRij).

Matrices may be queried and returned in transposed form by callingGet-
Booleanv, GetIntegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSEMODELVIEWMATRIX, TRANSPOSEPROJECTIONMATRIX,
TRANSPOSETEXTUREMATRIX, or TRANSPOSECOLORMATRIX. The effect of

GetFloatv( TRANSPOSEMODELVIEWMATRIX, m);

is the same as the effect of the command sequence

GetFloatv( MODELVIEWMATRIX, m);
m = mT ;

Similar conversions occur when queryingTRANSPOSEPROJECTIONMATRIX,
TRANSPOSETEXTUREMATRIX, andTRANSPOSECOLORMATRIX.

Most texture state variables are qualified by the value ofACTIVE TEXTURE

to determine which server texture state vector is queried. Client texture
state variables such as texture coordinate array pointers are qualified by the
value of CLIENT ACTIVE TEXTURE. Tables6.5, 6.6, 6.9, 6.15, 6.18, and 6.29
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indicate those state variables which are qualified byACTIVE TEXTURE or
CLIENT ACTIVE TEXTUREduring state queries.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane( enum plane, double eqn[4] );
void GetLight{if}v( enum light, enum value, T data);
void GetMaterial{if}v( enum face, enum value, T data);
void GetTexEnv{if}v( enum env, enum value, T data);
void GetTexGen{ifd}v( enum coord, enum value, T data);
void GetTexParameter{if}v( enum target, enum value,

T data);
void GetTexLevelParameter{if}v( enum target, int lod,

enum value, T data);
void GetPixelMap{ui us f}v( enum map, T data);
void GetMap{ifd}v( enum map, enum value, T data);
void GetBufferParameteriv( enum target, enum value,

T data);

GetClipPlane always returns four double-precision values ineqn; these are the
coefficients of the plane equation ofplane in eye coordinates (these coordinates
are those that were computed when the plane was specified).

GetLight places information aboutvalue(a symbolic constant) forlight (also a
symbolic constant) indata. POSITION or SPOTDIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial , GetTexGen, GetTexEnv, GetTexParameter, andGetBuffer-
Parameter are similar toGetLight , placing information aboutvalue for the tar-
get indicated by their first argument intodata. The face argument toGetMa-
terial must be eitherFRONTor BACK, indicating the front or back material, re-
spectively. Theenv argument toGetTexEnv must be eitherTEXTUREENV or
TEXTUREFILTER CONTROL. Thecoordargument toGetTexGenmust be one of
S, T, R, or Q. For GetTexGen, EYE LINEAR coefficients are returned in the eye
coordinates that were computed when the plane was specified;OBJECTLINEAR

coefficients are returned in object coordinates.
GetTexParameter

parametertarget may be one ofTEXTURE1D, TEXTURE2D, TEXTURE3D, or

Version 1.5 - October 30, 2003



216 CHAPTER 6. STATE AND STATE REQUESTS

TEXTURECUBEMAP, indicating the currently bound one-, two-, three-dimensional,
or cube map texture object.GetTexLevelParameterparametertargetmay be one
of TEXTURE1D, TEXTURE2D, TEXTURE3D, TEXTURECUBEMAPPOSITIVE X,
TEXTURECUBEMAPNEGATIVEX, TEXTURECUBEMAPPOSITIVE Y,
TEXTURECUBEMAPNEGATIVEY, TEXTURECUBEMAPPOSITIVE Z,
TEXTURECUBEMAPNEGATIVEZ, PROXYTEXTURE1D, PROXYTEXTURE2D,
PROXYTEXTURE3D, or PROXYTEXTURECUBEMAP, indicating the one-, two-, or
three-dimensional texture object, or one of the six distinct 2D images making up
the cube map texture object or one-, two-, three-dimensional, or cube map proxy
state vector. Note thatTEXTURECUBEMAPis not a validtarget parameter for
GetTexLevelParameter, because it does not specify a particular cube map face.
value is a symbolic value indicating which texture parameter is to be obtained.
For GetTexParameter, valuemust be eitherTEXTURERESIDENT, or one of the
symbolic values in table3.19. The lod argument toGetTexLevelParameterde-
termines which level-of-detail’s state is returned. If thelod argument is less than
zero or if it is larger than the maximum allowable level-of-detail then the error
INVALID VALUEoccurs.

For texture images with uncompressed internal formats, queries of
value of TEXTUREREDSIZE , TEXTUREGREENSIZE , TEXTUREBLUE SIZE ,
TEXTUREALPHASIZE , TEXTURELUMINANCESIZE , TEXTUREDEPTHSIZE ,
and TEXTUREINTENSITY SIZE return the actual resolutions of the stored im-
age array components, not the resolutions specified when the image array was
defined. For texture images with a compressed internal format, the resolutions
returned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURECOMPRESSEDIMAGESIZE returns the
size (in ubyte s) of the compressed texture image that would be
returned by GetCompressedTexImage (section 6.1.4). Querying
TEXTURECOMPRESSEDIMAGESIZE is not allowed on texture images with
an uncompressed internal format or on proxy targets and will result in an
INVALID OPERATIONerror if attempted.

Queries ofvalueTEXTUREWIDTH, TEXTUREHEIGHT, TEXTUREDEPTH, and
TEXTUREBORDERreturn the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
asTEXTUREINTERNAL FORMAT, or asTEXTURECOMPONENTSfor compatibility
with GL version 1.0.
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ForGetPixelMap, themapmust be a map name from Table3.3. ForGetMap,
mapmust be one of the map types described in section5.1, andvaluemust be one
of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage( enum tex, int lod, enum format,
enum type, void *img );

is used to obtain texture images. It is somewhat different from the other get com-
mands;tex is a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained.TEXTURE1D, TEXTURE2D,
andTEXTURE3D indicate a one-, two-, or three-dimensional texture respectively,
while TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, and TEXTURECUBEMAPNEGATIVEZ indi-
cate the respective face of a cube map texture.lod is a level-of-detail number,
format is a pixel format from Table3.6, type is a pixel type from Table3.5, and
img is a pointer to a block of memory.

GetTexImageobtains component groups from a texture image with the indi-
cated level-of-detail. The components are assigned among R, G, B, and A ac-
cording to Table6.1, starting with the first group in the first row, and continuing
by obtaining groups in order from each row and proceeding from the first row to
the last, and from the first image to the last for three-dimensional textures. These
groups are then packed and placed in client memory. No pixel transfer operations
are performed on this image, but pixel storage modes that are applicable toRead-
Pixelsare applied.

For three-dimensional textures, pixel storage operations are applied as if the
image were two-dimensional, except that the additional pixel storage state values
PACKIMAGEHEIGHT andPACKSKIP IMAGESare applied. The correspondence
of texels to memory locations is as defined forTexImage3Din section3.8.1.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). CallingGet-
TexImage with lod less than zero or larger than the maximum allowable causes
the errorINVALID VALUECalling GetTexImagewith format of COLORINDEX,
STENCIL INDEX, or DEPTHCOMPONENTcauses the errorINVALID ENUM.

The command
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Base Internal Format R G B A

ALPHA 0 0 0 Ai

LUMINANCE(or 1) Li 0 0 1
LUMINANCEALPHA(or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1
RGB(or 3) Ri Gi Bi 1

RGBA(or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and filter return values.Ri, Gi, Bi, Ai, Li, andIi are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

void GetCompressedTexImage( enum target, int lod,
void *img );

is used to obtain texture images stored in compressed form. The parameterstarget,
lod, andimgare interpreted in the same manner as inGetTexImage. When called,
GetCompressedTexImagewritesTEXTURECOMPRESSEDIMAGESIZE ubyte s
of compressed image data to the memory pointed to byimg. The compressed
image data is formatted according to the definition of the texture’s internal format.
All pixel storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImagewith an lod value less than zero or greater
than the maximum allowable causes anINVALID VALUEerror. CallingGetCom-
pressedTexImagewith a texture image stored with an uncompressed internal for-
mat causes anINVALID OPERATIONerror.

The command

boolean IsTexture( uint texture);

returnsTRUEif textureis the name of a texture object. Iftextureis zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returnsFALSE. A name returned byGenTextures, but not yet bound, is
not the name of a texture object.

6.1.5 Stipple Query

The command
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void GetPolygonStipple( void *pattern );

obtains the polygon stipple. The pattern is packed into memory according to the
procedure given in section4.3.2 for ReadPixels; it is as if theheightandwidth
passed to that command were both equal to 32, thetypewere BITMAP, and the
formatwereCOLORINDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried usingGetFloatv with pname set
to the appropriate variable name. The top matrix on the color matrix
stack is returned byGetFloatv called with pnameset to COLORMATRIX or
TRANSPOSECOLORMATRIX. The depth of the color matrix stack, and the maxi-
mum depth of the color matrix stack, are queried withGetIntegerv, settingpname
to COLORMATRIX STACKDEPTHandMAXCOLORMATRIX STACKDEPTHrespec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable( enum target, enum format, enum type,
void *table );

targetmust be one of theregular color table names listed in table3.4. formatand
typeaccept the same values as do the corresponding parameters ofGetTexImage.
The one-dimensional color table image is returned to client memory starting at
table. No pixel transfer operations are performed on this image, but pixel storage
modes that are applicable toReadPixelsare performed. Color components that are
requested in the specifiedformat, but which are not included in the internal format
of the color lookup table, are returned as zero. The assignments of internal color
components to the components requested byformatare described in Table6.1.

The functions

void GetColorTableParameter{if}v( enum target,
enum pname, T params);

are used for integer and floating point query.
target must be one of the regular or proxy color table names listed

in table 3.4. pname is one of COLORTABLE SCALE, COLORTABLE BIAS ,
COLORTABLE FORMAT, COLORTABLE WIDTH, COLORTABLE REDSIZE ,
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COLORTABLE GREENSIZE , COLORTABLE BLUE SIZE ,
COLORTABLE ALPHASIZE , COLORTABLE LUMINANCESIZE ,
or COLORTABLE INTENSITY SIZE . The value of the specified parameter is re-
turned inparams.

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter ( enum target, enum format,
enum type, void *image);

target must beCONVOLUTION1D or CONVOLUTION2D. format and type accept
the same values as do the corresponding parameters ofGetTexImage. The one-
dimensional or two-dimensional images is returned to client memory starting at
image. Pixel processing and component mapping are identical to those ofGetTex-
Image.

The current contents of a separable filter image are queried using

void GetSeparableFilter( enum target, enum format,
enum type, void *row, void *column, void *span);

targetmust beSEPARABLE2D. formatandtypeaccept the same values as do the
corresponding parameters ofGetTexImage. The row and column images are re-
turned to client memory starting atrow andcolumnrespectively.spanis currently
unused. Pixel processing and component mapping are identical to those ofGet-
TexImage.

The functions

void GetConvolutionParameter{if}v( enum target,
enum pname, T params);

are used for integer and floating point query. target must be
CONVOLUTION1D, CONVOLUTION2D, or SEPARABLE2D. pname is
one of CONVOLUTIONBORDERCOLOR, CONVOLUTIONBORDERMODE,
CONVOLUTIONFILTER SCALE, CONVOLUTIONFILTER BIAS ,
CONVOLUTIONFORMAT, CONVOLUTIONWIDTH, CONVOLUTIONHEIGHT,
MAXCONVOLUTIONWIDTH, or MAXCONVOLUTIONHEIGHT. The value of the
specified parameter is returned inparams.
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6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram( enum target, boolean reset,
enum format, enum type, void* values);

targetmust beHISTOGRAM. typeandformataccept the same values as do the corre-
sponding parameters ofGetTexImage. The one-dimensional histogram table im-
age is returned tovalues. Pixel processing and component mapping are identical
to those ofGetTexImage.

If resetis TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified ifresetis FALSE.
Calling

void ResetHistogram( enum target);

resets all counters of all elements of the histogram table to zero.target must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if}v( enum target,
enum pname, T params);

are used for integer and floating point query.target must beHISTOGRAMor
PROXYHISTOGRAM. pnameis one ofHISTOGRAMFORMAT, HISTOGRAMWIDTH,
HISTOGRAMREDSIZE , HISTOGRAMGREENSIZE , HISTOGRAMBLUE SIZE ,
HISTOGRAMALPHASIZE , or HISTOGRAMLUMINANCESIZE . pname may be
HISTOGRAMSINK only for target HISTOGRAM. The value of the specified
parameter is returned inparams.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax( enum target, boolean reset, enum format,
enum type, void* values);
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target must beMINMAX. typeand format accept the same values as do the corre-
sponding parameters ofGetTexImage. A one-dimensional image of width 2 is
returned tovalues. Pixel processing and component mapping are identical to those
of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified ifresetis FALSE.
Calling

void ResetMinmax( enum target);

resets all minimum and maximum values oftarget to to their maximum and mini-
mum representable values, respectively,targetmust beMINMAX.

The functions

void GetMinmaxParameter{if}v( enum target, enum pname,
T params);

are used for integer and floating point query.target must beMINMAX. pnameis
MINMAXFORMATor MINMAXSINK. The value of the specified parameter is re-
turned inparams.

6.1.11 Pointer and String Queries

The command

void GetPointerv( enum pname, void **params );

obtains the pointer or pointers namedpname in the
array params. The possible values for pname are
SELECTIONBUFFERPOINTER, FEEDBACKBUFFERPOINTER,
VERTEXARRAYPOINTER, NORMALARRAYPOINTER, COLORARRAYPOINTER,
SECONDARYCOLORARRAYPOINTER, INDEX ARRAYPOINTER,
TEXTURECOORDARRAYPOINTER, FOGCOORDARRAYPOINTER, and
EDGEFLAG ARRAYPOINTER. Each returns a single pointer value.

Finally,

ubyte *GetString ( enum name);
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returns a pointer to a static string describing some aspect of the current GL con-
nection. The possible values fornameareVENDOR, RENDERER, VERSION, and
EXTENSIONS. The format of theRENDERERand VENDORstrings is implemen-
tation dependent. TheEXTENSIONSstring contains a space separated list of ex-
tension names (the extension names themselves do not contain any spaces); the
VERSIONstring is laid out as follows:

<version number><space><vendor-specific information>

The version number is either of the formmajor number.minornumberor ma-
jor number.minornumber.releasenumber, where the numbers all have one or
more digits. The vendor specific information is optional. However, if it is present
then it pertains to the server and the format and contents are implementation de-
pendent.

GetString returns the version number (returned in theVERSIONstring) and
the extension names (returned in theEXTENSIONSstring) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.12 Occlusion Queries

The command

boolean IsQuery( uint id );

returnsTRUEif id is the name of a query object. Ifid is zero, or ifid is a non-zero
value that is not the name of a query object,IsQuery returnsFALSE.

Information about a query target can be queried with the command

void GetQueryiv( enum target, enum pname, int *params);

If pnameis CURRENTQUERY, the name of the currently active query fortarget, or
zero if no query is active, will be placed inparams.

If pnameis QUERYCOUNTERBITS , the number of bits in the counter fortarget
will be placed inparams. The number of query counter bits may be zero, in which
case the counter contains no useful information. Otherwise, the minimum number
of bits allowed is a function of the implementation’s maximum viewport dimen-
sions (MAXVIEWPORTDIMS). In this case, the counter must be able to represent at
least two overdraws for every pixel in the viewport. The formula to compute the
allowable minimum value (where n is the minimum number of bits) is:

n = min{32, dlog2(maxV iewportWidth ∗maxV iewportHeight ∗ 2)e}

The state of a query object can be queried with the commands
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void GetQueryObjectiv( uint id, enum pname,
int *params);

void GetQueryObjectuiv( uint id, enum pname,
uint *params);

If id is not the name of a query object, or if the query object named byid is currently
active, then anINVALID OPERATIONerror is generated.

If pnameis QUERYRESULT, then the query object’s result value is placed in
params. If the number of query counter bits fortarget is zero, then the result value
is always 0.

There may be an indeterminate delay before the above query returns. If
pnameis QUERYRESULTAVAILABLE, it immediately returnsFALSE if such a de-
lay would be required,TRUEotherwise. It must always be true that if any query
object returns result available ofTRUE, all queries issued prior to that query must
also returnTRUE.

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued on the same target and id prior to callingGet-
QueryObject[u]iv , the result returned will always be from the last query issued.
The results from any queries before the last one will be lost if the results are not
retrieved before starting a new query on the same target and id.

6.1.13 Buffer Object Queries

The command

boolean IsBuffer ( uint buffer);

returnsTRUEif buffer is the name of an buffer object. Ifbuffer is zero, or ifbuffer
is a non-zero value that is not the name of an buffer object,IsBuffer returnFALSE.

The command

void GetBufferSubData( enum target, intptr offset,
sizeiptr size, void *data );

queries the data contents of a buffer object.target is ARRAYBUFFER or
ELEMENTARRAYBUFFER. offsetandsizeindicate the range of data in the buffer
object that is to be queried, in terms of basic machine units.dataspecifies a region
of client memory,sizebasic machine units in length, into which the data is to be
retrieved.
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An error is generated ifGetBufferSubData is executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv( enum target, enum pname,
void **params );

with target set toARRAYBUFFERor ELEMENTARRAYBUFFERandpnameset to
BUFFERMAPPOINTER. The single buffer map pointer is returned in*params.
GetBufferPointerv returns theNULLpointer value if the buffer’s data store is not
currently mapped, or if the requesting client did not map the buffer object’s data
store, and the implementation is unable to support mappings on multiple clients.

6.1.14 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. ThePushAttrib ,
PushClientAttrib , PopAttrib andPopClientAttrib commands are used for this
purpose. The commands

void PushAttrib ( bitfield mask);
void PushClientAttrib ( bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stack.PushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The errorSTACKOVERFLOWis gener-
ated ifPushAttrib or PushClientAttrib is executed while the corresponding stack
depth isMAXATTRIB STACKDEPTHor MAXCLIENT ATTRIB STACKDEPTHre-
spectively. Bits set inmaskthat do not correspond to an attribute group are ignored.
The specialmaskvaluesALL ATTRIB BITS andCLIENT ALL ATTRIB BITS may
be used to push all stackable server and client state, respectively.

The commands

void PopAttrib ( void );
void PopClientAttrib ( void );
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reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib . Those not saved remain unchanged. The er-
ror STACKUNDERFLOWis generated ifPopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Table6.2 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

WhenPushAttrib is called withTEXTUREBIT set, the priorities, border col-
ors, filter modes, and wrap modes of the currently bound texture objects, as well
as the current texture bindings and enables, are pushed onto the attribute stack.
(Unbound texture objects are not pushed or restored.) When an attribute set that
includes texture information is popped, the bindings and enables are first restored
to their pushed values, then the bound texture objects’ priorities, border colors,
filter modes, and wrap modes are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to
TEXTURE0is pushed first, followed by state corresponding toTEXTURE1, and so
on up to and including the state corresponding toTEXTUREk wherek + 1 is the
value ofMAXTEXTUREUNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTUREk and ending withTEXTURE0. Identical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib , PushClientAttrib , PopAttrib , or PopClientAttrib .

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Table6.3 ex-
plains these types. The type actually identifies all state associated with the indi-
cated description; in certain cases only a portion of this state is returned. This
is the case with all matrices, where only the top entry on the stack is returned;
with clip planes, where only the selected clip plane is returned, with parameters
describing lights, where only the value pertaining to the selected light is returned;
with textures, where only the selected texture or texture parameter is returned; and
with evaluator maps, where only the selected map is returned. Finally, a “–” in the
attribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped withPushAttrib , PushClientAttrib ,
PopAttrib , or PopClientAttrib ).

TheM andm entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.
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Stack Attribute Constant
server accum-buffer ACCUMBUFFERBIT

server color-buffer COLORBUFFERBIT

server current CURRENTBIT

server depth-buffer DEPTHBUFFERBIT

server enable ENABLEBIT

server eval EVAL BIT

server fog FOGBIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server multisample MULTISAMPLEBIT

server pixel PIXEL MODEBIT

server point POINT BIT

server polygon POLYGONBIT

server polygon-stipple POLYGONSTIPPLE BIT

server scissor SCISSORBIT

server stencil-buffer STENCIL BUFFERBIT

server texture TEXTUREBIT

server transform TRANSFORMBIT

server viewport VIEWPORTBIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEXARRAYBIT

client pixel-store CLIENT PIXEL STOREBIT

client select can’t be pushed or pop’d
client feedback can’t be pushed or pop’d
client CLIENT ALL ATTRIB BITS

Table 6.2: Attribute groups
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Type code Explanation

B Boolean
BMU Basic machine units

C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-points, t, r, q val-

ues)
N Normal coordinates (floating-pointx, y, z values)
V Vertex, including associated data
Z Integer
Z+ Non-negative integer

Zk, Zk∗ k-valued integer (k∗ indicatesk is minimum)
R Floating-point number
R+ Non-negative floating-point number

R[a,b] Floating-point number in the range[a, b]
Rk k-tuple of floating-point numbers
P Position (x, y, z, w floating-point coordinates)
D Direction (x, y, z floating-point coordinates)
M4 4× 4 floating-point matrix
I Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)

n× type n copies of typetype (n∗ indicatesn is minimum)

Table 6.3: State variable types
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6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any ofGetBooleanv,
GetIntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands – the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained usingIsEnabled. However, state vari-
ables for whichIsEnabled is listed as the query command can also be obtained
usingGetBooleanv, GetIntegerv, GetFloatv, andGetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.6.2) are typesetagainst a gray background.
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Table 6.4. GL Internal begin-end state variables (inaccessible)
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A
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S
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O
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E
T

E
X

T
U

R
E

M
AT

R
IX

)

2
∗
×

2
∗
×

M
4

G
et

F
lo

at
v

Id
en

tit
y

Te
xt

ur
e

m
at

rix
st

ac
k

2.
11

.2
–

V
IE

W
P

O
R

T
4
×

Z
G

et
In

te
ge

rv
se

e2
.1

1.
1

V
ie

w
po

rt
or

ig
in

&
ex

te
nt

2.
11

.1
vi

ew
po

rt
D

E
P

T
H

R
A

N
G

E
2
×

R
+

G
et

F
lo

at
v

0,
1

D
ep

th
ra

ng
e

ne
ar

&
fa

r
2.

11
.1

vi
ew

po
rt

C
O

LO
R

M
AT
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C
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Z
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G
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at
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k
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–

M
O

D
E

LV
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C

K
D

E
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T
H

Z
+
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M
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-v
ie

w
m

at
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k
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R
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2.
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–

T
E
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T
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C
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D
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P

T
H
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×
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+

G
et
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1
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e
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at
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k
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–

M
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V
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A
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Z
E
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E
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C
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at
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tr

an
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or
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e

R
E
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C
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O

R
M
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L
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e
C
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m

/e
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e

C
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P
P
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N

E
i

6
∗
×

R
4
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et
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P
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0,
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0
U
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r
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pi
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e
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fic
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tr
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P
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N
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B
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e
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v
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v
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1.
0

E
xp

on
en

tia
lf

og
de

ns
ity

3.
10

fo
g

F
O

G
S

TA
R

T
R

G
et

F
lo

at
v

0.
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g

F
O

G
M

O
D

E
Z

3
G

et
In

te
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R
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at
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9
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g/
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L
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+
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Table 6.10. Coloring

Version 1.5 - October 30, 2003



6.2. STATE TABLES 237
G

et
va
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e
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pe
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C
m
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e
D
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n
S
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A
ttr
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e
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G
H

T
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G
B
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E
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ed
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ls
e

T
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e
if
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ht
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g
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en
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d
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.1
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C
O

LO
R

M
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E
R
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L

B
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E
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bl
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ls

e
T
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e
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lo
r
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ng

is
en

ab
le

d
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.3
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in

g/
en
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le

C
O

LO
R

M
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E
R

IA
L

P
A

R
A

M
E

T
E

R
Z

5
G

et
In

te
ge

rv
A

M
B

IE
N

T
A

N
D

D
IF

F
U

S
E

M
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er
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l
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op
er

tie
s
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ng
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rr
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t
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lo

r
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C
O

LO
R

M
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E
R
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L
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C

E
Z

3
G

et
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te
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rv
F

R
O

N
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N
D

B
A

C
K

F
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ed
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r
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ng
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A
M

B
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N
T
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G
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M
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r
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.0
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.1
lig
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in
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M
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2
×

C
G

et
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lfv
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.0
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.0
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.0
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)
E

m
is
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m
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.
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r

2.
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.1
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ht
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g

S
H
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E
S
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2
×

R
G
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M
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lfv

0.
0

S
pe
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r
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l
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LI
G

H
T
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O

D
E

L
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N

T
C
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F
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G

H
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O
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B
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R
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Table 6.11. Lighting (see also Table2.10for defaults)
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+
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+
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P
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m
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M
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P
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+
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1.
0

T
hr

es
ho

ld
fo

r
al

ph
a

at
te

nu
at

io
n

3.
3

po
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+
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P
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P
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C
K

C
ul

lf
ro

nt
/b

ac
k

fa
ci

ng
po

ly
go

ns
3.

5.
1

po
ly

go
n

F
R

O
N

T
FA

C
E

Z
2

G
et

In
te

ge
rv

C
C

W
P

ol
yg

on
fr

on
tfa

ce
C

W
/C

C
W

in
di

ca
to

r
3.

5.
1

po
ly

go
n

P
O

LY
G

O
N

S
M

O
O

T
H

B
Is

E
na

bl
ed

Fa
ls

e
P

ol
yg

on
an

tia
lia

si
ng

on
3.

5
po

ly
go

n/
en

ab
le

P
O

LY
G

O
N

M
O

D
E

2
×

Z
3

G
et

In
te

ge
rv

F
IL

L
P

ol
yg

on
ra

st
er

iz
at

io
n

m
od

e
(f

ro
nt

&
ba

ck
)

3.
5.

4
po

ly
go

n

P
O

LY
G

O
N

O
F

F
S

E
T

FA
C

T
O

R
R

G
et

F
lo

at
v

0
P

ol
yg

on
of

fs
et

fa
ct

or
3.

5.
5

po
ly

go
n

P
O

LY
G

O
N

O
F

F
S

E
T

U
N

IT
S

R
G

et
F

lo
at

v
0

P
ol

yg
on

of
fs

et
un

its
3.

5.
5

po
ly

go
n

P
O

LY
G

O
N

O
F

F
S

E
T

P
O

IN
T

B
Is

E
na

bl
ed

Fa
ls

e
P

ol
yg

on
of

fs
et

en
ab

le
fo

rP
O

IN
T

m
od

e
ra

st
er

iz
at

io
n

3.
5.

5
po

ly
go

n/
en

ab
le

P
O

LY
G

O
N

O
F

F
S

E
T

LI
N

E
B

Is
E

na
bl

ed
Fa

ls
e

P
ol

yg
on

of
fs

et
en

ab
le

fo
rLI

N
E

m
od

e
ra

st
er

iz
at

io
n

3.
5.

5
po

ly
go

n/
en

ab
le

P
O

LY
G

O
N

O
F

F
S

E
T

F
IL

L
B

Is
E

na
bl

ed
Fa

ls
e

P
ol

yg
on

of
fs

et
en

ab
le

fo
rF
IL

L
m

od
e

ra
st

er
iz

at
io

n
3.

5.
5

po
ly

go
n/

en
ab

le

–
I

G
et

P
ol

yg
on

S
tip

pl
e

1’
s

P
ol

yg
on

st
ip

pl
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P
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P
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P
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P
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ra
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P
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P
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P
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+
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Table 6.14. Multisampling
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×
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+
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Table 6.15. Textures (state per texture unit and binding point)
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R
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Table 6.16. Textures (state per texture object)
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P
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–
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P
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–
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P
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–
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en
dp

oi
nt

s
5.

1
–

D
O

M
A

IN
9
×

4
×

R
G

et
M

ap
fv

se
e5

.1
2d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

M
A

P
1

x
9
×

B
Is

E
na

bl
ed

Fa
ls

e
1d

m
ap

en
ab

le
s:x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e
M

A
P

2
x

9
×

B
Is

E
na

bl
ed

Fa
ls

e
2d

m
ap

en
ab

le
s:x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e
M

A
P

1
G

R
ID

D
O

M
A

IN
2
×

R
G

et
F

lo
at

v
0,

1
1d

gr
id

en
dp

oi
nt

s
5.

1
ev

al
M

A
P

2
G

R
ID

D
O

M
A

IN
4
×

R
G

et
F

lo
at

v
0,

1;
0,

1
2d

gr
id

en
dp

oi
nt

s
5.

1
ev

al
M

A
P

1
G

R
ID

S
E

G
M

E
N

T
S

Z
+

G
et

F
lo

at
v

1
1d

gr
id

di
vi

si
on

s
5.

1
ev

al
M

A
P

2
G

R
ID

S
E

G
M

E
N

T
S

2
×

Z
+

G
et

F
lo

at
v

1,
1

2d
gr

id
di

vi
si

on
s

5.
1

ev
al

A
U

T
O

N
O

R
M

A
L

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
au

to
m

at
ic

no
rm

al
ge

ne
ra

tio
n

en
ab

le
d

5.
1

ev
al

/e
na

bl
e
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G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

P
E

R
S

P
E

C
T

IV
EC

O
R

R
E

C
T

IO
N

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
P

er
sp

ec
tiv

e
co

rr
ec

tio
n

hi
nt

5.
6

hi
nt

P
O

IN
T

S
M

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
P

oi
nt

sm
oo

th
hi

nt
5.

6
hi

nt
LI

N
E

S
M

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
Li

ne
sm

oo
th

hi
nt

5.
6

hi
nt

P
O

LY
G

O
N

S
M

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
P

ol
yg

on
sm

oo
th

hi
nt

5.
6

hi
nt

F
O

G
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
F

og
hi

nt
5.

6
hi

nt
G

E
N

E
R

AT
E

M
IP

M
A

P
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
M

ip
m

ap
ge

ne
ra

tio
n

hi
nt

5.
6

hi
nt

T
E

X
T

U
R

E
C

O
M

P
R

E
S

S
IO

N
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
Te

xt
ur

e
co

m
pr

es
si

on
qu

al
ity

hi
nt

5.
6

hi
nt
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G
et

va
lu

e
Ty

pe
G

et
C

m
nd

M
in

im
um

Va
lu

e
D

es
cr

ip
tio

n
S

ec
.

A
ttr

ib
ut

e
M

A
X

LI
G

H
T

S
Z

+
G

et
In

te
ge

rv
8

M
ax

im
um

nu
m

be
r

of
lig

ht
s

2.
14

.1
–

M
A

X
C

LI
P

P
LA

N
E

S
Z

+
G

et
In

te
ge

rv
6

M
ax

im
um

nu
m

be
r

of
us

er
cl

ip
pi

ng
pl

an
es

2.
12

–

M
A

X
C

O
LO

R
M

AT
R

IX
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

2
M

ax
im

um
co

lo
r

m
at

rix
st

ac
k

de
pt

h
3.

6.
3

–
M

A
X

M
O

D
E

LV
IE

W
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

32
M

ax
im

um
m

od
el

-v
ie

w
st

ac
k

de
pt

h
2.

11
.2

–
M

A
X

P
R

O
JE

C
T

IO
N

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
2

M
ax

im
um

pr
oj

ec
tio

n
m

at
rix

st
ac

k
de

pt
h

2.
11

.2
–

M
A

X
T

E
X

T
U

R
E

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
2

M
ax

im
um

nu
m

be
r

de
pt

h
of

te
xt

ur
e

m
at

rix
st

ac
k

2.
11

.2
–

S
U

B
P

IX
E

L
B

IT
S

Z
+

G
et

In
te

ge
rv

4
N

um
be

r
of

bi
ts

of
su

bp
ix

el
pr

ec
is

io
n

in
sc

re
en
x

w
an

d
y w

3
–

M
A

X
3D

T
E

X
T

U
R

E
S

IZ
E

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
3D

te
xt

ur
e

im
ag

e
di

m
en

si
on

3.
8.

1
–

M
A

X
T

E
X

T
U

R
E

S
IZ

E
Z

+
G

et
In

te
ge

rv
64

M
ax

im
um

2D
/1

D
te

xt
ur

e
im

ag
e

di
m

en
si

on
3.

8.
1

–

M
A

X
T

E
X

T
U

R
E

LO
D

B
IA

S
R

+
G

et
F

lo
at

v
2.

0
M

ax
im

um
ab

so
lu

te
te

xt
ur

e
le

ve
lo

f
de

ta
il

bi
as

3.
8.

8
–

M
A

X
C

U
B

E
M

A
P

T
E

X
T

U
R

E
S

IZ
E

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
cu

be
m

ap
te

xt
ur

e
im

ag
e

di
m

en
si

on
3.

8.
1

–

M
A

X
P

IX
E

L
M

A
P

TA
B

LE
Z

+
G

et
In

te
ge

rv
32

M
ax

im
um

si
ze

of
aP

ix
el

M
ap

tr
an

sl
at

io
n

ta
bl

e
3.

6.
3

–

M
A

X
N

A
M

E
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

64
M

ax
im

um
se

le
ct

io
n

na
m

e
st

ac
k

de
pt

h
5.

2
–

M
A

X
LI

S
T

N
E

S
T

IN
G

Z
+

G
et

In
te

ge
rv

64
M

ax
im

um
di

sp
la

y
lis

tc
al

ln
es

tin
g

5.
4

–
M

A
X

E
VA

L
O

R
D

E
R

Z
+

G
et

In
te

ge
rv

8
M

ax
im

um
ev

al
ua

to
r

po
ly

no
m

ia
l

or
de

r
5.

1
–

M
A

X
V

IE
W

P
O

R
T

D
IM

S
2
×

Z
+

G
et

In
te

ge
rv

se
e2

.1
1.

1
M

ax
im

um
vi

ew
po

rt
di

m
en

si
on

s
2.

11
.1

–
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G

et
va

lu
e

Ty
pe

G
et

C
m

nd
M

in
im

um
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

M
A

X
AT

T
R

IB
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
de

pt
h

of
th

e
se

rv
er

at
tr

ib
ut

e
st

ac
k

6
–

M
A

X
C

LI
E

N
T

AT
T

R
IB

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
16

M
ax

im
um

de
pt

h
of

th
e

cl
ie

nt
at

tr
ib

ut
e

st
ac

k
6

–

–
3
×

Z
+

-
32

M
ax

im
um

si
ze

of
a

co
lo

r
ta

bl
e

3.
6.

3
–

–
Z

+
-

32
M

ax
im

um
si

ze
of

th
e

hi
st

og
ra

m
ta

bl
e

3.
6.

3
–

A
U

X
B

U
F

F
E

R
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

r
of

au
xi

lia
ry

bu
ffe

rs
4.

2.
1

–

R
G

B
A

M
O

D
E

B
G

et
B

oo
le

an
v

–
T

ru
e

if
co

lo
r

bu
ffe

rs
st

or
e

rg
ba

2.
7

–

IN
D

E
X

M
O

D
E

B
G

et
B

oo
le

an
v

–
T

ru
e

if
co

lo
r

bu
ffe

rs
st

or
e

in
de

xe
s

2.
7

–

D
O

U
B

LE
B

U
F

F
E

R
B

G
et

B
oo

le
an

v
–

T
ru

e
if

fr
on

t&
ba

ck
bu

ffe
rs

ex
is

t
4.

2.
1

–

S
T

E
R

E
O

B
G

et
B

oo
le

an
v

–
T

ru
e

if
le

ft
&

rig
ht

bu
ffe

rs
ex

is
t

6
–

A
LI

A
S

E
D

P
O

IN
T

S
IZ

E
R

A
N

G
E

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

al
ia

se
d

po
in

ts
iz

es
3.

3
–

S
M

O
O

T
H

P
O

IN
T

S
IZ

E
R

A
N

G
E

(v
1.

1:
P

O
IN

T
S

IZ
E

R
A

N
G

E
)

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

an
tia

lia
se

d
po

in
ts

iz
es

3.
3

–

S
M

O
O

T
H

P
O

IN
T

S
IZ

E
G

R
A

N
U

LA
R

IT
Y

(v
1.

1:
P

O
IN

T
S

IZ
E

G
R

A
N

U
LA

R
IT

Y
)

R
+

G
et

F
lo

at
v

–
A

nt
ia

lia
se

d
po

in
ts

iz
e

gr
an

ul
ar

ity
3.

3
–

A
LI

A
S

E
D

LI
N

E
W

ID
T

H
R

A
N

G
E

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

al
ia

se
d

lin
e

w
id

th
s

3.
4

–

S
M

O
O

T
H

LI
N

E
W

ID
T

H
R

A
N

G
E

(v
1.

1:
LI

N
E

W
ID

T
H

R
A

N
G

E
)

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

an
tia

lia
se

d
lin

e
w

id
th

s
3.

4
–

S
M

O
O

T
H

LI
N

E
W

ID
T

H
G

R
A

N
U

LA
R

IT
Y

(v
1.

1:
LI

N
E

W
ID

T
H

G
R

A
N

U
LA

R
IT

Y
)

R
+

G
et

F
lo

at
v

–
A

nt
ia

lia
se

d
lin

e
w

id
th

gr
an

ul
ar

ity
3.

4
–
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G
et

va
lu

e
Ty

pe
G

et
C

m
nd

M
in

im
um

Va
lu

e
D

es
cr

ip
tio

n
S

ec
.

A
ttr

ib
ut

e
M

A
X

C
O

N
V

O
LU

T
IO

N
W

ID
T

H
3
×

Z
+

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

3
M

ax
im

um
w

id
th

of
co

nv
ol

ut
io

n
fil

te
r

4.
3

–

M
A

X
C

O
N

V
O

LU
T

IO
N

H
E

IG
H

T
2
×

Z
+

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

3
M

ax
im

um
he

ig
ht

of
co

nv
ol

ut
io

n
fil

te
r

4.
3

–

M
A

X
E

LE
M

E
N

T
S

IN
D

IC
E

S
Z

+
G

et
In

te
ge

rv
–

R
ec

om
m

en
de

d
m

ax
im

um
nu

m
be

r
of

D
ra

w
R

an
ge

E
le

-
m

en
ts

in
di

ce
s

2.
8

–

M
A

X
E

LE
M

E
N

T
S

V
E

R
T

IC
E

S
Z

+
G

et
In

te
ge

rv
–

R
ec

om
m

en
de

d
m

ax
im

um
nu

m
be

r
of

D
ra

w
R

an
ge

E
le

-
m

en
ts

ve
rt

ic
es

2.
8

–

M
A

X
T

E
X

T
U

R
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

te
xt

ur
e

un
its

(n
ot

to
ex

ce
ed

32
)

2.
6

–

S
A

M
P

LE
B

U
F

F
E

R
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

r
of

m
ul

tis
am

pl
e

bu
ffe

rs
3.

2.
1

–

S
A

M
P

LE
S

Z
+

G
et

In
te

ge
rv

0
C

ov
er

ag
e

m
as

k
si

ze
3.

2.
1

–
C

O
M

P
R

E
S

S
E

DT
E

X
T

U
R

E
F

O
R

M
AT

S
0
×

Z
G

et
In

te
ge

rv
-

E
nu

m
er

at
ed

co
m

pr
es

se
d

te
xt

ur
e

fo
rm

at
s

3.
8.

3
–

N
U

M
C

O
M

P
R

E
S

S
E

DT
E

X
T

U
R

E
F

O
R

M
AT

S
Z

G
et

In
te

ge
rv

0
N

um
be

r
of

en
um

er
at

ed
co

m
pr

es
se

d
te

xt
ur

e
fo

rm
at

s

3.
8.

3
–

Q
U

E
R

Y
C

O
U

N
T

E
R

B
IT

S
Z

+
G

et
Q

ue
ry

iv
se

e6
.1

.1
2

O
cc

lu
si

on
qu

er
y

co
un

te
r

bi
ts

6.
1.

12
–
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G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

x
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

bi
ts

in
x

co
lo

r
bu

ffe
r

co
m

po
ne

nt
;x

is
on

e
of

R
E

D,
G

R
E

E
N,

B
L

U
E,

A
L

P
H

A,
or

IN
D

E
X

4
–

D
E

P
T

H
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

de
pt

h
bu

ffe
r

pl
an

es
4

–
S

T
E

N
C

IL
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

st
en

ci
lp

la
ne

s
4

–
A

C
C

U
M

x
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

bi
ts

in
x

ac
cu

m
ul

at
io

n
bu

ffe
r

co
m

po
ne

nt
(x
is

R
E

D,
G

R
E

E
N,

B
L

U
E,

or
A

L
P

H
A

4
–
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G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

LI
S

T
B

A
S

E
Z

+
G

et
In

te
ge

rv
0

S
et

tin
g

of
Li

st
B

as
e

5.
4

lis
t

LI
S

T
IN

D
E

X
Z

+
G

et
In

te
ge

rv
0

N
um

be
r

of
di

sp
la

y
lis

tu
nd

er
co

ns
tr

uc
tio

n;
0

if
no

ne
5.

4
–

LI
S

T
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Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer statevector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.
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A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

• Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

• The values of matrices other than the top-of-stack matrices
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A.3. INVARIANCE RULES 261

• Scissor parameters (other than enable)

• Writemasks (color, index, depth, stencil)

• Clear values (color, index, depth, stencil, accumulation)

◦ Current values (color, index, normal, texture coords, edgeflag)

◦ Current raster color, index and texture coordinates.

◦ Material properties (ambient, diffuse, specular, emission, shininess)

Strongly suggested:

• Matrix mode

• Matrix stack depths

• Alpha test parameters (other than enable)

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage and transfer state

• Evaluator state (except as it affects the vertex data generated by the
evaluators)

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with• in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

• Current values (color, color index, normal, texture coords, edgeflag)

• Current raster color, color index, and texture coordinates

• Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).
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262 APPENDIX A. INVARIANCE

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent commandalwaysis executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.
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Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The CURRENTRASTERTEXTURECOORDSmust be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are always
valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may change.
Otherwise, only additions can be made to upward compatible revisions.

4. GL query commands are not required to satisfy the semantics of theFlush
or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

5. Application specified point size and line width must be returned as specified
when queried. Implementation dependent clamping affects the values only
while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask specified as the third argument toStencilFuncaffects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified byStencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.
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8. Polygon shading is completed before the polygon mode is interpreted. If the
shade model isFLAT, all of the points or lines generated by a single polygon
will have the same color.

9. A display list is just a group of commands and arguments, so errors generated
by commands in a display list must be generated when the list is executed.
If the list is created inCOMPILEmode, errors should not be generated while
the list is being created.

10. RasterPosdoes not change the current raster index from its default value
in an RGBA mode GL context. Likewise,RasterPosdoes not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

11. A material property that is attached to the current color viaColorMaterial
always takes the value of the current color. Attempts to change that material
property viaMaterial calls have no effect.

12. Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewise,Material can be used to
modify the color index material properties, even in an RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix areScale(with positive scaling values only),Rotate, and
Translate; (3) exactly one of eitherFrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far value forDepthRange.
If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

16. ColorMaterial has no effect on color index lighting.
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17. (No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

18. OpenGL state continues to be modified inFEEDBACKmode and inSELECT

mode. The contents of the framebuffer are not modified.

19. The current raster position, the user defined clip planes, the spot directions
and the light positions forLIGHTi, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed during aPopAt-
trib , or when copying a context.

20. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

21. For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.
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Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
theEXT vertex array extension, except that static array data are not supported
(because they complicated the interface, and were not being used), and the pre-
defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).

266



C.2. POLYGON OFFSET 267

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of theEXT polygon offset extension, with two
exceptions. First, the offset is enabled separately forPOINT, LINE , andFILL ras-
terization modes, all sharing a single affine function definition. (Shifting the depth
values of the outline fragments, instead of the fill fragments, allows the contents of
the depth buffer to be maintained correctly.) Second, the offset bias is specified in
units of depth buffer resolution, rather than in the [0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer us-
ing a logical operation, just as color index fragments are in GL version 1.0. Blend-
ing is disabled during such operation because it is rarely desired, because many sys-
tems could not support it, and to match the semantics of theEXT blend logic op

extension, on which this addition is loosely based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as theinternal format, rather than a
simple count of components. The internal format is represented as a single enumer-
ated value, indicating both the organization of the image data (LUMINANCE, RGB,
etc.) and the number of bits of storage for each image component. Clients can use
the internal format specification to suggest the desired storage precision of texture
images. Newbase formats, ALPHAandINTENSITY , provide new texture environ-
ment operations. These additions match those of a subset of theEXT texture

extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated
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by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
EXT texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
queries without adding new routines to the GL interface. These additions match
those of a subset of theEXT texture extension, except that implementations re-
turn allocation information consistent with support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
EXT copy texture andEXT subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single ob-
ject. Such treatment allows for greater implementation efficiency when multiple
arrays are used. In conjunction with the subtexture capability, it also allows clients
to make gradual changes to existing texture arrays, rather than completely redefin-
ing them. These additions match those of theEXT texture object extension,
with slight additions to the texture residency semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinatess, t, andr are divided byq during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.
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3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chapter3 and chapter4 were combined
into a single discussion in chapter3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation ifCol-
orMaterial is enabled.
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Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of theEXT texture3D extension.

One important application of three-dimensional textures is rendering volumes
of image data.

D.2 BGRA Pixel Formats

BGRAextends the list of host-memory color formats. Specifically, it provides a
component order matching file and framebuffer formats common on Windows plat-
forms. The additions match those of theEXT bgra extension.
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D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed pixel are not
proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of theEXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on theEXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of theEXT separate specular color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
range[0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithm,CLAMPTO EDGE, clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.
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The additions match those of theSGIS texture edge clamp extension.

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameterλ are added. One
constraint clampsλ to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of theλ parameter, it is
possible to avoid ”popping” artifacts when higher resolution images are provided.

The additions match those of theSGIS texture lod extension.

D.8 Vertex Array Draw Element Range

A new form ofDrawElements that provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of theEXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as theimaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal formatALPHAmodifies only the A component of each
pixel group, leaving the R, G, and B components unmodified.
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Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from host memory or
from the framebuffer.

The additions match those of the EXT color table and
EXT color subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that API is left for a future extension.

The additions match those of the EXT convolution and
HP convolution border modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C ′ = MC,

where

C =


R
G
B
A


and M is the 4 × 4 matrix on the top of the color matrix stack. After the

matrix multiplication, each resulting color component is scaled and biased by a
programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of theSGI color matrix extension.
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D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-
togram) and that track the minimum and maximum color component values (min-
max) are performed at the end of the pixel transfer pipeline. An optional mode
allows pixel data to be discarded after the histogram and/or minmax operations are
completed. Otherwise the pixel data continues on to the next operation unaffected.

The additions match those of theEXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of theEXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of theEXT blend minmax and
EXT blend subtract extensions.
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Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see AppendixI). The only ARB extension defined in this version is multitexture,
allowing application of multiple textures to a fragment in one rendering pass. Mul-
titexture is based on theSGIS multitexture extension, simplified by removing
the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to AppendixB on April 1, 1999.
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Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

F.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT1, are supported by extensions).

Texture compression was promoted from the
GL ARBtexture compression extension.

F.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragment(str) selects
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one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A new(st) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the new(st) is used to lookup
into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. TheREFLECTIONMAPmode generates tex-
ture coordinates(str) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherent inSPHEREMAPmapping.
TheNORMALMAPmode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from theGL ARBtexture cube mapextension.

F.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by theWGLARBmultisample extension.

Multisampling was promoted from theGL ARBmultisample extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

F.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color
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for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from theGL ARBmultitexture extension.

F.5 Texture Add Environment Mode

The TEXTUREENVMODEtexture environment functionADD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from theGL ARBtexture env add exten-
sion.

F.6 Texture Combine Environment Mode

TheTEXTUREENVMODEtexture environment functionCOMBINEprovides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from theGL ARBtexture env combine ex-
tension.

F.7 Texture Dot3 Environment Mode

The TEXTUREENVMODE COMBINEoperations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from theGL ARBtexture env dot3 ex-
tension.

F.8 Texture Border Clamp

The texture wrap parameterCLAMPTO BORDERmode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture
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image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GL ARBtexture border clamp extension.

F.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from theGL ARBtranspose matrix exten-
sion.
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Version 1.4

OpenGL version 1.4, released on July 24, 2002, is the fourth revision since the
original version 1.0. Version 1.4 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.4 GL implementation.

In addition to numerous additions to the classical fixed-function GL pipeline
in OpenGL 1.4, the OpenGL ARB also approved theARBvertex program ex-
tension, which supports programmable vertex processing. Following are brief
descriptions of each addition to OpenGL 1.4; see ChapterI for a description of
ARBvertex program .

G.1 Automatic Mipmap Generation

Setting the texture parameterGENERATEMIPMAPto TRUEintroduces a side effect
to any modification of thelevelbase of a mipmap array, wherein all higher levels of
the mipmap pyramid are recomputed automatically by successive filtering of the
base level array.

Automatic mipmap generation was promoted from the
SGIS generate mipmap extension.

G.2 Blend Squaring

Blend squaring extends the set of supported source and destination blend functions
to permit squaring RGB and alpha values during blending. FunctionsSRCCOLOR

andONEMINUSSRCCOLORare added to the allowed source blending functions,
andDST COLORandONEMINUSDST COLORare added to the allowed destination
blending functions.
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Blend squaring was promoted from theGL NV blend square extension.

G.3 Changes to the Imaging Subset

The subset of blending features described byBlendEquation, BlendColor,
and theBlendFunc modesCONSTANTCOLOR, ONEMINUSCONSTANTCOLOR,
CONSTANTALPHA, andONEMINUSCONSTANTALPHAare now supported. These
feature were available only in the optional imaging subset in versions 1.2 and 1.3
of the GL.

G.4 Depth Textures and Shadows

Depth textures define a new texture internal format,DEPTH, normally used to repre-
sent depth values. Applications include image-based shadow casting, displacement
mapping, and image-based rendering.

Image-based shadowing is enabled with a new texture application mode de-
fined by the parameterTEXTURECOMPAREMODE. This mode enables comparing
texturer coordinates to depth texture values to generate a boolean result.

Depth textures and shadows were promoted from theGL ARBdepth texture

andGL ARBshadow extensions.

G.5 Fog Coordinate

A new associated vertex and fragment datum, thefog coordinatemay be used
in computing fog for a fragment, instead of using eye distance to the frag-
ment, by specifying the coordinate with theFogCoord commands and setting the
FOGCOORDINATESOURCEfog parameter. Fog coordinates are particularly useful
in computing more complex fog models.

Fog coordinate was promoted from theGL EXT fog coord extension.

G.6 Multiple Draw Arrays

Multiple primitives may be drawn in a single call using theMultiDrawArrays and
MultiDrawElements commants.

Multiple draw arrays was promoted from theGL EXT multi draw arrays

extension.
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G.7 Point Parameters

Point parameters defined by thePointParameterscommands support additional
geometric characteristics of points, allowing the size of a point to be affected by
linear or quadratic distance attenuation, and increasing control of the mapping from
point size to raster point area and point transparency. This effect may be used for
distance attenuation in rendering particles or light points.

Point parameters was promoted from theGL ARBpoint parameters exten-
sion.

G.8 Secondary Color

The secondary color may be varied even when lighting is disabled by specifying it
as a vertex parameter with theSecondaryColorcommands.

Secondary color was promoted from theGL EXT secondary color exten-
sion.

G.9 Separate Blend Functions

Blending capability is extended withBlendFuncSeparateto allow independent
setting of the RGB and alpha blend functions for blend operations that require
source and destination blend factors.

Separate blend functions was promoted from the
GL EXT blend func separate extension.

G.10 Stencil Wrap

New stencil operationsINCR WRAPandDECRWRAPallow the stencil value to wrap
around the range of stencil values instead of saturating to the minimum or maxi-
mum values on decrement or increment. Stencil wrapping is needed for algorithms
that use the stencil buffer for per-fragment inside-outside primitive computations.

Stencil wrap was promoted from theGL EXT stencil wrap extension.

G.11 Texture Crossbar Environment Mode

Texture crossbar extends the texture combine environment modeCOMBINEby al-
lowing use of the texture color from different texture units as sources to the texture
combine function.
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Texture environment crossbar was promoted from the
ARBtexture env crossbar extension.

G.12 Texture LOD Bias

The texture filter control parameterTEXTURELODBIAS may be set to bias the
computedλ parameter used in texturing for mipmap level of detail selection, pro-
viding a means to blur or sharpen textures. LOD bias may be used for depth of field
and other special visual effects, as well as for some types of image processing.

Texture LOD bias was based on theEXT texture lod bias extension, with
the addition of a second per-texture object bias term.

G.13 Texture Mirrored Repeat

Texture mirrored repeat extends the set of texture wrap modes with the mode
MIRROREDREPEAT. This effectively defines a texture map twice as large as the
original texture image in which the additional half, for each mirrored texture co-
ordinate, is a mirror image of the original texture. Mirrored repeat can be used
seamless tiling of a surface.

Texture mirrored repeat was promoted from the
ARBtexture mirrored repeat extension.

G.14 Window Raster Position

The raster position may be set directly to specified window coordinates with the
WindowPoscommands, bypassing the transformation applied toRasterPos. Win-
dow raster position is particularly useful for imaging and other 2D operations.

Window raster position was promoted from theGL ARBwindow pos exten-
sion.
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Version 1.5

OpenGL version 1.5, released on July 29, 2003, is the fifth revision since the orig-
inal version 1.0. Version 1.5 is upward compatible with earlier versions, meaning
that any program that runs with a 1.4, 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.5 GL implementation.

In addition to additions to the classical fixed-function GL pipeline in OpenGL
1.5, the OpenGL ARB also approved a related set of ARB extensions includ-
ing the OpenGL Shading Language specification and theARBshader objects ,
ARBvertex shader , and ARBfragment shader extensions through which
high-level shading language programs can be loaded and used in place of the fixed-
function pipeline.

Following are brief descriptions of each addition to OpenGL 1.5. The low-level
and high-level shading languages are important adjuncts to the OpenGL core. They
are described in more detail in appendixI, and their corresponding ARB extension
specifications are available online as described in that appendix.

H.1 Buffer Objects

Buffer objects allow various types of data (especially vertex array data) to be
cached in high-performance graphics memory on the server, thereby increasing
the rate of data transfers to the GL.

Buffer objects were promoted from theARBvertex buffer object exten-
sion.
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H.2 Occlusion Queries

An occlusion query is a mechanism whereby an application can query the number
of pixels (or, more precisely, samples) drawn by a primitive or group of primitives.
The primary purpose of occlusion queries is to determine the visibility of an object.

Occlusion query was promoted from theARBocclusion query extension.

H.3 Shadow Functions

Texture comparison functions are generalized to support all eight binary functions
rather than justLEQUALandGEQUAL.

Texture comparison functions were promoted from theEXT shadow funcs

extension.

H.4 Changed Tokens

To achieve consistency with the syntax guidelines for OpenGL function and token
names, new token names are introduced to be used in place of old, inconsistent
names. However, the old token names continue to be supported, for backwards
compatibility with code written for previous versions of OpenGL. The new names,
and the old names they replace, are shown in tableH.1.

H.5 Acknowledgements

OpenGL 1.5 is the result of the contributions of many people. The editor especially
thanks the following individuals for their sustained efforts in leading ARB working
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shading interface.

Bill Licea-Kane led the GL2 working group which created the high-
level programmable shading interface, including theARBfragment shader ,
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New Token Name Old Token Name

FOGCOORDSRC FOGCOORDINATESOURCE

FOGCOORD FOGCOORDINATE

CURRENTFOGCOORD CURRENTFOGCOORDINATE

FOGCOORDARRAYTYPE FOGCOORDINATEARRAYTYPE

FOGCOORDARRAYSTRIDE FOGCOORDINATEARRAYSTRIDE

FOGCOORDARRAYPOINTER FOGCOORDINATEARRAYPOINTER

FOGCOORDARRAY FOGCOORDINATEARRAY

SRC0RGB SOURCE0RGB

SRC1RGB SOURCE1RGB

SRC2RGB SOURCE2RGB

SRC0ALPHA SOURCE0ALPHA

SRC1ALPHA SOURCE1ALPHA

SRC2ALPHA SOURCE2ALPHA

Table H.1: New token names and the old names they replace.

ARBshader objects , and ARBvertex shader extensions and the OpenGL
Shading Language.
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ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in theOpenGL Extension Registry(as are a much larger number of vendor-
specific extensions, as well as extensions to GLX and WGL). Extensions are doc-
umented as changes to the Specification. The Registry is available on the World
Wide Web at URL

http://oss.sgi.com/projects/ogl-sample/registry/

Brief descriptions of ARB extensions are provided below.

I.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

• A uniquename stringof the form"GL ARBname" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in theEXTENSIONSstring described in section6.1.11.

• All functions defined by the extension will have names of the formFunc-
tionARB
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• All enumerants defined by the extension will have names of the form
NAMEARB.

I.2 Promoting Extensions to Core Features

ARB extensions can bepromotedto required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have theARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in theEXTENSIONSstring, and continue to support
theARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see appendicesF, G, andH respectively.

I.3 Multitexture

The name string for multitexture isGL ARBmultitexture . It was promoted to a
core feature in OpenGL 1.3.

I.4 Transpose Matrix

The name string for transpose matrix isGL ARBtranspose matrix . It was pro-
moted to a core feature in OpenGL 1.3.

I.5 Multisample

The name string for multisample isGL ARBmultisample . It was promoted to a
core feature in OpenGL 1.3.

I.6 Texture Add Environment Mode

The name string for texture add mode isGL ARBtexture env add . It was pro-
moted to a core feature in OpenGL 1.3.
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I.7 Cube Map Textures

The name string for cube mapping isGL ARBtexture cube map. It was pro-
moted to a core feature in OpenGL 1.3.

I.8 Compressed Textures

The name string for compressed textures isGL ARBtexture compression . It
was promoted to a core feature in OpenGL 1.3.

I.9 Texture Border Clamp

The name string for texture border clamp isGL ARBtexture border clamp . It
was promoted to a core feature in OpenGL 1.3.

I.10 Point Parameters

The name string for point parameters isGL ARBpoint parameters . It was pro-
moted to a core features in OpenGL 1.4.

I.11 Vertex Blend

Vertex blending replaces the single modelview transformation with multiple vertex
units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the modelview matrices.

The name string for vertex blend isGL ARBvertex blend .

I.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of modelview matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette isGL ARBmatrix palette .
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I.13 Texture Combine Environment Mode

The name string for texture combine mode isGL ARBtexture env combine . It
was promoted to a core feature in OpenGL 1.3.

I.14 Texture Crossbar Environment Mode

The name string for texture crossbar isGL ARBtexture env crossbar . It was
promoted to a core features in OpenGL 1.4.

I.15 Texture Dot3 Environment Mode

The name string for DOT3 isGL ARBtexture env dot3 . It was promoted to a
core feature in OpenGL 1.3.

I.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is
GL ARBtexture mirrored repeat . It was promoted to a core feature in
OpenGL 1.4.

I.17 Depth Texture

The name string for depth texture isGL ARBdepth texture . It was promoted to
a core feature in OpenGL 1.4.

I.18 Shadow

The name string for shadow isGL ARBshadow . It was promoted to a core feature
in OpenGL 1.4.

I.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by theTEXTURECOMPAREFAIL VALUEARBtexture pa-
rameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient isGL ARBshadow ambient .
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I.20 Window Raster Position

The name string for window raster position isGL ARBwindow pos . It was pro-
moted to a core feature in OpenGL 1.4.

I.21 Low-Level Vertex Programming

Application-definedvertex programsmay be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming isARBvertex program .

I.22 Low-Level Fragment Programming

Application-definedfragment programsmay be specified in the same low-level
language asARBvertex program , replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is
ARBfragment program .

I.23 Buffer Objects

The name string for buffer objects isARBvertex buffer object . It was pro-
moted to a core feature in OpenGL 1.5.

I.24 Occlusion Queries

The name string for occlusion queries isARBocclusion query . It was promoted
to a core feature in OpenGL 1.5.

I.25 Shader Objects

Shader objects provides mechanisms necessary to manage shader and program
objects defined by theARBvertex shader andARBfragment shader exten-
sions.

The name string for shader objects isARBshader objects .
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I.26 High-Level Vertex Programming

Vertex programs may also be written in the high-level OpenGL Shading Language
defined by theARBshading language 100 extension.

The name string for high-level vertex programming isARBvertex shader .

I.27 High-Level Fragment Programming

Fragment programs may also be written in the high-level OpenGL Shading Lan-
guage defined by theARBshading language 100 extension.

The name string for high-level fragment programming is
ARBfragment shader .

I.28 OpenGL Shading Language

The OpenGL Shading Language is a high-level, C-like language used to program
the vertex and fragment pipelines. The Shading Language Specification defines
the language proper, while theARBshader objects , ARBvertex shader , and
ARBfragment shader extensions define how vertex and fragment programs in-
teract with the fixed-function OpenGL pipeline and how applications manage those
programs.

The name string for the OpenGL Shading Language is
ARBshading language 100 . The presence of this extension string indi-
cates that programs written in version 1.00 of the Shading Language are accepted
by OpenGL.

I.29 Non-Power-Of-Two Textures

Conventional OpenGL texturing is limited to images with power-of-two dimen-
sions and an optional 1-texel border. This extension relaxes the size restrictions for
the 1D, 2D, cube map, and 3D texture targets.

The name string for non-power-of-two textures is
ARBtexture non power of two .

Version 1.5 - October 30, 2003



306 APPENDIX I. ARB EXTENSIONS

I.30 Point Sprites

Point sprites replaces point texture coordinates with texture coordinates interpo-
lated across the point. This allows drawing points as customized textures, useful
for particle systems.

The name string for point sprites isARBpoint sprite .
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x BIAS, 92, 247
x SCALE,92, 247
2D, 206, 207, 258
2 BYTES,209
3D, 206, 207
3D COLOR,206, 207
3D COLOR TEXTURE,206, 207
3 BYTES,209
4D COLOR TEXTURE,206, 207
4 BYTES,209

1, 127, 135, 136, 155, 218, 241
2, 127, 135, 136, 218, 241
3, 127, 135, 136, 218, 241
4, 127, 135, 136, 218

ACCUM, 187
Accum,187, 188
ACCUM BUFFERBIT, 185, 227
ACTIVE TEXTURE, 20, 44, 51, 158,

198, 214, 215
ActiveTexture,44, 166
ADD, 159, 161, 162, 187, 188, 282
ADD SIGNED,162
ALL ATTRIB BITS, 225, 227
ALPHA, 92, 105, 116, 117, 128–130,

143, 144, 159–161, 164, 179,
191, 192, 218, 247, 248, 250,
257, 267, 273

ALPHA12, 129
ALPHA16, 129
ALPHA4, 129
ALPHA8, 129
ALPHA BIAS, 114
ALPHA SCALE,114, 159
ALPHA TEST,173

AlphaFunc,173
ALWAYS, 144, 165, 173–175, 245
AMBIENT, 61, 62
AMBIENT AND DIFFUSE,61, 62, 64
AND, 182
AND INVERTED, 182
AND REVERSE,182
Antialiasing,84
ARB fragmentprogram,295, 304
ARB fragmentshader,294, 295, 304,

305
ARB occlusionquery,295, 304
ARB point sprite,306
ARB shaderobjects,294, 296, 304, 305
ARB shadinglanguage100,305
ARB textureenv crossbar,291
ARB texturemirrored repeat,291
ARB texturenon powerof two, 305
ARB vertexbuffer object, 294, 295,

304
ARB vertexprogram,288, 291, 304
ARB vertexshader,294, 296, 304, 305
AreTexturesResident,157, 158, 210
ARRAY BUFFER,30–36, 224, 225
ARRAY BUFFERBINDING, 35
ArrayElement,19, 25–27, 35, 208
AUTO NORMAL, 199
AUX i, 183, 184
AUXn, 183, 191
AUX0, 183, 190

BACK, 60, 62, 63, 84, 85, 87, 183, 184,
190, 191, 215, 239

BACK LEFT, 183, 184, 190
BACK RIGHT, 183, 184, 190
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Begin,12, 13, 15–20, 25–27, 37, 66, 77,
81, 84, 87, 200, 201, 206

BeginQuery,176
BGR,105, 191, 192
BGRA, 105, 107, 111, 191, 271
BindBuffer,30, 31, 36, 210
BindTexture,156, 157
BITMAP, 86, 94, 97, 102, 104, 111, 124,

192, 219
Bitmap,124
BITMAP TOKEN, 207
BLEND, 159, 161, 177, 181
BlendColor,179, 289
BlendEquation,177, 178, 289
BlendFunc,178, 179, 289
BlendFuncSeparate,178, 179, 290
BLUE, 92, 105, 191, 192, 247, 248, 250,

257
BLUE BIAS, 114
BLUE SCALE,114
BUFFERACCESS,31, 33, 34
BUFFERMAP POINTER, 31, 33–35,

225
BUFFERMAPPED,31, 33–35
BUFFERSIZE,31, 33
BUFFERUSAGE,31, 33, 34
BufferData,32, 33, 36, 210
BufferSubData,33, 34, 36, 210
BYTE, 24, 104, 192, 193, 209

C3F V3F, 28, 29
C4F N3F V3F, 28, 29
C4UB V2F, 28, 29
C4UB V3F, 28, 29
CallList, 19, 208, 209
CallLists,19, 208, 209
CCW,60, 239
CLAMP, 144, 145, 149
CLAMP TO BORDER,144, 146, 282
CLAMP TO EDGE,144, 146, 147, 149,

272
CLEAR, 182
Clear,185–187
ClearAccum,186
ClearColor,186

ClearDepth,186
ClearIndex,186
ClearStencil,186
CLIENT ACTIVE TEXTURE,25, 214,

215
CLIENT ALL ATTRIB BITS, 225, 227
CLIENT PIXEL STOREBIT, 227
CLIENT VERTEX ARRAY BIT, 227
ClientActiveTexture,19, 25, 210
CLIP PLANEi, 49
CLIP PLANE0,49
ClipPlane,49
COEFF,217
COLOR,40, 44, 95, 99, 100, 135, 194
Color,19, 21, 55, 67
Color3,21
Color4,21
COLOR ARRAY, 24, 30
COLOR ARRAY POINTER,222
COLOR BUFFERBIT, 185, 187, 227
COLOR INDEX, 86, 94, 97, 102, 105,

115, 124, 191, 194, 217, 219
COLOR INDEXES,61, 65
COLOR LOGIC OP,181
COLOR MATERIAL, 62, 64
COLOR MATRIX, 219
COLOR MATRIX STACK DEPTH,

219
COLOR SUM, 167
COLOR TABLE, 94, 96, 115
COLOR TABLE ALPHA SIZE,219
COLOR TABLE BIAS, 94, 95, 219
COLOR TABLE BLUE SIZE,219
COLOR TABLE FORMAT, 219
COLOR TABLE GREENSIZE,219
COLOR TABLE INTENSITY SIZE,

220
COLOR TABLE LUMINANCE SIZE,

219
COLOR TABLE RED SIZE,219
COLOR TABLE SCALE,94, 95, 219
COLOR TABLE WIDTH, 219
ColorMask,184, 185
ColorMaterial,62–64, 199, 264, 269
ColorPointer,19, 23, 24, 30, 210

Version 1.5 - October 30, 2003



INDEX 309

ColorSubTable,91, 95, 96
ColorTable,91, 93, 95, 96, 120, 121, 210
ColorTableParameter,94
ColorTableParameterfv,94
Colorub,67
Colorui,67
Colorus,67
COMBINE, 159, 162, 166, 282, 290
COMBINE ALPHA, 159, 162, 163
COMBINE RGB,159, 162, 163
COMPARER TO TEXTURE, 144,

164
COMPILE,208, 264
COMPILE AND EXECUTE,208, 209
COMPRESSEDALPHA, 130
COMPRESSEDINTENSITY, 130
COMPRESSEDLUMINANCE, 130
COMPRESSEDLUMINANCE ALPHA,

130
COMPRESSEDRGB,130
COMPRESSEDRGBA, 130
COMPRESSEDTEXTURE FORMATS,

127
CompressedTexImage,141
CompressedTexImage1D,139–141
CompressedTexImage2D,139–141
CompressedTexImage3D,140, 141
CompressedTexSubImage1D,141, 142
CompressedTexSubImage2D,141, 142
CompressedTexSubImage3D,141, 142
CONSTANT,161, 163, 244
CONSTANT ALPHA, 179, 289
CONSTANT ATTENUATION, 61
CONSTANT BORDER,118, 119
CONSTANT COLOR,179, 289
CONVOLUTION 1D, 98, 99, 116, 133,

220
CONVOLUTION 2D, 97–99, 116, 132,

220
CONVOLUTION BORDERCOLOR,

118, 220
CONVOLUTION BORDERMODE,

118, 220
CONVOLUTION FILTER BIAS,

97–99, 220

CONVOLUTION FILTER SCALE,
97–100, 220

CONVOLUTION FORMAT, 220
CONVOLUTION HEIGHT, 220
CONVOLUTION WIDTH, 220
ConvolutionFilter1D,91, 98–100
ConvolutionFilter2D,91, 97–100
ConvolutionParameter,98, 118
ConvolutionParameterfv,97, 98, 118
ConvolutionParameteriv,99, 118
COPY,181, 182, 245
COPY INVERTED, 182
COPY PIXEL TOKEN, 207
CopyColorSubTable,95, 96
CopyColorTable,95, 96
CopyConvolutionFilter1D,99
CopyConvolutionFilter2D,99
CopyPixels,90, 92, 95, 99, 116, 135,

188, 194, 195, 205
CopyTexImage1D,116, 136, 137, 151
CopyTexImage2D,116, 135–137, 151
CopyTexImage3D,137
CopyTexSubImage1D,116, 136, 137,

139
CopyTexSubImage2D,116, 136–139
CopyTexSubImage3D,116, 136, 137,

139
CULL FACE,85
CullFace,84, 85, 89
CURRENTBIT, 227
CURRENTFOG COORD,296
CURRENTFOG COORDINATE,296
CURRENTQUERY,223
CURRENTRASTERTEXTURE COORDS,

51, 263
CURRENTTEXTURE COORDS,20
CW, 60

DECAL, 159, 160
DECR,174
DECR WRAP,174, 290
DeleteBuffers,31, 32, 210
DeleteLists,210
DeleteQueries,177, 210
DeleteTextures,157, 210
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DEPTH,94, 97, 101, 102, 135, 194, 247,
289

DEPTH BIAS, 92, 114
DEPTH BUFFERBIT, 185, 187, 227
DEPTH COMPONENT, 94, 97, 102,

105, 127–129, 164, 190, 191,
194, 217

DEPTH COMPONENT16,129
DEPTH COMPONENT24,129
DEPTH COMPONENT32,129
DEPTH SCALE,92, 114
DEPTH TEST,175
DEPTH TEXTURE MODE, 144, 155,

164
DepthFunc,175
DepthMask,185
DepthRange,39, 53, 214, 264
DIFFUSE,61, 62
Disable,45, 48, 49, 56, 62, 72, 74, 77,

80, 84, 86, 88, 120–122, 164,
167, 172–175, 177, 180, 181,
198, 199

DisableClientState,19, 24, 25, 28, 30,
210

DITHER, 180
DOMAIN, 217
DONT CARE,211, 212, 253
DOT3 RGB,162
DOT3 RGBA, 162
DOUBLE, 24
DRAW PIXEL TOKEN, 207
DrawArrays,25, 26, 35, 208
DrawBuffer,181–185, 187
DrawElements,26–28, 35, 36, 208, 273
DrawPixels,86, 89–92, 94, 97, 102–107,

111, 113, 116, 123, 124, 126,
188, 190, 192, 194, 205

DrawRangeElements,27, 35, 36, 208,
256

DST ALPHA, 179
DST COLOR,179, 288
DYNAMIC COPY,31, 33
DYNAMIC DRAW, 31, 33
DYNAMIC READ, 31, 33

EDGE FLAG ARRAY, 24, 28
EDGE FLAG ARRAY POINTER,222
EdgeFlag,18, 19
EdgeFlagPointer,19, 23, 24, 210
EdgeFlagv,18
ELEMENT ARRAY BUFFER,36, 224,

225
EMISSION,61, 62
Enable,45, 48, 49, 56, 62, 72, 74, 77, 80,

84, 86, 88, 120–122, 164, 167,
172–175, 177, 180, 181, 198,
199, 213

ENABLE BIT, 227
EnableClientState,19, 24, 25, 30, 210
End, 12, 13, 15–20, 25–27, 37, 66, 77,

84, 87, 200, 201, 206
EndList,208
EndQuery,176
EQUAL, 144, 165, 173–175
EQUIV, 182
EVAL BIT, 227
EvalCoord,19, 198, 199
EvalCoord1,199–201
EvalCoord1d,200
EvalCoord1f,200
EvalCoord2,199–201
EvalMesh1,200
EvalMesh2,200, 201
EvalPoint,19
EvalPoint1,201
EvalPoint2,201
EXP,168, 169, 236
EXP2,168
EXT bgra,271
EXT blendcolor,275
EXT blend logic op,267
EXT blendminmax,275
EXT blendsubtract,275
EXT color subtable,274
EXT color table,274
EXT convolution,274
EXT copy texture,268
EXT draw rangeelements,273
EXT histogram,275
EXT packedpixels,272
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EXT polygonoffset,267
EXT rescalenormal,272
EXT separatespecularcolor,272
EXT shadowfuncs,295
EXT subtexture,268
EXT texture,267, 268
EXT texture3D,271
EXT texturelod bias,291
EXT textureobject,268
EXT vertexarray,266
EXTENSIONS,92, 223, 300, 301
EYE LINEAR, 47, 48, 215, 244
EYE PLANE, 47

FALSE, 18, 19, 31, 33, 35, 57, 59, 90–
92, 100, 102, 111, 114, 122,
123, 144, 155, 157, 158, 173,
176, 190, 214, 218, 221–224,
242

FASTEST,211
FEEDBACK,203–205, 265
FEEDBACK BUFFERPOINTER,222
FeedbackBuffer,204, 205, 210
FILL, 87–89, 200, 239, 264, 267
Finish,210, 211, 263
FLAT, 65, 264
FLOAT, 24, 29, 30, 104, 192, 193, 209,

232, 233
Flush,210, 211, 263
FOG,167
Fog,168, 169
FOG BIT, 227
FOG COLOR,168
FOG COORD,168, 296
FOG COORDARRAY, 24, 28, 296
FOG COORDARRAY POINTER,

222, 296
FOG COORDARRAY STRIDE,296
FOG COORDARRAY TYPE,296
FOG COORDSRC, 51, 53, 168, 169,

296
FOG COORDINATE,296
FOG COORDINATE ARRAY, 296
FOG COORDINATE ARRAY POINTER,

296

FOG COORDINATE ARRAY STRIDE,
296

FOG COORDINATE ARRAY TYPE,
296

FOG COORDINATE SOURCE, 289,
296

FOG DENSITY, 168
FOG END, 168
FOG HINT, 211
FOG INDEX, 169
FOG MODE, 168, 169
FOG START,168
FogCoord,19, 21, 289
FogCoordPointer,19, 23, 24, 210
FRAGMENT DEPTH,168, 169, 236
FRONT, 60, 62, 84, 85, 87, 183, 184,

190, 191, 215
FRONT AND BACK, 60, 62–64, 84,

87, 183, 184
FRONT LEFT, 183, 184, 190
FRONT RIGHT, 183, 184, 190
FrontFace,60, 84
Frustum,41, 42, 264
FUNC ADD, 178, 180, 245
FUNC REVERSESUBTRACT,178
FUNC SUBTRACT,178

GenBuffers,31, 32, 210
GENERATEMIPMAP, 143, 144, 152,

288
GENERATEMIPMAP HINT, 211
GenLists,209, 210
GenQueries,176, 177, 210
GenTextures,157, 210, 218
GEQUAL, 144, 165, 173–175, 295
Get,20, 39, 51, 210, 213, 214
GetBooleanv,173, 213, 214, 229
GetBufferParameter,215
GetBufferParameteriv,215
GetBufferPointerv,225
GetBufferSubData,224, 225
GetClipPlane,215
GetColorTable,97, 190, 219
GetColorTableParameter,219
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GetCompressedTexImage, 140–142,
212, 216–218

GetConvolutionFilter,190, 220
GetConvolutionParameter,220
GetConvolutionParameteriv,97, 98
GetDoublev,213, 214, 229
GetError,11
GetFloatv,173, 213, 214, 219, 229
GetHistogram,101, 190, 221
GetHistogramParameter,221
GetIntegerv,27, 44, 72, 213, 214, 219,

229
GetLight,215
GetMap,215, 216
GetMaterial,215
GetMinmax,190, 221
GetMinmaxParameter,222
GetPixelMap,215, 216
GetPointerv,222
GetPolygonStipple,190, 218
GetQueryiv,223
GetQueryObject[u]iv,224
GetQueryObjectiv,224
GetQueryObjectuiv,224
GetSeparableFilter,190, 220
GetString,222, 223
GetTexEnv,215
GetTexGen,215
GetTexImage,156, 190, 217–222
GetTexLevelParameter,215, 216
GetTexParameter,215, 216
GetTexParameterfv,156, 158
GetTexParameteriv,156, 158
GL ARB depthtexture,289, 303
GL ARB matrix palette,302
GL ARB multisample,281, 301
GL ARB multitexture,282, 301
GL ARB point parameters,290, 302
GL ARB shadow,289, 303
GL ARB shadowambient,303
GL ARB textureborderclamp, 283,

302
GL ARB texturecompression,280, 302
GL ARB texturecubemap,281, 302
GL ARB textureenv add,282, 301

GL ARB textureenv combine, 282,
303

GL ARB textureenv crossbar,303
GL ARB textureenv dot3,282, 303
GL ARB texturemirrored repeat,303
GL ARB transposematrix,283, 301
GL ARB vertexblend,302
GL ARB window pos,291, 304
GL EXT blend func separate,290
GL EXT fog coord,289
GL EXT multi draw arrays,289
GL EXT secondarycolor,290
GL EXT stencilwrap,290
GL NV blendsquare,289
glPointParameter,73, 74
GREATER,144, 165, 173–175
GREEN, 92, 105, 191, 192, 247, 248,

250, 257
GREENBIAS, 114
GREENSCALE,114

Hint, 211
HINT BIT, 227
HISTOGRAM,100, 101, 122, 221
Histogram,100, 101, 122, 210
HISTOGRAM ALPHA SIZE,221
HISTOGRAM BLUE SIZE,221
HISTOGRAM FORMAT, 221
HISTOGRAM GREENSIZE,221
HISTOGRAM LUMINANCE SIZE,

221
HISTOGRAM RED SIZE,221
HISTOGRAM SINK, 221
HISTOGRAM WIDTH, 221
HP convolutionbordermodes,274

INCR, 174
INCR WRAP,174, 290
INDEX, 257
Index,19, 21
INDEX ARRAY, 24, 28
INDEX ARRAY POINTER,222
INDEX LOGIC OP,181
INDEX OFFSET,92, 114, 247
INDEX SHIFT,92, 114, 247
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IndexMask,184, 185
IndexPointer,19, 23, 24, 210
InitNames,202
INT, 24, 104, 192, 193, 209
INTENSITY, 101, 102, 116, 117, 128–

130, 143, 144, 160, 161, 164,
218, 248, 267

INTENSITY12,129
INTENSITY16,129
INTENSITY4, 129
INTENSITY8, 129
InterleavedArrays,19, 28, 29, 210
INTERPOLATE,162
INVALID ENUM, 12, 25, 44, 47, 48,

60, 91, 97, 101, 102, 135, 140,
141, 156, 217

INVALID OPERATION,12, 19, 34–36,
91, 102, 106, 127, 135, 139–
142, 156, 176, 177, 183, 188,
190, 191, 198, 202–204, 208,
216, 218, 224

INVALID VALUE, 12, 24–26, 28, 33,
39, 43, 60, 73, 74, 77, 90, 92–
94, 96–98, 101, 127, 131, 132,
135, 137–141, 151, 158, 168,
172, 186, 197, 198, 200, 208,
216–218

INVERT, 174, 182
Is, 210
IsBuffer,224
IsEnabled,172, 213, 229
IsList, 209
IsQuery,223
IsTexture,218

KEEP,174, 175, 245

LEFT, 183, 184, 190, 191
LEQUAL, 144, 155, 165, 173–175, 242,

295
LESS,144, 165, 173–175, 245
Light, 60, 61
LIGHTi, 60, 62, 265
LIGHT0, 60
LIGHT MODEL AMBIENT, 61

LIGHT MODEL COLOR CONTROL,
61

LIGHT MODEL LOCAL VIEWER,
61

LIGHT MODEL TWO SIDE,61
LIGHTING, 56
LIGHTING BIT, 227
LightModel,60, 61
LINE, 87–89, 200, 201, 239, 267
LINE BIT, 227
LINE LOOP,15
LINE RESETTOKEN, 207
LINE SMOOTH,77, 83
LINE SMOOTH HINT, 211
LINE STIPPLE,80
LINE STRIP,15, 200
LINE TOKEN, 207
LINEAR, 144, 149, 152, 153, 155, 168
LINEAR ATTENUATION, 61
LINEAR MIPMAP LINEAR, 144, 151,

152
LINEAR MIPMAP NEAREST, 144,

151
LINES, 15, 81
LineStipple,80
LineWidth,77
LIST BIT, 227
ListBase,209, 210
LOAD, 187
LoadIdentity,41
LoadMatrix,40, 41
LoadMatrix[fd], 41
LoadName,202
LoadTransposeMatrix,40
LoadTransposeMatrix[fd],41
LOGIC OP,181
LogicOp,181, 182
LUMINANCE, 105, 112, 116, 117, 127–

130, 143, 144, 155, 160, 161,
164, 191, 192, 218, 242, 248,
250, 267

LUMINANCE12, 129
LUMINANCE12 ALPHA12, 129
LUMINANCE12 ALPHA4, 129
LUMINANCE16, 129
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LUMINANCE16 ALPHA16, 129
LUMINANCE4, 129
LUMINANCE4 ALPHA4, 129
LUMINANCE6 ALPHA2, 129
LUMINANCE8, 129
LUMINANCE8 ALPHA8, 129
LUMINANCE ALPHA, 105, 112, 116,

117, 127–130, 160, 161, 191,
192, 218

Map1,196–198, 214
MAP1 COLOR 4, 197
MAP1 INDEX, 197
MAP1 NORMAL, 197
MAP1 TEXTURE COORD1, 197, 199
MAP1 TEXTURE COORD2, 197, 199
MAP1 TEXTURE COORD3, 197
MAP1 TEXTURE COORD4, 197
MAP1 VERTEX 3, 197
MAP1 VERTEX 4, 197
Map2,197, 198, 214
MAP2 VERTEX 3, 199
MAP2 VERTEX 4, 199
MAP COLOR,92, 114, 115
MAP STENCIL,92, 115
MAP VERTEX 3, 199
MAP VERTEX 4, 199
Map{12}, 198
MapBuffer,34, 36, 210
MapGrid1,200
MapGrid2,200
Material,19, 60, 61, 65, 264
MatrixMode,40
MAX, 178
MAX 3D TEXTURE SIZE,131
MAX ATTRIB STACK DEPTH,225
MAX CLIENT ATTRIB STACK DEPTH,

225
MAX COLOR MATRIX STACK DEPTH,

219
MAX CONVOLUTION HEIGHT, 97,

220
MAX CONVOLUTION WIDTH, 97,

98, 220

MAX CUBE MAP TEXTURE SIZE,
131

MAX ELEMENTS INDICES,28
MAX ELEMENTS VERTICES,28
MAX EVAL ORDER,197, 198
MAX PIXEL MAP TABLE, 93, 114
MAX TEXTURE LOD BIAS, 147
MAX TEXTURE SIZE,131
MAX TEXTURE UNITS, 13, 20, 23,

30, 226
MAX VIEWPORT DIMS, 223
MIN, 178
MINMAX, 102, 122, 222
Minmax,101, 123
MINMAX FORMAT, 222
MINMAX SINK, 222
MIRRORED REPEAT,144, 146, 291
MODELVIEW, 40, 44
MODELVIEW MATRIX, 214
MODULATE, 159–162, 244
MULT, 187, 188
MultiDrawArrays,26, 35, 289
MultiDrawElements,27, 35, 36, 289
MULTISAMPLE, 72, 77, 83, 89, 123,

125, 172, 181, 182
MULTISAMPLE BIT, 227
MultiTexCoord,19, 20, 25, 44
MultMatrix, 40, 41
MultMatrix[fd], 41
MultTransposeMatrix,40
MultTransposeMatrix[fd],41

N3F V3F, 28, 29
NAND, 182
NEAREST,144, 149, 152, 153, 164
NEARESTMIPMAP LINEAR, 144,

151–153, 155
NEARESTMIPMAP NEAREST, 144,

151, 153, 164
NEVER,144, 165, 173–175
NewList,208, 209
NICEST,211
NO ERROR,11
NONE, 144, 155, 164, 181, 183, 184,

187, 242
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NOOP,182
NOR,182
Normal,19, 21
Normal3,8, 20
Normal3d,8
Normal3dv,8
Normal3f,8
Normal3fv,8
NORMAL ARRAY, 24, 30
NORMAL ARRAY BUFFERBINDING,

35
NORMAL ARRAY POINTER,222
NORMAL MAP, 47, 48, 281
NORMALIZE, 45
NormalPointer,19, 23, 24, 30, 35, 210
NOTEQUAL, 144, 165, 173–175
NULL, 31, 33–35, 225
NUM COMPRESSEDTEXTURE FORMATS,

127

OBJECTLINEAR, 47, 48, 215
OBJECTPLANE, 47
ONE,179, 180, 245
ONE MINUS CONSTANT ALPHA,

179, 289
ONE MINUS CONSTANT COLOR,

179, 289
ONE MINUS DST ALPHA, 179
ONE MINUS DST COLOR,179, 288
ONE MINUS SRCALPHA, 163, 179
ONE MINUS SRCCOLOR, 163, 179,

288
OPERANDn ALPHA, 161, 163, 166
OPERANDn RGB,161, 163, 166
OR,182
OR INVERTED, 182
OR REVERSE,182
ORDER,217
Ortho,41, 43, 264
OUT OF MEMORY, 11, 12, 33, 34, 208

PACK ALIGNMENT, 190, 247
PACK IMAGE HEIGHT, 190, 217, 247
PACK LSB FIRST,190, 247
PACK ROW LENGTH, 190, 247

PACK SKIP IMAGES, 190, 217, 247
PACK SKIP PIXELS,190, 247
PACK SKIP ROWS,190, 247
PACK SWAP BYTES,190, 247
PASSTHROUGH TOKEN, 207
PassThrough,206
PERSPECTIVECORRECTIONHINT,

211
PIXEL MAP A TO A, 93, 114
PIXEL MAP B TO B, 93, 114
PIXEL MAP G TO G, 93, 114
PIXEL MAP I TO A, 93, 115
PIXEL MAP I TO B, 93, 115
PIXEL MAP I TO G, 93, 115
PIXEL MAP I TO I, 93, 115
PIXEL MAP I TO R, 93, 115
PIXEL MAP R TO R, 93, 114
PIXEL MAP S TO S,93, 115
PIXEL MODE BIT, 227
PixelMap,90, 92, 93, 194
PixelStore,19, 90–92, 190, 194, 210
PixelTransfer,90, 92, 120, 194
PixelZoom,113, 123
POINT,87–89, 200, 201, 239, 267
POINT BIT, 227
POINT DISTANCE ATTENUATION,

74
POINT FADE THRESHOLDSIZE,74
POINT SIZE MAX, 74
POINT SIZE MIN, 74
POINT SMOOTH,74, 77
POINT SMOOTH HINT, 211
POINT TOKEN, 207
PointParameters,290
POINTS,15, 200
PointSize,73
POLYGON,16, 18
POLYGON BIT, 227
POLYGON OFFSETFILL, 88
POLYGON OFFSETLINE, 88
POLYGON OFFSETPOINT,88
POLYGON SMOOTH,84, 89
POLYGON SMOOTH HINT, 211
POLYGON STIPPLE,86
POLYGON STIPPLEBIT, 227
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POLYGON TOKEN, 207
PolygonMode,83, 87, 89, 203, 205
PolygonOffset,88
PolygonStipple,86, 91
PopAttrib,225, 226, 265
PopClientAttrib,19, 210, 225, 226
PopMatrix,44
PopName,202
POSITION,61, 215
POSTCOLOR MATRIX x BIAS, 92
POSTCOLOR MATRIX x SCALE,

92
POSTCOLOR MATRIX ALPHA BIAS,

121
POSTCOLOR MATRIX ALPHA SCALE,

121
POSTCOLOR MATRIX BLUE BIAS,

121
POSTCOLOR MATRIX BLUE SCALE,

121
POSTCOLOR MATRIX COLOR TABLE,

94, 121
POSTCOLOR MATRIX GREENBIAS,

121
POSTCOLOR MATRIX GREENSCALE,

121
POSTCOLOR MATRIX RED BIAS,

121
POSTCOLOR MATRIX RED SCALE,

121
POSTCONVOLUTION x BIAS, 92
POSTCONVOLUTION x SCALE,92
POSTCONVOLUTION ALPHA BIAS,

120
POSTCONVOLUTION ALPHA SCALE,

120
POSTCONVOLUTION BLUE BIAS,

120
POSTCONVOLUTION BLUE SCALE,

120
POSTCONVOLUTION COLOR TABLE,

94, 120, 121
POSTCONVOLUTION GREENBIAS,

120
POSTCONVOLUTION GREENSCALE,

120
POSTCONVOLUTION RED BIAS,

120
POSTCONVOLUTION RED SCALE,

120
PREVIOUS,161, 163, 244
PRIMARY COLOR,163
PrioritizeTextures,158
PROJECTION,40, 44
PROXY COLOR TABLE, 94, 96, 210
PROXY HISTOGRAM, 100, 101, 210,

221
PROXY POSTCOLOR MATRIX COLOR TABLE,

94, 210
PROXY POSTCONVOLUTION COLOR TABLE,

94, 210
PROXY TEXTURE 1D, 127, 133, 155,

156, 210, 216
PROXY TEXTURE 2D, 127, 132, 155,

156, 210, 216
PROXY TEXTURE 3D, 126, 155, 156,

210, 216
PROXY TEXTURE CUBE MAP, 132,

156, 210, 216
PushAttrib,225, 226
PushClientAttrib,19, 210, 225, 226
PushMatrix,44
PushName,202

Q, 46–48, 215
QUAD STRIP,17
QUADRATIC ATTENUATION, 61
QUADS,18
QUERY COUNTERBITS, 223
QUERY RESULT,224
QUERY RESULT AVAILABLE, 224

R, 46, 47, 215
R3 G3 B2, 129
RasterPos,51, 203, 264, 291
RasterPos2,51
RasterPos3,51
RasterPos4,51
READ ONLY, 31, 34
READ WRITE, 31, 33, 34
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ReadBuffer,190, 191, 194
ReadPixels,90, 92, 104, 105, 107, 116,

188–192, 194, 210, 217, 219
Rect,37, 84
RED, 92, 105, 191, 192, 247, 248, 250,

257
RED BIAS, 114
RED SCALE,114
REDUCE,118, 120, 249
REFLECTIONMAP, 47, 48, 281
RENDER,203, 204, 258
RENDERER,223
RenderMode,203–205, 210
REPEAT,144, 145, 149, 150, 155, 242
REPLACE,159, 160, 162, 174
REPLICATE BORDER,118, 119
RESCALENORMAL, 45
ResetHistogram,221
ResetMinmax,222
RETURN,187, 188
RGB,105, 107, 111, 116, 117, 127–130,

159–161, 179, 191, 192, 218,
267

RGB10,129
RGB10A2, 129
RGB12,129
RGB16,129
RGB4,129
RGB5,129
RGB5 A1, 129
RGB8,129
RGB SCALE,159
RGBA, 95, 96, 99–102, 105, 107, 111,

116, 117, 127–130, 160, 161,
191, 194, 218, 248–251

RGBA12,129
RGBA16,129
RGBA2,129
RGBA4,129
RGBA8,129
RIGHT, 183, 184, 190, 191
Rotate,41, 264

S,46, 47, 215

SAMPLE ALPHA TO COVERAGE,
172

SAMPLE ALPHA TO ONE,172, 173
SAMPLE BUFFERS, 72, 77, 83, 89,

123, 125, 172, 176, 181, 182,
185, 190

SAMPLE COVERAGE,172, 173
SAMPLE COVERAGEINVERT, 172,

173
SAMPLE COVERAGEVALUE, 172,

173
SampleCoverage,173
SAMPLES,72, 176
SAMPLESPASSED,176
Scale,41, 42, 264
Scissor,172
SCISSORBIT, 227
SCISSORTEST,172
SECONDARYCOLOR ARRAY, 24,

28
SECONDARYCOLOR ARRAY POINTER,

222
SecondaryColor,19, 21, 290
SecondaryColor3,21
SecondaryColorPointer,19, 23, 24, 210
SELECT,203, 204, 265
SelectBuffer,203, 204, 210
SELECTIONBUFFERPOINTER,222
SEPARABLE2D, 98, 99, 116, 132, 220
SeparableFilter2D,91, 98
SEPARATESPECULARCOLOR,58
SET,182
SGI color matrix,274
SGISgeneratemipmap,288
SGISmultitexture,279
SGIS textureedgeclamp,273
SGIS texturelod, 273
ShadeModel,65
SHININESS,61
SHORT,24, 104, 192, 193, 209
SINGLE COLOR,57, 58, 237
SMOOTH,65, 236
SOURCE0ALPHA, 296
SOURCE0RGB,296
SOURCE1ALPHA, 296
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SOURCE1RGB,296
SOURCE2ALPHA, 296
SOURCE2RGB,296
SPECULAR,61, 62
SPHEREMAP, 47, 48, 281
SPOTCUTOFF,61
SPOTDIRECTION,61, 215
SPOTEXPONENT,61
SRC0ALPHA, 296
SRC0RGB,296
SRC1ALPHA, 296
SRC1RGB,296
SRC2ALPHA, 296
SRC2RGB,296
SRCALPHA, 161, 163, 179, 244
SRCALPHA SATURATE,179
SRCCOLOR,161, 163, 179, 244, 288
SRCn ALPHA, 161, 163, 166
SRCn RGB,161, 163, 166
STACK OVERFLOW,12, 44, 203, 225
STACK UNDERFLOW, 12, 44, 202,

226
STATIC COPY,31, 32
STATIC DRAW, 31, 32
STATIC READ, 31, 32
STENCIL,194
STENCIL BUFFERBIT, 185, 187, 227
STENCIL INDEX, 94, 97, 102, 105,

113, 126, 188, 190, 191, 194,
217

STENCIL TEST,174
StencilFunc,174, 175, 263
StencilMask,185, 188, 263
StencilOp,174, 175
STREAM COPY,31, 32
STREAM DRAW, 31, 32
STREAM READ, 31, 32
SUBTRACT,162

T, 46, 215
T2F C3F V3F, 28, 29
T2F C4F N3F V3F, 28, 29
T2F C4UB V3F, 28, 29
T2F N3F V3F, 28, 29
T2F V3F, 28, 29

T4F C4F N3F V4F, 28, 29
T4F V4F, 28, 29
TABLE TOO LARGE, 12, 94, 101
TexCoord,19, 20
TexCoord1,20
TexCoord2,20
TexCoord3,20
TexCoord4,20
TexCoordPointer,19, 23–25, 30, 210
TexEnv,158, 166
TexGen,46–48
TexImage,137
TexImage1D,91, 116, 118, 128, 132,

133, 136, 137, 140, 151, 155,
210

TexImage2D,91, 116, 118, 128, 132,
133, 135, 137, 140, 151, 155,
210

TexImage3D,91, 126, 128, 131–133,
137, 140, 151, 155, 210, 217

TexParameter,142
TexParameter[if],147, 151
TexParameterf,158
TexParameterfv,158
TexParameteri,158
TexParameteriv,158
TexSubImage,137
TexSubImage1D,91, 116, 136, 137, 139,

141
TexSubImage2D,91, 116, 136–139, 141
TexSubImage3D,91, 136, 137, 139, 141
TEXTURE,40, 43, 44, 161, 163, 244
TEXTUREi, 20
TEXTURE0,20, 44, 198, 205, 226, 232,

244
TEXTURE1,226
TEXTURE xD, 241
TEXTURE 1D,127, 133, 136, 143, 156,

157, 164, 215–217
TEXTURE 2D,127, 132, 135, 136, 143,

156, 157, 164, 215–217
TEXTURE 3D,126, 137, 143, 155–157,

164, 215–217
TEXTURE ALPHA SIZE,216
TEXTURE BASE LEVEL, 131, 143,
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144, 151, 155
TEXTURE BIT, 226, 227
TEXTURE BLUE SIZE,216
TEXTURE BORDER,140, 142, 216
TEXTURE BORDERCOLOR, 143,

144, 150, 155
TEXTURE COMPAREFAIL VALUE ARB,

303
TEXTURE COMPAREFUNC, 144,

155, 164
TEXTURE COMPAREMODE, 144,

155, 164, 289
TEXTURE COMPONENTS,216
TEXTURE COMPRESSEDIMAGE SIZE,

141, 142, 216, 218
TEXTURE COMPRESSIONHINT,

211
TEXTURE COORDARRAY, 24, 25,

30
TEXTURE COORDARRAY POINTER,

222
TEXTURE CUBE MAP, 132, 143, 156,

157, 164, 216, 241
TEXTURE CUBE MAP *, 132
TEXTURE CUBE MAP NEGATIVE X,

132, 135, 136, 145, 216, 217
TEXTURE CUBE MAP NEGATIVE Y,

132, 135, 137, 145, 216, 217
TEXTURE CUBE MAP NEGATIVE Z,

132, 135, 137, 145, 216, 217
TEXTURE CUBE MAP POSITIVE X,

132, 135, 136, 145, 216, 217
TEXTURE CUBE MAP POSITIVE Y,

132, 135, 137, 145, 216, 217
TEXTURE CUBE MAP POSITIVE Z,

132, 135, 137, 145, 216, 217
TEXTURE DEPTH,140, 142, 216
TEXTURE DEPTH SIZE,216
TEXTURE ENV, 159, 215
TEXTURE ENV COLOR,159
TEXTURE ENV MODE, 159, 166, 282
TEXTURE FILTER CONTROL, 159,

215
TEXTURE GEN MODE, 47, 48
TEXTURE GEN Q, 48

TEXTURE GEN R, 48
TEXTURE GEN S,48
TEXTURE GEN T, 48
TEXTURE GREENSIZE,216
TEXTURE HEIGHT, 140, 142, 216
TEXTURE INTENSITY SIZE,216
TEXTURE INTERNAL FORMAT,

140, 142, 216
TEXTURE LOD BIAS, 144, 147, 159,

291
TEXTURE LUMINANCE SIZE,216
TEXTURE MAG FILTER, 144, 153,

155, 164
TEXTURE MAX LEVEL, 143, 144,

151, 155
TEXTURE MAX LOD, 143, 144, 147,

155
TEXTURE MIN FILTER, 144, 149,

151, 153–155, 164
TEXTURE MIN LOD, 143, 144, 147,

155
TEXTURE PRIORITY,144, 155, 158
TEXTURE RED SIZE,216
TEXTURE RESIDENT,155, 158, 216
TEXTURE WIDTH, 140, 142, 216
TEXTURE WRAP R, 144, 145, 149,

150
TEXTURE WRAP S,144, 145, 149
TEXTURE WRAP T, 144, 145, 149,

150
TEXTUREn, 163, 166
TRANSFORMBIT, 227
Translate,41, 42, 264
TRANSPOSECOLOR MATRIX, 214,

219
TRANSPOSEMODELVIEW MATRIX,

214
TRANSPOSEPROJECTIONMATRIX,

214
TRANSPOSETEXTURE MATRIX,

214
TRIANGLE FAN, 16
TRIANGLE STRIP,16
TRIANGLES,17, 18
TRUE,18, 19, 31, 34, 35, 50, 57, 59, 90–
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92, 100, 102, 143, 144, 152,
157, 173, 176, 185, 190, 210,
214, 218, 221–224, 288

UnmapBuffer,35, 36, 210
UNPACK ALIGNMENT, 91, 106, 126,

247
UNPACK IMAGE HEIGHT, 91, 126,

247
UNPACK LSB FIRST,91, 111, 247
UNPACK ROW LENGTH, 91, 105,

106, 126, 247
UNPACK SKIP IMAGES, 91, 126,

132, 247
UNPACK SKIP PIXELS, 91, 106, 111,

247
UNPACK SKIP ROWS, 91, 106, 111,

247
UNPACK SWAP BYTES,91, 105, 106,

247
UNSIGNED BYTE, 24, 26, 29, 104,

108, 192, 193, 209
UNSIGNED BYTE 2 3 3 REV, 104,

106–108, 193
UNSIGNED BYTE 3 3 2, 104, 106–

108, 193
UNSIGNED INT, 24, 26, 104, 110, 192,

193, 209
UNSIGNED INT 10 10 10 2,104, 106,

107, 110, 193
UNSIGNED INT 2 10 10 10 REV,

104, 106, 107, 110, 193
UNSIGNED INT 8 8 8 8, 104, 106,

107, 110, 193
UNSIGNED INT 8 8 8 8 REV, 104,

106, 107, 110, 193
UNSIGNED SHORT,24, 26, 104, 109,

192, 193, 209
UNSIGNED SHORT1 5 5 5 REV,

104, 106, 107, 109, 193
UNSIGNED SHORT4 4 4 4, 104,

106, 107, 109, 193
UNSIGNED SHORT4 4 4 4 REV,

104, 106, 107, 109, 193
UNSIGNED SHORT5 5 5 1, 104,

106, 107, 109, 193
UNSIGNED SHORT5 6 5, 104, 106,

107, 109, 193
UNSIGNED SHORT5 6 5 REV, 104,

106, 107, 109, 193

V2F, 28, 29
V3F, 28, 29
VENDOR,223
VERSION,223
Vertex,7, 19, 20, 51, 199
Vertex2,20, 37
Vertex2sv,7
Vertex3,20
Vertex3f,7
Vertex4,20
VERTEX ARRAY, 24, 30
VERTEX ARRAY POINTER,222
VertexPointer,19, 23, 24, 30, 210
Viewport,39
VIEWPORT BIT, 227

WGL ARB multisample,281
WindowPos,51, 53, 203, 291
WindowPos2,53
WindowPos3,51
WRITE ONLY, 31, 34

XOR, 182

ZERO,174, 179, 180, 245
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