The OpenGL Graphics System:

A Specification
(Version 1.5)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2, 1.2.1, 1.3, 1.4, 1.5): Jon Leech

Copyright(©) 1992-2003 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribution, public performance,
or public display of this document without the express written consent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or possession of this document
does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and/or in similar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights
reserved under the copyright laws of the United States. Contractor/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.
The "X” device and X Windows System are trademarks of

The Open Group.

Contents

1 Introduction 1
1.1 Formatting of Optional Features 1
1.2 Whatis the OpenGL Graphics System? 1
1.3 ProgrammersViewofOpenGL 2
1.4 Implementor's ViewofOpenGL 2
15 OurView 0 3

2 OpenGL Operation 4
21 OpenGLFundamentals 4

2.1.1 Floating-Point Computation 6
22 GLState e 6
23 GLCommandSyntax 7
24 BasicGLOperation. 10
25 GLErors 11
2.6 Begin/End Paradigm 12
26.1 BeginandEndObjects 13
2.6.2 PolygonEdges 18
2.6.3 GL Commands withiBeginEnd 19
2.7 \Vertex Specification 19
2.8 Vertex Arrays o e 23
2.9 BufferObjects. 30
2.9.1 \Vertex Arrays in Buffer Objects 35
2.9.2 Array Indices in Buffer Objects 36
210 Rectangles e 37
2.11 Coordinate Transformations 37
2.11.1 Controllingthe Viewport 39
2112 MatricesS. 40
2.11.3 Normal Transformation. 45
2.11.4 Generating Texture Coordinates 46

ii CONTENTS
2.12 Clipping o o 48
2.13 Current Raster Position 51
2.14 ColorsandColoring 55

2141 Lighting. e 56
2.14.2 Lighting Parameter Specification. 60
2.14.3 ColorMaterial 62
2.14.4 LightingState 64
2.145 Colorindex Lighting 64
2.14.6 ClampingorMasking 65
2.14.7 Flatshading 65
2.14.8 Color and Texture Coordinate Clipping 65
2.14.9 FinalColorProcessing 66

3 Rasterization 68
3.1 Invariance 70
3.2 Antialiasing 70

3.2.1 Multisampling 71
3.3 Points 73
3.3.1 Basic Point Rasterization 74
3.3.2 Point RasterizationState 77
3.3.3 Point Multisample Rasterization 77
3.4 LineSegments e 77
3.4.1 Basic Line Segment Rasterization 78
3.4.2 OtherLine SegmentFeatures. 80
3.4.3 Line RasterizationState 83
3.4.4 Line Multisample Rasterization 33
3.5 Polygons 84
3.5.1 Basic Polygon Rasterization 84
3,52 Stippling 86
3.53 Antialiasing., 87
3.5.4 Options Controlling Polygon Rasterization 87
355 DepthOffset 88
3.5.6 Polygon Multisample Rasterization 89
3.5.7 Polygon RasterizationState 90
3.6 PixelRectangles. 90
3.6.1 PixelStorageModes 90
3.6.2 ThelmagingSubset 91
3.6.3 PixelTransferModes\ 92
3.6.4 Rasterization of Pixel Rectangles 102
3.6.5 Pixel Transfer Operations 113

Version 1.5 - October 30, 2003

CONTENTS

Version 1.5 - October 30, 2003

3.6.6 Pixel Rectangle Multisample Rasterization 123

3.7 Bitmaps 123
3.8 Texturing e 125
3.8.1 Texture Image Specification 126
3.8.2 Alternate Texture Image Specification Commands . . 135
3.8.3 Compressed Texturelmages 139
3.8.4 Texture Parameters 142
3.8.5 Depth Component Textures 143
3.8.6 Cube Map Texture Selection 143
3.8.7 TextureWrapModes 145
3.8.8 Texture Minification 147
3.8.9 Texture Magnification 153
3.8.10 Texture Completeness 153
3.8.11 Texture State and Proxy State 154
3.8.12 TextureObjects 156
3.8.13 Texture Environments and Texture Functions 158
3.8.14 Texture ComparisonModes 164
3.8.15 Texture Application. 164

39 ColorSum 167
310 FOg . . . 167
3.11 Antialiasing Application 169
3.12 Multisample PointFade 169
4 Per-Fragment Operations and the Framebuffer 170
4.1 Per-FragmentOperations 171
411 PixelOwnershipTest 171
412 ScissorTest e 172
4.1.3 Multisample Fragment Operations 172
414 AlphaTest 173
415 StencilTest 174
416 DepthBufferTest. 175
4.1.7 OcclusionQueries 176
418 Blending 177
4,19 Dithering 180
4.1.10 Logical Operation 181
4.1.11 Additional Multisample Fragment Operations 181

4.2 Whole Framebuffer Operations 183
4.2.1 Selecting a Buffer for Writing 183
4.2.2 Fine Control of Buffer Updates 184
423 ClearingtheBuffers 185

iv CONTENTS

4.2.4 The AccumulationBuffer 187

4.3 Drawing, Reading, and CopyingPixels 188
4.3.1 Writing to the StencilBuffer 188

43.2 ReadingPixels 188

433 CopyingPixels, 194

4.3.4 PixelDraw/Read State 194

5 Special Functions 196
51 Evaluators 196
5.2 Selection 202
53 Feedback 204
5.4 DisplaylLists 000, 206
55 FlushandFinish. 211
56 Hints. 211

6 State and State Requests 213
6.1 QueryingGLState 213
6.1.1 SimpleQueries 213

6.1.2 DataConversions 214

6.1.3 Enumerated Queries 215

6.1.4 TextureQueries 217

6.1.5 StippleQuery o 218

6.1.6 ColorMatrixQuery. 219

6.1.7 ColorTableQuery 219

6.1.8 ConvolutionQuery 220

6.1.9 HistogramQuery 221

6.1.10 MinmaxQuery e 221

6.1.11 Pointer and String Queries 222

6.1.12 OcclusionQueries 223

6.1.13 Buffer ObjectQueries 224

6.1.14 Savingand RestoringState 225

6.2 StateTables L 229

A Invariance 259
Al Repeatability, 259
A.2 Multi-pass Algorithms 260
A.3 InvarianceRules. L o 260
A4 WhatAllThisMeans 262

B Corollaries 263

Version 1.5 - October 30, 2003

CONTENTS Y,

C Version1.1 266
C.1 Vertex Array o o e e 266
C.2 PolygonOffset 267
C.3 LogicalOperation 267
C.4 TexturelmageFormats 267
C.5 Texture Replace Environment. 267
C.6 TextureProxies 268
C.7 Copy Texture and Subtexture 268
C.8 TextureObjects, 268
C.9 OtherChanges 268
C.10 Acknowledgements o0 269

D Version 1.2 271
D.1 Three-Dimensional Texturing 271
D.2 BGRAPixelFormats 271
D.3 Packed Pixel Formats 272
D.4 NormalRescaling 272
D.5 Separate SpecularColor 272
D.6 Texture Coordinate Edge Clamping 272
D.7 Texture Level of Detail Control 273
D.8 \ertex Array Draw ElementRange 273
D.9 ImagingSubset, 273

D.9.1 ColorTables 273
D.9.2 Convolution. 274
D.9.3 ColorMatrix 274
D.9.4 Pixel Pipeline Statistics 275
D.9.5 ConstantBlendColor. 275
D.9.6 NewBlendingEquations 275
D.10 Acknowledgementso 275

E Version1.2.1 279

F Version 1.3 280
F.1 CompressedTextures 280
F2 CubeMapTexturesu.o... 280
F.3 Multisample 281
F.4 Multitexture 281
F.5 Texture Add EnvironmentMode 282
F.6 Texture Combine EnvironmentMode 282
F.7 Texture Dot3 EnvironmentMode 282

Version 1.5 - October 30, 2003

Vi

G

H

CONTENTS
F.8 TextureBorderClamp 282
F.O9 Transpose Matrix, 283
F.10 Acknowledgements, 283
Version 1.4 288
G.1 Automatic Mipmap Generation 288
G.2 BlendSquaring 288
G.3 ChangestothelmagingSubset 289
G.4 Depth Texturesand Shadows 289
G.5 FogCoordinate 289
G.6 Multiple Draw Arrays 289
G.7 PointParameters 290
G.8 SecondaryColor 290
G.9 SeparateBlend Functions 290
G.l0 StencilWrap e 290
G.11 Texture Crossbar EnvironmentMode 290
G.12 Texture LODBias 291
G.13 Texture Mirrored Repeat 291
G.14 Window Raster Position 291
G.15 Acknowledgements 291
Version 1.5 294
H.1 BufferObjects. 294
H.2 OcclusionQueries. 295
H.3 Shadow Functions 295
H.4 ChangedTokens., 295
H.5 Acknowledgements 295
ARB Extensions 300
.1 NamingConventions 300
I.2 Promoting Extensions to Core Features 301
.3 Multitexture 301
.4 Transpose Matrix, 301
.5 Multisample 301
I.6 Texture Add EnvironmentMode 301
.7 CubeMapTextures, 302
.8 CompressedTextures 302
.9 TextureBorderClamp 302
.10 PointParameters 302
.11 VertexBlend 302

Version 1.5 - October 30, 2003

CONTENTS vii

.12 MatrixPalette 302
[.13 Texture Combine EnvironmentMode 303
.14 Texture Crossbar EnvironmentMode 303
[.15 Texture Dot3 EnvironmentMode 303
.16 Texture Mirrored Repeat 303
.17 DepthTexture i 303
.18 Shadow 303
.19 Shadow Ambient L. 303
.20 Window Raster Position 304
.21 Low-Level Vertex Programming 304
.22 Low-Level Fragment Programming 304
.23 BufferObjects. 304
[.24 OcclusionQueries. i 304
.25 ShaderObjects, 304
.26 High-Level Vertex Programming 305
.27 High-Level Fragment Programming 305
[.28 OpenGL ShadingLanguage 305
.29 Non-Power-Of-Two Textures 305
.30 PointSprites. 306
Index of OpenGL Commands 307

Version 1.5 - October 30, 2003

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3

51
5.2

Block diagramofthe GL. 10
Creation of a processed vertex from a transformed vertex and cur-
rentvalues. 13
Primitive assembly and processing. 13
Triangle strips, fans, and independent triangles. 16
Quadrilateral strips and independent quadrilaterals. 17
Vertex transformation sequence. 37
Currentraster position. 51
Processingof RGBAcolors. 55
Processing of colorindices. 55
ColorMaterial operation./ 62
Rasterization. 68
Rasterization of non-antialiased wide points. 75
Rasterization of antialiased wide points. 75
Visualization of Bresenham’s algorithm. 78
Rasterization of non-antialiased wide lines. 81
The region used in rasterizing an antialiased line segment. . . 82
Operation oDrawPixels. 102
Selecting a subimage fromanimage 106
A bitmap and its associated parameters. 124
A texture image and the coordinates used to accessit. 133.
Multitexture pipeline. oL 166
Per-fragment operations. 171
OperationoReadPixels 188
Operation oCopyPixels 194
Map Evaluation. 198
Feedbacksyntax. 207

List of Tables

21 GLcommandsuffixes. 8
22 GLdatatypes 9
2.3 SummaryofGLerrors 12
2.4 \Vertex array sizes (values per vertex) and data types 24,
2.5 \Variables that direct the executionloferleavedArrays. 29
2.6 Buffer object parameters and theirvalues. 31
2.7 Bufferobjectinitialstate., 33
2.8 Buffer object state set byapBuffer. 34
2.9 Componentconversions 55
2.10 Summary of lighting parameters. 57
2.11 Correspondence of lighting parameter symbols to names. . . .61
2.12 Polygon flatshading color selection. 66
3.1 PixelStoreparameters. o oo 91
3.2 PixelTransfer parameters. 93
3.3 PixelMap parameters. o o 94
3.4 Colortablenames. 95
3.5 DrawPixelsandReadPixelstypes. 104
3.6 DrawPixelsandReadPixelsformats. 105
3.7 SwapBytesbhitordering. 106
3.8 Packedpixelformats. 108
3.9 UNSIGNEDBYTEformats. Bit numbers are indicated for each com-
ponent. e e 108
3.10 UNSIGNEDSHORTformats 109
3.11 UNSIGNEDINT formats 110
3.12 Packed pixel field assignments. 111
3.13 Colortable lookup. 116
3.14 Computation of filtered color components. 117

iX

LIST OF TABLES

3.15 Conversion from RGBA and depth pixel components to internal

texture, table, or filter components. 128
3.16 Correspondence of sized internal formats to base internal formagg
3.17 Specific compressed internal formats. 130
3.18 Generic compressed internal formats. 130
3.19 Texture parameters and theirvalues. 144
3.20 Selectionofcubemapimages. 145
3.21 Correspondence of filtered texture components. 160
3.22 Texture functionREPLACEMODULATEANdDECAL. 160
3.23 Texture functionBLENDandADD 161
3.24 COMBINEexture functions. 162
3.25 Arguments foCOMBINERGBfunctions. 163
3.26 Arguments foCOMBINEALPHAfunctions. 163
3.27 Depth texture comparison functions. 165
4.1 Blending functions. 179

4.2 Arguments td.ogicOp and their corresponding operations. . . .182
4.3 Arguments trawBuffer and the buffers that they indicate. . . 184

4.4 PixelStoreparameters. oL, 190
45 ReadPixelsindexmasks. 192
4.6 ReadPixelsGL data types and reversed component conversion for-
mulas. 193
5.1 Values specified by thargettoMapl. 197
5.2 Correspondence of feedback type to number of values per vertés.
6.1 Texture, table, and filter returnvalues. 218
6.2 Attributegroups 227
6.3 Statevariabletypes 228
6.4 GL Internal begin-end state variables (inaccessible) 230
6.5 Current Values and AssociatedData 231
6.6 VertexArrayData 232
6.7 Vertex Array Data(cont.) 233
6.8 BufferObjectState 234
6.9 Transformationstate 235
6.10 Coloring 236
6.11 Lighting (see also Tabke10fordefaults) 237
6.12 Lighting(cont.), 238
6.13 Rasterization 239
6.14 Multisampling 240

Version 1.5 - October 30, 2003

LIST OF TABLES Xi

6.15 Textures (state per texture unit and binding point) 241
6.16 Textures (state pertextureobject) 242
6.17 Textures (state pertextureimage) 243
6.18 Texture Environment and Generation 244
6.19 PixelOperations. 245
6.20 Framebuffer Control 246
6.21 Pixels e 247
6.22 Pixels(cont.) 248
6.23 Pixels(cont.) 249
6.24 Pixels(cont.) e 250
6.25 Pixels(cont) 251
6.26 EvaluatorsGetMap takesamapname) 252
6.27 Hints. 253
6.28 Implementation DependentValues 254
6.29 Implementation Dependent Values (cont.) 255
6.30 Implementation Dependent Values (cont.) 256
6.31 Implementation Dependent Pixel Depths 257
6.32 Miscellaneous 258
H.1 Newtokennames 296

Version 1.5 - October 30, 2003

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see sectioR.6.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see sectidh?). State table entries which are
optional are typese against a gray background

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing

2 CHAPTER 1. INTRODUCTION

or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

Version 1.5 - October 30, 2003

1.5. OUR VIEW 3

1.5 Our View

We view OpenGL as a state machine that controls a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

Version 1.5 - October 30, 2003

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”") is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL drawsprimitivessubject to a number of selectable modes. Each prim-
itive is a point, line segment, polygon, or pixel rectangle. Each mode may be
changed independently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually ends up in the
framebuffer). Modes are set, primitives specified, and other GL operations de-
scribed by sendingommandsn the form of function or procedure calls.

Primitives are defined by a group of one or muestices A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, nhormals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise.

4

2.1. OPENGL FUNDAMENTALS 5

In general, the effects of a GL command on either GL modes or the framebuffer
must be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters as transformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of Gtontextseach of which is an encapsulation of cur-
rent GL state. A client may choose¢onnecto any one of these contexts. Issuing
GL commands when the program is monnectedo acontextresults in undefined
behavior.

The effects of GL commands on the framebuffer are ultimately controlled by
the window system that allocates framebuffer resources. It is the window sys-
tem that determines which portions of the framebuffer the GL may access at any
given time and that communicates to the GL how those portions are structured.
Therefore, there are no GL commands to configure the framebuffer or initialize the
GL. Similarly, display of framebuffer contents on a CRT monitor (including the
transformation of individual framebuffer values by such techniques as gamma cor-
rection) is not addressed by the GL. Framebuffer configuration occurs outside of
the GL in conjunction with the window system; the initialization of a GL context
occurs when the window system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Version 1.5 - October 30, 2003

6 CHAPTER 2. OPENGL OPERATION

Finally, command names, constants, and types are prefixed in the Gil, (by
GL, andGL, respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. We do not specify how floating-point numbers are to be represented
or how operations on them are to be performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in10°. The maximum representable magnitude of a floating-point number
used to represent positional or normal coordinates must be atfZashe maxi-

mum representable magnitude for colors or texture coordinates must be atfeast
The maximum representable magnitude for all other floating-point values must be
atleas®?. z-0 = 0-z = 0 for any non-infinite and non-NalM. 1-2 = 2-1 = z.
r+0=0+4z = . 0° = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, calleds@iver
state resides in the GL server. The majority of GL state falls into this category.
The second type of state, called @lient state resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL

Version 1.5 - October 30, 2003

2.3. GL COMMAND SYNTAX 7

client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed fromramefollowed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present,vs indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from thlertex command:

void Vertex3f(float x, float v, float 2);
and
void Vertex2s\ short Vv[2]);

These examples show the ANSdHeclarations for these commands. In general,
a command declaration has the férm

rtypeName{e1234}{e b sifd ub us ui}{ev}
([args,]Targl,..., TargN [, args]);

rtypeis the return type of the function. The bracgs$)(enclose a series of char-
acters (or character pairs) of which one is selectedidicates no character. The
arguments enclosed in brackefargs ,] and[, args]) may or may not be present.

1The declarations shown in this document apply to AlCSLanguages such &++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

Version 1.5 - October 30, 2003

8 CHAPTER 2. OPENGL OPERATION

| Letter | CorrespondingsL Type |

b byte

) short

i int

f float

d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table2.2for definitions of the GL types.

The N argumentsargl throughargN have typeT, which corresponds to one of the
type letters or letter pairs as indicated in Tabl& (if there are no letters, then the
arguments’ type is given explicitly). If the final character is upthenN is given
by the digitl, 2, 3, or4 (if there is no digit, then the number of arguments is fixed).
If the final character iy, then onlyarglis present and it is an array of values
of the indicated type. Finally, we indicate ansigned type by the shorthand of
prepending a to the beginning of the type name (so that, for instanosjgned
char is abbreviatedichar).

For example,

void Normal3{fd}(T arg);
indicates the two declarations

void Normal3f(float argl, float arg2 float arg3);
void Normal3d(double argl, double arg2 double arg3);

while
void Normal3{fd}v(T arg);
means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv(double arg[3]);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of 14 types (or pointers to one of these). These types are summarized in
Table2.2.

Version 1.5 - October 30, 2003

2.3. GL COMMAND SYNTAX 9

GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 signed 2’s complement binary integer
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’'s complement binary integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits | signed 2’s complement binary integer
sizeiptr ptrbits | Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped {0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped {0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
typeint is referred to assLint outside this document, and is not necessarily
equivalent to the C typent . An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
typesintptr ~ andsizeiptr must be sufficiently large as to store any address.

Version 1.5 - October 30, 2003

10 CHAPTER 2. OPENGL OPERATION

Display
List

Per-Vertex
L Y Operations R : Per-
asteriz—
Evaluator Primitive ation (F)ragmte_mt Framebuffer
Assembly perations
A
Texture
Memory
- Y »-| Pixel

Operations -

Figure 2.1. Block diagram of the GL.

2.4 Basic GL Operation

Figure2.1shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in aisplay listfor processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Eddgmentso produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read

Version 1.5 - October 30, 2003

2.5. GL ERRORS 11

back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError (void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. W@GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call tadSetError returnsNQERRORthen there has been no detectable
error since the last call tGetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call t&etError returns a value other thaitQERROReach
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all nONNQERRORcodes have been returned. When there are no more
nonNQERROFRerror codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes MOERROR

Table2.3summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only@UTOFMEMORY¥as occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every GL
command. First, if a command that requires an enumerated value is passed a sym-
bolic constant that is not one of those specified as allowable for that command, the

Version 1.5 - October 30, 2003

12 CHAPTER 2. OPENGL OPERATION

Error Description Offending com-
mand ignored?

INVALID _ENUM enum argument out of range Yes

INVALID _VALUE Numeric argument out of range| Yes

INVALID _OPERATION|| Operation illegal in current state Yes
STACKOVERFLOW Command would cause a stackres

overflow

STACKUNDERFLOW || Command would cause a stackres
underflow

OUTOFMEMORY Not enough memory left to exe- Unknown

cute command
TABLETOQLARGE The specified table is too large | Yes

Table 2.3: Summary of GL errors

errorINVALID _ENUMresults. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for the given command. Second,
if a negative number is provided where an argument of sipei is specified,

the erroriNVALID _VALUEresults. Finally, if memory is exhausted as a side effect
of the execution of a command, the er@yTOFMEMOR¥ay be generated. Oth-
erwise errors are generated only for conditions that are explicitly described in this
specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
betweenBegirVEnd pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normaj multiple current texture coordinate setsurrent color, current
secondary colgrandcurrent fog coordinatenay be used in processing each vertex.
Normals are used by the GL in lighting calculations; the current normal is a three-
dimensional vector that may be set by sending three coordinates that specify it.
Texture coordinates determine how a texture image is mapped onto a primitive.
Multiple sets of texture coordinates may be used to specify how multiple texture

Version 1.5 - October 30, 2003

2.6. BEGIN/END PARADIGM 13

images are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least two. The number of texture units
supported can be queried with the stsl&€XTEXTUREUNITS.

Primary and secondary colors are associated with each vertex (see 8&dtion
Theseassociatedolors are either based on the current color and current secondary
color or produced by lighting, depending on whether or not lighting is enabled.
Texture and fog coordinates are similarly associated with each vertex. Multiple
sets of texture coordinates may be associated with a vertex. RFigisammarizes
the association of auxiliary data with a transformed vertex to prodyreaessed
vertex

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, and colors are
sent to the GL, as well as how normals are transformed and how vertices are
mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.9, the current material properties (see secttoiv.?, and the multiple
current texture coordinate sets. Because color assignment is done vertex-by-vertex,
a processed vertex comprises the vertex's coordinates, its edge flag, its assigned
colors, and its multiple texture coordinate sets.

Figure2.3shows the sequence of operations that buildamitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End Objects

Begin andEnd require one state variable with eleven values: one value for each
of the ten possibl8egirVEnd objects, and one other value indicating thatBe
gin/End object is being processed. The two relevant commands are

void Begin(enum mode);
void End(void);

Version 1.5 - October 30, 2003

14

CHAPTER 2. OPENGL OPERATION

Vertex
Coordinates In

Y

Figure 2.2. Association of current values with a vertex. The heavy lined boxes
resent GL state. Four texture units are shown; however, multitexturing may suj

a different number of units depending on the implementation.

vertex / normal Transformed
L transformation Ll .
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | g1 Associated
Colors & G T Data
Materials T (Colors, Edge Flag)
Fog and Texture
Coordinates)
Current
Edge Flag & A
Fog Coord n—oi
Current
Texture }— texgen | texture
matrix O
Coord Set 0 T
| (
Current
Texture texgen | texture
matrix 1
Coord Set 1 _| T
| {
Current
Texture texgen B texture
matrix 2
Coord Set 2 _| T
0{
Current
Texture texgen [Q—| texture
matrix 3
Coord Set 3 _| T

rep-
bport

Version 1.5 - October 30, 2003

2.6. BEGIN/END PARADIGM 15

Point culling;
Line Segment
Coordinates Point, - or POIygon —
™Line Segment, or o Clipping
P:/octgssed Polygon Rasterization
Ertices associated > (Primitive) > —
Data Assembly Color
Processing
A
Begin/End
State

Figure 2.3. Primitive assembly and processing.

There is no limit on the number of vertices that may be specified betwBegia
and anEnd.

Points. A series of individual points may be specified by callBggin with an
argument value oPOINTS. No special state need be kept betwBeginandEnd
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints withBegir/End pair whenBeginis
called withLINE _STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’'s endpoint and the
second segment’s start point. In general, itmevertex (fori > 1) specifies the
beginning of theith segment and the end of the- 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified betwedBethie/End
pair, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with theINE _LOOPargument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines.Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs vBeégin and End when the value
of the argument tdBegin is LINES. In this case, the first two vertices between a

Version 1.5 - October 30, 2003

16 CHAPTER 2. OPENGL OPERATION

BeginandEnd pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
one isignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. WheBegin is called withPOLYGONthe bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see secti@ris4.1and3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a Begin/End pair whenBegin is called withTRIANGLE STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. BegirVEnd pair enclosing fewer
than three vertices, WhefRIANGLE STRIP has been supplied ®egin, produces
no primitive. See Figur@.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After 8egin(TRIANGLESTRIP) , the pointer is initialized
to point to vertex A. Each vertex sent betwedBegyi'End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The
vertices of a triangle fan are enclosed betwBegin andEnd when the value of
the argument t@eginis TRIANGLE FAN

Version 1.5 - October 30, 2003

2.6. BEGIN/END PARADIGM 17

NN

1 3

(@) (b) (c)

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices betvReggin andEnd. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c
order of each triangle’s edges is independent of the other triangles.

he

—

Separate Triangles. Separate triangles are specified by placing vertices be-
tweenBegin andEnd when the value of the argumentBeginis TRIANGLES In
this case, Th&i + 1st, 3i + 2nd, and3: + 3rd vertices (in that order) determine
a triangle for eachi = 0,1,...,n — 1, where there ar8n + k vertices between
theBeginandEnd. k is either O, 1, or 2; ifk is not zero, the finak vertices are
ignored. For each triangle, vertex A is vertékand vertex B is verteg: + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing betwdagin and End, whenBegin is
called with QUADSTRIP. If the m vertices between th8egin and End are
v1,...,Um, Wherev; is the jth specified vertex, then quacdhas vertices (in or-
der)vy;, v2i+1, V243, aNdug; 1o With i = 0, ..., |m/2]. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See Figut&5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip betw@&sygin andEnd is odd, the
final vertex is ignored.

Version 1.5 - October 30, 2003

18 CHAPTER 2. OPENGL OPERATION

|

() (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices betweeBeginandEnd.

Separate Quadrilaterals Separate quads are just like quad strips except that
each group of four vertices, the + 1st, the4; + 2nd, the4; + 3rd, and the
4j + 4th, generate a single quad, for= 0,1,...,n — 1. The total number of
vertices betweeBeginandEnd is 4n + k, where0 < k < 3; if k is not zero, the
final k£ vertices are ignored. Separate quads are generated by dadiig with
the argument valuQUADS

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
eitherboundaryor non-boundary These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section3.5.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlad boolean flag);
void EdgeFlagy boolean *flag);

to change the value of a flag bit. flag is zero, then the flag bit is set FALSE; if
flagis non-zero, then the flag bit is setTRUE

When Begin is supplied with one of the argument valu@OLYGON
TRIANGLES or QUADS each vertex specified within BRegin and End pair be-

Version 1.5 - October 30, 2003

2.7. VERTEX SPECIFICATION 19

gins an edge. If the edge flag bitiRUE then each specified vertex begins an edge
that is flagged as boundary. If the bitA8LSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within @ggirVEnd pairs are the com-
mands for specifying vertex coordinates, vertex colors, normal coordinates, tex-
ture coordinates, and fog coordinaté&itex, Color, SecondaryColor, Index,
Normal, TexCoord and MultiTexCoord , FogCoord), the ArrayElement com-
mand (see sectiah 8), theEvalCoord andEvalPoint commands (see sectiél),
commands for specifying lighting material parametéfaterial commands; see
section2.14.2, display listinvocation command€a&liList andCallLists; see sec-
tion 5.4), and theEdgeFlagcommand. Executing any other GL command between
the execution oBegin and the corresponding executionfd results in the er-
ror INVALID _OPERATIONExecutingBeginafterBeginhas already been executed
but before arEnd is executed generates tid¢VALID _OPERATIONerror, as does
executingend without a previous correspondirgggin.

Execution of the commandsnableClientState DisableClientState Push-
ClientAttrib , PopClientAttrib , ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryColor-
Pointer, VertexPointer, ClientActiveTexture, InterleavedArrays, and Pixel-
Store is not allowed within anyBegin/End pair, but an error may or may not
be generated if such execution occurs. If an error is not generated, GL operation is
undefined. (These commands are described in se@ién3.6.1, and Chapte8.)

2.7 \ertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions ofleetex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(T coords);

A call to any Vertex command specifies four coordinates; y, z, andw. The
x coordinate is the first coordinatg,is second,: is third, andw is fourth. A

Version 1.5 - October 30, 2003

20 CHAPTER 2. OPENGL OPERATION

call to Vertex2 sets thexr andy coordinates; the coordinate is implicitly set to
zero and thev coordinate to oneVertex3 setsz, y, andz to the provided values
andw to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invokinfertex command outside of a
BegirVEnd pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(T coords);

specify the current homogeneous texture coordinates, named, andq. The
TexCoord1 family of commands set the coordinate to the provided single argu-
ment while setting andr to 0 andg to 1. Similarly, TexCoord2 setss andt to the
specified values; to 0 andq to 1; TexCoord3 setss, t, andr, with g set to 1, and
TexCoord4 sets all four texture coordinates.

Implementations support more than one texture unit, and thus more than one
set of texture coordinates. The commands

void MultiTexCoord {1234 }{sifd }(enum textureT coordg
void MultiTexCoord {1234 }{sifd }v(enum textureT
coordg

take the coordinate set to be modified astéxtureparametertextureis a symbolic
constant of the fornTEXTURE, indicating that texture coordinate seis to be
modified. The constants ob&@EXTURE = TEXTUREO+ 4 (¢ is in the range 0 to
k — 1, wherek is the implementation-dependent number of texture units defined
by MAXTEXTUREUNITS).

The TexCoord commands are exactly equivalent to the corresponhiiintgi-
TexCoord commands withextureset toTEXTUREQ

Gets of CURRENITEXTURECOORDSeturn the texture coordinate set defined
by the value oACTIVE_TEXTURE

Specifying an invalid texture coordinate set for tagtureargument oMulti-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(T coords);

Version 1.5 - October 30, 2003

2.7. VERTEX SPECIFICATION 21

Byte, short, or integer values passedNormal are converted to floating-point
values as indicated for the corresponding (signed) type in TaBle
The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd }v(T coord);

Finally, there are several ways to set the current color and secondary color.
The GL stores a current single-valuealor index as well as a current four-valued
RGBA color and secondary color. Either the index or the color and secondary color
are significant depending as the GL isdolor index modeor RGBA mode The
mode selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T component$;

void Color{34}{bsifd ubusui}v(T components;

void SecondaryColor3bsifd ubusui}(T component$;
void SecondaryColor3bsifd ubusui}v(T component$;

The Color command has two major variantSolor3 andColor4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in sectibf4.)

The secondary color has only the three value versions. Secondary A is always
set to 0.0.

Versions of theColor andSecondaryColorcommands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see se@iar on colors and color-
ing). Values outsid€), 1] are not clamped.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

The state required to support vertex specification consists of four floating-point
numbers for each of the texture units supported by the implementation to store the
current texture coordinates ¢, r, andgq, three floating-point numbers to store

Version 1.5 - October 30, 2003

22 CHAPTER 2. OPENGL OPERATION

the three coordinates of the current normal, one floating-point number to store
the current fog coordinate, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA secondary color, and
one floating-point value to store the current color index. There is no notion of a
current vertex, so no state is devoted to vertex coordinates. The initial values of
s, t, andr of the current texture coordinates are zero; the initial valugisfone.

The initial current normal has coordinatés 0, 1). The initial fog coordinate is
zero. The initial RGBA color iR, G,B,A) = (1,1,1,1) and the initial RGBA
secondary color i§0, 0,0, 1). The initial color index is 1.

Version 1.5 - October 30, 2003

2.8. VERTEX ARRAYS 23

2.8 \Vertex Arrays

The vertex specification commands described in se@idmaccept data in almost

any format, but their use requires many command executions to specify even simple
geometry. Vertex data may also be placed into arrays that are stored in the client’s
address space. Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command. The client
may specify up to seven plus the valueMAXTEXTUREUNITS arrays: one each

to store vertex coordinates, normals, colors, secondary colors, color indices, fog
coordinates, one or more texture coordinate sets, and edge flags. The commands

void VertexPointer(int size enum type sizei stride,
void *pointer);

void NormalPointer(enumtype sizei stride
void *pointer);

void ColorPointer(int size enum type sizei stride
void *pointer);

void SecondaryColorPointef int size enum type
sizei stride void *pointer);

void IndexPointer(enumtype sizei stride void *pointer);

void FogCoordPointer{ enumtype sizei stride,
void *pointer);

void TexCoordPointer(int size enum type sizei stride,
void *pointer);

void EdgeFlagPointel sizei stride void *pointer);

describe the locations and organizations of these arrays. For each command,
type specifies the data type of the values stored in the array. Because edge flags
are always typdoolean , EdgeFlagPointerhas notype argument.size when
present, indicates the number of values per vertex that are stored in the array.
Because normals are always specified with three valNesnalPointer has no
sizeargument. Likewise, because color indices and edge flags are always spec-
ified with a single value|ndexPointer and EdgeFlagPointeralso have nize
argument. Table 2.4 indicates the allowable values faize and type (when

Version 1.5 - October 30, 2003

24 CHAPTER 2. OPENGL OPERATION

| Command | Sizes | Types \

VertexPointer 2,3,4 | short ,int ,float ,double

NormalPointer 3 byte , short , int , float |,
double

ColorPointer 3,4 byte , ubyte , short , ushort ,
int ,uint ,float ,double

SecondaryColorPointer 3 byte , ubyte , short , ushort ,
int ,uint ,float ,double

IndexPointer 1 ubyte , short , int , float |,
double

FogCoordPointer 1 float , double

TexCoordPointer 1,2,3,4| short ,int ,float ,double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

present). Fotypethe valuesBYTE SHORTINT, FLOAT, and DOUBLEindicate
typesbyte , short , int , float , anddouble , respectively; and the values
UNSIGNEDBYTE, UNSIGNEDSHORT andUNSIGNEDINT indicate typesibyte ,
ushort , anduint , respectively. The errdNVALID _VALUEIs generated iize
is specified with a value other than that indicated in the table.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an arraglement The values within each array element are stored se-
guentially in memory. Ifstrideis specified as zero, then array elements are stored
sequentially as well. The erréiVALID _VALUEIs generated iktrideis negative.
Otherwise pointers to th&h and(i + 1)st elements of an array differ tstride
basic machine units (typically unsigned bytes), the pointer td:ithel)st element
being greater. For each commampajnter specifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientStatg enumarray);
void DisableClientStatd enumarray);

with array set to VERTEXARRAY NORMAIARRAY COLORARRAY
SECONDARYZOLORARRAY INDEX_ARRAY FOGCOORMARRAY
TEXTURECOORDARRAY or EDGEFLAGARRAY for the vertex, normal, color,
secondary color, color index, fog coordinate, texture coordinate, or edge flag array,
respectively.

Version 1.5 - October 30, 2003

2.8. VERTEX ARRAYS 25

The command
void ClientActiveTexture(enum texture);

is used to select the vertex array client state parameters to be modified by
the TexCoordPointer command and the array affected BgableClientStateand
DisableClientStatewith parameteTEXTURECOORDARRAY This command sets
the client state variablELIENT _ACTIVE_TEXTURE Each texture unit has a client
state vector which is selected when this command is invoked. This state vector in-
cludes the vertex array state. This call also selects which texture units’ client state
vector is used for queries of client state.

Specifying an invalidexturegenerates the erréKVALID _.ENUMValid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

Theith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i);

For each enabled array, it is as though the corresponding command from ge¢tion
or sectior?.6.2were called with a pointer to elementFor the vertex array, the cor-
responding command Mertex[sizg[typdv, wheresizeis one of [2,3,4], andype
is one of [s,i,f,d], corresponding to array typsort ,int ,float , anddouble
respectively. The corresponding commands for the edge flag, texture coordinate,
color, secondary color, color index, normal, and fog coordinate array&dge-
Flagv, TexCoord[sizg[typdv, Color[sizd[typdv, SecondaryColor3fypdv, In-
dex[typdv, Normal3[typdv, and FogCoord[typdv, respectively. If the vertex
array is enabled, it is as thouylertex[sizg[typdv is executed last, after the exe-
cutions of the other corresponding commands.

Changes made to array data between the executi®egin and the corre-
sponding execution &nd may affect calls tdA\rrayElement that are made within
the sameBeginVEnd period in non-sequential ways. That is, a callwayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying: < 0 results in undefined behavior. Generating the error
INVALID _VALUEIis recommended in this case.

The command

void DrawArrays (enummodeint first, sizei count);

constructs a sequence of geometric primitives using elemgéntst through
first + count — 1 of each enabled arraymodespecifies what kind of primi-
tives are constructed; it accepts the same token values asdfie parameter of
theBegincommand. The effect of

Version 1.5 - October 30, 2003

26 CHAPTER 2. OPENGL OPERATION

DrawArrays (mode, first, count);
is the same as the effect of the command sequence

if (mode or count is invalid)
generate appropriate error

else {
int i
Begin(mode);
for (i=0; i < count ; i++)
ArrayElement(first+ i);
End();
}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the execuimawArrays,
if the corresponding array is enabled. Current values corresponding to disabled
arrays are not modified by the executiorDoaiwArrays .

Specifying first < 0 results in undefined behavior. Generating the error
INVALID _VALUEis recommended in this case.

The command

void MultiDrawArrays (enummodeint *first,
sizei *count, sizei primcount);

behaves identically t®rawArrays except thaprimcountseparate ranges of
elements are specified instead. It has the same effect as:

for (i = 0;i < primcount; i++) |
if (count[i] > 0)
DrawArrays (mode, first]i], count[i]);
}

The command

void DrawElementq enummode sizei count enum type
void *indices);

constructs a sequence of geometric primitives using toent elements
whose indices are stored indices type must be one ofUNSIGNEDBYTE

UNSIGNEDSHORT or UNSIGNEDINT , indicating that the values iimdicesare in-
dices of GL typeubyte , ushort , oruint respectively. modespecifies what
kind of primitives are constructed; it accepts the same token values asdte
parameter of th8egincommand. The effect of

Version 1.5 - October 30, 2003

2.8. VERTEX ARRAYS 27

DrawElements(mode, count, type, indices);
is the same as the effect of the command sequence

if (mode, count, or type is invalid)
generate appropriate error

else {
int i
Begin(mode);
for (i=0; i < count ; i++)
ArrayElement(indices|i]);
End();
}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the executibrawnkle-
ments, if the corresponding array is enabled. Current values corresponding to
disabled arrays are not modified by the executioDEwElements

The command

void MultiDrawElements(enum mode sizei *count,
enumtype void **indices, sizei primcount);

behaves identically tDrawElements except thaprimcountseparate lists of
elements are specified instead. It has the same effect as:

for i = 0; i < primcount; i++) |
if (count[i]) > 0)
DrawElementy mode, count]i], type, indices]i]);

}

The command

void DrawRangeElement§ enum mode uint start,
uint end sizei count enum type void *indices);

is a restricted form oDrawElements mode count type andindicesmatch the
corresponding arguments BrawElements with the additional constraint that all
values in the arraindicesmust lie betweestartandendinclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by callifigetintegerv with the symbolic constants

Version 1.5 - October 30, 2003

28 CHAPTER 2. OPENGL OPERATION

MAXELEMENTSVERTICESandMAXELEMENTSNDICES. If end — start + 1 is
greater than the value MIAXELEMENTSVERTICES or if countis greater than
the value ofMAXELEMENTSNDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the ranget, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The errorINVALID _VALUEIs generated itnd < start. Invalid mode count
or type parameters generate the same errors as would the corresponding call to
DrawElements It is an error for indices to lie outside the rangeurt, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The command

void InterleavedArrays(enumformat sizei stride,
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants:V2F,
V3F, C4UBV2F, C4UBV3F, C3F.V3F, N3F.V3F, C4F.N3F.V3F, T2F_V3F,
TAF_V4F, T2F_C4UBV3F, T2F_C3F_V3F, T2F_N3F_.V3F, T2F_C4F_N3F_V3F, or
T4F_CA4F_N3F_VA4F.

The effect of

InterleavedArrays(format, stride, pointer);

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
int str;
setey, ec, €, St, Sc, Su, te, Des Prs Pu, @Nds as a function
of Table2.5and the value of ormat.
str = stride;
if (str is zerg
str =s;
DisableClientStatd EDGEFLAGARRAY ;
DisableClientStatd INDEX_ARRAY ;
DisableClientStatd SECONDARZOLORARRAY ;
DisableClientStatd FOGCOORARRAY ;

it (e) {

Version 1.5 - October 30, 2003

2.8. VERTEX ARRAYS

29

’ format \ et \ € \ en \ St \ Se \ Su \ te
V2F False | False | False 2
V3F False | False | False 3
C4UBV2F False | True | False 4 | 2 | UNSIGNEDBYTE
C4UBV3F False | True | False 4 | 3 | UNSIGNEDBYTE
C3F.V3F False | True | False 3|3 FLOAT
N3F_V3F False | False | True 3
CAF_N3F_V3F False | True | True 4| 3 FLOAT
T2F_V3F True | False | False | 2 3
TAF_V4F True | False | False | 4 4
T2F_C4UBV3F True | True | False| 2 | 4 | 3 | UNSIGNEDBYTE
T2F_C3F.V3F True | True | False| 2 | 3 | 3 FLOAT
T2F_N3F.V3F True | False| True | 2 3
T2F_C4FN3F.V3F | True | True | True | 2 | 4 | 3 FLOAT
TAF_CAF.N3F.V4F | True | True | True | 4 | 4 | 4 FLOAT
| format [pe [pn [po s
V2F 0 2f
V3F 0 3f
C4UBV2F 0 c c+2f
C4UBV3F 0 c c+3f
C3F.V3F 0 3f 6f
N3F_V3F 0 3f 6.f
C4F_N3F.V3F 0 |4f | 7f 10f
T2F_V3F 2f 5f
TAF_V4AF 4f 8f
T2F_C4UBV3F 2f c+2f | c+5f
T2F_C3F.V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_C4FN3F.V3F | 2f | 6f | 9f 12f
TAF_CAFN3F.VAF | 4f | 8f | 11f 15f

Table 2.5: Variables that direct the execution dhterleavedArrays.

sizeof(FLOAT)

sizeof(UNSIGNED

BYTE).

Version 1.5 - October 30, 2003

fis

. ¢ is 4 timessizeof(UNSIGNED _BYTE), rounded up to
the nearest multiple off. All pointer arithmetic is performed in units of

30 CHAPTER 2. OPENGL OPERATION

EnableClientStatd TEXTURECOORDARRAY ;

TexCoordPointer(s;, FLOAT, str , pointer) ;
} else {

DisableClientStatd TEXTURECOORDARRAY ;

if (e {
EnableClientStatd COLORARRAY ;
ColorPointer(s, t¢, str , pointer + p¢) ;
} else {
DisableClientStatd COLORARRAY ;

it (e) {
EnableClientStatg NORMAIARRAY ;
NormalPointer(FLOAT, str , pointer + py,) ;
} else {
DisableClientStatd NORMAIARRAY ;
}

EnableClientStatd VERTEXARRAY ;
VertexPointer(s,,, FLOAT, str , pointer + p,) ;

}

If the number of supported texture units (the valu®aXTEXTUREUNITS) is
k, then the client state required to implement vertex arrays consigtsioboolean
values,”+ k memory pointersy + k integer stride value§,+ k£ symbolic constants
representing array types, aBd- k integers representing values per element. In the
initial state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are EBOAT, and the integers
representing values per element are each four.

2.9 Buffer Objects

The vertex data arrays described in sectiofare stored in client memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero re-
served for the GL. A buffer object is created by binding an unused name to
ARRAYBUFFER The binding is effected by calling

void BindBuffer (enumtarget uint buffer);

Version 1.5 - October 30, 2003

2.9. BUFFER OBJECTS 31

Name | Type | Initial Value | Legal Values
BUFFERSIZE integer 0 any non-negative integer
BUFFERUSAGE enum | STATIC_DRAW STREANDRAWSTREANREAD

STREAMCOPY STATIC_DRAW
STATIC_READ STATIC_COPY
DYNAMICDRAWDYNAMICREAD
DYNAMICCOPY

BUFFERACCESS enum READWRITE | READONLY, WRITEONLY,
READWRITE

BUFFERMAPPED boolean FALSE TRUE FALSE

BUFFERMAPPOINTER | void* NULL address

Table 2.6: Buffer object parameters and their values.

with targetset toARRAYBUFFERandbufferset to the unused name. The resulting
buffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in TaBlé.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding tdargetis broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.

In the initial state the reserved name zero is boundRRAYBUFFER There
is no buffer object corresponding to the name zero, so client attempts to modify
or query buffer object state for the targgRRAYBUFFERwhile zero is bound will
generate GL errors.

Buffer objects are deleted by calling

void DeleteBufferq sizei n, const uint *puffers);

bufferscontainsn names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused naméeris
are silently ignored, as is the value zero.

The command

void GenBuffers(sizei n,uint *buffers);

Version 1.5 - October 30, 2003

32 CHAPTER 2. OPENGL OPERATION

returnsn previously unused buffer object nameshoffers These names are
marked as used, for the purposesza@nBuffers only, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object. If a buffer object is deleted while it is bound, all
bindings to that object in the current context (i.e. in the thread that cBigete-
Buffers) are reset to zero. Bindings to that buffer in other contexts and other
threads are not affected, but attempting to use a deleted buffer in another thread
produces undefined results, including but not limited to possible GL errors and
rendering corruption. Using a deleted buffer in another context or thread may not,
however, result in program termination.

The data store of a buffer object is created and initialized by calling

void BufferData(enumtarget, sizeiptr size const
void *data, enum usage);

with target set to ARRAYBUFFER sizeset to the size of the data store in basic
machine units, andata pointing to the source data in client memory.dHtais
non-null, then the source data is copied to the buffer object’s data statatalis
null, then the contents of the buffer object’s data store are undefined.

usageis specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREANDRAWThe data store contents will be specified once by the application,
and used at most a few times as the source of a GL drawing command.

STREANREAD The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAMCOPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source of a GL drawing com-
mand.

STATIC _DRAWThe data store contents will be specified once by the application,
and used many times as the source for GL drawing commands.

STATIC _READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing commands.

Version 1.5 - October 30, 2003

2.9. BUFFER OBJECTS 33

Name | Value \
BUFFERSIZE size
BUFFERUSAGE usage
BUFFERACCESS READWRITE
BUFFERMAPPED FALSE
BUFFERMAPPOINTER | NULL

Table 2.7: Buffer object initial state.

DYNAMICDRAWThe data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing commands.

DYNAMICREAD The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMICCOPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing com-
mands.

usageis provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in tablé

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprisingV basic machine units be a multiple df.

If the GL is unable to create a data store of the requested size, the error
OUTOFMEMORI generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enumtarget, intptr offset
sizeiptr ~ size const void *data);

with target set toARRAYBUFFER offsetandsizeindicate the range of data in the
buffer object that is to be replaced, in terms of basic machine wtataspecifies a
region of client memorgizebasic machine units in length, containing the data that
replace the specified buffer range. NVALID _VALUEerror is generated iffset
orsizeis less than zero, or dffset+ sizeis greater than the value BUFFERSIZE .

The entire data store of a buffer object can be mapped into the client’s address
space by calling

Version 1.5 - October 30, 2003

34 CHAPTER 2. OPENGL OPERATION

Name \ Value \
BUFFERACCESS access
BUFFERMAPPED TRUE

BUFFERMAPPOINTER | pointer to the data store

Table 2.8: Buffer object state set MapBuffer.

void *MapBuffer (enumtarget enum access;

with target set to ARRAYBUFFER If the GL is able to map the buffer object’s
data store into the client's address spad@pBuffer returns the pointer value

to the data store. If the buffer data store is already in the mapped Btaje,
Buffer returnsNULL, and aniNVALID _OPERATIONerror is generated. Otherwise
MapBuffer returnsNULL, and the erroOUTOFMEMORY¥ generatedaccesss
specified as one READONLY, WRITEONLY, or READWRITE, indicating the op-
erations that the client may perform on the data store through the pointer while the
data store is mapped.

MapBuffer sets buffer object state values as shown in take

Non-NULL pointers returned biylapBuffer may be used by the client to mod-
ify and query buffer object data, consistent with the access rules of the mapping,
while the mapping remains valid. No GL error is generated if the pointer is
used to attempt to modify READONLYdata store, or to attempt to read from a
WRITEONLYdata store, but operation may be slow and system errors (possibly in-
cluding program termination) may result. Pointer values returnellidyyBuffer
may not be passed as parameter values to GL commands. For example, they may
not be used to specify array pointers, or to specify or query pixel or texture image
data; such actions produce undefined results, although implementations may not
check for such behavior for performance reasons.

Calling BufferSubData to modify the data store of a mapped buffer will gen-
erate ariNVALID _OPERATIONerror.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To
ensure optimal performance, the client should use the mapping in a fashion consis-
tent with the values oBBUFFERUSAGEandBUFFERACCESSUsing a mapping in
a fashion inconsistent with these values is liable to be multiple orders of magnitude
slower than using normal memory.

After the client has specified the contents of a mapped data store, and before
the data in that store are dereferenced by any GL commands, the mapping must be

Version 1.5 - October 30, 2003

2.9. BUFFER OBJECTS 35

relinquished by calling
boolean UnmapBuffer(enumtarget);

with targetset toARRAYBUFFER Unmapping a mapped buffer object invalidates
the pointers to its data store and sets the obj&tIEFERMAPPEstate toFALSE
and itsBUFFERMAPPOINTERstate toNULL

UnmapBuffer returnsTRUEuUnless data values in the buffer's data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window-system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer's data store is mapped. If such corrup-
tion has occurredJnmapBuffer returnsFALSE, and the contents of the buffer’'s
data store become undefined.

If the buffer data store is already in the unmapped statenapBuffer returns
FALSE, and anINVALID _OPERATIONerror is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

2.9.1 \Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes.

A buffer object binding point is added to the client state associated with
each vertex array type. The commands that specify the locations and or-
ganizations of vertex arrays copy the buffer object name that is bound to
ARRAYBUFFERto the binding point corresponding to the vertex array of the
type being specified. For example, theormalPointer command copies the
value of ARRAYBUFFERBINDING (the queriable name of the buffer bind-
ing corresponding to the targg®RRAYBUFFER to the client state variable
NORMAIARRAYBUFFERBINDING.

Rendering commandsArrayElement, DrawArrays, DrawElements
DrawRangeElements MultiDrawArrays , andMultiDrawElements operate as
previously defined, except that data for enabled vertex, variant, and attrib arrays
are sourced from buffers if the array’s buffer binding is non-zero. When an array is
sourced from a buffer object, the pointer value of that array is used to compute an
offset, in basic machine units, into the data store of the buffer object. This offset is

Version 1.5 - October 30, 2003

36 CHAPTER 2. OPENGL OPERATION

computed by subtracting a null pointer from the pointer value, where both pointers
are treated as pointers to basic machine units.

It is acceptable for vertex, variant, or attrib arrays to be sourced from any com-
bination of client memory and various buffer objects during a single rendering
operation.

Attempts to source data from a currently mapped buffer object will generate an
INVALID _.OPERATIONError.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENTARRAYBUFFER indicating thatDrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as ihdicesparameters,
and thatMultiDrawElements is to source its indices from the array of pointers to
arrays passed in as irsdicesparameter.

A buffer object is bound t&LEMENTARRAYBUFFERDby calling BindBuffer
with targetset toELEMENTARRAYBUFFER andbufferset to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section2.9.

The commandBufferData, BufferSubData, MapBuffer , andUnmapBuffer
may all be used witharget set toELEMENTARRAYBUFFER In such event, these
commands operate in the same fashion as described in se@jdnut on the buffer
currently bound to theLEMENTARRAYBUFFERtarget.

While a non-zero buffer object name is boundEiIcEMENTARRAYBUFFER
DrawElements and DrawRangeElementssource their indices from that buffer
object, using theiindicesparameters as offsets into the buffer object in the same
fashion as described in secti@9.1 MultiDrawElements also sources its in-
dices from that buffer object, using irsdicesparameter as a pointer to an array of
pointers that represent offsets into the buffer object.

Buffer objects created by binding an unused namAaR®AYBUFFERand to
ELEMENTARRAYBUFFERare formally equivalent, but the GL may make different
choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.

Version 1.5 - October 30, 2003

2.10. RECTANGLES 37

2.10 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(TxL T y1L, T x2 T y2),
void Rect{sifd}v(T v1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(z,y) coordinates, or two pointers to arrays each of which contains aalue
followed by ay value. The effect of th&ectcommand

Rect(1, y1, T2, Y2);
is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1, y1);
Vertex2(2, 11);
Vertex2(x2, y2);
Vertex2(x1, y2);

End();

The appropriatd/ertex2 command would be invoked depending on which of the
Rectcommands is issued.

2.11 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their coordinates
are used to produce an image in the framebuffer. We begin with a description of
how vertex coordinates are transformed and how this transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are teriojext co-
ordinates The model-viewmatrix is applied to these coordinates to yielkeco-
ordinates. Then another matrix, called f®jection matrix, is applied to eye
coordinates to yieldlip coordinates. A perspective division is carried out on clip
coordinates to yielshormalized deviceoordinates. A finaliewporttransforma-
tion is applied to convert these coordinates window coordinates

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting ofz, y, z, andw coordinates (in that order). The model-view and pro-
jection matrices are thusx 4.

Version 1.5 - October 30, 2003

38 CHAPTER 2. OPENGL OPERATION

Perspective
Division

Normalized
Device

Object Model-View Eye Projection

[

Coordinates Matrix Coordinates Matrix Coordinates Coordinates

Viewport Window

Transformation Coordinates

Figure 2.6. Vertex transformation sequence.

Lo

If a vertex in object coordinates is given y'ZO and the model-view matrix

o
Wo
is M, then the vertex’s eye coordinates are found as

Te Lo
y@ _ M yO
Ze Zo
We Wo

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are

Zc Te
yC _ P y(i
Zc Ze
We We

The vertex’s normalized device coordinates are then

Td xc/wc
Yd = yc/wc
zZd Zc/wc

Version 1.5 - October 30, 2003

2.11. COORDINATE TRANSFORMATIONS 39

2.11.1 Controlling the Viewport

The viewport transformation is determined by the viewport’'s width and height in
pixels,p, andp,, respectively, and its centés,, o,) (also in pixels). The vertex’s
T
window coordinates(Yuw) , are given by
Zw

T (pz/2)xq + 04
Yo | = (Py/2)ya + oy :
Zw [(f =n)/2)z4+ (n+ f)/2
The factor and offset applied ty encoded by, and f are set using

void DepthRangd clampd n, clampd f);

Each ofn andf are clamped to lie withifD), 1], as are all arguments of typampd
orclampf . z, is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer. We assume that the fixed-point
representation used represents each via/y2™ — 1), wherek € {0,1,...,2™ —
1}, ask (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void Viewport(int X, int vy, sizei w,sizei h);

wherex andy give thex andy window coordinates of the viewport’s lower left
corner andv andh give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these valugs=as
r+w/2andoy =y + h/2; p, = w,py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriaté&set command (see Chapté). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensions of the display being
rendered toINVALID _VALUEIs generated if eithew or his negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial stateandh are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. o, ando, are set tav/2 andh /2, respectivelyn and f are set td).0 and
1.0, respectively.

Version 1.5 - October 30, 2003

40 CHAPTER 2. OPENGL OPERATION

2.11.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode (enum mode);

which takes one of the pre-defined constarE&XTURE MODELVIEWCOLOR or
PROJECTIONas the argument valug EXTURHS described later in sectich11.2
andCOLORSs described in sectio®.6.3 If the current matrix mode iISIODELVIEW
then matrix operations apply to the model-view matrib@ ROJECTION then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix {fd}(T m[16]);
void MultMatrix {fd}(T m[16]);

LoadMatrix takes a pointer to & x 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

ar as ag a3
az ae¢ aip ai4
az a7 aixr ais
ag ag a2 aig

(This differs from the standard row-maj@ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointeduti-
Matrix takes the same type argumentlasdMatrix , but multiplies the current
matrix by the one pointed to and replaces the current matrix with the proddct. If
is the current matrix and/ is the matrix pointed to byvultMatrix ’s argument,
then the resulting current matrig;’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}(T m[16]);
void MultTransposeMatrix {fd }(T m[16]);

Version 1.5 - October 30, 2003

2.11. COORDINATE TRANSFORMATIONS 41

take pointers td x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

ap a2 az a4
as as ar ag
ag aip a1 a2
a3z ai4 ais aie

The effect of
LoadTransposeMatrix[fd] (m);

is the same as the effect of
LoadMatrix[fd] (mT);

The effect of
MultTransposeMatrix[fd] (m);

is the same as the effect of
MultMatrix[fd] (m”);
The command
void Loadldentity (void);

effectively callsLoadMatrix with the identity matrix:

1 0 0 0
01 00
0 010
0 0 01

There are a variety of other commands that manipulate matri€astate,
Translate, Scale Frustum, andOrtho manipulate the current matrix. Each com-
putes a matrix and then invok&tultMatrix with this matrix. In the case of

void Rotate{fd}(T6, T x, Ty, T z);

Version 1.5 - October 30, 2003

42 CHAPTER 2. OPENGL OPERATION

gives an angle of rotation in degrees; the coordinates of a vectoe given by

v = (zy 2)T. The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

Letu=v/|[v]| = («' ¢ =)

then
R =uu’ + cos (I — uu’) +sin 8.

The arguments to
void Translate{fd}(Tx, T y, T z);

give the coordinates of a translation vectorfasy z)”. The resulting matrix is a
translation by the specified vector:

1 0 0 «
01 0 y
0 0 1 =z
0 0 0 1

void Scaldfd}(Tx, Ty T z);

produces a general scaling along they-, andz- axes. The corresponding matrix
is

o O o8
o ow O
o n O

= o O O

For

void Frustum(double I, double r,double b, double t,
double n, double f);

Version 1.5 - October 30, 2003

2.11. COORDINATE TRANSFORMATIONS 43

the coordinategl b — n)” and(r t — n)” specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is locatedoat 0)”). f gives the distance
from the eye to the far clipping plane. If eitheror f is less than or equal to zero,
lis equal tor, b is equal tat, orn is equal tof, the erroiNVALID _VALUEresults.

The corresponding matrix is

2 +1
A A
+
+n n
0 0 -5 —7=
0o 0 =1 0

void Ortho(double I, double r,double b,double t,
double n, double f);

describes a matrix that produces parallel projectigrh — n)” and(r t — n)”
specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectivef\gives the distance from the eye

to the far clipping plane. If is equal tor, b is equal tot, or n is equal tof, the
errorINVALID _VALUEresults. The corresponding matrix is

2 +1
= (2) 0 _’%,ﬁ
t+
0 = 0 - }Tb
2 —+n
0 0 -5 iz
0 0 0 1

For each texture unit, 4 x 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as

my Mms Mg Mi3
mz Me Mio MMi4
m3 mr Mmi1 Mis
myg Mg Mi2 Mie q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix modexXiURE
causes the already described matrix operations to apply to the texture matrix.
There is also a corresponding texture matrix stack for each texture unit. To
change the stack affected by matrix operations, seadiige texture unit selector
by calling

S <+ »

Version 1.5 - October 30, 2003

44 CHAPTER 2. OPENGL OPERATION

void ActiveTexture(enum texture);

The selector also affects calls modifying texture environment state, texture coordi-
nate generation state, texture binding state, and queries of all these state values as
well as current texture coordinates and current raster texture coordinates.

Specifying an invalidexturegenerates the erréNVALID _ENUMValid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

The active texture unit selector may be queried by caldeiintegerv with
pnameset toACTIVE_TEXTURE

There is a stack of matrices for each of matrix mode®DELVIEW
PROJECTION andCOLORand for each texture unit. FOfODELVIEWnode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at I@astexture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix (void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the er8TACKUNDERFLOMpushing a matrix onto a full
stack generateSTACKOVERFLOW

When the current matrix mode EEXTURE the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at leastdtwo4 matri-
ces for each 0€COLORPROJECTION each texture unitfTEXTURE and a stack of
at least 324 x 4 matrices forMODELVIEWEach matrix stack has an associated
stack pointer. Initially, there is only one matrix on each stack, and all matrices
are set to the identity. The initial matrix modeNg®ODELVIEWThe initial value of
ACTIVE_TEXTURHS TEXTUREO

Version 1.5 - October 30, 2003

2.11. COORDINATE TRANSFORMATIONS 45

2.11.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable(enumtarget);
and
void Disablg(enumtarget);

with targetequal toRESCALENORMAIor NORMALIZE This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix isM, then the normal is transformed to eye coordi-
nates by:

(na’ ny/ n ¢)=(ny ny n, q)-Z\J*1

a
where, if ZZ/ are the associated vertex coordinates, then
w
0, w =0,
X
9= —(ng Ty n.)| y (2.1)
- z , w#0

Implementations may choose instead to transform n, n.) to eye coor-
dinates using

(ny' ny' n')=(ny ny n,)- M, "

wherel,, is the upper leftmost 3x3 matrix taken fraid.
Rescale multiplies the transformed normals by a scale factor

(nx// ny// nzl/) — f (nxl nyl nZ/)
If rescaling is disabled, thefi = 1. If rescaling is enabled, thefiis computed

as (n;; denotes the matrix element in ravand columnj of M ~!, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

Version 1.5 - October 30, 2003

46 CHAPTER 2. OPENGL OPERATION

1
Vm31? + m32? + mss?
Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may choose f as

1
2 2 2
\/nw/ + ny/ + nzl

recomputingf for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lightimg, is computed
as

/=

nf = m (nx/l ny// nzl/)
If normalization is disabled, them = 1. Otherwise

1
\/nx//2 + ny//Q + nz”2

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix}/. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

m =

2.11.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGer{ifd }(enumcoord enum pnameT param);
void TexGer{ifd }v(enumcoord enum pnameT params);

controls texture coordinate generatiotnord must be one of the constargs T,
R, or Q indicating that the pertinent coordinate is te, r, or ¢ coordinate, re-
spectively. In the first form of the commangaramis a symbolic constant speci-
fying a single-valued texture generation parameter; in the second famamsis

Version 1.5 - October 30, 2003

2.11. COORDINATE TRANSFORMATIONS 47

a pointer to an array of values that specify texture generation parampterse
must be one of the three symbolic constarEXTUREGENMODEOBJECTPLANE
or EYEPLANE If pnameis TEXTUREGENMODE then eitherparamspoints to
or paramis an integer that is one of the symbolic constaDBIECTLINEAR,
EYELINEAR, SPHEREMAR REFLECTIONMAR or NORMAIMAP

If TEXTUREGENMODENdicatesOBJECTLINEAR, then the generation func-
tion for the coordinate indicated lpordis

g = P1%o + P2Yo + P320 + PaWo.

Zo» Yo, 20, @Ndw, are the object coordinates of the vertpy, . . . , p4 are specified
by calling TexGenwith pnameset toOBJECTPLANEIN which casgaramspoints
to an array containingy, ..., p4. There is a distinct group of plane equation co-
efficients for each texture coordinatgord indicates the coordinate to which the
specified coefficients pertain.

If TEXTUREGENMODENdicatesEYELINEAR, then the function is

g = PiTe + Pyye + Piyze + Phwe

where

(Py pb Py Pi)=(p1 p2 p3 pa) M~
Te, Ye, Ze, andw, are the eye coordinates of the vertey,,...,p, are set by
calling TexGenwith pnameset toEYE PLANEIn correspondence with setting the
coefficients in theOBJECTPLANE case. M is the model-view matrix in effect
whenps, ..., py are specified. Computed texture coordinates may be inaccurate or
undefined ifM is poorly conditioned or singular.

When used with a suitably constructed texture image, callexGen with
TEXTUREGENMODEHNdicating SPHEREMAPcan simulate the reflected image of
a spherical environment on a polygoBPHEREMAPtexture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) bu. Denote the current normal, after transformation to eye
coordinates, byy'. Letr = (r, 1, 7.)T, the reflection vector, be given by

r=u-2n" (n'u),

and letm = 24/r2 4+ 2 + (r, + 1)%. Then the value assigned to aroordinate
(the firstTexGenargument value is) is s = r,/m + 3; the value assigned tota
coordinate ig = r,/m + 3. Calling TexGenwith a coord of eitherR or Qwhen
pnameindicatesSPHEREMAPgenerates the errtkVALID _ENUM

If TEXTUREGENMODENdicatesREFLECTIONMAR compute the reflection
vectorr as described for thePHEREMAPmMode. Then the value assigned to an

Version 1.5 - October 30, 2003

48 CHAPTER 2. OPENGL OPERATION

s coordinate iss = r,; the value assigned totacoordinate is = r,; and the value
assigned to am coordinate iss = r,. Calling TexGen with a coord of Q when
pnameindicatesREFLECTIONMAPgenerates the erréiNVALID _ENUM

If TEXTUREGENMODENdicateSNORMAIMAR compute the normal vectar,
as described in sectidh11.3 Then the value assigned to amoordinate iss =
ng. the value assigned totecoordinate ig = ng,; and the value assigned to an
r coordinate i = ny_ (the valuesis , ny , andn; are the components afy.)
Calling TexGenwith a coord of QwhenpnameindicateSNORMAIMAPgenerates
the errorINVALID _-ENUM

A texture coordinate generation function is enabled or disabled Usmg
able and Disable with an argument of TEXTUREGENS, TEXTUREGENT,
TEXTUREGENR, or TEXTUREGENQ (each indicates the corresponding texture co-
ordinate). When enabled, the specified texture coordinate is computed according
to the currenEYELINEAR, OBJECTLINEAR or SPHEREMAPSspecification, de-
pending on the current setting ®EXTUREGENMODHor that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each &YELINEAR andOBJECTLINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of p; for s are all 0 excepp, which is one; fort all thep; are zero excepty, which
is 1. The values aop; for r andq are all 0. These values of apply for both the
EYELINEAR andOBJECTLINEAR versions. Initially all texture generation modes
areEYELINEAR.

2.12 Clipping

Primitives are clipped to thelip volume In clip coordinates, theiew volumds
defined by

—We S T S We

—We < Ye < We -

—wWe < 2e < We

This view volume may be further restricted by as manyhadient-defined clip
planes to generate the clip volume. i§ an implementation dependent maximum
that must be at least) Each client-defined plane specifies a half-space. The clip

Version 1.5 - October 30, 2003

2.12. CLIPPING 49

volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).
A client-defined clip plane is specified with

void ClipPlane(enump, double eqn[4]);

The value of the first argumerg, is a symbolic constanCLIP _PLANE, wherei is

an integer between 0 amd— 1, indicating one of: client-defined clip planesqgn

is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates; ps, p3, andp, (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

(ph ph Py Ph)=(pm p2 p3 pa)M?

(whereM is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccuratelif is poorly-conditioned) to obtain

the plane equation coefficients in eye coordinates. All points with eye coordinates
(Te Ye 2e We)T that satisfy

(y b vy P =0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genEriable command and
disabled with theDisable command. The value of the argument to either com-
mand iSCLIP _PLANE wherei is an integer between 0 and specifying a value
of i enables or disables the plane equation with indexThe constants obey
CLIP _PLANE = CLIP _PLANEO- <.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.

Version 1.5 - October 30, 2003

50 CHAPTER 2. OPENGL OPERATION

This clipping produces a valu®, < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex aPeand the original vertices’ coordinates dPe
andP-, thent is given by

P = (P, + (1—1)Py.

The value oft is used in color, secondary color, texture coordinate, and fog coor-
dinate clipping (sectio.14.9.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edgeTfigE, and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

A line segment or polygon whose vertices hamgvalues of differing signs
may generate multiple connected components after clipping. GL implementations
are not required to handle this situation. That is, only the portion of the primitive
that lies in the region ofu. > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficieftd p, p5 p}) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(-py —ph —p5 —p)) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.

Version 1.5 - October 30, 2003

2.13. CURRENT RASTER POSITION 51

2.13 Current Raster Position

The current raster positions used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPoq234}{sifd}(T coords);
void RasterPoq234}{sifd}v(T coords);

RasterPos4takes four values indicating, y, z, andw. RasterPos3(or Raster-
Pos3? is analogous, but sets onty y, andz with w implicitly set to1 (or only x
andy with z implicitly set to0 andw implicitly set to1).

Gets of CURRENIRASTERTEXTURECOORD@ re affected by the setting of the
stateACTIVE_TEXTURE

The coordinates are treated as if they were specified/eri@x command. The
x, vy, z, andw coordinates are transformed by the current model-view and projec-
tion matrices. These coordinates, along with current values, are used to generate
primary and secondary colors and texture coordinates just as is done for a vertex.
The colors and texture coordinates so produced replace the colors and texture co-
ordinates stored in the current raster position’s associated data. If the value of the
fog source (see sectidhl() is FOGCOORBRG then the current raster distance is
set to the value of the current fog coordinate. Otherwise, the current raster distance
is set to the distance from the origin of the eye coordinate system to the vertex as
transformed by only the current model-view matrix. This distance may be approx-
imated as discussed in secti®riQ

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (sectior2.11) and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Figgireummarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one oiiredowPos
commands:

void WindowPos{23}{ifds}(T coords);
void WindowPos{23}{ifds}v(const T coords);

Version 1.5 - October 30, 2003

52

CHAPTER 2. OPENGL OPERATION

| |
[! valid |————]
Rasterpos In — |_> Clip P Project : :
| |
Rast_er ;
c) Vertex/Normal I Position I
NLcj)rr;igl ? : Transformation : :
| |
I Raster I
Current Lighting | —a__ | || Distance I
Color & T - : I
Materials ? | |
) | Associated :
—a Texture Data I
Current ’_:_ Texgen Matrix 0 +I :
Texture T I A Current |
Coord Set 0 I Raster I
: Position_!
4 —e. Texture I
Current ._:_ Texgen Matrix 1
Texture T
Coord Set 1
¢ —a__| Texture
Current ’_:\— Texgen Matrix 2
Texture T
Coord Set 2
—___| Texture
Current } Texgen Matrix 3
Texture T
Coord Set 3

Figure 2.7. The current raster position and how it is set. Four texture units
shown; however, multitexturing may support a different number of units depen
on the implementation.

are
ding

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING 53

WindowPos3takes three values indicating y and z, while WindowPos2
takes two values indicating andy with z implicitly set to0. The current raster
position, (., Yuw, 2w, We), is defined by:

Ty =X

Yw =Y

n, z2<0
zw =14 f, z>1
n+z(f —n), otherwise

we =1

wheren and f are the values passed@@pthRange(see Sectio2.11.]).

Lighting, texture coordinate generation, and clipping are not performed by the
WindowPos functions. Instead, in RGBA mode, the current raster color and sec-
ondary color are obtained by clamping each component of the current color and
secondary color, respectively, {0,1]. In color index mode, the current raster
color index is set to the current color index. The current raster texture coordinates
are set to the current texture coordinates, and the valid bit is set.

If the value of the fog source IBOGCOORIBRG then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to0.

The current raster position requires six single-precision floating-point values
for its x,,, yw, andz,, window coordinates, it clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates a(8,all0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA coloris(1,1,1, 1), the associated RGBA secondary colof(is0, 0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

Version 1.5 - October 30, 2003

54

CHAPTER 2. OPENGL OPERATION

) 2k—1] Convert to o
[0.0,1.0] Current frsmmm, 0,
Clamp to
RGBA _ O o 50]
[~2K 2K_1]] CONVertto | Color Lighting ~ -0 0, 1.
' [-1.0,1.0]
float
” (O1e]ie] S S — i
Clipping
Convert to _ Flatshade?
fixed-point i Primitive !
v : Clipping

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both
mary and secondary vertex colors, which are processed in the same fashion

Table2.9for the interpretation of.

[0,21-1] Convert to »1 Current
float
Color
float] Index Lighting O
| Color
Clipping
Convert to p—mmmnn S
fixed-point ! Primitive
v : Clipping !

Mask to
[0.0, 2N-1]

]

Figure 2.9. Processing of color indicesis the number of bits in a color index.

Version 1.5 - October 30, 2003

pri-
. See

2.14. COLORS AND COLORING 55

GL Type | Conversion |

ubyte c/(28 —1)
byte (2c+1)/(2% - 1)
ushort c/(21 —1)
short (2c+1)/(21° - 1)
uint c/(2% - 1)

int (2c+1)/(2% - 1)
float c

double c

Table 2.9: Component conversions. Color, normal, and depth componénts, (
are converted to an internal floating-point representatif),using the equations

in this table. All arithmetic is done in the internal floating point format. These
conversions apply to components specified as parameters to GL commands and to
components in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table2.2)

2.14 Colors and Coloring

Figures2.8and2.9 diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Tab&um-
marizes the conversions that take place on R, G, B, and A components depending
on which version of th&€€olor command was invoked to specify the components.
As a result of limited precision, some converted values will not be represented
exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color
(primary color) and current secondary color are used in further processing. After
lighting, RGBA colors are clamped to the ran@el]. A color index is converted
to fixed-point and then its integer portion is masked (see seétivh.§. After
clamping or masking, a primitive may lfatshadedindicating that all vertices of
the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

Version 1.5 - October 30, 2003

56 CHAPTER 2. OPENGL OPERATION

2.14.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in sec2av.5)

Lighting is turned on or off using the genemable or Disable commands
with the symbolic valuelIGHTING. If lighting is off, the current color and cur-
rent secondary color are assigned to the vertex primary and secondary color, re-
spectively. If lighting is on, colors computed computed from the current lighting
parameters are assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(z, vy, z, andw) that specify a position in object coordinates (hay be zero,
indicating a point at infinity in the direction given by, y, andz). A direction
parameter consists of three floating-point coordinateg (andz) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in Talle The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There aren light sources, indexed by= 0, ...,n—1. (nis an implementation
dependent maximum that must be at least 8.) Note that the default valudsg;for
ands,; differ for i = 0 and: > 0.

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involvedc;lfindcs are col-
ors without alpha where; = (r1,91,b1) andcy = (r2,92,b2), then define
c1 *x c2 = (rira, 9192, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. H; andd are directions, then define

di ©dy = max{d1 -ds, 0}.

(Directions are taken to have three coordinatesPlfand P, are (homogeneous,
with four coordinates) points then [B P, be the unit vector that points froiR;

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING 57
Parameter| Type | Default Value | Description \
Material Parameters

acm, color | (0.2,0.2,0.2,1.0) | ambient color of material
de color | (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€em color (0.0,0.0,0.0,1.0) | emissive color of material
Srm real 0.0 specular exponent (range:
[0.0,128.0])
m real 0.0 ambient color index
dm real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ag; color (0.0,0.0,0.0,1.0) | ambient intensity of light
de;(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of lighD
dg;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of lighd
Sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light
P position | (0.0,0.0,1.0,0.0) | position of lighti
Sdli direction| (0.0,0.0,—1.0) | direction of spotlight for light
Srli real 0.0 spotlight exponent for lighti
(range:[0.0, 128.0])
Crli real 180.0 spotlight cutoff angle for light
(range:[0.0,90.0], 180.0)
ko; real 1.0 constant attenuation factor for
light i (range:[0.0, 00))
k1; real 0.0 linear attenuation factor for
light i (range:[0.0, c0))
ko; real 0.0 guadratic attenuation factor far
lighti (range:[0.0, o))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Vps boolean FALSE viewer assumed to be at
(0,0,0) in eye coordinates
(TRUB or (0,0, cc) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
ths boolean FALSE use two-sided lighting mode

Table 2.10: Summary of lighting parameters. The range of individual color com-

ponents ig—oo, +00).

Version 1.5 - October 30, 2003

58 CHAPTER 2. OPENGL OPERATION

to P,. Note that ifP5 has a zerav coordinate and®; has non-zera coordinate,
thenm is the unit vector corresponding to the direction specified byrthg
andz coordinates oP,; if P; has a zerav coordinate and, has a non-zeraw
coordinate therITPQ) is the unit vector that is the negative of that corresponding
to the direction specified b, . If both P, andP> have zerav coordinates, then
PTPS is the unit vector obtained by normalizing the direction corresponding to
P, —P;.

If d is an arbitrary direction, then let be the unit vector inl’s direction. Let
||IP1P2|| be the distance betwed?;, andPs. Finally, letV be the point corre-
sponding to the vertex being lit, amdbe the corresponding normal. LBt be the
eyepoint (0, 0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary celgy; and a secondary
colorc,e.. The values ot,,; andc,.. depend on the light model color contrel,.

If c.s = SINGLE_.COLORthen the equations to computg.; andc,. are

Cpri = €cm
+ Agm * Acs
n—1
+ Z(atti)(spoti) [Acm * ac;
=0 + (Il O] Wp}i)dcm * deg;
+ (fl)(n O] hi)STmScm * Scli]
Csee = (0,0,0,1)

If ces = SEPARATESPECULARCOLORthen

Cori = €cm

l’

Acm ¥ Acs
n—1

Z (att;)(spot;) [acm * ac;
=0 + (Il ® Wpli)dcm * dcli}
n—1

Csec — Z (atti) (SpOti) (fz) (n © fli)srm Sem * Selg
=0

l’

where

0, otherwise, (2.2)

£ = {1, n@VﬁplﬁéO,

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING 59

h: — Wpli + We, vps = TRUE (2 3)
Z VB, +(0 0 1), vy =FALSE, '
1 1 ’
, fFPy’'sw#0,

att; = koi + kil VPl + kil [VP i ||° prv 2.4)

1.0, otherwise.

(PoiiV © 8aii)*rti, cpi # 180.0, Py V ® 8gi; > cos(cii),

spot; = 0.0, Crii # 180.0, Py V © 84 < cos(cry;) (2.5)

1.0, Crl; = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated dvith
A is always associated with the primary cotgy;; the alpha component ef.. is
alwaysl.

Results of lighting are undefined if the, coordinate { in eye coordinates) of
V is zero.

Lighting may operate itwo-sidedmode ¢{,; = TRUB, in which afront color
is computed with one set of material parameters {thet materia) and aback
color is computed with a second set of material parametersb@bk materig).

This second computation replaagesvith —n. If ¢,; = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

The selection between back color and front color depends on the primitive of
which the vertex being lit is a part. If the primitive is a point or a line segment,
the front color is always selected. If it is a polygon, then the selection is based on
the sign of the (clipped or unclipped) polygon’s signed area computed in window
coordinates. One way to compute this area is

1=l o
0= Tl T Y (2.6)
=0

wherez! andy’, are thexz andy window coordinates of théth vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) and & 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

Version 1.5 - October 30, 2003

60 CHAPTER 2. OPENGL OPERATION

void FrontFace(enumdir);

Settingdir to CCWcorresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates thatif< 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected.dfr is Cwthena is replaced by-a in the
above inequalities. This requires one bit of state; initially, it indicatesv

2.14.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see Zdbje Sets of lighting
parameters are specified with

void Material {if }(enumface enum pnameT param);
void Material {if }v(enumface enum pnameT params);
void Light{if }(enumlight, enum pnameT param);
void Light {if }v(enumlight, enum pnameT params);
void LightModel {if }(enumpnameT param);

void LightModel {if }v(enumpname T params);

pnameis a symbolic constant indicating which parameter is to be set (see Ta-
ble 2.11). In the vector versions of the commang@syamsis a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector verpamasnis a value to
which to set a single-valued parameter.pdgfamcorresponds to a multi-valued pa-
rameter, the errdNVALID _ENUMesults.) For thévaterial commandfacemust
be one 0FRONTBACK or FRONTANDBACK indicating that the propertyameof
the front or back material, or both, respectively, should be set. In the casghof
light is a symbolic constant of the foriiGHT3, indicating that lighti is to have
the specified parameter set. The constants ob@yMT: = LIGHTO + 4.
Table2.11gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified witiMaterial and Light are converted to floating-point values
(if specified as integers) as indicated in TaBl6 for signed integers. The error
INVALID _VALUEoOccurs if a specified lighting parameter lies outside the allowable
range given in Tabl@.1Q (The symbol %o” indicates the maximum representable
magnitude for the indicated type.)
The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING

61

Parameter || Name | Number of valueg
Material ParameterdMaterial)
Aem, AMBIENT 4
den, DIFFUSE 4
Aem, dem AMBIENTANDDIFFUSE 4
Sem SPECULAR 4
€cm EMISSION 4
Srm SHININESS 1
Qs Qs S COLORNDEXES 3
Light Source Parameterkight)
a; AMBIENT 4
d.i DIFFUSE 4
Scli SPECULAR 4
P POSITION 4
Sdli SPOTDIRECTION 3
Srli SPOTEXPONENT 1
Crli SPOTCUTOFF 1
ko CONSTANIATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATICATTENUATION 1
Lighting Model Parameterd.ightModel)
Acs LIGHT _MODELAMBIENT 4
Vps LIGHT _MODELLOCALVIEWER 1
ths LIGHT _MODELTWOSIDE 1
Ces LIGHT _MODELCOLORCONTROL 1

Table 2.11: Correspondence of lighting parameter symbols to names.
AMBIENTANDDIFFUSE is used to se4..,,, andd,,, to the same value.

Version 1.5 - October 30, 2003

62 CHAPTER 2. OPENGL OPERATION

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That isN,, is the upper left 3x3
matrix taken from the current model-view matriX, then the spotlight direction

dy

d;
d, dy
d | =M, |d, |
d, d.

An individual light is enabled or disabled by callignable or Disablewith the
symbolic valueLIGHT: (i is in the range O ta — 1, wheren is the implementation-
dependent number of lights). If lightis disabled, theth term in the lighting
equation is effectively removed from the summation.

is transformed to

2.14.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by callindgenable or Disablewith the symbolic valu&€OLORMATERIAL

The command that controls which of these modes is selected is

void ColorMaterial (enumface enum mode);

faceis one of FRONT BACK or FRONTANDBACK indicating whether the front
material, back material, or both are affected by the current catoodeis one

of EMISSION, AMBIENT, DIFFUSE, SPECULARor AMBIENTANDDIFFUSE and
specifies which material property or properties track the current colonotfeis
EMISSION, AMBIENT, DIFFUSE, or SPECULARthen the value of.,,,, acm, dem OF

Sem, respectively, will track the current color. ifiodeis AMBIENT ANDDIFFUSE,
botha.,, andd.,, track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value wh@olorMaterial is not currently
enabled to override that particular value. WH&EDLORMATERIALIs enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

ColorMaterial (FRONTAMBIENT)
while COLORMATERIALIs enabled sets the front material,, to the value of the

current color.

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING 63

Color*() =========* > gulrrem To subsequent vertex operations
olor

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

_.Ko—> Front Ambient | To lighting equations

Material*(FRONT,AMBIENT) *=====s==s==sssfecuuas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

’Ko> Front Diffuse L4 1, lighting equations

Material*(FRONT,DIFFUSE) =========s==a=sfesuaas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

.KO’ Front Specular |y To lighting equations

Material*(FRONT,SPECULAR) =============p====== »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

_’KO_P Front Emission ey To lighting equations

Material(FRONT,EMISSION) === ========x=x==x=x2= »0 Color

"""" > State values flow along this path only when a command is issued

== State values flow continuously along this path

Figure 2.10. ColorMaterial operation. Material properties are continuously u
dated from the current color whil€olorMaterial is enabled and has the apprd
priate mode. Only the front material properties are included in this figure.
back material properties are treated identically, exceptfdw@must beBACKor

The

FRONTANDBACK

Version 1.5 - October 30, 2003

64 CHAPTER 2. OPENGL OPERATION

2.14.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the curreboblorMaterial mode, a bit indicat-

ing whether or notCOLORMATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take [Qabe:-
Material is FRONTANDBACKandAMBIENT ANDDIFFUSE, and both lighting and
COLORMATERIALare disabled.

2.14.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of ligfd.;; ands;,
respectively) determine color index diffuse and specular light intensitiegand
s;; from

di; = (.SO)R(dcli) + (-59)G<dcli> + (~11>B(dcli)

and
Sy = (‘SO)R(Scli) + (-59)G(Scli) + (~11)B(Scli)-

R(x) indicates the R component of the coloand similarly forG(x) and B(x).
Next, let

n

s = (att;)(spot;)(su;)(fi)(n @ hy)*m

i=0
whereatt; andspot; are given by equation®.4 and2.5, respectively, and; and
h; are given by equation.2 and2.3 respectively. Let’ = min{s, 1}. Finally,
let

d= zn:(atti)(spoti)(dli)(n © VB,;).

i=0
Then color index lighting produces a valaggiven by
c=am+d(1—35)(dn — am) + 5 (sm — am).

The final color index is
¢ =min{c, s; }.

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING 65

The valuesa,,, d,, and s,, are material properties described in Tabz40
and2.11 Any ambient light intensities are incorporated imtg. As with RGBA
lighting, disabled lights cause the corresponding terms from the summations to be
omitted. The interpretation af,, and the calculation of front and back colors is
carried out as has already been described for RGBA lighting.

The valuesa,,, d,, and s,, are set withMaterial using a pname of
COLORNDEXES Their initial values aré, 1, and1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

2.14.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and sec-
ondary colors are clamped to the ran@el].

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) wi2h — 1, wheren is the number of
bits in a color in the color index buffer (buffers are discussed in chapter

2.14.7 Flatshading

A primitive may beflatshaded meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These
colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. Tabhesummarizes the
possibilities.

Flatshading is controlled by

void ShadeMode{ enum mode);

modevalue must be either of the symbolic consta®téOOTHr FLAT. If modeis
SMOOTHthe initial state), vertex colors are treated individuallymibdeis FLAT,
flatshading is turned orfShadeModelthus requires one bit of state.

2.14.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected

Version 1.5 - October 30, 2003

66 CHAPTER 2. OPENGL OPERATION

| Primitive type of polygoni | Vertex |
single polygon{ = 1) 1
triangle strip i+ 2
triangle fan 1+ 2
independent triangle 3i
quad strip 2042
independent quad 44

Table 2.12: Polygon flatshading color selection. The colors used for flatshading
the ith polygon generated by the indicatBegirVEnd type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numberedthroughn, wheren is the number of vertices between the
BeginEnd pair.

by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two vertidsandP- of an unclipped edge be
c1 andc,. The value oft (section2.12) for a clipped poinfP is used to obtain the
color associated witl? as

c=tc+ (1 —t)co.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

2.14.9 Final Color Processing

For an RGBA color, each color component (which lies[in1]) is converted
(by rounding to nearest) to a fixed-point value with bits. We assume that
the fixed-point representation used represents each vali@™ — 1), where

Version 1.5 - October 30, 2003

2.14. COLORS AND COLORING 67

k e {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of
all ones). m must be at least as large as the number of bits in the corresponding
component of the framebuffern must be at least 2 for A if the framebuffer does
not contain an A component, or if there is only 1 bit of A in the framebuffer. A
color index is converted (by rounding to nearest) to a fixed-point value with at least
as many bits as there are in the color index portion of the framebuffer.

Because a number of the forkg (2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and oGelofub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: ifm is less than the number of bitswith which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most signifiéabits of the converted
value must equal the specified value.

Version 1.5 - October 30, 2003

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure3.1diagrams the rasterization process.

A grid square along with its parameters of assigned colofdepth), fog coor-
dinate, and texture coordinates is callddegment the parameters are collectively
dubbed the fragmentassociated dataA fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment'scenter which is offset by(1/2,1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled. Points
may be given differing diameters and line segments differing widths. A point, line
segment, or polygon may be antialiased.

68

69

Point
Rasterization

From
Primitive
Assembly

Line
Rasterization

Polygon
Rasterization

DrawPixels —»1

Pixel
Rectangle
Rasterization

Bitmap — %

Bitmap
Rasterization

Figure 3.1. Rasterization.

-

Texturing
Color Sum
Fog —
Fragments

Version 1.5 - October 30, 2003

70 CHAPTER 3. RASTERIZATION

3.1 Invariance

Consider a primitive’ obtained by translating a primitiyethrough an offsetz, y)

in window coordinates, where andy are integers. As long as neithgrnor p is

clipped, it must be the case that each fragm@miroduced fromp’ is identical to
a corresponding fragmerftfrom p except that the center g¢f is offset by(z, y)

from the center off.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significanbits (to the left of the binary point)
of the color index are used for antialiasibg:= min{4, m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
theseb bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is calledragment squarand has lower left corner
(x,y) and upper right corndrr + 1, y +1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

Version 1.5 - October 30, 2003

3.2. ANTIALIASING 71

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f; andfs are two fragments, and the portion fif covered by some prim-
itive is a subset of the corresponding portionfefcovered by the primitive,
then the coverage computed ffr must be less than or equal to that com-
puted for fs.

2. The coverage computation for a fragmehitnust be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend oifi’'s x andy coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (sectiorb.6), allowing a user to make an image quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technigue is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. When the framebuffer includes a multisample buffer, it does not include
depth or stencil buffers, even if the multisample buffer does not store depth or
stencil values. Color buffers (left, right, front, back, and aux) do coexist with the
multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the

Version 1.5 - October 30, 2003

72 CHAPTER 3. RASTERIZATION

base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLEBUFFERSIs one, the rasterization of all primi-
tives is changed, and is referred to as multisample rasterization. Otherwise,
primitive rasterization is referred to as single-sample rasterization. The value
of SAMPLEBUFFERSIis queried by callingGetintegerv with pname set to
SAMPLEBUFFERS

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value SAMPLESbits.

The value oSAMPLESs an implementation-dependent constant, and is queried by
calling Getintegerv with pnameset toSAMPLES

Second, each fragment include@aMPLESJepth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinasMPLEScolor and depth values,
SAMPLESsets of texture coordinates, and a coverage value with a maximum of
SAMPLESits.

Multisample rasterization is enabled or disabled by callimgble or Disable
with the symbolic constarMIULTISAMPLE

If MULTISAMPLEIs disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLHS enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer haSAMPLESlocations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not

Version 1.5 - October 30, 2003

3.3. POINTS 73

screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in secfdhis relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points

The rasterization of points is controlled with
void PointSizg float size);

sizespecifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the erldWALID _VALUE

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

derived_size = clamp | size * (!)
- a P a+bxd+ cxd?

whered is the eye-coordinate distance from the €ye, 0, 1) in eye coordinates,
to the vertex, and, b, andc are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see sectiof.12) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise (3.1)
and the fade factor is computed as follows:
p 1 derived_size > threshold 32
= . N2 .
T (pmateste)?otherwise 52

The distance attenuation function coefficiemts, ande, the bounds of the first
point size range clamp, and the point fadeeshold, are specified with

void glPointParameter{if }(enumpnamefloat param);

Version 1.5 - October 30, 2003

74 CHAPTER 3. RASTERIZATION

void glPointParameter{if }v(enum pname const
float *params);

If pnameis POINT_SIZE MIN or POINT_SIZE MAX then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greater than
the upper bound, the point size after clamping is undefined. pndimeis
POINT_DISTANCEATTENUATION then paramspoints to the coefficients, b,
and c¢. If pnameis POINT_FADETHRESHOLISIZE, then param specifies,
or params points to the point fadéhreshold. Values of POINT_SIZE _MIN,
POINT_SIZE _-MAX or POINT_.FADETHRESHOLISIZE less than zero result in the
errorINVALID _VALUE

Point antialiasing is enabled or disabled by calliable or Disablewith the
symbolic constanPOINT_SMOOTHThe default state is for point antialiasing to be
disabled.

3.3.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating:j{sandy,, coordinates
(recall that the subscripts indicate that theseaaedy window coordinates) to
integers. This(x,y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other thah0 depends on the state of point an-
tialiasing. If antialiasing is disabled, the actual width is determined by rounding
the supplied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased point width. This implementation-dependent
value must be no less than the implementation-dependent maximum antialiased
point width, rounded to the nearest integer value, and in any event no lesk. than
If rounding the specified width results in the valughen it is as if the value were
1. If the resulting width is odd, then the point

(.9) = (L2w) + 55 Lyl + 3)

is computed from the vertex’s,, andy,,, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(@) = (L + 3, Ly + 5

Version 1.5 - October 30, 2003

3.3. POINTS 75

0.I5 1.I5 25 35 45 5i5 05 15 25 35 45 55
Odd Width Even Width
Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered(any). See figure3.2.

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point, with
texture coordinates, ¢, andr replaced withs/q, t/q, andr/q, respectively. iy is
less than or equal to zero, the results are undefined.

If antialiasing is enabled, then point rasterization produces a fragment for each
fragment square that intersects the region lying within the circle having diameter
equal to the current point width and centered at the poiats v.,) (figure 3.3).

The coverage value for each fragment is the window coordinate area of the in-
tersection of the circular region with the corresponding fragment square (but see
section3.2). This value is saved and used in the final step of rasterization (sec-
tion 3.11). The data associated with each fragment are otherwise the data associ-
ated with the point being rasterized, with texture coordinategsandr replaced

with s/q, t/q, andr/q, respectively. Ifg is less than or equal to zero, the results
are undefined.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported

Version 1.5 - October 30, 2003

76

CHAPTER 3. RASTERIZATION

6.0

..

5.0

e

aeadl
<

.......

4.0

3.0

.......

2.0

.......

>(......

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates
point to be rasterized. The shaded region has the specified width. The X

the
arks

indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-

sponding fragment square. Solid lines lie on integer coordinates.

Version 1.5 - October 30, 2003

3.4. LINE SEGMENTS 77

width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in Ghdfter

for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths0.1,0.2,...,1.9,2.0 are supported.

3.3.2 Point Rasterization State

The state required to control point rasterization consists of one floating-point value
specifying the point width, three floating point values specifying the minimum and
maximum point size and the point fade threshold size, three floating point values
specifying the distance attenuation coefficients, and a bit indicating whether or not
antialiasing is enabled.

3.3.3 Point Multisample Rasterization

If MULTISAMPLHS enabled, and the value BAMPLEBUFFERSS one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT_SMOOTHis enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect the
region lying within the circle having diameter equal to the current point width and
centered at the point'&c,,, y,,). Coverage bits that correspond to sample points
that intersect the circular region are 1, other coverage bits are 0. All data associ-
ated with each sample for the fragment are the data associated with the point being
rasterized.

Point size range and number of gradations are equivalent to those supported for
antialiased points.

3.4 Line Segments

A line segment results from a line streginVEnd object, a line loop, or a se-
ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

void LineWidth (float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is0. Values less than or equal 60 generate
the errorINVALID VALUE Antialiasing is controlled withEnable and Disable
using the symbolic constabtiNE _SMOOTH-inally, line segments may be stippled.
Stippling is controlled by a GL command that setstipple patterrn(see below).

Version 1.5 - October 30, 2003

78 CHAPTER 3. RASTERIZATION

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment asxeittegor
or y-major. z-major line segments have slope in the closed intejpl 1]; all
other line segments agemajor (slope is determined by the segment’s endpoints).
We shall specify rasterization only farmajor segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragfmeith center at win-
dow coordinates ; andy , define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zs|+ |y —ys| <1/2.}

Essentially, a line segment startingmgtand ending ap, produces those frag-
mentsf for which the segment intersedi, except ifp; is contained ink;. See
figure3.4.

To avoid difficulties when an endpoint lies on a boundaryzgfwe (in princi-
ple) perturb the supplied endpoints by a tiny amount. pgaindp, have window
coordinatesx,, y,) and(zs, y»), respectively. Obtain the perturbed endpoipfs
given by (x4, ya) — (€, €?) andpj, given by (zp, y,) — (€, €2). Rasterizing the line
segment starting at, and ending ap; produces those fragmenfsor which the
segment starting at,, and ending orp;, intersectsRk s, except ifp; is contained in
Ry. e is chosen to be so small that rasterizing the line segment produces the same
fragments when is substituted foe for any0 < § < e.

Whenp, andp, lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (correspondipg) to
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in eitheror y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

Version 1.5 - October 30, 2003

3.4. LINE SEGMENTS 79

Figure 3.4. Visualization of Bresenham'’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

3. For anz-major line, no two fragments may be produced that lie in the same
window-coordinate column (for g-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) af-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (24, ya) and letp, = (24, ya) andpy, = (23, ys). Set

(pr - pa)) (pb 2_ pa)) (3.3)
Po — Pall
(Note thatt = 0 atp, andt = 1 atp,.) The value of an associated datyiior

the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, orshe or r texture

t =

Version 1.5 - October 30, 2003

80 CHAPTER 3. RASTERIZATION

coordinate (the depth value, windowmust be found using equati@ns, below),
is found as

(1 - t)fa/wa + tfb/wb
(1 —t)ag/we + tap/wy
where f, and f; are the data associated with the starting and ending endpoints of
the segment, respectively;, andw, are the clipw coordinates of the starting

and ending endpoints of the segments, respectively.= «;, = 1 for all data
except texture coordinates, in which casge = ¢, anday, = ¢, (g, andg, are

the homogeneous texture coordinates at the starting and ending endpoints of the
segment; results are undefined if either of these is less than or equal to 0). Note
that linear interpolation would use

f = (1 _t>fa/04a+tfb/04b- (35)

The reason that this formula is incorrect (except for the depth value) is that it inter-
polates a datum in window space, which may be distorted by perspective. What is
actually desired is to find the corresponding value when interpolated in clip space,
which equatior8.4does. A GL implementation may choose to approximate equa-
tion 3.4with 3.5, but this will normally lead to unacceptable distortion effects when
interpolating texture coordinates.

f= (3.4)

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple &fF F F15. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command
void LineStipple(int factor, ushort pattern);

defines dine stipple patternis an unsigned short integer. Tlie stippleis taken
from the lowest order 16 bits gdattern It determines those fragments that are
to be drawn when the line is rasterizefhctor is a count that is used to modify
the effective line stipple by causing each bitiime stippleto be usedactortimes.
factor is clamped to the randé, 256]. Line stippling may be enabled or disabled
usingEnable or Disablewith the constantINE _STIPPLE. When disabled, it is as

if the line stipple has its default value.

Version 1.5 - October 30, 2003

3.4. LINE SEGMENTS 81

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stipplehe line repeat count, and an
integer stipple counter. Let

b= |s/r] mod 16,

Then a fragment is produced if tlh bit of p is 1, and not produced otherwise.
The bits ofp are numbered witld being the least significant anid being the

most significant. The initial value of is zero;s is incremented after production

of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending poist)s reset to 0 whenever
aBeginoccurs, and before every line segment in a group of independent segments
(as specified wheBeginis invoked withLINES).

If the line segment has been clipped, then the valueatfthe beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less .tharounding

the specified width results in the valQgthen it is as if the value werke

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for anrmajor line, the minor direction is
y, and for ay-major line, the minor direction ig) and replicating fragments in
the minor direction (see figurg.5). Let w be the width rounded to the nearest
integer (ifw = 0, then it is as ifw = 1). If the line segment has endpoints
given by(xg, yo) and(x1,y1) in window coordinates, the segment with endpoints
(xo,y0 — (w—1)/2) and(z1,y1 — (w—1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height(a row of fragments of length for
a y-major segment) is produced at each{y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the columnis location is zero; otherwise, the whole
column is produced.

Version 1.5 - October 30, 2003

82 CHAPTER 3. RASTERIZATION

width =2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see 3igure

see also sectiod.2). Equation3.4is used to compute associated data values just as
with non-antialiased lines; equati@3is used to find the value affor each frag-

ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but widtlantialiased segments

must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered fooim n, starting with the rectangle

Version 1.5 - October 30, 2003

3.4. LINE SEGMENTS 83

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given uriderStipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced
is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings oPolygonMode and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line widthlig). The initial value

of the line stipple isF'F'F'F4 (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLESs enabled, and the value BAMPLEBUFFERSS one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE _SMOOTHs enabled or disabled. Line rasterization produces a fragment for

Version 1.5 - October 30, 2003

84 CHAPTER 3. RASTERIZATION

each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in th&ntialiasing portion of section3.4.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in secti@¥.2 where “fragment” is replaced by “rectangle”.
Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equafion
then using the result to evaluate equatibh An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equatidrB at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.4. The color value and the set of texture coordinates need not be evaluated
at the same location.
Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a polygoBeginVEnd object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals,Rechcommand.

Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled wHmable and Disable with the sym-

bolic constanPOLYGONSMOOTHThe analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygdmack facing

or front facing This determination is made by examining the sign of the area com-
puted by equatio.6 of section2.14.1(including the possible reversal of this sign
as indicated by the last call terontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. Th@ullFace mode is set by calling

void CullFace(enum mode);

modeis a symbolic constant. one #RONT BACKor FRONTANDBACK Culling
is enabled or disabled wittiEnable or Disable using the symbolic constant

Version 1.5 - October 30, 2003

3.5. POLYGONS 85

CULLFACE Front facing polygons are rasterized if either culling is disabled or
the CullFace mode isBACKwhile back facing polygons are rasterized only if ei-
ther culling is disabled or th€ullFace mode iSFRONT The initial setting of the
CullFace mode isBACK Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is calledpoint sampling The two-dimensional projection obtained by taking
the x andy window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Definebarycentric coordinatefor a triangle. Barycentric coordinates are
a set of three numbers, b, andc, each in the rang®, 1], witha + b + ¢ = 1.
These coordinates uniquely specify any pgintithin the triangle or on the trian-
gle’s boundary as

P = apq + bpy + cpe,

wherep,, pp, andp,. are the vertices of the triangle, b, andc can be found as

_ A(ppbpc) h— A(ppapc) _ A(ppapb)

A(papbpe)’ A(papbpe)’ A(papbpe)’

whereA (Imn) denotes the area in window coordinates of the triangle with vertices
[, m, andn.

Denote a datum at,, py, Of p. as f,, fp, OF fe, respectively. Then the valué
of a datum at a fragment produced by rasterizing a triangle is given by

f o afa/wa + bfb/wb + Cfc/wc
" aag/w, + bay/wy, + coJwe

wherew,, wp andw,. are the clipw coordinates op,, py, andp., respectively.
a, b, andc are the barycentric coordinates of the fragment for which the data are
produceda, = ap = a. = 1 except for texture, ¢, andr coordinates, for which
Qg = Ga, @ = qp, @anda,. = ¢, (if any of ¢4, g, Or g. are less than or equal
to zero, results are undefined), b, andc must correspond precisely to the exact
coordinates of the center of the fragment. Another way of saying this is that the
data associated with a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, equaficimay be approximated by

f = afa/aa + bfb/ab +Cfc/ac;

(3.6)

Version 1.5 - October 30, 2003

86 CHAPTER 3. RASTERIZATION

this may vyield acceptable results for color valuemfiistbe used for depth val-
ues), but will normally lead to unacceptable distortion effects if used for texture
coordinates.

For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f=> aifi
i=1

wheren is the number of vertices in the polygofy,is the value of thef at vertex
i; foreachi 0 < a; < 1and} ;" a; = 1. The values of the; may differ from
fragment to fragment, but at vertéxa; = 0,5 # ¢ anda; = 1.

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.6 should be iterated independently and a division performed for each frag-
ment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipplg ubyte *pattern);

patternis a pointer to memory into whicha2 x 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in se8tid for
DrawPixels; it is as if theheightandwidth passed to that command were both equal
to 32, thetypewere BITMAP, and theformatwere COLORNDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If z,, andy, are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern(z,, mod 32, y,, mod 32) is 1.

Version 1.5 - October 30, 2003

3.5. POLYGONS 87

Polygon stippling may be enabled or disabled wihable or Disable using
the constanPOLYGONSTIPPLE. When disabled, it is as if the stipple pattern were
all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section3.11 An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.
Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in seétibri, however,
is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonModg enumface enum mode);

faceis one of FRONT BACK or FRONTANDBACK indicating that the rasterizing
method described bsodereplaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
modeis one of the symbolic constan®OINT, LINE, or FILL . Calling Polygon-

Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed withBemin(POINT) andEnd pair.

The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see segtior). LINE causes edges

that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edge&ILL is the default mode of polygon rasterization, cor-
responding to the description in sectioh$.], 3.5.2 and3.5.3 Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Version 1.5 - October 30, 2003

88 CHAPTER 3. RASTERIZATION

Polygon antialiasing applies only to the@LL state ofPolygonMode For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffse{ float factor, float units);

factor scales the maximum depth slope of the polygon, anits scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factorandunitsmay be either positive or negative.

The maximum depth slope of a triangle is

e) G

where(xy,, yu, 2w) IS @ point on the trianglen may be approximated as

Oz

Oy

Oz
M

)

m = max{ } . (3.8)

If the polygon has more than three vertices, one or more valuesrofy be used
during rasterization. Each may take any value in the range jmax], wheremin
andmaz are the smallest and largest values obtained by evaluating Eqiafion
or Equation3.8for the triangles formed by all three-vertex combinations.

The minimum resolvable differengeis an implementation constant. It is the
smallest difference in window coordinatevalues that is guaranteed to remain
distinct throughout polygon rasterization and in the depth buffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, butz,, values that differ by, will have distinct depth values.

The offset value for a polygon is

0o =m* factor + r * units. (3.9)

m is computed as described above, as a function of depth values in the range [0,1],
ando is applied to depth values in the same range.

Version 1.5 - October 30, 2003

3.5. POLYGONS 89

Boolean state valueaOLYGONFFSETPOINT, POLYGONFFSETLINE, and
POLYGOMNFFSETFILL determine whethes is applied during the rasterization
of polygons inPOINT, LINE, andFILL modes. These boolean state values are
enabled and disabled as argument values to the comniaraide andDisable. If
POLYGONDFFSETPOINT is enabledyp is added to the depth value of each frag-
ment produced by the rasterization of a polygorP@INT mode. Likewise, if
POLYGOMNDFFSETLINE or POLYGONDFFSETFILL is enabledp is added to the
depth value of each fragment produced by the rasterization of a polygdRNEn
or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.6 Polygon Multisample Rasterization

If MULTISAMPLESs enabled and the value SBAMPLEBUFFERSS one, then poly-

gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing POLYGOMNSMOOTHSs enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in secfigh 1, including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and tBallFace mode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in sectioB.], using the approximation to equa-
tion 3.6 that omitsw components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment
center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only torthée state ofPolygon-
Mode. For POINT andLINE, the rasterizations described in secti@n3.3(Point
Multisample Rasterization) and.4.4(Line Multisample Rasterization) apply.

Version 1.5 - October 30, 2003

90 CHAPTER 3. RASTERIZATION

3.5.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of BradygonMode setting for each of

front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial stateHotygonModeis

FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using theDrawPixels command (described in secti@n6.4. Some of the param-
eters and operations governing the operatioDi@wPixels are shared bjRead-
Pixels (used to obtain pixel values from the framebuffer) &apyPixels(used to
copy pixels from one framebuffer location to another); the discussiéteatiPix-
elsandCopyPixels however, is deferred until Chaptémfter the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining tBrawPixels also pertain tdreadPixelsor CopyPixels

A number of parameters control the encoding of pixels in client memory (for
reading and writing) and how pixels are processed before being placed in or after
being read from the framebuffer (for reading, writing, and copying). These param-
eters are set with three comman@sxelStore PixelTransfer, andPixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operatiobodwPixelsandReadPixels(as well as
other commands; see sectidhs.2 3.7, and3.8) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see sectibrl). Pixel storage modes are set with

void PixelStore{if }(enumpname T param);
pnameis a symbolic constant indicating a parameter to be set,panamis the
value to set it to. Tabl8.1 summarizes the pixel storage parameters, their types,

their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the erevALID VALUE

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 91

Parameter Name | Type | Initial Value | Valid Range |
UNPACKSWABBYTES boolean FALSE TRUHFALSE
UNPACKLSB_FIRST boolean| FALSE | TRUHFALSE
UNPACKROWLENGTH integer 0 [0, 00)
UNPACKSKIP _ROWS integer 0 [0, 00)
UNPACKSKIP _PIXELS integer 0 [0, 00)
UNPACKALIGNMENT integer 4 1,2,4,8
UNPACKIMAGEHEIGHT | integer 0 [0, 00)
UNPACKSKIP _IMAGES integer 0 [0, 00)

Table 3.1:PixelStore parameters pertaining to one or morelyhwPixels, Col-
orTable, ColorSubTable, ConvolutionFilterlD, ConvolutionFilter2D, Separa-
bleFilter2D, PolygonStipple TexlmagelD Texlmage2D TexIimage3D Tex-
SublmagellD TexSublmage2D andTexSublmage3D

The version ofPixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is $&USBE if
the passed value 80 and TRUEotherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set tBALSE if the passed value & andTRUEotherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optionalaging subset The imaging
subset includes both new commands, and new enumerants allowed as parame-
ters to existing commands. If the subset is supporéddyf these calls and enu-
merants must be implemented as described later in the GL specification. If the
subset is not supported, calling any unsupported command generates the error
INVALID _OPERATION and using any of the new enumerants generates the error
INVALID _ENUM

The individual operations available only in the imaging subset are described in
section3.6.3 Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sectionsColor Table Specification Alternate Color Table Specification

Version 1.5 - October 30, 2003

92 CHAPTER 3. RASTERIZATION

Commands Color Table State and Proxy State Color Table Lookup,
Post Convolution Color Table Lookup, andPost Color Matrix Color Ta-
ble Lookup, as well as the query commands described in seétibry.

2. Convolution, including all commands and enumerants described in sub-
sectionsConvolution Filter Specification, Alternate Convolution Filter
Specification Commands and Convolution, as well as the query com-
mands described in sectiénl.8

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation , as
well as the simple query commands described in seéibri

4. Histogram and minmayx, including all commands and enumerants described
in subsectionsHistogram Table Specification Histogram State and
Proxy State, Histogram, Minmax Table Specification, andMinmax, as
well as the query commands described in sedfidn9and sectior6.1.10

The imaging subset is supported only if tBETENSIONSstring includes the
substring’ARB_imaging" . QueryingEXTENSIONSSs described in sectiof.1.11

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operatiorDshiwPixels (section3.6.4), ReadPix-

els (section4.3.2), andCopyPixels(section4.3.3 at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if }(enumparam T value);

paramis a symbolic constant indicating a parameter to be setyaletis the value
to set it to. Table3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in thegwarID VALUE
The same versions of the command exist asHixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v(enummap sizei size T values);

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 93

Parameter Name | Type | Initial Value | Valid Range |
MARCOLOR boolean FALSE TRUHFALSE
MARSTENCIL boolean FALSE TRUHFALSE
INDEX_SHIFT integer 0 (—00, 00)
INDEX_OFFSET integer 0 (—00,00)
z_SCALE float 1.0 (—00,0)
DEPTHSCALE float 1.0 (=00, 00)
z_BIAS float 0.0 (—00, 00)
DEPTHBIAS float 0.0 (=00, 0)
POSTCONVOLUTION:_SCALE float 1.0 (—00, 00)
POSTCONVOLUTION:_BIAS float 0.0 (—00, 00)
POSTCOLORMATRIXz_SCALE | float 1.0 (—o0, 00)
POSTCOLORMATRIX z_BIAS float 0.0 (—00, c0)

Table 3.2:PixelTransfer parameterse is REQ GREENBLUE, or ALPHA

mapis a symbolic map name, indicating the map to seeindicates the size of
the map, andaluesis a pointer to an array afizemap values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions d?ixelMap is called. A table entry is converted
to the appropriate type when it is specified. An entry giving a color component
value is converted according to tali?ed. An entry giving a color index value
is converted from an unsigned short integer or unsigned integer to floating-point.
An entry giving a stencil index is converted from single-precision floating-point
to an integer by rounding to nearest. The various tables and their initial sizes
and entries are summarized in taldlle. A table that takes an index as an ad-
dress must haveize = 2" or the errofINVALID _VALUEresults. The maximum
allowablesize of each table is specified by the implementation dependent value
MAXPIXEL MAPTABLE, but must be at least 32 (a single maximum applies to all
tables). The erroNVALID _VALUEIs generated if aizelarger than the imple-
mented maximum, or less than one, is giveioelMap.

Color Table Specification

Color lookup tables are specified with

void ColorTable(enumtarget enum internalformat
sizei width, enum format enum type void *data);

Version 1.5 - October 30, 2003

94

CHAPTER 3. RASTERIZATION

Map Name | Address | Value | Init. Size [Init. Value |
PIXEL _MAPI _TQOl coloridx | coloridx 1 0.0
PIXEL _MAPS_TOS || stencil idx | stencil idx 1 0
PIXEL _MAPI _TOR || coloridx R 1 0.0
PIXEL _MAPI _TO.G || color idx G 1 0.0
PIXEL _MAPI _TOB || coloridx B 1 0.0
PIXEL _MARI _TOA color idx A 1 0.0
PIXEL _MAPR.TOR R R 1 0.0
PIXEL _MARPG.TOG G G 1 0.0
PIXEL _MAPB_TOB B B 1 0.0
PIXEL _MARPA_TOA A A 1 0.0

Table 3.3:PixelMap parameters.

target must be one of theegular color table names listed in tabk4 to define

the table. Aproxy table name is a special case discussed later in this section.
width, format type anddata specify an image in memory with the same mean-
ing and allowed values as the corresponding argumenizdwPixels (see sec-

tion 3.6.4, with heighttaken to be 1. The maximum allowabigdth of a table

is implementation-dependent, but must be at least 32 fdineais COLORNDEX,
DEPTHCOMPONENBNASTENCIL_INDEX and thetypeBITMAP are not allowed.

The specified image is taken from memory and processed jusDaaifPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the @DLORTABLE SCALEparameters,
biased by the fouCOLORTABLE BIAS parameters, and clamped[th 1]. These
parameters are set by calli@plorTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with théase internal formaspecified by (or derived frompter-
nalformat in the same manner as for textures (secidhl). internalformatmust
be one of the formats in tablz150r table3.16 other than theEPTHformats in
those tables.

The color lookup table is redefined to hawelth entries, each with the speci-
fied internal format. The table is formed with indicgthroughwidth — 1. Table
locationi is specified by théth image pixel, counting from zero.

The errorINVALID VALUEIs generated itvidth is not zero or a non-negative
power of two. The erroTABLETOQLARGEIs generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 95

Table Name | Type |

COLORTABLE regular
POSTCONVOLUTIONCOLORTABLE
POSTCOLORMATRIX COLORTABLE
PROXYCOLORTABLE proxy
PROXYPOSTCONVOLUTIONCOLORTABLE
PROXYPOSTCOLORMATRIX COLORTABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

void ColorTableParameter{if }v(enumtarget enum pname
T params);

targetmust be a regular color table nangmameis one of COLORTABLE SCALE
or COLORTABLEBIAS. paramspoints to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on anZolorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enumtarget enum internalformaf
int x,int vy, sizei width);

defines a color table in exactly the manneiCuflorTable, except that table data
are taken from the framebuffer, rather than from client memtasgetmust be a
regular color table name, y, andwidth correspond precisely to the corresponding
arguments ofCopyPixels (refer to sectiont.3.3; they specify the image'width
and the lower lefi{x, y) coordinates of the framebuffer region to be copied. The

Version 1.5 - October 30, 2003

96 CHAPTER 3. RASTERIZATION

image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumentypeset toCOLORandheightset to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that describe@dtrrTable, beginning
with scaling byCOLORTABLE SCALE Parametertarget internalformatandwidth
are specified using the same values, with the same meanings, as the equivalent
arguments o€ColorTable. formatis taken to heRGBA

Two additional commands,

void ColorSubTable(enumtarget, sizei start, sizei count
enumformat enum type void *data);

void CopyColorSubTablg enumtarget sizei start, int X,
int y,sizei count);

respecify only a portion of an existing color table. No change is made tintie
nalformator width parameters of the specified color table, nor is any change made
to table entries outside the specified portidgarget must be a regular color table
name.

ColorSubTable argumentdormat, type anddatamatch the corresponding ar-
guments toColorTable, meaning that they are specified using the same values,
and have the same meanings. LikewiSepyColorSubTablearguments, y, and
countmatch thex, y, andwidth arguments o€opyColorTable. Both of theColor-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled byntteenalformatof
the table, not by an argument to the command.

Argumentsstartandcountof ColorSubTable andCopyColorSubTablespec-
ify a subregion of the color table starting at indstart and ending at index
start + count — 1. Counting from zero, theth pixel group is assigned to the
table entry with indexcount + n. The errorINVALID _VALUE is generated if
start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 97

RGBA with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-
clude scale and bias parameters. WliatorTable is executed withiarget speci-
fied as one of the proxy color table names listed in t&8bliethe proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated GplorTable called withtarget set to the
corresponding regular table nan@JLORTABLE is the regular name correspond-
ing to PROXYCOLORTABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. CalliolgprTable with a proxy
targethas no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried Ga@tgolorTable. The
errorINVALID _ENUMs generated if this is attempted.

Convolution Filter Specification
A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D (enumtarget enum internalformat
sizei width, sizei height enum format enum type
void *data);

targetmust beCONVOLUTIOND. width, height format type anddataspecify an
image in memory with the same meaning and allowed values as the corresponding
parameters t@rawPixels. Theformats COLORNDEX, DEPTHCOMPONEN&Nd
STENCIL_INDEX and thetypeBITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTIONILTER _SCALE parameters and biased by the four
two-dimensionalCONVOLUTIONFILTER _BIAS parameters. These parameters are
set by callingConvolutionParameterfv as described below. No clamping takes
place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with thdase internal formaspecified by (or derived frompter-
nalformat in the same manner as for textures (sectdhl). internalformatmust

Version 1.5 - October 30, 2003

98 CHAPTER 3. RASTERIZATION

be one of the formats in tab15o0r table3.16 other than th®EPTHformats in
those tables.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinateg such that increases from left to
right, starting at zero, angl increases from bottom to top, also starting at zero.
Image location, j is specified by théVth pixel, counting from zero, where

N =144 j xwidth

The error INVALID VALUE is generated ifwidth or height is greater
than the maximum supported value. These values are queried Géth
ConvolutionParameteriv, setting target to CONVOLUTIOND and pnameto
MAXCONVOLUTIONVIDTHor MAXCONVOLUTIOMNEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if }v(enumtarget enum pname
T params);

with target CONVOLUTIOND. pnameis one of CONVOLUTIONILTER _SCALE
or CONVOLUTIONILTER _BIAS. paramspoints to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilterlD (enumtarget enum internalformat
sizei width, enum format enum type void *data);

target must beCONVOLUTIOND. internalformat width, format andtype have
identical semantics and accept the same values as do their two-dimensional coun-
terparts.datamust point to a one-dimensional image, however.

The image is extracted from memory and processed@anfolutionFilter2D
were called with aheightof 1, except that it is scaled and biased by the one-
dimensional CONVOLUTIONFILTER _SCALE and CONVOLUTIONFILTER _BIAS
parameters. These parameters are specified exactly as the two-dimensional
parameters, except thaConvolutionParameterfv is called with target
CONVOLUTIOND.

The image is formed with coordinatésuch that increases from left to right,
starting at zero. Image locatiaris specified by théth pixel, counting from zero.

The errorINVALID VALUEIs generated ifvidth is greater than the maximum
supported value. This value is queried usihetConvolutionParameteriv, setting
targetto CONVOLUTIOND andpnameto MAXCONVOLUTIONVIDTH

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 99

Special facilities are provided for the definition of two-dimensiosapa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enumtarget enum internalformat
sizei width, sizei height enum format enum type
void *row, void *column);

target must beSEPARABLE2D. internalformatspecifies the formats of the table
entries of the two one-dimensional images that will be retainmed: points to a
width pixel wide image of the specifiddrmatandtype columnpoints to aheight
pixel high image, also of the specififormatandtype

The two images are extracted from memory and processed @snifolu-
tionFilterlD were called separately for each, except that each image is scaled
and biased by the two-dimensional separal@NVOLUTIONILTER SCALEand
CONVOLUTIONILTER _BIAS parameters. These parameters are specified exactly
as the one-dimensional and two-dimensional parameters, exce@uaimatlution-
Parameteriv is called withtarget SEPARABLE2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target
enuminternalformatint X, int vy, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manneCohvolutionFilter2D,
except thatimage data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTIONED. X, ¥, width, andheightcorrespond precisely
to the corresponding arguments@dpyPixels(refer to sectiont.3.3; they specify
the image’swidth and height and the lower lef(z, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passeddopyPixelswith argumentype set toCOLOR
stopping after the final expansion to RGBA.

Subsequent processing is identical to that describe@dorolutionFilter2D,
beginning with scaling bz ONVOLUTIONFILTER _SCALE Parametergarget, in-
ternalformat width, andheightare specified using the same values, with the same

Version 1.5 - October 30, 2003

100 CHAPTER 3. RASTERIZATION

meanings, as the equivalent argumentSofivolutionFilter2D . formatis taken to
beRGBA
The command

void CopyConvolutionFilterlD(enum target,
enuminternalformatint X, int vy, sizei width);

defines a one-dimensional filter in exactly the manne€ohvolutionFilterlD,
except thatimage data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTIONLD. X, y, andwidth correspond precisely to the
corresponding arguments GopyPixels(refer to sectiomt.3.3; they specify the
image’swidth and the lower leftx, y) coordinates of the framebuffer region to

be copied. The image is taken from the framebuffer exactly as if these arguments
were passed t€opyPixelswith argumentypeset toCOLORand heightset to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that describe@dorolutionFilter1D,
beginning with scaling bz ONVOLUTIONFILTER _SCALE Parametergarget in-
ternalformat andwidth are specified using the same values, with the same mean-
ings, as the equivalent arguments@dnvolutionFilter2D . formatis taken to be
RGBA

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.
Each initial convolution filter is null (zero width and height, internal format

RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode tGOLORcauses the matrix operations described in sec-
tion 2.11.2to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 101

void Histogram(enumtarget sizei width,
enum internalformat boolean sink);

target must beHISTOGRAMf a histogram table is to be specifiedarget value
PROXYHISTOGRAMs a special case discussed later in this sectimitlth speci-
fies the number of entries in the histogram table, aernalformatspecifies the
format of each table entry. The maximum allowablelth of the histogram table
is implementation-dependent, but must be at leassBk specifies whether pixel
groups will be consumed by the histogram operatibRUE or passed on to the
minmax operationfALSE).

If no error results from the execution éfistogram, the specified histogram
table is redefined to hawsidth entries, each with the specified internal format.
The entries are indexed 0 througtidth — 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The errorINVALID VALUEIs generated ifvidth is not zero or a non-negative
power of 2. The erroTABLE TOQLARGEIs generated if the specified histogram
table is too large for the implementation. The efifdALID _ENUMs generated if
internalformatis not one of the formats in tabk15or table3.16 oris 1, 2, 3, 4,
or any of theDEPTHor INTENSITY formats in those tables.

A GL implementation may vary its allocation of internal component resolution
based on anflistogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
formatRGBAwith zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. WherHistogram is executed witltarget set toPROXYHISTOGRAMthe
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are

Version 1.5 - October 30, 2003

102 CHAPTER 3. RASTERIZATION

set to zero. If the histogram table would be accomodate#iisyogram called
with target set toHISTOGRAMthe proxy state values are set exactly as though
the actual histogram table were being specified. Calliliggogram with target
PROXYHISTOGRANMnas no effect on the actual histogram table.

There is no image associated WRPIROXYHISTOGRAMIt cannot be used as
a histogram, and its image must never queried uSetHistogram. The error
INVALID _ENUMesults if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enumtarget enum internalformat
boolean sink);

target must beMINMAX internalformatspecifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUB or passed on to final conversioPALSE).

The errorINVALID _ENUMSs generated ifnternalformatis not one of the for-
mats in table3.150r table3.16 oris 1, 2, 3, 4, or any of thBEPTHor INTENSITY
formats in those tables. The resulting table always has 2 entries, each with values
corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is B&RA
and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in fig-
ure 3.7. We describe the stages of this process in the order in which they occur.
Pixels are drawn using

void DrawPixels(sizei width, sizei height enum format,
enumtype void *data);

formatis a symbolic constant indicating what the values in memory represent.
width and heightare the width and height, respectively, of the pixel rectangle to

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 103

byte, short, int, o r float pixel
data stream (index or component)

convert
to float
convert
L to RGB
scale shift
and bias and offset

index to RGBA index to index

looku p look up

color table
lookup

convolution & color table
scale and bias « lookup

post color table % histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Operation dbrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be engbled

or disabled. RGBA ang/sadsnntlex-poetsleeh3are2sigsvn; depth and stencil pixel
paths are not shown.

104 CHAPTER 3. RASTERIZATION

typeParameter Corresponding Special
Token Name GL Data Type| Interpretation
UNSIGNEDBYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNEDSHORT ushort No
SHORT short No
UNSIGNEDINT uint No
INT int No
FLOAT float No
UNSIGNEDBYTE3.3.2 ubyte Yes
UNSIGNEDBYTE?2_3_3_REV ubyte Yes
UNSIGNEDSHORT5 .65 ushort Yes
UNSIGNEDSHORT5_.6 5_REV ushort Yes
UNSIGNEDSHORT4 4. 4 4 ushort Yes
UNSIGNEDSHORT4_ 4 4_4_REV ushort Yes
UNSIGNEDSHORT5 5 5.1 ushort Yes
UNSIGNEDSHORT1 5. 5 5_REV ushort Yes
UNSIGNEDINT _8.8.8_8 uint Yes
UNSIGNEDINT 8.8 8_.8_REV uint Yes
UNSIGNEDINT 1010102 uint Yes
UNSIGNEDINT 2_.10_10_10_REV uint Yes

Table 3.5:DrawPixels andReadPixelstypeparameter values and the correspond-
ing GL data types. Refer to table?2 for definitions of GL data types. Special
interpretations are described near the end of seétiort

be drawn.datais a pointer to the data to be drawn. These data are represented
with one of seven GL data types, specifiedtipge The correspondence between
the twentytypetoken values and the GL data types they indicate is given in ta-
ble 3.5. If the GL is in color index mode anfibrmatis not one ofCOLORNDEX,
STENCIL_INDEX, or DEPTHCOMPONENTthen the erroNVALID _OPERATIONoC-

curs. Iftypeis BITMAP andformatis not COLORNDEX or STENCIL_INDEX then

the erroiNVALID _ENUMbccurs. Some additional constraints on the combinations
of formatandtypevalues that are accepted is discussed below.

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 105

Format Name | Element Meaning and OrdérTarget Buffer|
COLORNDEX Color Index Color
STENCIL_INDEX Stencil Index Stencil
DEPTHCOMPONENT Depth Depth
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RGB R, G,B Color
RGBA R,G,B,A Color
BGR B,G,R Color
BGRA B,G R,A Color
LUMINANCE Luminance Color
LUMINANCEALPHA Luminance, A Color

Table 3.6:DrawPixels andReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as
an index, formats yield components.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes (GL
data typedyte andubyte), signed or unsigned short integers (GL data types
short andushort), signed or unsigned integers (GL data types anduint),

or floating point values (GL data tygiat). These elements are grouped into
sets of one, two, three, or four values, depending orfdhmat, to form a group.
Table3.6summarizes the format of groups obtained from memory; it also indicates
those formats that yield indices and those that yield components.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding.UNPACKSWAPBYTESIs
enabled, however, then the values are interpreted with the bit orderings modified
as per table3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series mwivs, with the first element of the first group
of the first row pointed to by the pointer passeddawPixels. If the value of
UNPACKROWLENGTHS not positive, then the number of groups in a rowidth;

Version 1.5 - October 30, 2003

106 CHAPTER 3. RASTERIZATION

Element Size| Default Bit Ordering| Modified Bit Ordering

8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements wheNPACKSWAPBYTESis
enabled. These reorderings are defined only when GL datautyyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit O is the least significant.

otherwise the number of groupsUsNPACKROWLENGTH If p indicates the loca-
tion in memory of the first element of the first row, then the first element oMtie
row is indicated by

p+ Nk (3.10)
whereN is the row number (counting from zero) and k is defined as
nl s> a,
k= { a/s[snl/a]l s<a (3.11)

wheren is the number of elements in a groupis the number of groups in
the row, a is the value ofUNPACKALIGNMENT ands is the size, in units of GL
ubyte s, of an element. If the number of bits per element isln@t 4, or 8 times
the number of bits in a Gubyte , thenk = ni for all values ofa.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACKROW_ENGTH UNPACKSKIP _ROWSand UNPACKSKIP _PIXELS. Before
obtaining the first group from memory, the pointer supplieDtawPixelsis effec-
tively advanced byUNPACKSKIP _PIXELS)n+(UNPACKSKIP _ROWS: elements.
Thenwidth groups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advanced biementsheightsets
of width groups of values are obtained this way. See figuge

Calling DrawPixels with a type of UNSIGNEDBYTES3.3.2,

UNSIGNEDBYTEZ2_3_3_REV, UNSIGNEDSHORT5.6.5,
UNSIGNEDSHORT5_6_5_REV, UNSIGNEDSHORT4 4 4 4,
UNSIGNEDSHORT4 4 4 4 _REV, UNSIGNEDSHORT5.5.51,
UNSIGNEDSHORT1_.5.5_5_REV, UNSIGNEDINT _.8_.8_8_8,
UNSIGNEDINT _-8_8_8_8_REV, UNSIGNEDINT -10.10_10_2, or

UNSIGNEDINT 2.10_10_.10 REV is a special case in which all the compo-
nents of each group are packed into a single unsigned byte, unsigned short, or

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 107

ROW LENGTH

SKI P_PI XEL

SKI P_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed byyNPACKfor DrawPixels and byPACK for ReadPixels

unsigned int, depending on the type. The number of components per packed pixel
is fixed by the type, and must match the number of components per group indicated
by theformatparameter, as listed in tabBe8 The erroiNVALID _.OPERATIONS
generated if a mismatch occurs. This constraint also holds for all other functions
that accept or return pixel data usitygpeandformatparameters to define the type
and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in table®, 3.10 and3.11 Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end WiltVreverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

Version 1.5 - October 30, 2003

108 CHAPTER 3. RASTERIZATION

typeParameter GL Data | Number of Matching
Token Name Type Components Pixel Formats
UNSIGNEDBYTE.3_3_2 ubyte 3 RGB
UNSIGNEDBYTE2_3_3_REV ubyte 3 RGB
UNSIGNEDSHORT5.6 5 ushort 3 RGB
UNSIGNEDSHORT5_6_5_REV ushort 3 RGB
UNSIGNEDSHORT4 4. 4 4 ushort 4 RGBABGRA
UNSIGNEDSHORT4 4 4_4_REV ushort 4 RGBABGRA
UNSIGNEDSHORT5 551 ushort 4 RGBABGRA
UNSIGNEDSHORT1 5 5 5_.REV ushort 4 RGBABGRA
UNSIGNEDINT _-8.8_8_8 uint 4 RGBABGRA
UNSIGNEDINT _-8_.8_.8_8_REV uint 4 RGBABGRA
UNSIGNEDINT _10.10_.10_2 uint 4 RGBABGRA
UNSIGNEDINT -2_10_10_10_REV uint 4 RGBABGRA

Table 3.8: Packed pixel formats.

UNSIGNEDBYTE3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDBYTE2_3_3_REV.

7 6 5 4 3 2 1 0

’ 3rd ‘ 2nd ‘ 1st Component ‘

Table 3.9:UNSIGNEDBYTE formats. Bit numbers are indicated for each compo-
nent.

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 109

UNSIGNEDSHORT5.6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDSHORT5_6_5_REV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNEDSHORT4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDSHORT4 4 _4_4 REV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNEDSHORT5.5.5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNEDSHORT1 5.5 5 REV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.10:UNSIGNEDSHORTformats

Version 1.5 - October 30, 2003

110 CHAPTER 3. RASTERIZATION

UNSIGNEDINT _8_.8_8_8:

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514131211109 8 7 6 5 4 3 2 1 O

1st Component 2nd 3rd 4th

UNSIGNEDINT _-8_8_8_8_REV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

4th 3rd 2nd 1st Component

UNSIGNEDINT _10_.10_10_2:

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 161514 131211109 8 7 6 5 4 3 2 1 O

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNEDINT -2_10_10_10_REV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

’ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.11:UNSIGNEDINT formats

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 111
Format First Second Third Fourth
Component| Component| Component, Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table3.12

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with atypeof BITMAP is a special case in which the data
are a series of Glubyte values. Eaclubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value ONPACKLSB_FIRST is FALSE, other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in eadbyte are not significant.

The first element of the first row is the first bit (as defined above) ofitiyte
pointed to by the pointer passed@wawPixels. The first element of the second
row is the first bit (again as defined above) of thi®te at locationp + &, where
k is computed as

k=a {l-‘
8a

There is a mechanism for selecting a sub-rectangle of elements fBonviaP
image as well. Before obtaining the first element from memory, the pointer sup-
plied to DrawPixels is effectively advanced byNPACKSKIP _ROWS k ubyte s.
ThenUNPACKSKIP _PIXELS 1-bit elements are ignored, and the subsequedtih
1-bit elements are obtained, without advancingubgte pointer, after which the
pointer is advanced by ubyte s. heightsets ofwidth elements are obtained this
way.

(3.12)

Conversion to floating-point

This step applies only to groups of components. It is not performed on indices.
Each element in a group is converted to a floating-point value according to the ap-

Version 1.5 - October 30, 2003

112 CHAPTER 3. RASTERIZATION

propriate formula in tabl@.9 (section2.14). For packed pixel types, each element
in the group is converted by computing (2" — 1), wherec is the unsigned inte-
ger value of the bitfield containing the element dxids the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if thiormatis LUMINANCEor LUMINANCEALPHA If the
formatis LUMINANCE then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If tHermatis LUMINANCEALPHA then each group of

two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to 1.0. If any of R, G, or B is missing from the group, each
missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in se@iért After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by2™ — 1, wheren is the number of bits in an index buffer.
For RGBA components, each element is clamped.td]. The resulting values are
converted to fixed-point according to the rules given in sectidd.9(Final Color
Processing).

For a depth component, an element is first clampé€,tg and then converted
to fixed-point as if it were a window value (see sectiof.11.], Controlling the
Viewport).

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 113

Stencil indices are masked 12¢ — 1, wheren is the number of bits in the
stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom(float =z, float z,);

Let (x,p, yrp) be the current raster position (sectidrid. (If the current raster
position is invalid, therDrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (sectioh.]) or scissor (sectiod.1.2

tests.) If a particular group (index or components) isrittiein a row and belongs to

the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(rp + 22N, Yrp + 2ym) and (pp + 2ze(n+1),yrp + 2y(m + 1))

(eitherz, or z, may be negative). Any fragments whose centers lie inside of this
rectangle (or on its bottom or left boundaries) are produced in correspondence with
this particular group of elements.

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster
position’s associated raster distance, and texture coordinates are taken from the
current raster position’s associated texture coordinates. Texture coordinates
andr are replaced witk/q, t/q, andr/q, respectively. Ify is less than or equal to
zero, the results are undefined. Groups arising fRmawPixels with a format of
STENCIL_INDEX are treated specially and are described in setiari

3.6.5 Pixel Transfer Operations
The GL defines four kinds of pixel groups:

1. RGBA componeng&ach group comprises four color components: red, green,
blue, and alpha.

2. Depth componentEach group comprises a single depth component.

Version 1.5 - October 30, 2003

114 CHAPTER 3. RASTERIZATION

3. Color index: Each group comprises a single color index.
4. Stencil indexEach group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel group
in an image. Many operations are applied only to pixel groups of certain kinds; if
an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups. Each
component is multiplied by an appropriate signed scale fa&BRSCALEfor an

R componentGREENSCALEfor a G componenBLUE SCALEfor a B component,
andALPHASCALEfor an A component, obEPTHSCALEfor a depth component.
Then the result is added to the appropriate signed IR&RBIAS, GREENBIAS,
BLUEBIAS, ALPHABIAS, or DEPTHBIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index is a
floating-point value, it is converted to fixed-point, with an unspecified number of
bits to the right of the binary point and at led$bg,(MAXPIXEL _MAPTABLE)]
bits to the left of the binary point. Indices that are already integers remain so; any
fraction bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted bYINDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offséfIDEX_OFFSETIis added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skippedfCOLORs

FALSE. First, each componentis clamped to the raiigé]. There is a table associ-

ated with each of the R, G, B, and A component eleméeritsEL. _MAPR_TO.R for

R, PIXEL _MAPG.TOG for G, PIXEL _MAPB_TOB for B, andPIXEL _MAPA TOA

for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value
to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 115

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLORNDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color componemB{EL _MAPI TOR,
PIXEL _MAPI _TO.G, PIXEL MAPI _.TOB, andPIXEL MAPI _-TOA. Each of these
tables must have™ entries for some integer value af (n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with2™ — 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, antMKkPCOLORs enabled,
then the index is looked up in tHAXEL _MAPI _TO.l table (otherwise, the index
is not looked up). Again, the table must ha/eentries for some integet. The
index is first rounded to the nearest integer; the result is ANDed 2#ith 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups.MAPSTENCIL is enabled, then

the index is looked up in theIXEL _MARS_TO.S table (otherwise, the index is not
looked up). The table must ha2é entries for some integer. The integer index

is ANDed with2™ — 1, and the resulting value used as an address into the table.
The integer value in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLORTABLE is enabled. If a zero-width table is enabled, no lookup is

Version 1.5 - October 30, 2003

116 CHAPTER 3. RASTERIZATION

Base Internal Formaﬁ R \ G \ B \ A \

ALPHA A,
LUMINANCE L | L, | L,
LUMINANCEALPHA | L; | L; | L; | A,
INTENSITY L | L | L | L
RGB Rt Gt Bt
RGBA Rt Gt Bt At

Table 3.13: Color table lookupR;, G, By, A¢, L, andI; are color table values

that are assigned to pixel componeiits G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

performed.

The internal format of the table determines which components of the group
will be replaced (see tablgé.13. The components to be replaced are converted
to indices by clamping t@0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. CIONVOLUTIOND

is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passedTeximagelD TexSublmagelD Copy-
TeximagelD andCopyTexSubimagelD If CONVOLUTIOND is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed OrawPixels, CopyPixels ReadPixels TexImage2D TexSublm-
age2D CopyTexlmage2D CopyTexSublmage2D) and CopyTexSublmage3D

If SEPARABLE2D is enabled, andCONVOLUTIONED is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations belof;as+s, B, and A,.

Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denotedras Gy, By, Ay, Ly, andly in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 117

Base Filter Format | R | G | B | A \
ALPHA R, G, B, A, % A;
LUMINANCE Ry« L; | Gox Ly | Box Ly | A,
LUMINANCEALPHA | Ry % Ly | G Ly | Bex Ly | Agx Ag
INTENSITY RS*If GS*If B x Iy AS*If
RGB Rsx Ry | Gsx Gy | Box By | As
RGBA Ryx Ry | Gox Gy | Bo*x By | Agx Ay

Table 3.14: Computation of filtered color components depending on filter image
format. C F' indicates the convolution of image componéntvith filter F'.

on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in tatfel 4

The convolution operation is defined differently for each of the three convolu-
tion filters. The variable$l’; and H refer to the dimensions of the convolution
filter. The variabledV; and H, refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, widérefers to the filtered
result,C refers to the one- or two-dimensional convolution filter, &ng,, and
Cotumn refer to the two one-dimensional filters comprising the two-dimensional
separable filterC’, depends on the source image calarand the convolution bor-
der mode as described belo@, the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in th@onvolution Filter Specification subsection of
section3.6.3

One-dimensional filter:

Wi—1
Cli'] = Z CL[i" + n] x Cy[n]
n=0
Two-dimensional filter:
Wy—1Hp—1

Cli',j'] = Z Z Clli" +n,j" +m]x C¢ln,m]

n=0 m=0

Two-dimensional separable filter:

Wy—1Hp—1
C[ilajl] = Z Z Cé [i/ + nvj/ + m] * Crow [n] * Column [m]

n=0 m=0

Version 1.5 - October 30, 2003

118 CHAPTER 3. RASTERIZATION

If W, of a one-dimensional filter is zero, th€f:] is always set to zero. Like-
wise, if eitheriW; or H; of a two-dimensional filter is zero, theTi[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if }(enumtarget enum pname
T param);

wheretargetis the name of the filtepnameis CONVOLUTIONBORDERMODEand
paramis one ofREDUCECONSTANBORDERYI REPLICATE BORDER

Border Mode REDUCE

The width and height of source images convolved with border nRiElUCEare
reduced byW; — 1 and H; — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mod&®EDUCEre zero throught’; — W in width, and zero
throughH, — H; in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific examplextmagelDandTex-
Image2D, which specify constraints for image dimensions. EvefeitimagelD
or Teximage2Dis called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode BEDUCEC", equals the source image col6t and
C, equals the filtered resut.

For the remaining border modes, defiig = [W;/2| andC), = |H/2].
The coordinate$C,,, C},) define the center of the convolution filter.

Border Mode CONSTANBORDER

If the convolution border mode IBONSTANBORDERthe output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the
current convolution border color. Whenever the convolution filter extends be-
yond one of the edges of the source image, the constant-color border pixels are
used as input to the filter. The current convolution border color is set by call-
ing ConvolutionParameterfv or ConvolutionParameteriv with pnameset to
CONVOLUTIONMBORDERCOLORandparamscontaining four values that comprise

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 119

the RGBA color to be used as the image border. Integer color components are
interpreted linearly such that the most positive integer maps to 1.0, and the most
negative integer maps to -1.0. Floating point color components are not clamped
when they are specified.

For a one-dimensional filter, the result color is defined by

Cr[l] = C[Z - Cw]

whereC[i'] is computed using the following equation 6t [i']:

y y
oAl :{ Cqli'], 0< < W

Ce, otherwise

andC. is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

CT[Z>]] = C[Z - Cwaj - Ch]

whereC|[i’, j'] is computed using the following equation f6¢[:’, j']:

Cqli', 5], 0<4" <W,,0< 4 < H;
Ce, otherwise

Clt) = {

Border Mode REPLICATE BORDER

The convolution border modeEPLICATE BORDERalso produces an output im-

age with the same dimensions as the source image. The behavior of this mode is

identical to that of theCONSTANBORDERNOde except for the treatment of pixel

locations where the convolution filter extends beyond the edge of the source im-

age. For these locations, it is as if the outermost one-pixel border of the source

image was replicated. Conceptually, each pixel in the leftmost one-pixel column

of the source image is replicatéd, times to provide additional image data along

the left edge, each pixel in the rightmost one-pixel column is replicatgdmes

to provide additional image data along the right edge, and each pixel value in the

top and bottom one-pixel rows is replicated to cregterows of image data along

the top and bottom edges. The pixel value at each corner is also replicated in order

to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

Version 1.5 - October 30, 2003

120 CHAPTER 3. RASTERIZATION

whereC|i'] is computed using the following equation fo6f [¢']:

C’; [i'] = Cs[clamp(i’, Wy)]

and the clamping functioclamp(val, max) is defined as

0, val < 0
clamp(val, max) = { wal, 0 <wal < maz
max — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[zuﬂ = C[Z - Cunj - Ch]

whereC[#, j'] is computed using the following equation f6¢t[i’, j'1:

CLli', 7] = Cs[clamp(i’, W), clamp(j’, Hy)]

If a convolution operation is performed, each component of
the resulting image is scaled by the correspondiri@gxelTrans-
fer parameters: POSTCONVOLUTIONREDSCALE for an R com-
ponent, POSTCONVOLUTIONGREENSCALE for a G compo-
nent, POSTCONVOLUTIOMBLUESCALE for a B component, and
POSTCONVOLUTIOMLPHASCALE for an A component. The result
is added to the corresponding bias: POSTCONVOLUTIONREDBIAS,
POSTCONVOLUTIONSREENBIAS, POSTCONVOLUTIONBLUEBIAS, or
POSTCONVOLUTIOMLPHABIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border modeE®UCEand the border color is
(0,0,0,0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by callifgnable or Disable with
the symbolic constanPOSTCONVOLUTIONCOLORTABLE The post convo-
lution table is defined by callingColorTable with a target argument of

Version 1.5 - October 30, 2003

3.6. PIXEL RECTANGLES 121

POSTCONVOLUTIONCOLORTABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in sectiof.5

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factorPOSTCOLORMATRIXREDSCALE
for an R component, POSTCOLORMATRIXGREENSCALE for a G
component, POSTCOLORMATRIXBLUESCALE for a B component,
and POSTCOLORMATRIXALPHASCALE for an A component. The
result is added to a signed bias: POSTCOLORMATRIXREDBIAS,
POSTCOLORMATRIX GREENBIAS, POSTCOLORVATRIXBLUEBIAS, or
POSTCOLORMATRIXALPHABIAS. The resulting components replace each
component of the original group.

That is, if M. is the color matrix, a subscript efrepresents the scale term for
a component, and a subscriptiafepresents the bias term, then the components

R

G

B

A

are transformed to

R R, 0 0 0O R Ry
G 0 G5 0 o0 G Gy
Bl=lo o B o|M|B|T|B
A 0O 0 0 A A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by callififhable or Disable
with the symbolic constarROSTCOLORMATRIX. COLORTABLE. The post color
matrix table is defined by callingColorTable with a target argument of
POSTCOLORMATRIX COLORTABLE. In all other respects, operation is identical
to color table lookup, as defined in secti®1®.5

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Version 1.5 - October 30, 2003

122 CHAPTER 3. RASTERIZATION

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by callinBnable or Disable with the symbolic constant
HISTOGRAM

If the width of the table is non-zero, then indic&s, G;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each componejt 19 , multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of théllISTOGRAMable includes red or luminance, the red or
luminance component of histogram enfy is incremented by one. If the format
of the HISTOGRAMable includes green, the green component of histogram entry
G, is incremented by one. The blue and alpha components of histogram entries
B; and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter i$ALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by callingenable or Disablewith the symbolic constarMINMAX

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (sectiok.1.1). There are no semantics defined for the treatment of

Version 1.5 - October 30, 2003

3.7. BITMAPS 123

group component values that are outside the representable range.

If the Minmax sink parameter i$~ALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.6.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLES enabled, and the value BAMPLEBUFFERSS one, then pixel
rectangles are rasterized using the following algorithm.(lgt,, Y;,,) be the cur-
rent raster position. (If the current raster position is invalid, tbeawPixels is
ignored.) If a particular group (index or components) istiie in a row and be-
longs to themth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xop + Zz*n, Yy + Zy xm)

and
(Xop+ Zp*x(n+1),Y,p+ Zyx (m+1))

whereZ, andZ, are the pixel zoom factors specified BixelZoom, and may each
be either positive or negative. A fragment representing grfaup) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in tl®nversion to Fragmentssubsection of sec-
tion 3.6.4 All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.7 Bitmaps
Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-

ments to be produced. Each of these fragments has the same associated data. These
data are those associated with tugrent raster position

Version 1.5 - October 30, 2003

124 CHAPTER 3. RASTERIZATION

A 777%77% 777
%

DUBBUDY)

UUUUILY

BB
2%%Y

Y

Figure 3.9. A bitmap and its associated parametegysandy,; are not shown.

Bitmaps are sent using

void Bitmap(sizei w,sizei h,float axp,, float o,
float x4, float y;, ubyte *data);

w andh comprise the integer width and height of the rectangular bitmap, respec-
tively. (zpo, ypo) Qives the floating-point: and y values of the bitmap’s origin.
(xvi, ybi) gives the floating-point: andy increments that are added to the raster
position after the bitmap is rasterizathtais a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in sectioB.6.4for DrawPixels; it is as if thewidth and height
passed to that command were equalbtandh, respectively, théypewereBITMAP,
and theformatwere COLORNDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figures.o.

A bitmap sent usin@itmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(s yu) = ([Trp — Tools [Yrp — Ybo))

Version 1.5 - October 30, 2003

3.8. TEXTURING 125

and upper right corner &t;; + w, y;; + h) wherew andh are the width and height

of the bitmap, respectively. Fragments in the array are produced if the correspond-
ing bit in the bitmap id and not produced otherwise. The associated data for each
fragment are those associated with the current raster position, with texture coordi-
natess, t, andr replaced withs/q, t/q, andr/q, respectively. Ifg is less than or

equal to zero, the results are undefined. Once the fragments have been produced,
the current raster position is updated:

(wrpa yrp) — (xrp + Ty Yrp + ybi)'

Thez andw values of the current raster position remain unchanged.

Bitmap Multisample Rasterization

If MULTISAMPLEIs enabled, and the value §AMPLEBUFFERSIs one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner(&t.,,Y;,), and its upper

right corner at(X,, + w, Y;, + h), wherew andh are the width and height of

the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.8 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a fragmerttst, r) coordinates to modify the
fragment’s primary RGBA color. Texturing does not affect the secondary color.

An implementation may support texturing using more than one image at a time.
In this case the fragment carries multiple sets of texture coordigates:) which
are used to index separate images to produce color values which are collectively
used to modify the fragment’s RGBA color. Texturing is specified only for RGBA
mode; its use in color index mode is undefined. The following subsections (up

Version 1.5 - October 30, 2003

126 CHAPTER 3. RASTERIZATION

to and including sectiof.8.9 specify the GL operation with a single texture and
section3.8.15specifies the details of how multiple texture units interact.

The GL provides a means to specify the details of how texturing of a primitive
is effected. These details include specification of the image to be texture mapped,
the means by which the image is filtered when applied to the primitive, and the
function that determines what RGBA value is produced given a fragment color and
an image value.

3.8.1 Texture Image Specification

The command

void Texlmage3D(enumtarget int level int internalformat
sizei width, sizei height sizei depthint border,
enumformat, enum type void *data);

is used to specify a three-dimensional texture imaggéarget must be ei-
ther TEXTURE3D, or PROXYTEXTURESD in the special case discussed in sec-
tion 3.8.11 format, type anddatamatch the corresponding argumenti@aw-
Pixels (refer to section3.6.4; they specify the format of the image data, the
type of those data, and a pointer to the image data in host memoryfoiihat
STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by thedth and height parameters tdeximage3D
The values 0ofUNPACKROW.ENGTHandUNPACKALIGNMENTcontrol the row-to-
row spacing in these images in the same manndérasvPixels. If the value of
the integer parametayNPACKIMAGEHEIGHT is not positive, then the number
of rows in each two-dimensional imagehegight otherwise the number of rows
is UNPACKIMAGE HEIGHT. Each two-dimensional image comprises an integral
number of rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameteNPACKSKIP _IMAGES If UNPACKSKIP _IMAGES
is positive, the pointer is advanced UNPACKSKIP _IMAGEStimes the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Thendepthtwo-dimensional images are processed, each having a subimage
extracted in the same mannerlmwPixels.

The selected groups are processed exactly aPfawPixels, stopping just
before final conversion. Each R, G, B, A, or depth value so generated is clamped
to [0, 1].

Version 1.5 - October 30, 2003

3.8. TEXTURING 127

Components are then selected from the resulting R, G, B, A, or depth values to
obtain a texture with thbase internal formaspecified by (or derived fromipter-
nalformat Table3.15summarizes the mapping of R, G, B, A, and depth values to
texture components, as a function of the base internal format of the texture image.
internalformatmay be specified as one of the seven internal format symbolic con-
stants listed in tabl8.15 as one of thesized internal formasymbolic constants
listed in table3.16 as one of the specific compressed internal format symbolic con-
stants listed in tabl&.17, or as one of the six generic compressed internal format
symbolic constants listed in tabB18 internalformatmay (for backwards com-
patibility with the 1.0 version of the GL) also take on the integer valyes 3, and
4, which are equivalent to symbolic constant$MINANCE LUMINANCEALPHA
RGB andRGBArespectively. Specifying a value farternalformatthat is not one
of the above values generates the emALID _VALUE

Textures with a base internal format DEPTHCOMPONENdAre supported by
texture image specification commands onltaifgetis TEXTURELD, TEXTUREZ2D,
PROXYTEXTURELD or PROXYTEXTUREZ2D. Using this format in conjunction
with any othertargetwill result in anINVALID _OPERATIONerror.

Textures with a base internal format@EPTHCOMPONENEquire depth com-
ponent data; textures with other base internal formats require RGBA component
data. The errotfNVALID _OPERATIONis generated if the base internal format is
DEPTHCOMPONENandformatis not DEPTHCOMPONENTDr if the base internal
format is notDEPTHCOMPONENanhdformatis DEPTHCOMPONENT

The GL provides no specific compressed internal formats but does provide a
mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value 9 MCOMPRESSEDEXTUREFORMATSThe
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value @OMPRESSEDEXTUREFORMATSThe only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. Ihternalformatis one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL's choosing with the same base internal format.
If no specific compressed format is availabfgernalformatis instead replaced by
the corresponding base internal format.infernalformatis given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borderig)ternalformatis replaced by the corre-

Version 1.5 - October 30, 2003

128 CHAPTER 3. RASTERIZATION

Base Internal Format RGBA and Depth Values Internal Components

ALPHA A A
DEPTHCOMPONENT]| Depth D
LUMINANCE R L
LUMINANCEALPHA | RA LA
INTENSITY R 1

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA and depth pixel components to internal tex-
ture, table, or filter components. See sectidh 13for a description of the texture
component®?, G, B, A, L, I, andD.

sponding base internal format and the texture image will not be compressed by the
GL.

Theinternal component resolutias the number of bits allocated to each value
in a texture image. linternalformatis specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, and
depth values to texture components is equivalent to the mapping of the correspond-
ing base internal format’s components, as specified in talile and the memory
allocation per texture component is assigned by the GL to match the allocations
listed in table3.16as closely as possible. (The definition of closely is left up to the
implementation. Implementations are not required to support more than one reso-
lution for each base internal format.) If a compressed internal format is specified,
the mapping of the R, G, B, A, and depth values to texture components is equiv-
alent to the mapping of the corresponding base internal format’s components, as
specified in tabl&.15 The specified image is compressed using a (possibly lossy)
compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on daeylmage3D, Texlmage2D (see be-
low), or TeximagelD(see below) parameter (exceatged, but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by ttataparameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in se8ti®il

Version 1.5 - October 30, 2003

3.8. TEXTURING

129

Sized Base R G B A L I D
Internal Format Internal Format bits | bits | bits | bits | bits | bits | bits
ALPHA4 ALPHA 4

ALPHAS8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16
DEPTHCOMPONENT16 | DEPTHCOMPONENT 16
DEPTHCOMPONENT24 | DEPTHCOMPONENTT 24
DEPTHCOMPONENT32 | DEPTHCOMPONENT 32
LUMINANCE4 LUMINANCE 4
LUMINANCES LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4ALPHA4 LUMINANCEALPHA 4 4
LUMINANCEGALPHAZ2 LUMINANCEALPHA 2 6
LUMINANCESALPHAS LUMINANCEALPHA 8 8
LUMINANCE12ALPHA4 | LUMINANCEALPHA 4 12
LUMINANCE12ALPHA12 | LUMINANCEALPHA 12 | 12
LUMINANCE16ALPHA16 | LUMINANCEALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3.G3 B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGBS RGB 8 8 8

RGB10 RGB 10 | 10 | 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5A1 RGBA 5 5 5 1

RGBAS8 RGBA 8 8 8 8

RGB10A2 RGBA 10| 10| 10 | 2

RGBA12 RGBA 12 | 12 | 12 | 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal formats, and

desiredcomponent resolutions for each sized internal format.
Version 1.5 - October 30, 2003

130 CHAPTER 3. RASTERIZATION

| Compressed Internal FormatBase Internal Format
| (none) \ \

Table 3.17: Specific compressed internal formats. None are defined by OpenGL
1.3; however, several specific compression types are defined in GL extensions.

Generic Compressed Internal Fornj%ase Internal Formar[

COMPRESSEBLPHA ALPHA
COMPRESSEDUMINANCE LUMINANCE
COMPRESSEDUMINANCEALPHA LUMINANCEALPHA
COMPRESSEINTENSITY INTENSITY
COMPRESSERGB RGB
COMPRESSERGBA RGBA

Table 3.18: Generic compressed internal formats.

The image itself (pointed to bglata) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of widthwidth from left to right; heightrows are stacked from bottom
to top forming a single two-dimensional image slice; alepthslices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to componentsteikalas described by table15
Counting from zero, each resultingth texel is assigned internal integer coordi-
nates(i, j, k), where

i = (N mod width) — bs

j= (LwidthJ mod height) — b

(L

width X hetght
andb;, is the specifiedborderwidth. Thus the last two-dimensional image slice of
the three-dimensional image is indexed with the highest valde of

Each color component is converted (by rounding to nearest) to a fixed-point

value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each valug/ (2" — 1), wherek € {0,1,...,2" — 1}, ask (e.g. 1.0is
represented in binary as a string of all ones).

| mod depth) — bs

Version 1.5 - October 30, 2003

3.8. TEXTURING 131

Thelevelargument tdfeximage3Dis an integetevel-of-detainumber. Levels
of detail are discussed below, unddipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID _VALUEIs generated.

The border argument toTexImage3Dis a border width. The significance of
borders is described below. The border width affects the required dimensions of
the texture image: for non-zero width, height, and depth, it must be the case that

wy = 2" + 2b, (3.13)
hy = 2™ + 2b, (3.14)
ds = 2! + 2b (3.15)

for some integera, m, andl, wherews, hs, andd, are the specified imageidth,
height anddepth If any one of these relationships cannot be satisfied, then the
errorINVALID _VALUEIs generated.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTUREBASELEVEL (see sectio.8.9), itis as if texturing were disabled.

Currently, the maximum border width is 1. If b, is less than zero, or greater
thanb,, then the erroNVALID _VALUEIs generated.

The maximum allowable width, height, or depth of a three-dimensional texture
image is an implementation dependent function of the level-of-detail and internal
format of the resulting image array. It must be at |@4st°? 420, for image arrays
of level-of-detail0 throughk, wherek is the log base 2 dfIAX3D_TEXTURESIZE,
lod is the level-of-detail of the image array, abdis the maximum border width.

It may be zero for image arrays of any level-of-detail greater thafhe error
INVALID _VALUEIs generated if the specified image is too large to be stored under
any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at lezdst'o? + 2b, for image arrays of level
0 throughk, wherek is the log base 2 dIAXTEXTURESIZE . The maximum al-
lowable width and height of a cube map texture must be the same, and must be at
least2*~l°d + 2p, for image arrays level O through wherek is the log base 2 of
MAXCUBEMARTEXTURESIZE .

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in s€c&di0

Version 1.5 - October 30, 2003

132 CHAPTER 3. RASTERIZATION

The command

void Texlmage2X enumtarget int level
int internalformat sizei width, sizei height
int border, enum format enum type void *data);

is used to specify a two-dimensional texture image. target must
be one of TEXTURE2D for a two-dimensional texture, or one of
TEXTURECUBEMAPRPOSITIVE _X, TEXTURECUBEMAPRPNEGATIVEX,
TEXTURECUBEMARPOSITIVE Y, TEXTURECUBEMARNEGATIVEY,
TEXTURECUBEMAPPOSITIVE .Z, or TEXTURECUBEMAPNEGATIVEZ for
a cube map texture. Additionallyarget may be eithePROXYTEXTURE2D for
a two-dimensional proxy texture ®ROXYTEXTURECUBEMAPfor a cube map
proxy texture in the special case discussed in se@i8ril The other parameters
match the corresponding parameter3eXimage3D

For the purposes of decoding the texture ima@ximage2Dis equivalent to
calling Teximage3Dwith corresponding arguments addpthof 1, except that

e Thedepthof the image is always 1 regardless of the valubafer.

e Convolution will be performed on the image (possibly changingpiigth
andheigh) if SEPARABLE2D or CONVOLUTIOND is enabled.

e UNPACKSKIP _IMAGESis ignored.

A two-dimensional texture consists of a single two-dimensional texture image.

A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. TREXTURECUBEMAP* targets listed above up-

date their appropriate cube map face 2D texture image. Note that the six cube map
two-dimensional image tokens suchT@&XTURECUBEMAPPOSITIVE _X are used

when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), thHEEXTURECUBEMAPtarget is specified.

When thetarget parameter taleximage2Dis one of the six cube map two-
dimensional image targets, the erfgWALID _VALUEIs generated if thevidthand
heightparameters are not equal.

Finally, the command

void TexlmagelX enumtarget int level
int internalformat sizei width, int border,
enumformat enum type void *data);

Version 1.5 - October 30, 2003

3.8. TEXTURING 133

is used to specify a one-dimensional texture imagtarget must be either
TEXTURELD, or PROXYTEXTURELD in the special case discussed in sec-
tion 3.8.11)

For the purposes of decoding the texture imagxlmagelDis equivalent to
calling Teximage2Dwith corresponding arguments ahdightof 1, except that

e Theheightof the image is always 1 regardless of the valubafer.

e Convolution will be performed on the image (possibly changingvitdth)
only if CONVOLUTIOND is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL's internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable widihwhether or not a border has been
specified (see figurd.10) L. If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image textine
array. A three-dimensional texture array has width, height, and depth

Wy = 2” +2bt
hy = 2™ + 20,
dy = 2 + 20,

whereb; is the maximum allowable border width angl m, and! are defined in
equations3.13 3.14, and3.15 A two-dimensional texture array has degih= 1,

with heighth; and widthw; as above, and a one-dimensional texture array has
depthd; = 1, heighth; = 1, and widthw; as above.

An element(i, j, k) of the texture array is calledtaxel(for a two-dimensional
texture,k is irrelevant; for a one-dimensional textugeandk are both irrelevant).
The texture valueused in texturing a fragment is determined by that fragment’s
associateds, ¢,) coordinates, but may not correspond to any actual texel. See
figure3.10

If the dataargument offexlmagelD, TexImage2D or Texlmage3Dis a null
pointer (a zero-valued pointer in the C implementation), a one-, two-, or three-
dimensional texture array is created with the specifeget, level internalformat

! Figure3.10needs to show a three-dimensional texture image.

Version 1.5 - October 30, 2003

134

CHAPTER 3. RASTERIZATION

5.0 PRl ekl ekl Aehhbitl tnehiehf vkl Inehehiehy skl INehiehieh Al
4
1.0 e ——T T T T 1T 1
3|
2} -
tovoj o i
1 P
0;
0.0 oo p——p——p——t——t———— -
_li
—1.0 et b
-1 0 1 2 3 i 4 5 6 7 8
-1.0 u 9.0
0.0 S 1.0
Figure 3.10. A texture image and the coordinates used to access it. This is g two-
dimensional texture witm = 3 andm = 2. A one-dimensional texture would
consist of a single horizontal strip. and3, values used in blending adjacent texels
to obtain a texture value, are also shown.

Version 1.5 - October 30, 2003

3.8. TEXTURING 135

width, height anddepth but with unspecified image contents. In this case no pixel
values are accessed in client memory, and no pixel processing is performed. Errors
are generated, however, exactly as thoughdtte pointer were valid.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTeximage2d enumtarget int level
enuminternalformatint x, int vy, sizei width,
sizei heightint border);

defines a two-dimensional texture array in exactly the manneMeofim-
age2D except that the image data are taken from the framebuffer rather
than from client memory. Currentlytarget must be one OfTEXTURE2D,
TEXTURECUBEMAPPOSITIVE _X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMARPOSITIVE Y, TEXTURECUBEMARNEGATIVEY,
TEXTURECUBEMARPOSITIVE _Z, or TEXTURECUBEMARNEGATIVEZ. X, YV,
width, andheightcorrespond precisely to the corresponding argumentopy P-
ixels (refer to sectior.3.3; they specify the image'width and height and the
lower left (z,y) coordinates of the framebuffer region to be copied. The im-
age is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumenttype set toCOLORor DEPTH depending orinternal-
format, stopping after pixel transfer processing is complete. RGBA data is taken
from the current color buffer while depth component data is taken from the depth
buffer. If depth component data is required and no depth buffer is present, the
error INVALID _OPERATIONIs generated. Subsequent processing is identical to
that described foffexlmage2D, beginning with clamping of the R, G, B, A, or
depth values from the resulting pixel groups. Paramédeed internalformat and
borderare specified using the same values, with the same meanings, as the equiv-
alent arguments ofeximage2D, except thatnternalformatmay not be specified
asl1, 2, 3, or4. An invalid value specified fointernalformatgenerates the error
INVALID _ENUMThe constraints owidth, height andborderare exactly those for
the equivalent arguments d&xImage2D

When thetarget parameter taCopyTeximage2Dis one of the six cube map
two-dimensional image targets, the enfdvALID _VALUEIs generated if thevidth
andheightparameters are not equal.

The command

Version 1.5 - October 30, 2003

136 CHAPTER 3. RASTERIZATION

void CopyTexlmagell enumtarget int level
enuminternalformatint x, int vy, sizei width,
int border);

defines a one-dimensional texture array in exactly the manngéeximagelD
except that the image data are taken from the framebuffer, rather than from client
memory. Currentlytarget must beTEXTURELD. For the purposes of decoding
the texture imageCopyTeximagelDis equivalent to callingCopyTeximage2D
with corresponding arguments ahdightof 1, except that théeightof the image
is always 1, regardless of the valuelmdrder. level internalformat andborder
are specified using the same values, with the same meanings, as the equivalent
arguments offexlmagelD, except thatnternalformatmay not be specified ds
2, 3, or4. The constraints owidth andborderare exactly those of the equivalent
arguments offexlmagelD

Six additional commands,

void TexSublmage3l enumtarget int level int xoffset
int yoffsetint zoffsetsizei width, sizei height
sizei depth enum format enum type void *data);

void TexSublmage2l enumtarget int level int xoffset
int yoffsetsizei width, sizei height enum format,
enumtype void *data);

void TexSublmagell§ enumtarget int level int xoffset
sizei width, enum format enum type void *data);

void CopyTexSublmage3 enumtarget int level
int xoffsetint yoffsetint zoffsetint x,int v,
sizei width, sizei height);

void CopyTexSublmage2l} enumtarget int level
int xoffsetint yoffsetint x,int vy, sizei width,
sizei height);

void CopyTexSublmagell enumtarget int level
int xoffsetint x,int vy, sizei width);

respecify only a rectangular subregion of an existing texture array. No change
is made to theinternalformat width, height depth or border parameters

of the specified texture array, nor is any change made to texel values out-
side the specified subregion. Currently ttaget arguments ofTexSublm-
agelD and CopyTexSublmagelDmust beTEXTURELD, the target arguments

of TexSublmage2D and CopyTexSubimage2Dmust be one offEXTURE2D,
TEXTURECUBEMAPPOSITIVE _X, TEXTURECUBEMAPNEGATIVEX,

Version 1.5 - October 30, 2003

3.8. TEXTURING 137

TEXTURECUBEMAPPOSITIVE _Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE _Z, or TEXTURECUBEMAPNEGATIVEZ, and the
target arguments of TexSublmage3D and CopyTexSublmage3D must be
TEXTURESD. Thelevelparameter of each command specifies the level of the tex-
ture array that is modified. Ievelis less than zero or greater than the base 2 log-
arithm of the maximum texture width, height, or depth, the eifMALID VALUE
is generated.

TexSublmage3Dargumentsvidth, height depth format type anddatamatch
the corresponding argumentsTexlmage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Liketgg8ublmage2D
argumentswidth, height format type anddata match the corresponding argu-
ments toTexlmage2D, andTexSublmagelDargumentsidth, format, typeg and
datamatch the corresponding argument§éximagelD

CopyTexSublmage3D and CopyTexSublmage2D argumentsx, y, width,
andheightmatch the corresponding argumentiopy Teximage2F. CopyTex-
SublmagelDargumentsx, y, andwidth match the corresponding arguments to
CopyTeximagelD Each of theTexSublmagecommands interprets and processes
pixel groups in exactly the manner of itexImage counterpart, except that the as-
signment of R, G, B, A, and depth pixel group values to the texture components
is controlled by theénternalformatof the texture array, not by an argument to the
command. The same constraints and errors apply tbak8ublmagecommands’
argumentformat and theinternalformatof the texture array being respecified as
apply to theformatandinternalformatarguments of it§exlmage counterparts.

Argumentsxoffsef yoffsei and zoffsetof TexSublmage3D and CopyTex-
Sublmage3Dspecify the lower left texel coordinates ofaadth-wide by height
high bydepthdeep rectangular subregion of the texture array. ddphargument
associated witlCopyTexSublmage3Dis always 1, because framebuffer memory
is two-dimensional - only a portion of a singlet slice of a three-dimensional
texture is replaced bgopyTexSublmage3D

Negative values okoffset yoffset and zoffsetcorrespond to the coordinates
of border texels, addressed as in figéQ Taking ws, hs, ds, andb, to be
the specified width, height, depth, and border width of the texture array, (not the
actual array dimensions;, h, d;, andb;), and takingz, y, z, w, h, andd to be
the xoffset yoffset zoffset width, height anddepthargument values, any of the
following relationships generates the ermdWALID _VALUE

T < —by

2 Because the framebuffer is inherently two-dimensional, there i€y TexImage3Dcom-
mand.

Version 1.5 - October 30, 2003

138 CHAPTER 3. RASTERIZATION

T+ w > ws — b
y < —bs
y+h>hs—bs
z < —by
z+d>ds— bs

(Recall thatd,, ws, andh include twice the specified border width.) Count-
ing from zero, thenth pixel group is assigned to the texel with internal integer
coordinatesi, j, k], where

i =x + (n mod w)
n
= ™| mod h
j=y+ (] modh)
n

width * height

Argumentsxoffsetandyoffsetof TexSublmage2DandCopyTexSublmage2D
specify the lower left texel coordinates ofvadth-wide byheighthigh rectangular
subregion of the texture array. Negative valuexaffsetandyoffsetcorrespond
to the coordinates of border texels, addressed as in figu@ Takingws, hs,
and b, to be the specified width, height, and border width of the texture array,
(not the actual array dimensions, h;, andb;), and takingz, y, w, andh to
be thexoffset yoffset width, and heightargument values, any of the following
relationships generates the erlgALID VALUE

kE=z+(]| | mod d

T < —bs
T+ w > ws — by
Yy < _bs
y+h>hs—bs
(Recall thatws andh; include twice the specified border widih) Counting from
zero, thenth pixel group is assigned to the texel with internal integer coordinates
[i, 7], where

i =2+ (n mod w)

j=y+ (=] modh)

Version 1.5 - October 30, 2003

3.8. TEXTURING 139

The xoffsetargument ofTexSublmagelDand CopyTexSublmagelDspeci-
fies the left texel coordinate ofwaidth-wide subregion of the texture array. Neg-
ative values ofoffsetcorrespond to the coordinates of border texels. Taking
andb; to be the specified width and border width of the texture array,zaadd
w to be thexoffsetandwidth argument values, either of the following relationships
generates the erretXVALID _VALUE

T < —by
T+ w > ws — b

Counting from zero, theth pixel group is assigned to the texel with internal integer
coordinatesi|, where

i =z + (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. CallinglexSublmage3D CopyTexSubimage3D TexSublm-
age2D CopyTexSublmage2D) TexSublmagelD or CopyTexSublmage1Dwill
result in anINVALID _OPERATIONerror if xoffset yoffset or zoffsetis not equal to
—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL currently defines no such formats,
but provides mechanisms for GL extensions that do.

The commands

void CompressedTexlmagelDenumtarget int level
enuminternalformat sizei width, int border,
sizei imageSizevoid *data);

void CompressedTexlmage2Denumtarget int level
enuminternalformat sizei width, sizei height
int border, sizei imageSizevoid *data);

Version 1.5 - October 30, 2003

140 CHAPTER 3. RASTERIZATION

void CompressedTexlmage3Denumtarget int level
enuminternalformat sizei width, sizei height
sizei depthint border, sizei imageSizevoid *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format.target, level internal-
format, width, height depth andborder parameters have the same meaning as in
TexImagelD TexIimage2D, andTexlmage3D datapoints to compressed image
data stored in the compressed image format correspondintgtoalformat Since

the GL provides no specific image formats, using any of the six generic compressed
internal formats amternalformatwill result in anINVALID _ENUMerror.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining thernalformattoken. Com-
pressed texture images are treated as an arrayagfeSizaibyte s beginning at
addresslata All pixel storage and pixel transfer modes are ignored when decoding
a compressed texture image. If iheageSizgparameter is not consistent with the
format, dimensions, and contents of the compressed imag@&\VvaiID VALUE
error results. If the compressed image is not encoded according to the defined
image format, the results of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zerdoordervalues. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in aiNVALID _OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image GompressedTeximagelD
CompressedTeximage2D or CompressedTexlmage3Dwill not result in an
INVALID _OPERATIONerror if the following restrictions are satisfied:

e datapoints to a compressed texture image returne@éyCompressedTex-
Image (section6.1.9.

e target level andinternalformatmatch thetarget levelandformatparame-
ters provided to th&etCompressedTexlmageall returningdata

e width, height depth border, internalformat and image-
Size match the values of TEXTUREWIDTH TEXTUREHEIGHT,
TEXTUREDEPTH TEXTUREBORDER TEXTUREINTERNALFORMAT

Version 1.5 - October 30, 2003

3.8. TEXTURING 141

and TEXTURECOMPRESSEMIAGESIZE for image levellevelin effect at
the time of theGetCompressedTeximageall returningdata

This guarantee applies not just to images returne@eéyCompressedTeximage
but also to any other properly encoded compressed texture image of the same size
and format.

The commands

void CompressedTexSublmagelPenumtarget int level
int xoffsetsizei width, enum format sizei imageSize
void *data);

void CompressedTexSublmage2Denumtarget int level
int xoffsetint yoffsetsizei width, sizei height
enumformat sizei imageSizevoid *data);

void CompressedTexSublmage3Denumtarget int level
int xoffsetint vyoffsetint zoffsetsizei width,
sizei height sizei depth enum format
sizei imageSizevoid *data);

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. fEnget, level xoffsef yoffset zoff-

set width, height anddepthparameters have the same meaning aexsublm-
agelD TexSublmage2D and TexSublmage3D data points to compressed im-
age data stored in the compressed image format correspondfagriat Since

the core GL provides no specific image formats, using any of these six generic
compressed internal formats fasmatwill result in anINVALID _ENUMerror.

The image pointed to bgata and theimageSizeparameter are interpreted
as though they were provided @ompressedTexImagelDCompressedTexIim-
age2D and CompressedTexlmage3DThese commands do not provide for im-
age format conversion, so aNVALID _OPERATIONerror results ifformat does
not match the internal format of the texture image being modified. lirttage-
Sizeparameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data)INWALID _VALUEerror results.

As with CompressedTexlmagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID _.OPERATIONETrTOT.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-

Version 1.5 - October 30, 2003

142 CHAPTER 3. RASTERIZATION

pressed form, providing the same imageCtmmpressedTexSublmagelPCom-
pressedTexSublmage2D CompressedTexSublmage3Dwill not result in an
INVALID _OPERATIONerror if the following restrictions are satisfied:

e datapoints to a compressed texture image returne@éyCompressedTex-
Image (section6.1.9.

e target level andformatmatch thetarget levelandformatparameters pro-
vided to theGetCompressedTexImageall returningdata

e width, height depth format and imageSize match the val-
ues of TEXTUREWIDTH TEXTUREHEIGHT, TEXTUREDEPTH
TEXTUREINTERNAL FORMAT and TEXTURECOMPRESSEMAGESIZE
for image levellevelin effect at the time of th&etCompressedTexImage
call returningdata

e width, height depth format match the values OfTEXTUREWIDTH
TEXTUREHEIGHT, TEXTUREDEPTH and TEXTUREINTERNAL FORMAT
currently in effect for image levéével

e xoffset yoffset and zoffset are all —b, where b is the value of
TEXTUREBORDERurrently in effect for image levdével

This guarantee applies not just to images returne@&yCompressedTexIm-
age but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSublmage3D CompressedTexSublmage2D or
CompressedTexSublmagelill resultin anINVALID _OPERATIONerror if xoff-
set yoffset or zoffsetis not equal to—bs (border width), or ifwidth, height
and depthdo not match the values GFEXTUREWIDTH TEXTUREHEIGHT, or
TEXTUREDEPTH respectively. The contents of any texel outside the region modi-
fied by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

3.8.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameterif }(enumtarget enum pnameT param);
void TexParameter{if }v(enumtarget enum pname
T params);

Version 1.5 - October 30, 2003

3.8. TEXTURING 143

target is the target, eitherTEXTURELD, TEXTURE2D, TEXTURE3D, or
TEXTURECUBEMAR pnameis a symbolic constant indicating the parameter to

be set; the possible constants and corresponding parameters are summarized in ta-
ble 3.19 In the first form of the commandaramis a value to which to set a
single-valued parameter; in the second form of the commpadmsis an array

of parameters whose type depends on the parameter being set. If the values for
TEXTUREBORDERCOLORare specified as integers, the conversion for signed inte-
gers from table2.9is applied to convert the values to floating-point. Each of the
four values set bf EXTUREBORDERCOLORS clamped to lie irf0, 1].

In the remainder of sectior8.8, denote bylod,.in, lodmaez, levelpgse,
and level,,.. the values of the texture parameteEXTUREMIN_LOD
TEXTUREMAXLOD TEXTUREBASELEVEL, and TEXTUREMAXLEVEL respec-
tively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

If the value of texture paramet&ENERATEMIPMAPIis TRUE specifying or
changing texture arrays may have side effects, which are discussed Auttine
matic Mipmap Generation discussion of sectiof.8.8

3.8.5 Depth Component Textures

Depth textures can be treatedlA$MINANCEINTENSITY or ALPHAtextures dur-
ing texture filtering and application. The initial state for depth textures treats them
asLUMINANCHextures.

3.8.6 Cube Map Texture Selection

When cube map texturing is enabled, fe ¢ 1) texture coordinates are treated
as a direction vectofr, r, r.) emanating from the center of a cube (ipe
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on
(ro ry 7). The target column in table.20explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Using thes,, t., andm, determined by the major axis direction as specified in
table3.20 an updated s t) is calculated as follows:

Version 1.5 - October 30, 2003

144 CHAPTER 3. RASTERIZATION

Name | Type | Legal Values |

TEXTUREWRABS integer | CLAMRCLAMPTO.EDGEREPEAT
CLAMRTO.BORDER
MIRRORELREPEAT
TEXTUREWRAPT integer | CLAMRCLAMPTO.EDGEREPEAT
CLAMPTOBORDER
MIRRORELREPEAT
TEXTUREWRAER integer | CLAMRCLAMPTO.EDGEREPEAT
CLAMPTOBORDER
MIRRORELREPEAT
TEXTUREMIN_FILTER integer | NEAREST

LINEAR,
NEARESTMIPMARPNEAREST
NEARESIMIPMARLINEAR,
LINEAR_MIPMARNEAREST
LINEAR_MIPMARLINEAR,

TEXTUREMAGFILTER integer | NEAREST

LINEAR
TEXTUREBORDERCOLOR| 4 floats | any 4 values iff0, 1]
TEXTUREPRIORITY float | any value in[0, 1]
TEXTUREMIN_LOD float | any value
TEXTUREMAXLOD float | any value
TEXTUREBASELEVEL integer | any non-negative integer
TEXTUREMAXLEVEL integer | any non-negative integer
TEXTURELODBIAS float | any value

DEPTHTEXTUREMODE | enum | LUMINANCEINTENSITY, ALPHA
TEXTURECOMPARBIODE| enum | NONECOMPARR TO.TEXTURE
TEXTURECOMPAREUNC| enum | LEQUAL GEQUAL

LESS, GREATER

EQUAL NOTEQUAL
ALWAYSNEVER
GENERATEMIPMAP boolean| TRUEor FALSE

Table 3.19: Texture parameters and their values.

Version 1.5 - October 30, 2003

3.8. TEXTURING 145

| Major Axis Direction | Target | sc [te | ma]
+7r, TEXTURECUBEMAPRPOSITIVE X | —r, Ty | Tz
—7Ty TEXTURECUBEMAPRPNEGATIVEX | r, —Ty | Tz
+7y TEXTURECUBEMARPOSITIVE LY | 7, T, Ty
—Ty TEXTURECUBEMARNEGATIVEY | 7, =Ty | Ty
+7r, TEXTURECUBEMARPOSITIVE Z | 7, Ty | T2
—r, TEXTURECUBEMAPNEGATIVEZ | —75 | —7y | T2

Table 3.20: Selection of cube map images based on major axis direction of texture
coordinates.

This new(s t) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sectiods'through3.8.9

3.8.7 Texture Wrap Modes

Wrap modes defined by the values TEXTUREWRAPS, TEXTUREWRAFPT, or
TEXTUREWRARR respectively affect the interpretation ef ¢, andr texture co-
ordinates. The effect of each mode is described below.

Wrap Mode REPEAT

Wrap modeREPEATiIgnores the integer part of texture coordinates, using only the
fractional part. (For a numbef, the fractional part i — | f |, regardless of the
sign of f; recall that the | function truncates towardscc.)

REPEATIs the default behavior for all texture coordinates.

Wrap Mode CLAMP

Wrap modeCLAMPclamps texture coordinates to rargel].

Version 1.5 - October 30, 2003

146 CHAPTER 3. RASTERIZATION

Wrap Mode CLAMPTO EDGE

Wrap modeCLAMPTO EDGEclamps texture coordinates at all mipmap levels such
that the texture filter never samples a border texel. The color returned when clamp-
ing is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the rajpugé:, max|. The minimum value
is defined as

min = —

2N

where N is the size of the one-, two-, or three-dimensional texture image in the
direction of clamping. The maximum value is defined as

mar =1 — min

so that clamping is always symmetric about {bgl] mapped range of a texture
coordinate.

Wrap Mode CLAMPTO.BORDER

Wrap modeCLAMPTO.BORDER:lamps texture coordinates at all mipmaps such
that the texture filter always samples border texels for fragments whose correspond-
ing texture coordinate is sufficiently far outside the raftge]. The color returned
when clamping is derived only from the border texels of the texture image, or from
the constant border color if the texture image does not have a border.
Texture coordinates are clamped to the rajpugé:, mazx|. The minimum value
is defined as
) —1
mm = ——=

2N

whereN is the size (not including borders) of the one-, two-, or three-dimensional
texture image in the direction of clamping. The maximum value is defined as

maxr =1 — min
so that clamping is always symmetric about {bel] mapped range of a texture
coordinate.
Wrap Mode MIRRORELREPEAT
Wrap modeMIRRORELREPEATTirst mirrors the texture coordinate, where mirror-

ing a valuef computes

Version 1.5 - October 30, 2003

3.8. TEXTURING 147

L= (F=LfD, Lflisodd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMPTO.EDGE

mirror(f) = { f=Lfl |f] is even

3.8.8 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling

of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemedrtamgnifyor minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factdr, y) and thelevel of detailparameter
Az, y), defined as

N(z,y) = logy[p(x, y)] + clamp(texobjpias + texunityiqs)

lOdma;p, N> lodmaz
)‘/7 lOdmin < N < lOdmaa:
A= lOdmm, N < lOdmm (316)

undefined, lodpyin > lodmaes

texobjpias IS the value of TEXTURELODBIAS for the bound texture object (as
described in sectio.8.4), andtexunity;,s is the value offTEXTURELODBIAS
for the current texture unit (as described in sectdod.13. The sum of these
values is clamped to the ran@ebiasaz, biaSmas] Wherebias,, . is the value of
the implementation defined constamMXTEXTURELODBIAS.
If A(z,y) is less than or equal to the constan{described below in sec-
tion 3.8.9 the texture is said to be magnified; if it is greater, the texture is minified.
The initial values oflod,,,;;, andlod,,., are chosen so as to never clamp the
normal range of\. They may be respecified for a specific texture by callieg-
Parameter][if] with pname set toOTEXTUREMIN_LOD or TEXTUREMAXLOD re-
spectively.

Version 1.5 - October 30, 2003

148 CHAPTER 3. RASTERIZATION

Let s(x,y) be the function that associates atexture coordinate with each
set of window coordinateéz, y) that lie within a primitive; define(z,y) and
r(z,y) analogously. Leti(x,y) = 2"s(x,y), v(z,y) = 2"t(z,y), andw(z,y) =
2’r(x, y), wheren, m, and! are as defined by equatiofisl3 3.14 and3.15with
ws, hs, andd, equal to the width, height, and depth of the image array whose level
is levely,se. FOr a one-dimensional texture, definer, y) = 0 andw(z,y) = 0;
for a two-dimensional texture, defineg(x, y) = 0. For a polygony is given at a
fragment with window coordinatgs;, y) by

ou\ 2 ov\? ow\ ? ou\ ? v\ 2 ow\ ?
om0 () G G+ G+ (520}
(3.17)
wheredu/0x indicates the derivative af with respect to window, and similarly

for the other derivatives.
For a line, the formula is

ou ou 2 ov ov 2 ow ow 2
(3.18)

whereAzr = x5 — x; andAy = yo — y1 with (x1,y1) and (z2, y2) being the
segment’s window coordinate endpoints drd \/Az2 + Ay2. For a point, pixel
rectangle, or bitmag = 1.

While it is generally agreed that equatiohd 7and 3.18give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the idealwith a function f(x, y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each/@f/dx|,

|Ou/dy|, |0v/dx|, |0v/dy|, |ow/dz|, and|Ow /Dy|
2. Let
My = m x{ Ou| |0u }
e Ik Oy
m —max{ 9 80}
v ox|’ |0y
m —max{ ow aw}
Yo ox | |oy|)’

Thenmax{m, m,, my} < f(x,y) < my + my + my,.

Version 1.5 - October 30, 2003

3.8. TEXTURING 149

When X indicates minification, the value assignedT®XTUREMIN_FILTER
is used to determine how the texture value for a fragment is selected. When
TEXTUREMIN_FILTER is NEARESTthe texel in the image array of leviglvely, s
that is nearest (in Manhattan distance) to that specifigad fyr) is obtained. This
means the texel at locatidn, j, k) becomes the texture value, witlgiven by

. U/, s<1
z:{ %nJ—1 < (3.19)

(Recall that fTEXTUREWRAPBS is REPEAT then0 < s < 1.) Similarly, j is found
as

. v, t<1
]_{2m—1, t=1 (320)
andk is found as
) w), <l
k_{ 31 =1 (3.21)

For a one-dimensional texturg¢,and k are irrelevant; the texel at locatiarbe-
comes the texture value. For a two-dimensional texttig irrelevant; the texel at
location(i, j) becomes the texture value.

When TEXTUREMIN_FILTER is LINEAR, a2 x 2 x 2 cube of texels in the
image array of levelevely,. is selected. This cube is obtained by first clamping
texture coordinates as described in sec8dh7(if the wrap mode for a coordinate
is CLAMPor CLAMPTO.EDGH and computing

. _ [lu—1/2] mod 2", TEXTUREWRAPS is REPEAT
"7 |u—1/2], otherwise

j { |v —1/2] mod 2, TEXTUREWRAPT is REPEAT
O prm—

lv—1/2], otherwise
and
ko = { [w—1/2] mod 2!, TEXTUREWRAERis REPEAT
lw—1/2], otherwise
Then

= (io + 1) mod 2", TEXTUREWRAPBS is REPEAT
7Y ip+ 1, otherwise

Version 1.5 - October 30, 2003

150 CHAPTER 3. RASTERIZATION

i = { (jo + 1) mod 2™, TEXTUREWRAFT is REPEAT

Jo+ 1, otherwise
and
b — { (ko 4 1) mod 2, TEXTUREWRAER is REPEAT
ko +1, otherwise
Let

a = frac(u — 1/2)
8 = frac(v —1/2)
v = frac(w — 1/2)

wherefrac(x) denotes the fractional part of
For a three-dimensional texture, the texture valug found as

7 = (1=a)(1=B)1 = NTigjoke + (1 = B)Y1 =) Tirjoko
+ (1 = a)B(L = N Tigjiko + B = V) Tiyjiko
+ (1=) (L = B)Tigjokr + (1 = B)VTirjoks
+ (1 — @) BYTigjiky + BV Tirjiky

wherer;;;, is the texel at locatiof, j, k) in the three-dimensional texture image.
For a two-dimensional texture,

T = (1 - a)(l - /B)Tiojo + a(l - 5)7—1'1]'0 + (1 - O‘)ﬂTioh + a/BTiud (3-22)

wherer;; is the texel at locatioi, j) in the two-dimensional texture image.
And for a one-dimensional texture,

T=01-a)7n,+am,

wherer; is the texel at locatiofnin the one-dimensional texture.

If any of the selected;;;, 7;;, or 7; in the above equations refer to a border
texel withi < —bs, j < —bs, k < —bg, @ > ws — bs, j > hs — bg, Orj > dg — by,
then the border values defined bgXTUREBORDERCOLORare used instead of the
unspecified value or values. If the texture contains color components, the values of
TEXTUREBORDERCOLORare interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with taBlé5 If the texture contains depth
components, the first component TEXTUREBORDERCOLORS interpreted as a
depth value.

Version 1.5 - October 30, 2003

3.8. TEXTURING 151

Mipmapping
TEXTUREMIN_FILTER values NEARESTMIPMARPNEAREST
NEARESTMIPMAPRLINEAR, LINEAR_MIPMAPNEAREST

and LINEAR_MIPMAPLINEAR each require the use ofraipmap A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of lévetl,,.., excluding its bor-
der, has dimensior® x 2™ x 2!, then there arenax{n,m,l} + 1 image arrays in
the mipmap. Each array subsequent to the array of level,,,. has dimensions

o(i—1)xo(j—1)xo(k—1)

where the dimensions of the previous array are

(i) x o(j) x (k)

and
(z) = 2T >0
=V 1 z<o

until the last array is reached with dimensibrx 1 x 1.

Each array in a mipmap is defined usifgximage3D, Teximage2D, Copy-
TexIimage2D, TeximagelD, or CopyTexlmagell the array being set is indicated
with the level-of-detail argumerievel Level-of-detail numbers proceed from
levelyyse for the original texture array through= max{n, m,(} + levelp,se With
each unitincrease indicating an array of half the dimensions of the previous one as
already described. All arrays frofavely,s. throughg = min{p, level,,q, } Must
be defined, as discussed in sectiod.10

The values oflevely,s. andlevel,,.,, Mmay be respecified for a specific tex-
ture by callingTexParameter][if] with pname set toTEXTUREBASELEVEL or
TEXTUREMAXLEVEL respectively.

The erroriNVALID _VALUEIs generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. d_bé the value
of A at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with valuasadfere
A > c).

For mipmap filters NEARESTMIPMAPNEAREST and
LINEAR_MIPMAPNEARESTthedth mipmap array is selected, where

Version 1.5 - October 30, 2003

152 CHAPTER 3. RASTERIZATION

levelbasm A < %
d=2} [levelpgse + A+ 3] -1, A> % levelpgse + A < g+ % (3.23)
q, A> g, levelpgse + A > q+ 5

The rules forNEARESTor LINEAR filtering are then applied to the selected
array.

For mipmap filtersfN\NEARESTMIPMAPLINEAR andLINEAR_MIPMAPLINEAR,
the leveld; andds mipmap arrays are selected, where

— q, levelpgse + A > q
= { |levelpase + A|, otherwise (3.24)
= 9, levelpgse + A > q
2 = { dy + 1, otherwise (3.25)

The rules forNEARESTor LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture vaiyesnd 7». The final
texture value is then found as

7 = [1 — frac(\)]my + frac(A) 7.

Automatic Mipmap Generation

If the value of texture paramet&@ENERATEMIPMAPIs TRUE making any change

to the interior or border texels of thevely,s. array of a mipmap will also compute

a complete set of mipmap arrays (as defined in se@idrLQ derived from the
modifiediecvely, . array. Array leveldevely,s. + 1 throughp are replaced with

the derived arrays, regardless of their previous contents. All other mipmap arrays,
including thelevely, s, array, are left unchanged by this computation.

The internal formats and border widths of the derived mipmap arrays all match
those of thelevely,s. array, and the dimensions of the derived arrays follow the
requirements described in secti®.10

The contents of the derived arrays are computed by repeated, filtered reduction
of thelevely,s. array. No particular filter algorithm is required, thougBag box
filter is recommended as the default filter. In some implementations, filter quality
may be affected by hints (secti@ng).

Automatic mipmap generation is available only for non-proxy texture image
targets.

Version 1.5 - October 30, 2003

3.8. TEXTURING 153

3.8.9 Texture Magnification

When)\ indicates magnification, the value assignedTEXTUREMAGFILTER
determines how the texture value is obtained. There are two possible values
for TEXTUREMAGFILTER : NEARESTandLINEAR. NEARESTbehaves exactly as
NEARESTfor TEXTUREMIN_FILTER (equations3.19 3.20, and3.21are used);
LINEAR behaves exactly ddNEAR for TEXTUREMIN_FILTER (equation3.22is
used). The level-of-detalbvely, s texture array is always used for magnification.
Finally, there is the choice aof, the minification vs. magnification switch-
over point. If the magnification filter is given bNEAR and the minification
filter is given byNEARESTMIPMAPNEARESTor NEARESTMIPMAPLINEAR, then
c = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise= 0.

3.8.10 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application is consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures, a texturapletef the fol-
lowing conditions all hold true:

e The set of mipmap arraykvel,.s. throughg (wheregq is defined in the
Mipmapping discussion of sectiof.8.8 were each specified with the same
internal format.

e The border widths of each array are the same.

e The dimensions of the arrays follow the sequence described Miflraap-
ping discussion of sectiof.8.8

o levelpyse < levelpman

e Each dimension of th&wvel,, . array is positive.

Array levelsk wherek < levely,s. OF k > ¢ are insignificant to the definition of
completeness.

For cube map textures, a texturecisbe completdéf the following conditions
all hold true:

e Thelevely,s. arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

Version 1.5 - October 30, 2003

154 CHAPTER 3. RASTERIZATION

e Thelevely,s. arrays were each specified with the same internal format.

e Thelevely,s. arrays each have the same border width.

Finally, a cube map texture mipmap cube complei& in addition to being
cube complete, each of the six texture images considered individually is complete.

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map textur-
ing) is enabled for a texture unit at the time a primitive is rasterized, if
TEXTUREMIN_FILTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, then it is as if texture mapping
were disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive
is rasterized, and if the bound cube map texture is not cube complete, then it
is as if texture mapping were disabled for that texture unit. Additionally, if
TEXTUREMIN_FILTER is one that requires a mipmap, and if the texture is not
mipmap cube complete, then it is as if texture mapping were disabled for that tex-
ture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if amipmap completset of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays whetevelp,s. = 0 andievel,,.. = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array.

3.8.11 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each
array has associated with it a width, height (two- and three-dimensional and cube-
map only), and depth (three-dimensional only), a border width, an integer describ-
ing the internal format of the image, six integer values describing the resolutions
of each of the red, green, blue, alpha, luminance, and intensity components of the
image, a boolean describing whether the image is compressed or not, and an in-
teger size of a compressed image. Each initial texture array is null (zero width,

Version 1.5 - October 30, 2003

3.8. TEXTURING 155

height, and depth, zero border width, internal forrbatvith the compressed flag

set tOFALSE, a zero compressed size, and zero-sized components). Next, there
are the two sets of texture properties; each consists of the selected minification
and magnification filters, the wrap modes fgr¢ (two- and three-dimensional

and cubemap only), andthree-dimensional only), tHEEXTUREBORDERCOLOR

two integers describing the minimum and maximum level of detail, two inte-
gers describing the base and maximum mipmap array, a boolean flag indicating
whether the texture is resident, a boolean indicating whether automatic mipmap
generation should be performed, three integers describing the depth texture mode,
compare mode, and compare function, and the priority associated with each
set of properties. The value of the resident flag is determined by the GL and
may change as a result of other GL operations. The flag may only be queried,
not set, by applications (see secti@r8.1). In the initial state, the value as-
signed toTEXTUREMIN_FILTER is NEARESTMIPMAPLINEAR, and the value for
TEXTUREMAGFILTER is LINEAR. s, t, andr wrap modes are all set REPEAT

The values offEXTUREMIN_LODand TEXTUREMAXLODare -1000 and 1000 re-
spectively. The values afEXTUREBASELEVEL andTEXTUREMAXLEVEL are O

and 1000 respectivel.EXTUREPRIORITY is 1.0, andTEXTUREBORDERCOLOR

is (0,0,0,0). The values @EPTHTEXTUREMODETEXTURECOMPARB®MODEand
TEXTURECOMPAREUNCare LUMINANCE NONE andLEQUALrespectively. The
initial value of TEXTURERESIDENTIs determined by the GL.

In addition to the one-, two-, and three-dimensional and the six cube map sets
of image arrays, the partially instantiated one-, two-, and three-dimensional and
one cube map set of proxy image arrays are maintained. Each proxy array includes
width, height (two- and three-dimensional arrays only), depth (three-dimensional
arrays only), border width, and internal format state values, as well as state for
the red, green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties. When
TexImage3Dis executed witharget specified a®ROXYTEXTURESD, the three-
dimensional proxy state values of the specified level-of-detail are recomputed and
updated. If the image array would not be supportedé@yimage3D called with
targetset toTEXTURES3D, no error is generated, but the proxy width, height, depth,
border width, and component resolutions are set to zero. If the image array would
be supported by such a call Teximage3D, the proxy state values are set exactly
as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way when
TexImagelDis executed withargetspecified aPROXYTEXTURELD, or TexIm-
age2Dis executed withargetspecified a®PROXYTEXTURE2D.

The cube map proxy arrays are operated on in the same mannefTeklem

Version 1.5 - October 30, 2003

156 CHAPTER 3. RASTERIZATION

age2Dis executed with the¢argetfield specified aPROXYTEXTURECUBEMAR

with the addition that determining that a given cube map texture is supported with
PROXYTEXTURECUBEMAPIndicates that all six of the cube map 2D images are
supported. Likewise, if the specififtROXYTEXTURECUBEMAPIs not supported,
none of the six cube map 2D images are supported.

There is no image associated with any of the proxy textures. There-
fore PROXYTEXTURELD, PROXYTEXTURE2D, and PROXYTEXTURE3D, and
PROXYTEXTURECUBEMAPcannot be used as textures, and their images must
never be queried usinGetTexlmage The errorINVALID _ENUMs generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, andetTexParameterivor GetTexParameterfvmay not be called
with a proxy texturetarget The errorINVALID _[ENUMSs generated if this is at-
tempted.

3.8.12 Texture Objects

In addition to the default textureEEXTURELD, TEXTURE2D, TEXTURES3D, and
TEXTURECUBEMAR named one-, two-, and three-dimensional and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

A texture object is created bpinding an unused name tOEXTURELD,
TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAPR The binding is effected by
calling

void BindTexture(enumtarget uint texture);

with target set to the desired texture target atecttureset to the unused name.
The resulting texture object is a new state vector, comprising all the state values
listed in sectior3.8.1], set to the same initial values. If the new texture object is
bound toTEXTURELD, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAR it is

and remains a one-, two-, three-dimensional, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object to ei-
therTEXTURELD, TEXTURE2D, TEXTURESD, or TEXTURECUBEMAR The error
INVALID _OPERATIONS generated if an attempt is made to bind a texture object
of different dimensionality than the specifitatget If the bind is successful no
change is made to the state of the bound texture object, and any previous binding
to targetis broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return

Version 1.5 - October 30, 2003

3.8. TEXTURING 157

state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.
In the initial state, TEXTURELD, TEXTURE2D, TEXTURE3D,
and TEXTURECUBEMAPhave one-, two-, three-dimensional, and cube map tex-
ture state vectors respectively associated with them. In order that access to these
initial textures not be lost, they are treated as texture objects all of whose names
are 0. The initial one-, two-, three-dimensional, and cube map texture is therefore
operated upon, queried, and appliedrf&TURELD, TEXTURE2D, TEXTURES3D,
or TEXTURECUBEMAPrespectively while 0 is bound to the corresponding targets.
Texture objects are deleted by calling

void DeleteTextureg sizei n,uint *textures);

texturescontainsn names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to one of the targeiXTURELD, TEXTUREZ2D,
TEXTURESD, or TEXTURECUBEMAPIs deleted, it is as thougBindTexture had
been executed with the sansggetandtexturezero. Unused names taxturesare
silently ignored, as is the value zero.

The command

void GenTextureq sizei n, uint *textures);

returnsn previously unused texture object namegértures These names are
marked as used, for the purposesGd#nTexturesonly, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said torbsident The command

boolean AreTexturesResident sizei n, uint *textures
boolean *residences;

returnsTRUEIf all of the n texture objects named texturesare resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named itextureds not resident, theRALSEIs returned, and the residence

of each texture object is returned li@sidences Otherwise the contents oési-
dencesare not changed. If any of the namestéxturesare unused or are zero,

Version 1.5 - October 30, 2003

158 CHAPTER 3. RASTERIZATION

FALSEIs returned, the errdNVALID _VALUEIs generated, and the contentgex-
idencesare indeterminate. The residence status of a single bound texture object
can also be queried by callingetTexParameterivor GetTexParameterfvwith
target set to the target to which the texture object is bound, amgne set to
TEXTURERESIDENT.

AreTexturesResidentindicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures(sizei n,uint *textures
clampf *priorities);

sets the priorities of tha texture objects hamed texturesto the values irpriori-

ties Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calidParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfvwith target set to the target to
which the texture object is boungpame set toTEXTUREPRIORITY, andparam

or params specifying the new priority value (which is clamped to the range [0,1]
before being assignedprioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional texture objects, is shared among all texture units. A texture object
may be bound to more than one texture unit simultaneously. After a texture object
is bound, any GL operations on that target object affect any other texture units to
which the same texture object is bound.

Texture binding is affected by the setting of the staBIIVE_TEXTURE

If a texture object is deleted, it as if all texture units which are bound to that
texture object are rebound to texture object zero.

3.8.13 Texture Environments and Texture Functions

The command

void TexEnv{if }(enumtarget enum pnameT param);
void TexEnv{if }v(enumtarget enum pnameT params);

Version 1.5 - October 30, 2003

3.8. TEXTURING 159

sets parameters of thtexture environmenthat specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one of EXTUREENV or TEXTUREFILTER _.CONTROLpname
is a symbolic constant indicating the parameter to be set. In the first form of the
commandparamis a value to which to set a single-valued parameter; in the sec-
ond form,paramsis a pointer to an array of parameters: either a single symbolic
constant or a value or group of values to which the parameter should be set.

When target is TEXTUREFILTER_CONTROL pname must be
TEXTURELODBIAS. In this case the parameter is a single signed floating
point value texunity;,s, that biases the level of detail parameteas described in
section3.8.8

When target is TEXTUREENV, the possible environment parame-
ters are TEXTUREENVMODE TEXTUREENVCOLOR COMBINERGB and
COMBINEALPHA TEXTUREENVMODE may be set to one ofREPLACE
MODULATE DECAL BLENDQ ADD or COMBINE TEXTUREENV.COLORIis set
to an RGBA color by providing four single-precision floating-point values in the
range[0, 1] (values outside this range are clamped to it). If integers are provided
for TEXTUREENV.COLORthen they are converted to floating-point as specified in
table2.9for signed integers.

The value of TEXTUREENV.MODEspecifies a@exture function The result of
this function depends on the fragment and the texture array value. The precise
form of the function depends on the base internal formats of the texture arrays that
were last specified.

Cy andAf3 are the primary color components of the incoming fragmént;
and A, are the components of the texture source color, derived from the filtered
texture valuesi;, Gy, B;, As, Ly, andl; as shown in tabl8.21; C. and A. are
the components of the texture environment cotdy;and A, are the components
resulting from the previous texture environment (for texture environmefit @nd
A, are identical taC'y and A, respectively); and’, and A, are the primary color
components computed by the texture function.

All of these color values are in the ranffe 1]. The texture functions are spec-
ified in tables3.22 3.23 and3.24

If the value of TEXTUREENV.MODHSs COMBINE the form of the texture func-
tion depends on the values GOMBINERGBand COMBINEALPHA according to
table 3.24 The RGBand ALPHAresults of the texture function are then muilti-
plied by the values cRGBSCALEandALPHASCALE respectively. The results are

%In the remainder of secticdh8.13 the notatiorC, is used to denote each of the three components
R., G, and B, of a color specified by. Operations o, are performed independently for each
color component. Thel component of colors is usually operated on in a different fashion, and is
therefore denoted separately Hy.

Version 1.5 - October 30, 2003

160

CHAPTER 3. RASTERIZATION

Texture Base Texture source colof
Internal Format Cs Ag
ALPHA (0,0,0) Ay
LUMINANCE (L, Ly, Ly) 1
LUMINANCEALPHA | (L, Ly, Ly) | Ay
INTENSITY (Iy, Iy, Iy) I
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.21: Correspondence of filtered texture components to texture source com-
ponents.

Texture Base REPLACE| MODULATE | DECAL
Internal Format Function | Function Function
ALPHA C,=Cy | Cy=Cf undefined
Ay, =As | Ay = AsA,
LUMINANCE C,=0Cs | Cy, =C¢Cs | undefined
(orl) AUZAf Av—Af
LUMINANCEALPHA | C, = U | C, = C;C; | undefined
(or 2) A, =As | Ay = AfA,
INTENSITY C,=Cs | Cy, =C¢Cs | undefined
Ay =As | Ay = AsA;
RGB C,=0Cs | C, =005 | Cp =
(Ol’3) Av:Af Av—Af A, :Af
RGBA Co=Cs | C, =CsCs | Cy=Cp(1 — As) + C A,
(or 4) Ay =As | Ay =AfA, | Ay = Af

Table 3.22: Texture functiorBEPLACEMODULATEaNdDECAL

Version 1.5 - October 30, 2003

3.8. TEXTURING 161

Texture Base BLEND ADD
Internal Format Function Function
ALPHA C, = Cf C, = Cf

Ay, = ApA; A, = ApA;
LUMINANCE Cy=C¢(1-Cs)+C.Cs | Cp=Cs+Cy
(or1) A, = Ay A, = Ay
LUMINANCEALPHA | C, = C'f(l — CS) +C.Cs | Cp = C’f + Cs
(or 2) Ay, = ApA; A, = ApAg
INTENSITY C,=Cr(1-Cy)+CCs | C, =Cy +Cs

Ay =Ap(1 - A) + AAs | Ay =Ap 4+ A,
RGB Co=Ct(1-Cs)+CCs | C, =C5+Cs
(0|'3) AU:Af AU:Af
RGBA Co=Cr(1-Cy)+CCs | C, =Cy +Cs
(or 4) Ay = ApA; Ay = ApA;

Table 3.23: Texture functiorBL.ENDandADD

clamped tdo, 1].

The argumentsdrg0, Argl, and Arg2 are determined by the values of
SRG1_RGB SRG1_ALPHA OPERAND.RGBand OPERAND.ALPHA wheren = 0,
1, or 2, as shown in tables25and 3.26 C,™ and A," denote the texture source
color and alpha from the texture image bound to texturemunit

The state required for the current texture environment, for each texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating th&GBcombiner function and a six-valued integer indicating the
ALPHA combiner function, six four-valued integers indicating the combReB
and ALPHAsource arguments, three four-valued integers indicating the combiner
RGBoperands, three two-valued integers indicating the comBibeHAoperands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are eaiOoDULATRhe combineRGBandALPHAsources
are eaCMEXTUREPREVIOUS andCONSTANTor sources 0, 1, and 2 respectively,
the combineRGBoperands for sources 0 and 1 are eaRIECOLORthe combiner
RGBoperand for source 2, as well as for the combiePHAoOperands, are each
SRCALPHA and the environment color {9, 0, 0, 0).

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.

Version 1.5 - October 30, 2003

162

CHAPTER 3. RASTERIZATION

COMBINERGB | Texture Function
REPLACE Arg0
MODULATE Arg0 = Argl
ADD Arg0 + Argl
ADDSIGNED | Arg0 + Argl — 0.5
INTERPOLATE | Arg0 * Arg2 + Argl x (1 — Arg2)
SUBTRACT Arg0 — Argl
DOT3RGB X ((Arg0, — 0.5) x (Argl, — 0.5)+
(Arg0y — 0.5) * (Argly — 0.5)+
(ArgOp — 0.5) % (Argl, — 0.5))
DOT3RGBA X ((Arg0, — 0.5) x (Argl, — 0.5)+
(Arg04 — 0. 5) (Argly — 0. 5)—i—
(Arg0, — 0.5) * (Argly —0.5))

COMBINEALPHA\ Texture Function

REPLACE Arg0

MODULATE Arg0 x Argl

ADD Arg0 + Argl

ADDSIGNED Arg0+ Argl — 0.5
INTERPOLATE | Arg0* Arg2 + Argl « (1 — Arg2)
SUBTRACT Arg0 — Argl

Table 3.24:COMBINEtexture functions. The scalar expression computed for the
DOT3RGBandDOT3RGBAfunctions is placed into each of theB&B or 4 (RGBA
components of the output. The result generated fG@MBINEALPHAIS ignored

for DOT3RGBA

Version 1.5 - October 30, 2003

3.8. TEXTURING

SRG1_RGB

OPERAND_RGB

Argument |

TEXTURE

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

Cs
1-C,
A
1— A,

TEXTURR

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUSSRCALPHA

c"
1-Cs"
A"
1—-A"

CONSTANT

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

Ce
1-C,
Ac
1— A,

PRIMARYCOLOR

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUSSRCALPHA

Cy
1*C'f
Ay
1— A

PREVIOUS

SRCCOLOR
ONEMINUSSRCCOLOR
SRCALPHA
ONEMINUS SRCALPHA

CP
1-C,
Ap
1- A4,

Table 3.25: Arguments faZOMBINERGBfunctions.

| SRG1ALPHA OPERANBALPHA | Argument |
TEXTURE SRCALPHA A,
ONEMINUSSRCALPHA | 1 — A
TEXTURE SRCALPHA A"
ONEMINUSSRCALPHA | 1 — A"
CONSTANT SRCALPHA A.
ONEMINUSSRCALPHA | 1 — A,
PRIMARYCOLOR| SRCALPHA Ay
ONEMINUSSRCALPHA | 1 — Ay
PREVIOUS SRCALPHA Ap
ONEMINUSSRCALPHA | 1 — A,

Table 3.26: Arguments faCOMBINEALPHAfunctions.

Version 1.5 - October 30, 2003

163

164 CHAPTER 3. RASTERIZATION

3.8.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison func-
tion. Texture parameteMTEXTURECOMPARBODESpecifies the comparison
operands, and parame®EXTURECOMPARIEUNCspecifies the comparison func-
tion. The format of the resulting texture sample is determined by the value of
DEPTHTEXTUREMODE

Depth Texture Comparison Mode

If the currently bound texture’s base internal formaDEPTHCOMPONENThen
TEXTURECOMPARBMODETEXTURECOMPAREUNCandDEPTHTEXTUREMODE
control the output of the texture unit as described below. Otherwise, the texture
unit operates in the normal manner and texture comparison is bypassed.

Let D, be the depth texture value, in the rarigel], andR be the interpolated
texture coordinate clamped to the rar@el]. Then the effective texture valug,
I;, or A; is computed as follows:

If the value of TEXTURECOMPARODEHS NONEthen

T:Dt

If the value of TEXTURECOMPARIMODHS COMPARR . TO.TEXTURE, thenr
depends on the texture comparison function as shown in gable

The resulting » is assigned toL;, I;, or A; if the value of
DEPTHTEXTUREMODES respective\LUMINANCEINTENSITY , or ALPHA

If the value of TEXTUREMAGFILTER is not NEAREST or the value of
TEXTUREMIN_FILTER is not NEARESTor NEARESTMIPMAPNEAREST thenr
may be computed by comparing more than one depth texture value to the texture
R coordinate. The details of this are implementation-dependent, shauld be a
value in the rangé, 1] which is proportional to the number of comparison passes
or failures.

3.8.15 Texture Application

Texturing is enabled or disabled using the genditable and Disable com-
mands, respectively, with the symbolic constam&XTURELD, TEXTUREZ2D,
TEXTURES3D, or TEXTURECUBEMAPto enable the one-, two-, three-dimensional,

or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If the cube map texture and any of the three-, two-, or one-dimensional

Version 1.5 - October 30, 2003

3.8. TEXTURING 165

| Texture Comparison FunctionComputed result \

B 1.0, R< Dy
LEQUAL r= { 0.0, B> D,
_ 1.0, R> Dy
GEQUAL r= { 0.0, R<D,
. 10, R < Dt
LESS r= { 0.0, R> D,
) 1.0, R>Dy
GREATER r —{ 0.0, R<D,
B 1.0, R= Dy
EQUAL r= { 0.0, R+ D,
B 1.0, R# Dy
NOTEQUAL r= { 0.0, R=D,
ALWAYS r=1.0
NEVER r=20.0

Table 3.27: Depth texture comparison functions.

textures is enabled, then cube map texturing is used. If all texturing is disabled, a
rasterized fragment is passed on unaltered to the next stage of the GL (although its
texture coordinates may be discarded). Otherwise, a texture value is found accord-
ing to the parameter values of the currently bound texture image of the appropriate
dimensionality using the rules given in sectidh8.6through3.8.9 This texture

value is used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this function
replaces the incoming fragment’s primary R, G, B, and A values. These are the
color values passed to subsequent operations. Other data associated with the in-
coming fragment remain unchanged, except that the texture coordinates may be
discarded.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing
texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11 The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-

Version 1.5 - October 30, 2003

166 CHAPTER 3. RASTERIZATION

o ; . *)
TE, [—®
CTo—m TE, |—
CTy - TE, |—®
CT, > TE, |—®C
CT, -

C; =fragment primary color input to texturing

C’; =fragment color output from texturing

CT; =texture color from texture lookup i

TE; =texture environment i

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment|color
passed as input to the next texture unit in the pipeline.

tion and the second texture unit’s environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit's environment function and so on. The tex-
ture unit selected byctiveTexture determines which texture unit's environment

is modified byTexEnv calls.

If the value of TEXTUREENV.MODHEs COMBINEthe texture function associated
with a given texture unit is computed using the values specifie &R _RGB
SRGY_ALPHA OPERAND_RGBandOPERAND_ALPHA If TEXTURR is specified as
SRQ1_RGBor SRG1_ALPHA the texture value from texture umtwill be used in
computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit.

Version 1.5 - October 30, 2003

3.9. COLOR SUM 167

If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section3.8.10 bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the
results of texture blending are undefined.

The required state, per texture unit, is four bits indicating whether each of one-,
two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
c,ri (Which texturing, if enabled, may have modified) and a secondary eglar

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA celofhe A component of
is taken from the A component ef,,;; the A component o€, is unused. The
components of are then clamped to the ranf§e1]. If color sum is disabled, then
cpri IS assigned te.

Color sum is enabled or disabled using the genériable andDisable com-
mands, respectively, with the symbolic constamiLORSUM If lighting is enabled
the color sum stage is always applied, ignoring the value@fORSUM

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment's post-texturing color
using a blending factgf. Fog is enabled and disabled with tBeableandDisable
commands using the symbolic constantG

This factorf is computed according to one of three equations:

f=exp(—d-c), (3.26)

f=exp(—(d- 0)2), or (3.27)

e (3.28)
e—s

Version 1.5 - October 30, 2003

168 CHAPTER 3. RASTERIZATION

If the fog source, as defined below, FRAGMENDEPTH then ¢ is the eye-
coordinate distance from the ey@), 0,0, 1) in eye coordinates, to the fragment
center. If the fog source BOGCOORDPthenc is the interpolated value of the fog
coordinate for this fragment. The equation and the fog source, along with éither
or e ands, is specified with

void Fog{if}(enumpnameT param);
void Fog{if}v(enumpnameT params);

If pnameis FOGMODE then param must be, orparamsmust point to an inte-
ger that is one of the symbolic constam&P, EXP2, or LINEAR, in which case
equation3.26 3.27, or 3.28 respectively, is selected for the fog calculation (if,
when3.28is selectede = s, results are undefined). phamels FOGCOORIBRG
then parammust be, oparamsmust point to an integer that is one of the sym-
bolic constantsFRAGMENDEPTH or FOGCOORDIf pnameis FOGDENSITY,
FOGSTART, or FOGEND thenparamis or paramspoints to a value that id, s,

or e, respectively. Ifd is specified less than zero, the erfNWALID VALUEre-
sults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center|by. Further,f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to computee result
is clamped td0, 1] to obtain the finalf.

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, it”,. represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C=fC,+(1- f)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values of”'; are specified by callingog with pnameequal toFOGCOLOR
in this casgparamspoints to four values comprising;. If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table2.9 for signed integers. Each component(f is clamped td0, 1] when
specified.

In color index mode, the formula for fog blending is

I:ir+(1_f)if

where i, is the rasterized fragment's color index angdis a single-precision
floating-point value. (1 — f)i is rounded to the nearest fixed-point value with

Version 1.5 - October 30, 2003

3.11. ANTIALIASING APPLICATION 169

the same number of bits to the right of the binary point,asnd the integer por-
tion of I is masked (bitwise ANDed) with™ — 1, wheren is the number of bits in
a color in the color index buffer (buffers are discussed in chaptefhe value of

iy is set by calling~og with pnameset toFOGINDEX andparambeing orparams

pointing to a single value for the fog index. The integer pari,of masked with
2" — 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point valuds e, and s, an RGBA fog color and a fog
color index, a two-valued integer to select the fog coordinate source, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOGCOORM®BRCis FRAGMENDEPTH FOGMODHS EXP, d = 1.0, e = 1.0, and
s =0.0; C; = (0,0,0,0) andi; = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized fragment
was produced, then the computed coverage value is applied to the fragment. In
RGBA mode, the value is multiplied by the fragment’s alpha (A) value to yield a
final alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in sectioh

3.12 Multisample Point Fade

If multisampling is enabled and the rasterized fragment results from a point primi-
tive, then the computed fade factor from equatiohis applied to the fragment. In
RGBA mode, the fade factor is multiplied by the fragment’s alpha value to yield a
final alpha value. In color index mode, the fade factor has no effect.

Version 1.5 - October 30, 2003

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer are grouped together
into abitplane each bitplane contains a single bit from each pixel. These bitplanes
are grouped into severddgical buffers These are theolor, depth stencil and
accumulationbuffers. The color buffer actually consists of a number of buffers:
thefront left buffer, thefront right buffer, theback leftbuffer, theback rightbuffer,
and some number @fuxiliary buffers. Typically the contents of the front buffers
are displayed on a color monitor while the contents of the back buffers are invisi-
ble. (Monoscopic contexts display only the front left buffer; stereoscopic contexts
display both the front left and the front right buffers.) The contents of the aux-
iliary buffers are never visible. All color buffers must have the same number of
bitplanes, although an implementation or context may choose not to provide right
buffers, back buffers, or auxiliary buffers at all. Further, an implementation or
context may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B, and,
optionally, A unsigned integer values. The number of bitplanes in each of the color
buffers, the depth buffer, the stencil buffer, and the accumulation buffer is fixed and
window dependent. If an accumulation buffer is provided, it must have at least as
many bitplanes per R, G, and B color component as do the color buffers.

The initial state of all provided bitplanes is undefined.

170

4.1. PER-FRAGMENT OPERATIONS 171

Fragment Pixel) Alpha
- Scissor
+ Ownership > — Test
Associated Test Test (RGBA Only)
Data

Depth buffer | — Stencil - ———————
Test Test

Framebuffer J Framebuffer J

| Blending gl pihering [Logicop [—e TO
(RGBA Only) Framebuffer

1 Il

Framebuffer Framebuffer

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinate&f, v,,) mod-

ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
Figure4.1, in the order in which they are performed. Figurd diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location,, y,,) in the framebuffer

is currently owned by the GL (more precisely, by this GL context). If it is not,

the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL's behavior, for instance, when a GL window is obscured.

Version 1.5 - October 30, 2003

172 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

4.1.2 Scissor Test

The scissor test determineqif,,, y,,) lies within the scissor rectangle defined by
four values. These values are set with

void Scissofint left,int bottom sizei width,
sizei height);

If left < z,, < left+ width andbottom< y,, < bottom-+ height then the scissor

test passes. Otherwise, the test fails and the fragment is discarded. The test is
enabled or disabled usirignable or Disable using the constar8CISSORTEST.

When disabled, it is as if the scissor test always passes. If aitiadin or height

is less than zero, then the eridtVALID VALUEIs generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial state: ft = bottom = 0; width andheight are determined

by the size of the GL window. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLEALPHATO.COVERAGESAMPLEALPHATO.ONE SAMPLECOVERAGE
SAMPLECOVERAGEALUE, andSAMPLECOVERAGENVERT. No changes to the
fragment alpha or coverage values are made at this stapliffiISAMPLEis dis-
abled, or ifSAMPLEBUFFERSSs not a value of one.

SAMPLEALPHATO COVERAGE
SAMPLEALPHATO ONE andSAMPLECOVERAGETre enabled and disabled by call-
ing Enable and Disable with cap specified as one of the three token values. All
three values are queried by callifgEnabled with cap set to the desired token
value. If SAMPLEALPHATO.COVERAGHs enabled, a temporary coverage value
is generated where each bit is determined by the alpha value at the corresponding
sample location. The temporary coverage value is then ANDed with the fragment
coverage value. Otherwise the fragment coverage value is unchanged at this point.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1's in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1's
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Version 1.5 - October 30, 2003

4.1. PER-FRAGMENT OPERATIONS 173

Next, if SAMPLEALPHATO.ONEs enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.

Finally, if SAMPLECOVERAGHS enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated
in the same manner as the one described above, but as a function of
the value of SAMPLECOVERAGKALUE The function need not be identical,
but it must have the same properties of proportionality and invariance. If
SAMPLECOVERAGHNVERT is TRUE the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragment coverage.

The values ofSAMPLECOVERAGKEALUE and SAMPLECOVERAGINVERT
are specified by calling

void SampleCoveragéclampf valug boolean invert);

with value set to the desired coverage value, amekert set toTRUEOr FALSE

value is clamped to [0,1] before being stored 88MPLECOVERAGKALUE

SAMPLECOVERAGKALUE is queried by callingGetFloatv with pnameset to
SAMPLECOVERAGKALUE SAMPLECOVERAGHENVERT is queried by calling
GetBooleanvwith pnameset toSAMPLECOVERAGHINVERT.

4.1.4 Alpha Test

This step applies only in RGBA mode. In color index mode, proceed to the next
operation. The alpha test discards a fragment conditional on the outcome of a
comparison between the incoming fragment’s alpha value and a constant value.
The comparison is enabled or disabled with the gertemigble andDisable com-
mands using the symbolic constakitPHATEST. When disabled, it is as if the
comparison always passes. The test is controlled with

void AlphaFunc(enum fung clampf ref);

funcis a symbolic constant indicating the alpha test functiefiis a reference
value. ref is clamped to lie in0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in sectibh4.9 For purposes

of the alpha test, the fragment’s alpha value is also rounded to the nearest inte-
ger. The possible constants specifying the test functioNBKERALWAYSLESS,
LEQUAL EQUAL GEQUALGREATERoOr NOTEQUALMeaning pass the fragment
never, always, if the fragment’s alpha value is less than, less than or equal to, equal
to, greater than or equal to, greater than, or not equal to the reference value, respec-
tively.

Version 1.5 - October 30, 2003

174 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference valuetto be
and the function to bALWAYSInitially, the alpha test is disabled.

415 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at locatian v.,) and a reference
value. The test is controlled with

void StencilFung enumfung int ref, uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with tBeable andDisable commands, using the
symbolic constanBTENCIL_TEST. When disabled, the stencil test and associated
modifications are not made, and the fragment is always passed.

refis an integer reference value that is used in the unsigned stencil comparison.
It is clamped to the rang®, 2° — 1], wheres is the number of bits in the stencil
buffer. funcis a symbolic constant that determines the stencil comparison function;
the eight symbolic constants 2MEVERALWAYSLESS, LEQUAL EQUAL GEQUAL
GREATERor NOTEQUALAccordingly, the stencil test passes never, always, if the
reference value is less than, less than or equal to, equal to, greater than or equal to,
greater than, or not equal to the masked stored value in the stencil buffer|&dss
significant bits ofmaskare bitwise ANDed with both the reference and the stored
stencil value. The ANDed values are those that participate in the comparison.

StencilOptakes three arguments that indicate what happens to the stored sten-
cil value if this or certain subsequent tests fail or padail indicates what action
is taken if the stencil test fails. The symbolic constants&EeP, ZERQ REPLACE
INCR, DECRINVERT, INCR.WRAPandDECRWRAPThese correspond to keeping
the current value, setting to zero, replacing with the reference value, incrementing
with saturation, decrementing with saturation, bitwise inverting it, incrementing
without saturation, and decrementing without saturation.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results i), and decrementing results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (below) failsqpfail), or if it passesqppas}.

Version 1.5 - October 30, 2003

4.1. PER-FRAGMENT OPERATIONS 175

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passe&tancilFunc and StencilOp, and a
bit indicating whether stencil testing is enabled or disabled. In the initial state,
stenciling is disabled, the stencil reference value is zero, the stencil comparison
function isALWAYSand the stencimaskis all ones. Initially, all three stencil
operations ar&EEP If there is no stencil buffer, no stencil modification can occur,
and it is as if the stencil tests always pass, regardless of any c&tsnagilOp.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the gertemigble andDisable com-

mands using the symbolic constadEPTHTEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFung enumfunc);

This command takes a single symbolic constant: onsdEfER ALWAYSLESS,
LEQUAL EQUAL GREATERGEQUALNOTEQUALAccordingly, the depth buffer

test passes never, always, if the incoming fragment'value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment'sy.,)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’éz,,, y,,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment's.,)
location is set to the fragments, value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESSand the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

Version 1.5 - October 30, 2003

176 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

4.1.7 Occlusion Queries

Occlusion queries can be used to track the number of fragments or samples that
pass the depth test.

Occlusion queries are associated with query objects.

An occlusion query can be started and finished by calling

void BeginQuery(enumtarget uint id);
void EndQuery(enumtarget);

wheretargetis SAMPLESPASSED If BeginQueryis called with an unuseid, that
name is marked as used and associated with a new query object.

BeginQuery with a target of SAMPLESPASSEDresets the current samples-
passed count to zero and sets the query active stateW&and the active query
id to id. EndQuery with a target ofSAMPLESPASSEDInitializes a copy of the
current samples-passed count into the active occlusion query object’s results value,
sets the active occlusion query object’s result availablEADSE, sets the query
active state t&-ALSE, and the active query id to 0.

If BeginQuery is called with and of zero, while another query is already in
progress with the samirget or whereid is the name of a query currently in
progress, atNVALID _OPERATIONerror is generated.

If EndQuery is called while no query with the santargetis in progress, an
INVALID _OPERATIONerror is generated.

When an occlusion query is active, the samples-passed count increases by
a certain quantity for each fragment that passes the depth test. If the value of
SAMPLEBUFFERSIs 0, then the samples-passed count increases by 1 for each
fragment. If the value 0SAMPLEBUFFERSIs 1, then the samples-passed count
increases by the number of samples whose coverage bit is set. However, imple-
mentations, at their discretion, are allowed to instead increase the samples-passed
count by the value c8AMPLESTf any sample in the fragment is covered.

If the samples-passed count overflows, i.e., exceeds the ¥aldel (wheren
is the number of bits in the samples-passed count), its value becomes undefined. It
is recommended, but not required, that implementations handle this overflow case
by saturating a2 — 1 and incrementing no further.

The command

void GenQuerieq sizei n,uint *ids);

returnsn previously unused query object namedds. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery. Query objects contain one piece of state, an integer result value. This

Version 1.5 - October 30, 2003

4.1. PER-FRAGMENT OPERATIONS 177

result value is initialized to zero when the object is created. Any positive integer
except for zero (which is reserved for the GL) is a valid query object name.
Query objects are deleted by calling

void DeleteQueriegsizei n, const uint *ids);

ids containgn names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused namadsrare silently ignored.

Calling eitherGenQueriesor DeleteQuerieswhile any query of any target is
active causes aiNVALID OPERATIONerror to be generated.

The necessary state is a single bit indicating whether an occlusion query is
active, the identifier of the currently active occlusion query, and a counter keeping
track of the number of samples that have passed.

4.1.8 Blending

Blending combines the incomirgpurcefragment’s R, G, B, and A values with
the destinationrR, G, B, and A values stored in the framebuffer at the fragment’s
(w, yw) location.

Source and destination values are combined according tbl¢inel equation
guadruplets of source and destination weighting factors determined tjetheé
functions and a constarilend colorto obtain a new set of R, G, B, and A values,
as described below. Each of these floating-point values is clampgd itband
converted back to a fixed-point value in the manner described in settign9
The resulting four values are sent to the next operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending applies only in RGBA mode; in
color index mode it is bypassed. Blending is enabled or disabled &siagle or
Disablewith the symbolic constarBLEND If it is disabled, or if logical operation
on color values is enabled (sectiéri.10, proceed to the next operation.

Blend Equation
Blending is controlled by thblend equationdefined by the command
void BlendEquation(enum mode);
In the following discussion(’ refers to the source color for an incoming frag-

ment,Cy; refers to the destination color at the corresponding framebuffer location,
andC. refers to the constant blend color. Individual RGBA components of these

Version 1.5 - October 30, 2003

178 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

colors are denoted by subscriptspfd, andc respectively.C refers to the new
color resulting from blending.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme given in se@ian.9(Final Color Processing),
as are source (fragment) components. Constant color components are taken to be
floating point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating point. This conversion must leave the values 0 and 1 invariant.
Blending computations are treated as if carried out in floating point.

BlendEquation modeFUNCADDdefines the blending equation as

C=0C,85+CyqD

where C, and Cy; are the source and destination colors, &hdnd D are
guadruplets of weighting factors determined by lthend functionsiescribed be-
low.

If modeis FUNCSUBTRACTthe blending equation is defined as

C=0Cs8S—-0CyD
If modeis FUNCREVERSESUBTRACTthe blending equation is defined as

C=Cy4D—-CsS

If modeis MIN, the blending equation is defined as

C = min(Cs, Cy)

Finally, if modeis MAX the blending equation is defined as

C = maz(Cs, Cy)
The blending equation is evaluated separately for each color component and
the corresponding weighting factors.
Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparat¢ enum srcRGB enum dstRGB
enum srcAlphg enum dstAlpha);
void BlendFung(enumsrc, enum dst);

Version 1.5 - October 30, 2003

4.1. PER-FRAGMENT OPERATIONS 179

Function RGB Blend Factors Alpha Blend Factor
(Sr,Sg,8p) Of (D, Dy, Dy) | Sq 0r Dy
ZERO (0,0,0) 0
ONE (1,1,1) 1
SRCCOLOR (Rs, G, Bs) A,
ONEMINUS SRCCOLOR (1,1,1) — (Rs, G, By) 1— A,
DST.COLOR (R4,G4, Bq) Ay
ONEMINUSDST.COLOR (1,1,1) — (Ryq,Gg, By) 1— Ay
SRCALPHA (A, Ag, Ay) Ay
ONEMINUS SRCALPHA (1,1,1) — (A, Ag, Ay) 1— A,
DST.ALPHA (Ag, Ag, Ag) Ay
ONEMINUSDST.ALPHA (1,1,1) — (Ag, Ag, Ag) 1— Ay
CONSTANTCOLOR (Re, G, B,) A,
ONEMINUSCONSTANTOLOR| (1,1,1) — (R., G., B.) 1— A,
CONSTANRLPHA (Ae, Ag, AL) A,
ONEMINUSCONSTANRALPHA | (1,1,1) — (A, A, A) 1—A,
SRCALPHASATURATE (f.f, f)? 1

Table 4.1: RGBand ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.

1 SRCALPHASATURATEHS valid only for source RGB and alpha blending func-
tions.

2 f =min(A,, 1 — Ay).

BlendFuncSeparateargumentsrcRGBanddstRGBdetermine the source and
destination RGB blend functions, respectively, wisiteAlphaanddstAlphadeter-
mine the source and destination alpha blend functi@isndFunc argumentsrc
determines both RGB and alpha source functions, wisteletermines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in Table

Blend Color

The constant colof’. to be used in blending is specified with the command

void BlendColor(clampf red, clampf green clampf blug
clampf alpha);

Version 1.5 - October 30, 2003

180 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

The four parameters are clamped to the rajigé] before being stored. The
constant color can be used in both the source and destination blending functions

Blending State

The state required for blending is an integer indicating the blending equation, four
integers indicating the source and destination RGB and alpha blending functions,
four floating-point values to store the RGBA constant blend color, and a bit in-
dicating whether blending is enabled or disabled. The initial blending equation
is FUNCADD The initial blending functions ar@NEfor the source RGB and al-
pha functions an@EROfor the destination RGB and alpha functions. The initial
constant blend color iR, G, B, A) = (0,0, 0, 0). Initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color fof’;. If a color buffer has no A value, then
Ay is taken to bd.

4.1.9 Dithering

Dithering selects between two color values or indices. In RGBA mode, consider
the value of any of the color components as a fixed-point value witiits to the

left of the binary point, where: is the number of bits allocated to that component
in the framebuffer; call each such value For eache, dithering selects a value

¢1 such thate; € {max{0, [¢] — 1}, [c]} (after this selection, treat; as a fixed
point value in [0,1] withm bits). This selection may depend on thg andy,,
coordinates of the pixel. In color index mode, the same rule appliesaiding a
single color index.c must not be larger than the maximum value representable in
the framebuffer for either the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragme sy window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer; a color index is rounded to the nearest integer representable in the
color index portion of the framebuffer.

Dithering is enabled witknable and disabled witibisableusing the symbolic
constantDITHER. The state required is thus a single bit. Initially, dithering is
enabled.

Version 1.5 - October 30, 2003

4.1. PER-FRAGMENT OPERATIONS 181

4.1.10 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(zw,yw) coordinates. The logical operation on color indices is enabled or dis-
abled withEnable or Disable using the symbolic constamDEX_LOGIC_OP. (For
compatibility with GL version 1.0, the symbolic consta@GIC_OPmay also be
used.) The logical operation on color values is enabled or disabled=wible or
Disable using the symbolic consta@OLORLOGIC_OP If the logical operation is
enabled for color values, it is as if blending were disabled, regardless of the value
of BLEND

The logical operation is selected by

void LogicOp(enumop);

opis a symbolic constant; the possible constants and corresponding operations are
enumerated in Tablé.2. In this table,s is the value of the incoming fragment
andd is the value stored in the framebuffer. The numeric values assigned to the
symbolic constants are the same as those assigned to the corresponding symbolic
values in the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be givead®y
and to be disabled.

4.1.11 Additional Multisample Fragment Operations

If the DrawBuffer mode iSNONENno change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLEIs enabled, and the value SAMPLEBUFFERSIs one, the
alpha test, stencil test, depth test, blending, and dithering operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the alpha,
stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffers are not modified at this point.

Version 1.5 - October 30, 2003

182

CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Argument value | Operation
CLEAR 0

AND sAd
ANDREVERSE s A\ —d
COPY S
ANDINVERTED | =sAd
NOOP d

XOR sxor d
OR sVd
NOR =(sVvd)
EQUIV —(s xor d)
INVERT -d
ORREVERSE sV —d
COPYINVERTED | —s
ORINVERTED —sVd
NAND (s Ad)
SET all 1's

Table 4.2: Arguments thogicOp and their corresponding operations.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLEIs disabled, and the value 8AMPLEBUFFERSIs one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment's centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the color
sample values are combined to produce a single color value, and that value is writ-
ten into each color buffer that is currently enabled, based obtaeBuffer mode.

An implementation may defer the writing of the color buffer until a later time,
but the state of the framebuffer must behave as if the color buffer was updated

Version 1.5 - October 30, 2003

4.2. WHOLE FRAMEBUFFER OPERATIONS 183

as each fragment was processed. The method of combination is not specified,
though a simple average computed independently for each color component is rec-
ommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are written.
This is accomplished with

void DrawBuffer (enum buf);

bufis a symbolic constant specifying zero, one, two, or four buffers for writing.
The constants aldONEFRONTLEFT, FRONTRIGHT, BACKLEFT, BACKRIGHT,
FRONT BACK LEFT, RIGHT, FRONTANDBACK and AUX0throughAUX:, where

n + 1 is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffieosit_left, front_right,
backleft, andbackright, and to theauxiliary buffers. Arguments other thaxuX
that omit reference toEFT or RIGHT refer to both left and right buffers. Argu-
ments other thaAUX that omit reference tBRONTor BACKrefer to both front and
back buffers.AUX enables drawing only tauxiliary bufferi. EachAUX adheres
to AUX = AUX0+ i. The constants and the buffers they indicate are summarized
in Table4.3. If DrawBuffer is is supplied with a constant (other the@ONE that
does not indicate any of the color buffers allocated to the GL context, the error
INVALID _OPERATIONesults.

Indicating a buffer or buffers usingrawBuffer causes subsequent pixel color
value writes to affect the indicated buffers. If more than one color buffer is se-
lected for drawing, blending and logical operations are computed and applied in-
dependently for each buffer. CalliigrawBuffer with a value ofNONEnhibits
the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

Version 1.5 - October 30, 2003

184 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

symbolic front | front | back | back | aux
constant left | right | left | right | 4
NONE

FRONTLEFT °

FRONTRIGHT °

BACKLEFT °
BACKRIGHT °
FRONT ° °

BACK ° °
LEFT °

RIGHT °

FRONTANDBACK ° ° °

AUX °

Table 4.3: Arguments tBDrawBuffer and the buffers that they indicate.

The state required to handle buffer selection is a set of Upa: bits. 4 bits
indicate if the front left buffer, the front right buffer, the back left buffer, or the
back right buffer, are enabled for color writing. The othdoits indicate which of
the auxiliary buffers is enabled for color writing. In the initial state, the front buffer
or buffers are enabled if there are no back buffers; otherwise, only the back buffer
or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,
boolean a);

control the color buffer or buffers (depending on which buffers are currently indi-
cated for writing). The least significantbits of mask wheren is the number of
bits in a color index buffer, specify a mask. Wheré appears in this mask, the
corresponding bit in the color index buffer (or buffers) is written; whefeap-
pears, the bit is not written. This mask applies only in color index mode. In RGBA
mode,ColorMask is used to mask the writing of R, G, B and A values to the color
buffer or buffersr, g, b, anda indicate whether R, G, B, or A values, respectively,

Version 1.5 - October 30, 2003

4.2. WHOLE FRAMEBUFFER OPERATIONS 185

are written or not (a value afRUEmeans that the corresponding value is written).
In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing.

The depth buffer can be enabled or disabled for writipg/alues using

void DepthMask(boolean mask);

If maskis non-zero, the depth buffer is enabled for writing; otherwise, itis disabled.
In the initial state, the depth buffer is enabled for writing.
The command

void StencilMask(uint mask);

controls the writing of particular bits into the stencil planes. The least significant
bits of maskcomprise an integer mask i the number of bits in the stencil buffer),
just as foindexMask. The initial state is for the stencil plane mask to be all ones.
The state required for the various masking operations is two integers and a bit:
an integer for color indices, an integer for stencil values, and a bit for depth values.
A set of four bits is also required indicating which color components of an RGBA
value should be written. In the initial state, the integer masks are all ones as are the
bits controlling depth value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When the value 0SAMPLEBUFFERSs one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buffer. The color
mask has no effect on modifications to the color buffers. If the color mask is
entirely disabled, the color sample values must still be combined (as described
above) and the result used to replace the color values of the buffers enabled by
DrawBuffer .

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);
is the bitwise OR of a number of values indicating which buffers are

to be cleared. The values ar@OLORBUFFERBIT, DEPTHBUFFERBIT,
STENCIL_ BUFFERBIT , andACCUMBUFFERBIT , indicating the buffers currently

Version 1.5 - October 30, 2003

186 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

enabled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends
on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the erfdiVALID _VALUEIs generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped {0, 1] and converted to fixed-point according to the rules
of section2.14.9

void Clearindex(float index);

sets the clear color indeindexis converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2™ — 1, wherem is the number of bits in a color index value stored in the
framebuffer.

void ClearDepth(clampd d);

takes a floating-point value that is clamped to the rajiigeé] and converted to
fixed-point according to the rules for a windoywvalue given in sectior2.11.1
Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
sis masked to the number of bitplanes in the stencil buffer.

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the rangel, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in the last sectidr2(2 are also effective. If a buffer is not
present, then &€lear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0,0,0,0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.

Version 1.5 - October 30, 2003

4.2. WHOLE FRAMEBUFFER OPERATIONS 187

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by kear mask bitCOLORBUFFERBIT and
the DrawBuffer mode. If theDrawBuffer mode iSNONEthe color samples of the
multisample buffer cannot be cleared.

If the Clear mask bitsDEPTHBUFFERBIT or STENCIL_.BUFFERBIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum(enumop, float value);

(except for clearing it)opis a symbolic constant indicating an accumulation buffer
operation, andralueis a floating-point value to be used in that operation. The
possible operations areCCUMLOADR RETURNMULT, andADD

When the scissor test is enabled (secdoh 2, then only those pixels within
the current scissor box are updated by &wgum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[—1,1]. UsingACCUMbtains R, G, B, and A components from the buffer currently
selected for reading (sectigh3.2. Each component, considered as a fixed-point
value in[0, 1]. (see sectior2.14.9, is converted to floating-point. Each result is
then multiplied byvalue The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and the re-
sulting color value replaces the current accumulation buffer color value.

The LOADoperation has the same effect &8CUMbut the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURNoperation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A componentsuayue and clamps the re-
sults to the rangé, 1] The resulting color value is placed in the buffers currently
enabled for color writing as if it were a fragment produced from rasterization, ex-
cept that the only per-fragment operations that are applied (if enabled) are the pixel
ownership test, the scissor test (sectioh.?, and dithering (sectioi.1.9. Color
masking (sectiod.2.2 is also applied.

Version 1.5 - October 30, 2003

188 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

TheMULToperation multiplies each R, G, B, and A in the accumulation buffer
by valueand then returns the scaled color components to their corresponding ac-
cumulation buffer locations. this casalueis clamped to the range-1, 1]. ADDis
the same asULTexcept thavalueis added to each of the color components.

The color components operated on Agcum must be clamped only if the
operation iSRETURNInN this case, a value sent to the enabled color buffers is first
clamped td0, 1]. Otherwise, results are undefined if the result of an operation on a
color component is out of the ran@ie1, 1]. If there is no accumulation buffer, or if
the GL is in color index modeéiccum generates the err@iVALID _OPERATION

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer usindttaevPixels and
ReadPixelscommands.CopyPixelscan be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation oDrawPixels was described in sectidh6.4 except if theformat
argument wasSTENCIL_INDEX. In this case, all operations described Braw-
Pixels take place, but windowz,y) coordinates, each with the corresponding
stencil index, are produced in lieu of fragments. Each coordinate-stencil index
pair is sent directly to the per-fragment operations, bypassing the texture, fog, and
antialiasing application stages of rasterization. Each pair is then treated as a frag-
ment for purposes of the pixel ownership and scissor tests; all other per-fragment
operations are bypassed. Finally, each stencil index is written to its indicated loca-
tion in the framebuffer, subject to the current settingténcilMask.

The errorINVALID _.OPERATIONesults if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure2. We describe the stages of the pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixelgint x,int vy, sizei width, sizei height
enumformat enum type void *data);

Version 1.5 - October 30, 2003

4.3. DRAWING, READING, AND COPYING PIXELS

189

RGBA pixel
data in

convert
to float

scale
and bias

color table
lookup

convolution

post color table
convolution

color matrix
cale and bias

convert
RGBto L

paths are not shown.

cale and bias ¢

color index pixel
data in

color table
lookup

histogram

byte, short, int, o r float pixel
data stream (index or component)

shift
and offset

index to index
look up

mask to
@"-1)

Figure 4.2. Operation dReadPixels Operations in dashed boxes may be enabled
or disabled. RGBA and color index pixel paths are shown; depth and stencil pixel

Version 1.5 - October 30, 2003

190 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Parameter Name | Type | Initial Value | Valid Range |
PACKSWABBYTES boolean FALSE TRUEFALSE
PACKLSB.FIRST boolean| FALSE TRUHFALSE
PACKROWLENGTH integer 0 [0, 00)
PACKSKIP _ROWS integer 0 [0, 00)
PACKSKIP _PIXELS integer 0 [0, 00)
PACKALIGNMENT integer 4 1,2,4,8
PACKIMAGEHEIGHT | integer 0 [0, 00)
PACKSKIP _IMAGES integer 0 [0, 00)

Table 4.4:PixelStore parameters pertaining ®eadPixels GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple, andGetTexImage

The arguments after andy to ReadPixelscorrespond to those drawPixels.
The pixel storage modes that applyReadPixelsand other commands that query
images (see sectidhl) are summarized in Table4.

Obtaining Pixels from the Framebuffer

If the formatis DEPTHCOMPONENThen values are obtained from the depth buffer.
If there is no depth buffer, the errtMVALID _OPERATIONDCCUTS.

If there is a multisample buffeiSAMPLEBUFFERSIs 1), then values are ob-
tained from the depth samples in this buffer. It is recommended that the depth
value of the centermost sample be used, though implementations may choose any
function of the depth sample values at each pixel.

If the formatis STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the eribivALID _OPERATIONOCCUrS.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled wRkadBuffer.

The command

void ReadBuffer(enumsrc);
takes a symbolic constant as argument. The possible valueSRORTLEFT,

FRONTRIGHT, BACKLEFT, BACKRIGHT, FRONTBACK LEFT, RIGHT, andAUXO0

Version 1.5 - October 30, 2003

4.3. DRAWING, READING, AND COPYING PIXELS 191

throughAUX:. FRONTandLEFT refer to the front left bufferBACKrefers to the
back left buffer, andRIGHT refers to the front right buffer. The other constants cor-
respond directly to the buffers that they name. If the requested buffer is missing,
then the erroiNVALID _OPERATIONis generated. The initial setting fétead-
Buffer is FRONTIf there is no back buffer anBACKotherwise.

ReadPixelsobtains values from the selected buffer from each pixel with lower
left hand corner atz + i,y + j) for 0 < i < width and0 < j < height; this pixel
is said to be théth pixel in thejth row. If any of these pixels lies outside of the
window allocated to the current GL context, the values obtained for those pixels
are undefined. Results are also undefined for individual pixels that are not owned
by the current context. OtherwisBeadPixelsobtains values from the selected
buffer, regardless of how those values were placed there.

If the GL is in RGBA mode, andormatis one ofREQ GREENBLUE, ALPHA
RGB RGBABGR BGRALUMINANCE or LUMINANCEALPHA then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained is
1.0. If formatis COLORNDEX and the GL is in RGBA mode then the error
INVALID _OPERATIONoccurs. If the GL is in color index mode, arfidrmatis
not DEPTHCOMPONENGr STENCIL_INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then onlyoifmat is
neitherSTENCIL_INDEX nor DEPTHCOMPONENThe R, G, B, and A values form

a group of elements. Each element is taken to be a fixed-point val0elinwith

m bits, wherem is the number of bits in the corresponding color component of the
selected buffer (see secti@ril4.9.

Conversion of Depth values

This step applies only fiormatis DEPTHCOMPONEN®AN element is taken to be a
fixed-point value in [0,1] withmn bits, wherem is the number of bits in the depth
buffer (see sectiof.11.]).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.6.5 After the processing described in that section is completed, groups are
processed as described in the following sections.

Version 1.5 - October 30, 2003

192 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

| typeParameter | Index Mask|

UNSIGNEDBYTE | 28 —1
BITMAP 1

BYTE 2T -1
UNSIGNEDSHORT| 216 — 1
SHORT 2 1
UNSIGNEDINT 232 _1
INT 231 1

Table 4.5: Index masks used BgadPixels Floating point data are not masked.

Conversion to L

This step applies only to RGBA component groups, and only ifeh@atis either
LUMINANCEor LUMINANCEALPHA A value L is computed as

L=R+G+B

where R, G, and B are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if thetypeis not FLOAT, final conversion consists of masking the
index with the value given in Table5, if the typeis FLOAT, then the integer index
is converted to a GL float data value.

For an RGBA color, each component is first clamped0td]. Then the
appropriate conversion formula from tablés is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory for
DrawPixels. That is, theth group of thejth row (corresponding to thi¢h pixel in

the jth row) is placed in memory just where tktl group of thejth row would be
taken from forDrawPixels. SeeUnpacking under sectior8.6.4 The only differ-

ence is that the storage mode parameters whose names begiA@ithare used
instead of those whose names begin VWtWPACK. If the formatis REQ GREEN

BLUE, ALPHA or LUMINANCE only the corresponding single element is written.
Likewise if theformatis LUMINANCEALPHA RGB or BGR only the corresponding

two or three elements are written. Otherwise all the elements of each group are
written.

Version 1.5 - October 30, 2003

4.3. DRAWING, READING, AND COPYING PIXELS 193

typeParameter GL Data Type| Component
Conversion Formula
UNSIGNEDBYTE ubyte c=(28-1)f
BYTE byte c=[28-1)f —-1]/2
UNSIGNEDSHORT ushort c=02% - 1)f
SHORT short c=[2%-1)f —-1]/2
UNSIGNEDINT uint c=022-1)f
INT int c=[2%2-1)f -1]/2
FLOAT float c=1f
UNSIGNEDBYTE3.3.2 ubyte c=02N -1)f
UNSIGNEDBYTE2_3_3_REV ubyte c=02N -1)f
UNSIGNEDSHORT5 6 5 ushort c=02N -1)f
UNSIGNEDSHORT5 6 5 REV ushort c=02N - 1)f
UNSIGNEDSHORT4 4 4 4 ushort c=02N -1)f
UNSIGNEDSHORT4 4 4 4 REV ushort c=02N -1)f
UNSIGNEDSHORT5 5 51 ushort c=02N -1)f
UNSIGNEDSHORTL 5 5 5 REV ushort c=02N-1)f
UNSIGNEDINT 8 8 8.8 uint c=02N -1)f
UNSIGNEDINT 8.8 8 8 REV uint c=2N -1)f
UNSIGNEDINT -10.10.10 2 uint c=02N -1)f
UNSIGNEDINT 2.10_10 10 REV uint c=02N - 1)f

Table 4.6: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representatiof) (o a datum of the specified GL

data type €) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
guery commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See Tallg Equations withV as

the exponent are performed for each bitfield of the packed data typeMstt to

the number of bits in the bitfield.

Version 1.5 - October 30, 2003

194 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

4.3.3 Copying Pixels

CopyPixelstransfers a rectangle of pixel values from one region of the framebuffer
to another. Pixel copying is diagrammed in Figdr@a.

void CopyPixelqint x,int vy, sizei width, sizei height
enumtype);

typeis a symbolic constant that must be oneCAILORSTENCIL, or DEPTH indi-
cating that the values to be transferred are colors, stencil values, or depth values,
respectively. The first four arguments have the same interpretation as the corre-
sponding arguments ReadPixels

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in sedi6érf just as ifRead-
Pixels were called with the corresponding arguments. If tige is STENCIL
or DEPTH then it is as if theformat for ReadPixelswere STENCIL_INDEX or
DEPTHCOMPONENTespectively. If theypeis COLORthen if the GL is in RGBA
mode, itis as if thdormatwereRGBAwhile if the GL is in color index mode, it is
as if theformatwere COLORNDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been givemwidth andheight, beginning with final conversion
of elements. The effectii@rmatis the same as that already described.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore PixelTransfer, and PixelMap. This state has been summarized in
Tables3.1, 3.2, and3.3. The current setting oReadBuffer, an integer, is also
required, along with the current raster position (seclidi®). State set withPixel-
Storeis GL client state.

Version 1.5 - October 30, 2003

4.3. DRAWING, READING, AND COPYING PIXELS

195

scale
and bias

'RGBA to RGBA * index to RGBA
looku p

color table
lookup

convolution color table
lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

c|amp final
to [0,1] conversion

RGBA pixel color index pixel
data from framebuff er } data from framebuff er
convert
to float

shift
and offset

index to index
look up

mask to
@" -1

RGBA pixel |—> color index pixel |—>

data out data out

Figure 4.3. Operation dfopyPixels Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

Version 1.5 - October 30, 2003

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider theR*-valued polynomiap(u) defined by

p(u) =Y Bl (u)R; (5.1)
1=0
with R; € R* and
Bj'(u) = (’Z) u' (1 —u)",

theith Bernstein polynomial of degree (recall that0® = 1 and(j) = 1). Each
R, is acontrol point The relevant command is

void Mapl{fd}(enumtarget T wuj, T wg,int stride
int order, T points);

196

5.1. EVALUATORS 197

| target | k | Values
MAP1VERTEX3 3 | x,y, z vertex coordinates
MAP1VERTEX4 4 | z,vy, z, w vertex coordinates
MAPL1INDEX 1 | color index
MAP1COLOR4 4| R G,BA
MAP1NORMAL 3 | z,y, z normal coordinates
MAPLTEXTURECOORO | 1 | stexture coordinate
MAPLTEXTURECOORD | 2 | s, t texture coordinates
MAPLTEXTURECOORD | 3 | s, t, r texture coordinates
MAPL1TEXTURECOORD! | 4 | s,t,r, q texture coordinates

Table 5.1: Values specified by thargetto Mapl. Values are given in the order in
which they are taken.

targetis a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in Ta-
ble 5.1 order is equal ton + 1; The errorINVALID _VALUEIs generated ibrder
is less than one or greater thetAXEVAL ORDERpointsis a pointer to a set of
n + 1 blocks of storage. Each block begins wittsingle-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Tabke.1indicates hows depends omargetand what
thek values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The errtfVALID VALUE results if stride is less than
k. The order of the polynomiabrder, is also the number of blocks of storage
containing control points.

u1 anduy give two floating-point values that define the endpoints of the pre-
image of the map. When a valué is presented for evaluation, the formula used
is

=y
p'(v') = p(

U2 — U1 '

The errorINVALID _VALUEresults ifu; = us.
Map2 is analogous tdlapl, except that it describes bivariate polynomials of
the form

n m

p(u,v) =YY B (u)B}'(v)Ry;.

i=0 j=0

The form of theMap2 command is

Version 1.5 - October 30, 2003

198 CHAPTER 5. SPECIAL FUNCTIONS

Integers Reals

Vertices
EvalMesh -k [ug.uo] [0,1] Normals
EvalPoint [e [0,1] 28R, Texture Coordinates
[vyval Colors
MapGrid Map
EvalCoord

Figure 5.1. Map Evaluation.

void Map2{fd}(enumtarget T u;, T wug,int ustride
int uorder, T vy, T wo,int vstridgint vorder, T points);

targetis a range type selected from the same group as is useMldpd, ex-
cept that the strindMAP1is replaced withMAP2 pointsis a pointer to(n +
1)(m + 1) blocks of storageuorder = n + 1 andvorder = m + 1; the er-
ror INVALID _VALUEIs generated if eithetorder or vorder is less than one or
greater thamMAXEVAL ORDER The values comprisinR;; are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to byoints wq, us, v1, andv, define the pre-image rectangle
of the map; a domain poirf’, v') is evaluated as

v —u v —u

p'(u,v)=p , :
U2 —Up V2 — V1

The evaluation of a defined map is enabled or disabled ®&itable and
Disable using the constant corresponding to the map as described above. The
evaluator map generates only coordinates for texture TEXITUREQ The error
INVALID _VALUEresults if eithetstride or vstride is less thark, or if u; is equal
to u2, or if vy is equal tovs. If the value of ACTIVE_TEXTURES not TEXTUREQ
callingMap{12} generates the erréikVALID _OPERATION

Figure5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}(T arg);
void EvalCoord{12}{fd}v(T arg);

Version 1.5 - October 30, 2003

5.1. EVALUATORS 199

EvalCoordl causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordirfatéyal-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinateg,and’, in that order.

When one of th&evalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, itis as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except thatrtex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. IColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.gMAP1TEXTURECOORDO andMAP1TEXTURECOORL2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if eitherMAP2VERTEX3 or MAP2VERTEX4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes vyields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled Entible
andDisablewith the symbolic constamUTQNORMALIf automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAPVERTEX3, letq = p. FOrMARVERTEX4, letq = (z/w, y/w, z/w),
where(z, y, z,w) = p. Then let

m_ 24 0
ou Ov’
Then the generated analytic norma),is given byn = m/|m]||.

The second way to carry out evaluations is to use a set of commands that pro-
vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.
This is done using

Version 1.5 - October 30, 2003

200 CHAPTER 5. SPECIAL FUNCTIONS

void MapGridl {fd}(int n, T u}, T u));
for a one-dimensional map or

void MapGrid2 {fd}(int n,, T u}, T uh,int n,, T v,
Tuvy);

for a two-dimensional map. In the case MfpGridl «) and v/, describe an
interval, whilen describes the number of partitions of the interval. The error
INVALID _VALUEresults ifn < 0. For MapGrid2, (u},v}]) specifies one two-
dimensional point an¢lu), v) specifies anothen,, gives the number of partitions
betweenu)| andu), andn, gives the number of partitions betweehandvj. If
eithern, < 0 orn, < 0, then the erroNVALID _VALUEoOccurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMeshl(enummodeint pq,int ps);

modeis eitherPOINT or LINE . The effect is the same as performing the following
code fragment, witl\v' = (uf, — u})/n:

Begin(typs);
for i = p; to po Stepl.0
EvalCoord1(: * Au + u});
End();

where EvalCoord1f or EvalCoord1d is substituted forEvalCoordl as appro-
priate. If modeis POINT, thentypeis POINTS; if modeis LINE, thentypeis
LINE _STRIP. The one requirement is that if either= 0 or i = n, then the value
computed from x Avu’ + u] is preciselyu) or uf, respectively.

The corresponding commands for two-dimensional maps are

void EvalMeshZ enummodeint pq,int po,int ¢,
int g2);

modemust beFILL , LINE, or POINT. Whenmodeis FILL , then these commands
are equivalent to the following, withu' = (u, — u})/n andAv’ = (v — v})/m:

for i = q1 toga — 1 stepl.0
Begin(QUAD.STRIP);
for j = p; to ps stepl.0
EvalCoord2(j * Au' + o} , i * AV + v));
EvalCoord2(j * Au' + o) , (i+1) * AV + v));
End();

Version 1.5 - October 30, 2003

5.1. EVALUATORS 201

If modeis LINE, then a call tdEvalMesh2is equivalent to

for i = ¢1 to ¢o Stepl1.0
Begin(LINE _STRIP);
for j = p; to ps stepl.0
EvalCoord2(j * Au' + uf , i * AV + o);
End(); ;
for i = p; to po Stepl.0
Begin(LINE _STRIP);
for j = ¢ to g5 stepl.0
EvalCoord2(i * Aw + u}f , j * A + o))
End();

If modeis POINT, then a call td&evalMesh2is equivalent to

Begin(POINTS);
for i = ¢ to g9 stepl.0
for j = p1 to ps stepl.0
EvalCoord2(j * Aw' + u} , i * AV + v));
End();

Again, in all three cases, there is the requirementihaku’ +u} = v}, nx Au’ +
u) = ub, 0% Av' + 0] = o], andm x Av' + v] = v.
An evaluation of a single point on the grid may also be carried out:
void EvalPointl(int p);

Calling it is equivalent to the command
EvalCoord1(p * Au' + u});
with Au’ andw) defined as above.
void EvalPoint2(int p,int gq);
is equivalent to the command

EvalCoord2(p * Au' + u} , ¢ * AV + v));

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification

Version 1.5 - October 30, 2003

202 CHAPTER 5. SPECIAL FUNCTIONS

consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for eitloer, is
implementation dependent (one maximum applies to bahdv), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordif@teso, 1)

(or the appropriate subset); all normal coordinate maps progducel); RGBA

maps producél, 1,1, 1); color index maps produce 1.0; and texture coordinate
maps producé€0, 0,0, 1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D i§ and 1.0, respectively; for 2-D, they ar@, 0)
and(1.0,1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn into
some region of a window. The region is defined by the current model-view and
perspective matrices.

Selection works by returning an array of integer-valuesnes This array
represents the current contents of tlaene stackThis stack is controlled with the
commands

void InitNames(void);
void PopNamd void);
void PushNamé uint name);
void LoadNameg uint name);

InitNames empties (clears) the name sta@opNamepops one name off the top
of the name stackPushNamecausesameto be pushed onto the name stack.
LoadNamereplaces the value on the top of the stack witime Loading a name
onto an empty stack generates the efMALID _OPERATIONPopping a name off
of an empty stack generatsSACKUNDERFLOVMpushing a name onto a full stack

Version 1.5 - October 30, 2003

5.2. SELECTION 203

generateSTACKOVERFLOWIhe maximum allowable depth of the name stack is
implementation dependent but must be at least 64.

In selection mode, no fragments are rendered into the framebuffer. The GL is
placed in selection mode with

int RenderMode(enum mode);

modeis a symbolic constant: one &ENDERSELECT, or FEEDBACKRENDERS
the default, corresponding to rendering as described until 8BAECT specifies
selection mode, anBEEDBACKspecifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer);

bufferis a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, andis an integer indicating the maximum number

of values that can be stored in that array. Placing the GL in selection mode before
SelectBufferhas been called results in an errone¥/ALID _OPERATIONas does
calling SelectBufferwhile in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by aRasterPoscommand intersects the clip volume (sectibh?) then this prim-
itive (or RasterPoscommand) causes a selectioih WindowPoscommands al-
ways generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the settiAglpfilonMode
When in selection mode, whenever a hame stack manipulation command is exe-
cuted olRenderModeis called and there has been a hit since the last time the stack
was manipulated dRenderMode was called, then &it recordis written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinatesalues of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was
written. The minimum and maximum (each of which lies in the rafige]|) are
each multiplied by23? — 1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (settoB
is performed on these values.

Version 1.5 - October 30, 2003

204 CHAPTER 5. SPECIAL FUNCTIONS

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceay then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by calliiRenderModewith an argument value other
than SELECT WhenevelRenderMode s called in selection mode, it returns the
number of hit records copied into the selection array and resetSdleetBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array untiRenderMode is called. If the selection array overflow flag
was set, therRenderMode returns—1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset wheriRRgaderModeis called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the ctResidter-

Mode value. In the initial state, the GL is in ttRENDERmode. Another flag is

used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the

maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by c&bng
derMode with FEEDBACKWhen the GL is in feedback mode, no fragments are
written to the framebuffer. Instead, information about primitives that would have
been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBuffer(sizei n, enum type float *buffer);

buffer is a pointer to an array of floating-point values into which feedback in-
formation will be placed, and is a nhumber indicating the maximum number
of values that can be written to that arratypeis a symbolic constant describ-
ing the information to be fed back for each vertex (see FiguBe The error
INVALID _OPERATIONresults if the GL is placed in feedback mode before a call

Version 1.5 - October 30, 2003

5.3. FEEDBACK 205

to FeedbackBufferhas been made, or if a call EeedbackBufferis made while
in feedback mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (secti8rb.l) andPolygonModeinterpretation
of polygons (sectiod.5.4 has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decompositian)y, andz coordinates returned
by feedback are window coordinatesyifis returned, it is in clip coordinates. No
depth offset arithmetic (sectio®5.9 is performed on the values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in Secti@n4.8 Only coordinates for texture unit
TEXTUREOQare returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

The GL is taken out of feedback mode by calliRgnderMode with an ar-
gument value other thafEEDBACKWhen called while in feedback modegn-
derMode returns the number of values placed in the feedback array and resets the
feedback array pointer to dmiffer. The return value never exceeds the maximum
number of values passedkeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this casRenderModereturns—1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed
to be written into the feedback buffer befdRenderModeis called.

Figure5.2gives a grammar for the array produced by feedback. Each primitive
is indicated with a unique identifying value followed by some number of vertices.

A vertex is fed back as some number of floating-point values determined by the

Version 1.5 - October 30, 2003

206 CHAPTER 5. SPECIAL FUNCTIONS

Type | coordinates| color | texture| total values|
2D z,y - - 2
3D T,Y, 2 - - 3
3D_.COLOR T, Y, 2 k - 3+k
3D_.COLORTEXTURE| z, vy, 2 k 4 7T+ k
4D_COLORTEXTURE| z, vy, 2, w k 4 8+ k

Table 5.2: Correspondence of feedback type to number of values per versek.
in color index mode and in RGBA mode.

feedbacktype Table5.2 gives the correspondence between feedladter and
the number of values returned for each vertex.
The command

void PassThrough float token);

may be used as a marker in feedback mddkenis returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThroughcommands with respect to primitive specification is maintained by
feedback.PassThroughmay not occur betweeBegin andEnd. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feetjgaekAn over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client
state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the

Version 1.5 - October 30, 2003

5.4. DISPLAY LISTS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:

POINT_TOKENvertex
line-segment:

LINE _TOKENvertex vertex

LINE _RESETTOKENvertex vertex

polygon:

POLYGON OKENn polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP_.TOKENvertex

207

pixel-rectangle:
DRAWPIXEL TOKENvertex
COPYPIXEL _-TOKENvertex
passthrough:
PASSTHROUGHOKENf

vertex:
2D:

fr

Frr
3D_COLOR

f f f color
3D_.COLORTEXTURE

f f f color tex
4D_COLORTEXTURE

3D:

f 1 f f colortex
color:

Frry

f
tex:

Frry

Figure 5.2: Feedback syntag.is a floating-point numben is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending WHKEN

are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedtygek LINE _TOKEN
andLINE _RESETTOKENare identical except that the latter is returned only when
the line stipple is reset for that line segment.

Version 1.5 - October 30, 2003

208 CHAPTER 5. SPECIAL FUNCTIONS

command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement, DrawArrays, DrawElements or DrawRangeElementsare ac-
cumulated into a display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

nis a positive integer to which the display list that follows is assignednamdkis a
symbolic constant that controls the behavior of the GL during display list creation.
If modeis COMPILE then commands are not executed as they are placed in the
display list. If modeis COMPILEANDEXECUTEhen commands are executed as
they are encountered, then placed in the display listn B 0, then the error
INVALID _VALUEIs generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state. It is
only whenEndList occurs that the specified display list is actually associated with
the index indicated wittNewList. The errorINVALID _OPERATIONiS generated
if EndList is called without a previous matchimggwList, or if NewList is called
a second time before callirgndList. The errorOUTOFMEMORY¥ generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list mode@PILEANDEXECUTE

Once defined, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. Ifn. = 0, then the errofNVALID _VALUEIs generated.

The command

void CallLists(sizei n, enum type void *lists);

provides an efficient means for executing a number of display lists an in-
teger indicating the number of display lists to be called, &sis is a pointer

Version 1.5 - October 30, 2003

5.4. DISPLAY LISTS 209

that points to an array of offsets. Each offset is constructed as determined by
lists as follows. Firsttypemay be one of the constarBYTE UNSIGNEDBYTE,
SHORTUNSIGNEDSHORTINT , UNSIGNEDINT , or FLOATiIndicating that the ar-

ray pointed to byistsis an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated). Furthetypemay be one o2 BYTES 3_BYTES or 4 BYTES indicat-

ing that the array contains sequences of 2, 3, or 4 unsigned bytes, in which case
each integer offset is constructed according to the following algorithm:

of fset «— 0

fori=1tob
of fset < of fset shifted left 8 bits
of fset — of fset + byte
advance to nextytein the array

bis 2, 3, or 4, as indicated kype If n = 0, CallLists does nothing.

Each of then constructed offsets is taken in order and added to a display list
base to obtain a display list number. For each nhumber, the indicated display list is
executed. The base is set by calling

void ListBase(uint base);

to specify the offset.

Indicating a display list index that does not correspond to any display list has no
effect. CallList or CallLists may appear inside a display list. (If theodesupplied
to NewList is COMPILEANDEXECUTE then the appropriate lists are executed,
but theCallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least4.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integet such that the indices, . . ., n+s—1 are previously unused (i.e.
there ares previously unused display list indices startingait GenLists also has
the effect of creating an empty display list for each of the indices.,n+ s — 1,
so that these indices all become us€enLists returns 0 if there is no group af
contiguous previously unused display list indices, or # 0.

Version 1.5 - October 30, 2003

210 CHAPTER 5. SPECIAL FUNCTIONS

boolean IsList(uint list);

returnsTRUEIf list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteListq uint list, sizei range);

wherelist is the index of the first display list to be deleted aadgeis the number

of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not com-
piled into the display list but are executed immediately. These aBenLists,
DeleteLists FeedbackBuffer, SelectBuffer, RenderMode, ColorPointer, Fog-
CoordPointer, EdgeFlagPointer, IndexPointer, NormalPointer, TexCoord-
Pointer, SecondaryColorPointer, VertexPointer, ClientActiveTexture, Inter-
leavedArrays, EnableClientState DisableClientState PushClientAttrib , Pop-
ClientAttrib , ReadPixels PixelStore GenTextures DeleteTextures AreTex-
turesResident GenQueries DeleteQueries BindBuffer, DeleteBuffers Gen-
Buffers, BufferData, BufferSubData, MapBuffer, UnmapBuffer, Flush, Fin-
ish, as well as all of th&et andls commands (see Chapi@.

GL commands that source data from buffer objects dereference the buffer ob-
ject data in question at display list compile time, rather than encoding the buffer
ID and buffer offset into the display list. Only GL commands that are executed
immediately, rather than being compiled into a display list, are permitted to use a
buffer object as a data sink.

TexImage3D Texlmage2D TexlmagelD Histogram, and Col-
orTable are executed immediately when called with the correspond-
ing proxy arguments PROXYTEXTURE3D; PROXYTEXTURE2D or
PROXYTEXTURECUBEMAR PROXYTEXTURELD; PROXYHISTOGRAM
and PROXYCOLORTABLE, PROXYPOSTCONVOLUTIONCOLORTABLE, or
PROXYPOSTCOLORMATRIX COLORTABLE

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the culristBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

Version 1.5 - October 30, 2003

5.5. FLUSH AND FINISH 211

5.5 Flush and Finish

The command
void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.
The command

void Finish(void);

forces all previous GL commands to completéinish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enumtarget enum hint);

targetis a symbolic constant indicating the behavior to be controlled, rant

is a symbolic constant indicating what type of behavior is desirdget may

be one ofPERSPECTIVECORRECTIOMINT, indicating the desired quality of
parameter interpolationPOINT_SMOOTHHINT, indicating the desired sampling
quality of points;LINE _SMOOTHHINT, indicating the desired sampling quality of
lines; POLYGONSMOOTHHINT, indicating the desired sampling quality of poly-
gons; FOGHINT, indicating whether fog calculations are done per pixel or per
vertex; GENERATEMIPMAPHINT, indicating the desired quality and performance
of automatic mipmap level generation; ahBXTURECOMPRESSIOMINT, indi-
cating the desired quality and performance of compressing texture imhges.
must be one oFASTEST, indicating that the most efficient option should be cho-
sen; NICEST, indicating that the highest quality option should be chosen; and
DONTCARE indicating no preference in the matter.

For the texture compression hinthat of FASTESTindicates that texture im-
ages should be compressed as quickly as possible, WHIEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTESTshould be used for one-time texture compression, MIGEST should

Version 1.5 - October 30, 2003

212 CHAPTER 5. SPECIAL FUNCTIONS

be used if the compression results are to be retrieve@dtCompressedTexIm-
age(section6.1.4) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints iIDONTCARE

Version 1.5 - October 30, 2003

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in sécidviost
state is set through the calls described in previous chapters, and can be queried
using the calls described in sectibri.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a $8ebtommands. There are
four commands for obtaining simple state variables:

void GetBoolean{ enumvalue boolean *data);
void Getintegerv(enumvalueg int *data);

void GetFloatv(enumvalue float *data);

void GetDouble\ enumvalug double *data);

The commands obtain boolean, integer, floating-point, or double-precision state
variables.valueis a symbolic constant indicating the state variable to retdata

is a pointer to a scalar or array of the indicated type in which to place the returned
data. In addition

boolean IsEnabled(enumvalue);
can be used to determinevlueis currently enabled (as witBnable) or disabled.

213

214 CHAPTER 6. STATE AND STATE REQUESTS

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performedsdtBooleanvis called,

a floating-point or integer value converts RALSE if and only if it is zero (oth-
erwise it converts tdRUB. If Getintegerv (or any of theGet commands below)

is called, a boolean value is interpreted as either 0, and a floating-point value

is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRangevalue, a depth buffer clear value, or a normal coordinate. In these
cases, th&et command converts the floating-point value to an integer according
theINT entry of Table4.6; a value not in—1, 1] converts to an undefined value.

If GetFloatv is called, a boolean value is interpreted as eithéror 0.0, an in-

teger is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the twbepthRangeparameters are returned in the order
followed byf. Similarly, points for evaluator maps are returned in the order that
they appeared when passedMapl. Map2 returnsR;; in the [(uorder)i + j]th
block of values (see pad®7for ¢, j, uorder, andR;;).

Matrices may be queried and returned in transposed form by caBielg
Booleany Getintegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSEMODELVIEWMATRIX, TRANSPOSEFPROJECTIONMATRIX,
TRANSPOSHEXTUREMATRIX or TRANSPOSEOLORMATRIX The effect of

GetFloatv(TRANSPOSEMODELVIEWMATRIX, m);
is the same as the effect of the command sequence

GetFloatv(MODELVIEWMATRIX, m);
T

m=m",
Similar conversions occur when queryiiBANSPOSIPROJECTIONMATRIX,
TRANSPOSHEXTUREMATRIX, andTRANSPOSEOLORMATRIX
Most texture state variables are qualified by the valuA®TIVE_TEXTURE
to determine which server texture state vector is queried. Client texture
state variables such as texture coordinate array pointers are qualified by the
value of CLIENT_ACTIVE_TEXTURE Tables6.5, 6.6, 6.9, 6.15 6.18 and6.29

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE 215

indicate those state variables which are qualified AgTIVE_TEXTURE or
CLIENT_ACTIVE_TEXTUREJuring state queries.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane(enum plang double eqn[4]);
void GetLight{if }v(enumlight, enum value T data);
void GetMaterial {if }v(enumface enum value T data);
void GetTexEnv{if }v(enumeny, enum valug T data);
void GetTexGen(ifd }v(enum coord enum valug T data);
void GetTexParametexif }v(enumtarget enum value
T data);
void GetTexLevelParametefif }v(enumtarget int lod,
enumvalue T data);
void GetPixelMap{ui us f}v(enummap T data);
void GetMap{ifd }v(enummap enum valug T data);
void GetBufferParameteriv(enumtarget enum value
T data);

GetClipPlane always returns four double-precision valuesein these are the
coefficients of the plane equation pfanein eye coordinates (these coordinates
are those that were computed when the plane was specified).

GetLight places information abowialue(a symbolic constant) fdight (also a
symbolic constant) imlata POSITION or SPOTDIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial, GetTexGen GetTexEnv, GetTexParameter, andGetBuffer-
Parameter are similar toGetLight, placing information abowaluefor the tar-
get indicated by their first argument inttata The face argument toGetMa-
terial must be eitheFRONTor BACK indicating the front or back material, re-
spectively. Theenvargument toGetTexEnv must be eithelTEXTUREENV or
TEXTUREFILTER _.CONTROLThe coord argument tadGetTexGenmust be one of
S, T, R, or Q For GetTexGen EYELINEAR coefficients are returned in the eye
coordinates that were computed when the plane was spediigiECTLINEAR
coefficients are returned in object coordinates.

GetTexParameter
parametertarget may be one ofTEXTURELD, TEXTURE2D, TEXTURE3D, or

Version 1.5 - October 30, 2003

216 CHAPTER 6. STATE AND STATE REQUESTS

TEXTURECUBEMAR indicating the currently bound one-, two-, three-dimensional,
or cube map texture objedietTexLevelParameterparametetargetmay be one

of TEXTURELD, TEXTURE2D, TEXTURE3D, TEXTURECUBEMAPPOSITIVE _X,
TEXTURECUBEMARNEGATIVEX, TEXTURECUBEMARPOSITIVE Y,
TEXTURECUBEMAPNEGATIVEY, TEXTURECUBEMAPPOSITIVE _Z,
TEXTURECUBEMARNEGATIVEZ, PROXYTEXTURELD, PROXYTEXTUREZ2D,
PROXYTEXTURESD, or PROXYTEXTURECUBEMAR indicating the one-, two-, or
three-dimensional texture object, or one of the six distinct 2D images making up
the cube map texture object or one-, two-, three-dimensional, or cube map proxy
state vector. Note thalEXTURECUBEMAPIs not a validtarget parameter for
GetTexLevelParameter because it does not specify a particular cube map face.
valueis a symbolic value indicating which texture parameter is to be obtained.
For GetTexParameter, value must be eitheTEXTURERESIDENT, or one of the
symbolic values in tabl&.19 Thelod argument tdGetTexLevelParameterde-
termines which level-of-detail’s state is returned. If tbd argument is less than
zero or if it is larger than the maximum allowable level-of-detail then the error
INVALID _-VALUEOCccurs.

For texture images with uncompressed internal formats, queries of
value of TEXTUREREDSIZE, TEXTUREGREENSIZE, TEXTUREBLUESIZE,
TEXTUREALPHASIZE, TEXTURELUMINANCESIZE, TEXTUREDEPTHSIZE,
and TEXTUREINTENSITY _SIZE return the actual resolutions of the stored im-
age array components, not the resolutions specified when the image array was
defined. For texture images with a compressed internal format, the resolutions
returned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURECOMPRESSEMAGESIZE returns the
size (in ubyte s) of the compressed texture image that would be
returned by GetCompressedTexlmage (section 6.1.9. Querying
TEXTURECOMPRESSEMAGESIZE is not allowed on texture images with
an uncompressed internal format or on proxy targets and will result in an
INVALID _OPERATIONerror if attempted.

Queries ofvalue TEXTUREWIDTH TEXTUREHEIGHT, TEXTUREDEPTH and
TEXTUREBORDEReturn the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
asTEXTUREINTERNAL FORMATor asTEXTURECOMPONENT®Br compatibility
with GL version 1.0.

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE 217

For GetPixelMap, themapmust be a map name from Tale8. ForGetMap,
mapmust be one of the map types described in sedidnandvaluemust be one
of ORDERCOEFF or DOMAIN

6.1.4 Texture Queries

The command

void GetTexlmagdg enumtex int lod, enum format
enumtype void *img);

is used to obtain texture images. It is somewhat different from the other get com-
mandsiexis a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtaif&kTURELD, TEXTURE2D,
andTEXTURE3D indicate a one-, two-, or three-dimensional texture respectively,
while TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPRPOSITIVE LY, TEXTURECUBEMARNEGATIVEY,
TEXTURECUBEMAPPOSITIVE _Z, and TEXTURECUBEMAPNEGATIVEZ indi-

cate the respective face of a cube map textdosl is a level-of-detail number,
formatis a pixel format from Table3.6, typeis a pixel type from Table.5, and
imgis a pointer to a block of memory.

GetTexlmageobtains component groups from a texture image with the indi-
cated level-of-detail. The components are assigned among R, G, B, and A ac-
cording to Tables.1, starting with the first group in the first row, and continuing
by obtaining groups in order from each row and proceeding from the first row to
the last, and from the first image to the last for three-dimensional textures. These
groups are then packed and placed in client memory. No pixel transfer operations
are performed on this image, but pixel storage modes that are applicadéath
Pixelsare applied.

For three-dimensional textures, pixel storage operations are applied as if the
image were two-dimensional, except that the additional pixel storage state values
PACKIMAGEHEIGHT and PACKSKIP _IMAGESare applied. The correspondence
of texels to memory locations is as defined Teximage3Din section3.8.1

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). CdBieig
TexIlmage with lod less than zero or larger than the maximum allowable causes
the errorINVALID _VALUE Calling GetTexImage with format of COLORNDEX,
STENCIL_INDEX, or DEPTHCOMPONENJauses the erroNVALID _ENUM

The command

Version 1.5 - October 30, 2003

218 CHAPTER 6. STATE AND STATE REQUESTS

Base Internal Format | R [G | B | A |
ALPHA 0] 0] 0]A4
LUMINANCHOor 1) Lilo][0]1
LUMINANCEALPHA(or2) | L; | 0 | 0 | 4,
INTENSITY I; 0 0 1
RGB(OI’3) R, | G; | B; 1
RG BA(OT' 4) R, | G| B; | A4

Table 6.1: Texture, table, and filter return valuds,, G;, B;, A;, L;, andI; are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

void GetCompressedTexlmagéenumtarget int lod,
void *img);

is used to obtain texture images stored in compressed form. The parataejets

lod, andimg are interpreted in the same manner aGe&tTexiImage When called,
GetCompressedTexImageanrites TEXTURECOMPRESSEMAGE SIZE ubyte s

of compressed image data to the memory pointed tontty The compressed
image data is formatted according to the definition of the texture’s internal format.
All pixel storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImagevith anlod value less than zero or greater
than the maximum allowable causesIBNALID _VALUEerror. CallingGetCom-
pressedTeximagewith a texture image stored with an uncompressed internal for-
mat causes alNVALID _OPERATIONerror.

The command

boolean IsTexture(uint texture);
returnsTRUEIf textureis the name of a texture object.téxtureis zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,

IsTexture returnsFALSE. A name returned bgenTextures but not yet bound, is
not the name of a texture object.

6.1.5 Stipple Query

The command

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE 219

void GetPolygonStippld void *pattern);

obtains the polygon stipple. The pattern is packed into memory according to the
procedure given in sectiof.3.2for ReadPixels it is as if theheightandwidth
passed to that command were both equal to 32 tythe were BITMAP, and the
formatwere COLORNDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried udBgiFloatv with pname set

to the appropriate variable name. The top matrix on the color matrix
stack is returned byGetFloatv called with pnameset to COLORVIATRIX or
TRANSPOSEOLORMATRIX The depth of the color matrix stack, and the maxi-
mum depth of the color matrix stack, are queried v@tintegerv, settingpname

to COLORMATRIX STACKDEPTHandMAXCOLORMATRIX STACKDEPTHespec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enumtarget enum format enum type
void *table);

targetmust be one of theegular color table names listed in tabB4. formatand
typeaccept the same values as do the corresponding parametesTeximage
The one-dimensional color table image is returned to client memory starting at
table No pixel transfer operations are performed on this image, but pixel storage
modes that are applicable ReadPixelsare performed. Color components that are
requested in the specifiédrmat but which are not included in the internal format
of the color lookup table, are returned as zero. The assignments of internal color
components to the components requestetbhyatare described in Table 1.

The functions

void GetColorTableParameterif }v(enum target,
enumpnameT params);

are used for integer and floating point query.

target must be one of the regular or proxy color table names listed
in table 3.4 pnameis one of COLORTABLE SCALE COLORTABLEBIAS,
COLORTABLEFORMAT COLORTABLEWIDTH COLORTABLEREDSIZE,

Version 1.5 - October 30, 2003

220 CHAPTER 6. STATE AND STATE REQUESTS

COLORTABLE GREENSIZE, COLORTABLEBLUESIZE,
COLORTABLEALPHASIZE, COLORTABLE LUMINANCESIZE,

or COLORTABLEINTENSITY _SIZE. The value of the specified parameter is re-
turned inparams

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter (enumtarget enum format,
enumtype void *image);

target must beCONVOLUTIOND or CONVOLUTIOND. format and type accept
the same values as do the corresponding parametégtdexlmage The one-
dimensional or two-dimensional images is returned to client memory starting at
image Pixel processing and component mapping are identical to thaSetdex-
Image.

The current contents of a separable filter image are queried using

void GetSeparableFiltel enumtarget enum format,
enumtype void *row, void *column void *span);

targetmust beSEPARABLE2D. formatandtypeaccept the same values as do the
corresponding parameters GetTexlmage The row and column images are re-
turned to client memory starting eiw andcolumnrespectivelyspanis currently
unused. Pixel processing and component mapping are identical to th&et-of
Texlmage

The functions

void GetConvolutionParameter{if }v(enum target,
enumpnameT params);

are used for integer and floating point query. target must be
CONVOLUTIOND, CONVOLUTIOND, or SEPARABLE2D. pname is
one of CONVOLUTIONBORDERCOLOR CONVOLUTIONBORDERMODE
CONVOLUTIONILTER _SCALE CONVOLUTIONILTER _BIAS,
CONVOLUTIONFORMAT CONVOLUTIONVIDTH CONVOLUTIOMHEIGHT,
MAXCONVOLUTIONVIDTH or MAXCONVOLUTIOMHEIGHT. The value of the
specified parameter is returneddarams

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE 221

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enumtarget boolean reset
enumformat enum type void* values);

targetmust beHISTOGRAMypeandformataccept the same values as do the corre-
sponding parameters @etTexImage The one-dimensional histogram table im-
age is returned toalues Pixel processing and component mapping are identical
to those ofGetTexImage

If resetis TRUE then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified fésetis FALSE

Calling

void ResetHistogran({ enumtarget);

resets all counters of all elements of the histogram table to Zarget must be
HISTOGRAM

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if }v(enumtarget,
enumpname T params);

are used for integer and floating point quertarget must be HISTOGRAMor
PROXYHISTOGRAMpnameis one ofHISTOGRAM-ORMATHISTOGRAMNIDTH
HISTOGRAMREDSIZE, HISTOGRAMSREENSIZE, HISTOGRAMBLUESIZE,
HISTOGRAMALPHASIZE, or HISTOGRAM.UMINANCESIZE. pname may be
HISTOGRAMSINK only for target HISTOGRAM The value of the specified
parameter is returned params

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enumtarget boolean reset enum format,
enumtype void* values);

Version 1.5 - October 30, 2003

222 CHAPTER 6. STATE AND STATE REQUESTS

target must beMINMAX type andformat accept the same values as do the corre-
sponding parameters @etTeximage A one-dimensional image of width 2 is
returned tovalues Pixel processing and component mapping are identical to those
of GetTeximage

If resetis TRUE then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified iesetis FALSE

Calling

void ResetMinmax enumtarget);

resets all minimum and maximum valuestafgetto to their maximum and mini-
mum representable values, respectiviygetmust beMINMAX
The functions

void GetMinmaxParameter{if }v(enumtarget enum pname
T params);

are used for integer and floating point quetgrget must beMINMAX pnameis
MINMAXFORMATor MINMAXSINK. The value of the specified parameter is re-
turned inparams

6.1.11 Pointer and String Queries

The command
void GetPointerv(enumpnamevoid **params);

obtains the pointer or pointers namedpname in the
array params The possible values for pname are
SELECTIONBUFFERPOINTER FEEDBACKBUFFERPOINTER
VERTEXARRAYPOINTER NORMAIARRAYPOINTER COLORARRAYPOINTER
SECONDARYOLORARRAYPOINTER INDEX_ARRAYPOINTER
TEXTURECOORMARRAYPOINTER FOGCOORMRRAYPOINTER and
EDGEFLAGARRAYPOINTER Each returns a single pointer value.

Finally,

ubyte *GetString(enum name);

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE 223

returns a pointer to a static string describing some aspect of the current GL con-
nection. The possible values faameare VENDORRENDERERVERSION and
EXTENSIONS The format of theRENDERERiNd VENDORstrings is implemen-

tation dependent. ThEXTENSIONSstring contains a space separated list of ex-
tension names (the extension names themselves do not contain any spaces); the
VERSIONString is laid out as follows:

<version number <space-<vendor-specific informatiaon

The version number is either of the forrmajor_-number.minomumberor ma-
jor_number.minomumber.releas@umber where the numbers all have one or
more digits. The vendor specific information is optional. However, if it is present
then it pertains to the server and the format and contents are implementation de-
pendent.

GetString returns the version number (returned in W#eRSIONSstring) and
the extension names (returned in tARETENSIONSstring) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.12 Occlusion Queries
The command
boolean IsQuery(uint id);

returnsTRUEIf id is the name of a query object.ilf is zero, or ifid is a non-zero
value that is not the name of a query objésQuery returnsFALSE
Information about a query target can be queried with the command

void GetQueryiv(enumtarget enum pnameint *params);

If pnameis CURRENTQUERYthe name of the currently active query farget, or
zero if no query is active, will be placed params

If pnamdas QUERYCOUNTEBBITS, the number of bits in the counter ftarget
will be placed inparams The number of query counter bits may be zero, in which
case the counter contains no useful information. Otherwise, the minimum number
of bits allowed is a function of the implementation’s maximum viewport dimen-
sions MAXVIEWPORTDIMS). In this case, the counter must be able to represent at
least two overdraws for every pixel in the viewport. The formula to compute the
allowable minimum value (where n is the minimum number of bits) is:

n = min{32, [logy(maxViewportWidth x maxViewportHeight x 2)]}

The state of a query object can be queried with the commands

Version 1.5 - October 30, 2003

224 CHAPTER 6. STATE AND STATE REQUESTS

void GetQueryObijectiv(uint id, enum pname
int *params);

void GetQueryObijectuiv(uint id, enum pname
uint *params);

If id is not the name of a query object, or if the query object naméd isycurrently
active, then amNVALID _OPERATIONerror is generated.

If pnameis QUERYRESULT then the query object’s result value is placed in
params If the number of query counter bits ftargetis zero, then the result value
is always O.

There may be an indeterminate delay before the above query returns. |If
pnames QUERYRESULTAVAILABLE, it immediately return&ALSE if such a de-
lay would be requiredTRUEotherwise. It must always be true that if any query
object returns result available ®RUE all queries issued prior to that query must
also returnTRUE

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued on the same target and id prior to caBitg
QueryObiject[u]iv, the result returned will always be from the last query issued.
The results from any queries before the last one will be lost if the results are not
retrieved before starting a new query on the same target and id.

6.1.13 Buffer Object Queries

The command
boolean IsBuffer(uint buffer);

returnsTRUEIf bufferis the name of an buffer object. bufferis zero, or ifbuffer
is a non-zero value that is not the name of an buffer objsBuffer returnFALSE
The command

void GetBufferSubData(enumtarget, intptr offset
sizeiptr ~ size void *data);

gueries the data contents of a buffer objectarget is ARRAYBUFFER or
ELEMENTARRAYBUFFER offsetandsizeindicate the range of data in the buffer
object that is to be queried, in terms of basic machine ud@taspecifies a region

of client memory,sizebasic machine units in length, into which the data is to be
retrieved.

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE 225

An error is generated BetBufferSubDatais executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv(enumtarget enum pname
void **params);

with target set toARRAYBUFFERoOr ELEMENTARRAYBUFFERand pnameset to
BUFFERMAPPOINTER The single buffer map pointer is returned fparams
GetBufferPointerv returns theNULL pointer value if the buffer's data store is not
currently mapped, or if the requesting client did not map the buffer object’s data
store, and the implementation is unable to support mappings on multiple clients.

6.1.14 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variable®ughattrib,
PushClientAttrib , PopAttrib andPopClientAttrib commands are used for this
purpose. The commands

void PushAttrib (bitfield mask);
void PushClientAttrib (bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stackRushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The erBfACKOVERFLOWS gener-
ated ifPushAttrib or PushClientAttrib is executed while the corresponding stack
depth iSMAXATTRIB_STACKDEPTHoOr MAXCLIENT_ATTRIB_STACKDEPTHre-
spectively. Bits set imaskthat do not correspond to an attribute group are ignored.
The speciamaskvaluesALL_ATTRIB_BITS andCLIENT_ALL_ATTRIB_BITS may
be used to push all stackable server and client state, respectively.

The commands

void PopAttrib (void);
void PopClientAttrib (void);

Version 1.5 - October 30, 2003

226 CHAPTER 6. STATE AND STATE REQUESTS

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib . Those not saved remain unchanged. The er-
ror STACKUNDERFLOVE generated iPopAttrib or PopClientAttrib is executed

while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

WhenPushAttrib is called withTEXTUREBIT set, the priorities, border col-
ors, filter modes, and wrap modes of the currently bound texture objects, as well
as the current texture bindings and enables, are pushed onto the attribute stack.
(Unbound texture objects are not pushed or restored.) When an attribute set that
includes texture information is popped, the bindings and enables are first restored
to their pushed values, then the bound texture objects’ priorities, border colors,
filter modes, and wrap modes are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to
TEXTUREQis pushed first, followed by state correspondingd EXTURE] and so
on up to and including the state correspondin EXTURK wherek + 1 is the
value of MAXTEXTUREUNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTURK and ending withTEXTUREOQ ldentical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib , PushClientAttrib , PopAttrib , or PopClientAttrib .

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Tal3eex-
plains these types. The type actually identifies all state associated with the indi-
cated description; in certain cases only a portion of this state is returned. This
is the case with all matrices, where only the top entry on the stack is returned,;
with clip planes, where only the selected clip plane is returned, with parameters
describing lights, where only the value pertaining to the selected light is returned;
with textures, where only the selected texture or texture parameter is returned; and
with evaluator maps, where only the selected map is returned. Finally, a “~" in the
attribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped RitbhAttrib , PushClientAttrib ,
PopAttrib , or PopClientAttrib).

The M andm entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

Version 1.5 - October 30, 2003

6.1. QUERYING GL STATE

Stack Attribute Constant

server| accum-buffer ACCUMBUFFERBIT
server| color-buffer COLORBUFFERBIT
server current CURRENBIT
server| depth-buffer DEPTHBUFFERBIT
server enable ENABLEBIT

server eval EVALBIT

server fog FOGBIT

server hint HINT BIT

server lighting LIGHTING _BIT
server line LINE BIT

server list LIST BIT

server| multisample MULTISAMPLEBIT
server pixel PIXEL _MODEBIT
server point POINT BIT

server polygon POLYGOMBIT
server| polygon-stipplel POLYGOMSTIPPLE BIT
server scissor SCISSORBIT
server| stencil-buffer STENCIL_ BUFFERBIT
server texture TEXTUREBIT
server transform TRANSFORMIT
server viewport VIEWPORTBIT
server ALL_ATTRIB_BITS
client | vertex-array | CLIENT_VERTEXARRAYBIT
client pixel-store CLIENT_PIXEL _STOREBIT
client select can’'t be pushed or pop'd
client feedback can’t be pushed or pop'd
client CLIENT_ALL_ATTRIB_BITS

Table 6.2: Attribute groups

Version 1.5 -

October 30, 2003

227

228

CHAPTER 6. STATE AND STATE REQUESTS

| Type code| Explanation

B Boolean

BMU Basic machine units
C Color (floating-point R, G, B, and A values)
CcI Color index (floating-point index value)

Texture coordinates (floating-poist ¢, r, ¢ val-
ues)

Normal coordinates (floating-point y, z values)

Vertex, including associated data

Integer

Non-negative integer

k-valued integerkx indicatesk is minimum)

Floating-point number

Non-negative floating-point number

Floating-point number in the rande, b]

k-tuple of floating-point numbers

Position ¢, y, z, w floating-point coordinates)

T
N
14
7
Z+
Zk) Zk*
R
R-i—
Rla.b]
Rk
P
D

Direction (z, y, z floating-point coordinates)

M 4 x 4 floating-point matrix
1 Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)
n X type | n copies of typeype (n* indicatesn is minimum)

Table 6.3: State variable types

Version 1.5 - October 30, 2003

6.2. STATE TABLES 229

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using @wtBboleany
Getintegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands — the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained usikgabled. However, state vari-
ables for whichisEnabled is listed as the query command can also be obtained
using GetBooleany Getintegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.6.2 are types¢ against a gray background

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

230

aJow 1o ‘g ‘1 ‘o :dns

- T'9'Z | penb ul 1e} 0S S821ISA JO JIaquINN - - v -
uonoNSU0d

- 192 Japun penb ay Jo sadnIaA - - AXE -

- 1972 Jajulod xauan gy duis sjbuel - - (94 -
alow 1o ‘T ‘0 :diuns ajbueln

- 192 Ul Je) 0S S8211ISA JO JIaquinN - - €7 -
duis a|bueLy pu3/uibag

- 192 B Ul S92I11U8A OM] SNoIASId - - AXZT -

- 192 saollaA-uobAjodjo JaquinN - - A -
uobAjod

- 197C pu3z/uibago apisul SaIIBA - - AXU -

- v'e Jajunoo aiddns aui - - “z -
dooj

- 197¢ aul| pug/uibage JO XaUaA 1S4 - - A -

- 19¢ 1S4 BY1 SIXaUBA-aUI|jl SB1edIpU| - - q -

- 192 aul| pug/uibagqil Xxa1aA snoinald - - A -
109[qo

- 192 pus/uibagsaredlpul ‘0 ZUBYM | 0 - "z -

ainquuy 098s uonduosaq anjeA puw) adAlL e8nealso

emu

189

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 1.5 - October 30, 2003

231

6.2. STATE TABLES

uauNd | 2'9°2 pe|yebp3 | onil | Aues|00g199 g ov143903
lualind eT'¢ Uq pijea uonisod Jaisey 9nil |AUes|00dgleD qg AIMVANOILISOdYILSYHINIHAIND
uonisod Jasel
JUBLIND | €T ZYlIM PBIRIDOSSE SB1RUIPIO0D aINiXal |T'0‘0°'0 | AIeO|d199) | [X * G || SGHO00NIXALHILSVHINIHHND
uonisod
JuBMND | €T'Z |481Sel YIM Pareldosse xapul 100D T AJBO0|H199 1D XIANPYILSYHLINIHIND
‘ANabaupes
uonisod
uauNd | €12 Jaisel yum palreroosse 1010 [T'T'T'T Aeo|4199 0 YOT00VILSVHLNIIYND
‘ANabaupes
uauNd | €12 aoue)sIp Jaisel WwalIn)d 0 N EIED) Y JONVLSIGUILSYHINIINND
uaunld | €172 uonisod Jaisel waln)d |T'0°0°0 | Aleo|d189 v&l NOILISOdUILSVHINIHHENO
XOLIoA 1Se|
- 9'Z Ylim pareldosse saleuiplood ainixa) - - I -
XOLIaA
— 9C 1SB| YIM PaleId0SSe Xapul 10]0D - - 10 -
- 9'C X8LI9A 1Se| UM Paleloosse 10|0D - — o) -
jusand 12 aleulpiood Hojwaund | 100 NJeo|d199 124 QHOODDOFINIHUND
‘Aabaupes
Jua.1INI 1C [ewuou waun)d | T‘0‘0 AJe0|H199 N TYWHONINIHHND
JuaIINg 12 SOJeUIPJ00d BINIXa} uaLNd |T'0'0‘'0 | Aeo|H1I99 | IX *g SAHOOOTINLXILINIHNNO
ua.1INI 1C Xapul J0]02 JuUsLINd T AJBO|H199 10 XIANILNIHHND
‘Aabaune s
Jua.1INg 1C 10]02 Arepuodas juaund |[T‘0‘0'0 AJBO|H199 o) HOTODAMYANODISINIHHND
‘Aabaupes
ualind Y4 Jojodwaund |T'T'T'T ANeo|q199 0 HOTOOINIHEND
‘ANabaupes
alnguny '08s uonduosaq anfea puw) adAL anfeA 199
[eniul 199

Table 6.5. Current Values and Associated Data

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

232

Aelje-xalan | 82 Keile xapul ay 03 J81UI0d 0 ABIOIDD | A YILNIOI AVHY X3ANI
Relle-xalan | 82 S92IpuUl UBBMIB(3pLIS 0 Aebauneo | L7 31YLS” AVEYY X3N]
Aelre-xauan | 82 saolpul Jo adAL | 1vO1d nabawpeo | Tz AL AVHEY XIANI
Relle-xalan | 82 a|qeus Aelle xapu| asled pajgeuds| qg AVHHYX3ANI
Aelle-xauon | g'z Apise 10]09 A1epu0das ay} 0 Ja1uI0d 0 ABIOIDD | A Y3LNIOd” AVHHYH0T00AYVANOD3S
Aelre-xauan | 8'Z | SI0]09 Alepuodas usamiaq apiis 0 nebaes | L7 3AILS” AVHEVHOTOOAYVANOD3S
syuauodwod
Aelre-xalan | 82 10]09 Arepuodas jo adAL 1vO14 nabawpen | 8y FdAL AVHEVIOTODAYVANODIS
XaHaA
Aeue-xauan | g'z | Jad sjusuodwod 10]02 Arepuodss € Aabaes | L7 3715 AVHHVHOTOOAIVANODIS
Relle-xalan | 82 a|qeua Aelle 10j0d Arepuodas asled pajgeuds| g AVHHYHO IO AMYANODTS
ARelje-xalan | 82 AeuJe 10|02 8y} 0) J8IUI0d 0 ABWIOIDD | A YILNIOI AVHHVRIOT0D
Aesle-xalan | 82 SJ10J09 UsaMIaQ apLIS 0 nebaes | L7 301Y1S AVHYHOT00
Aesle-xalan | 8¢ sjuauodwod 10|09 Jo adAL 1vo14 nebapes | 87 AL AVHEVUOTOD
Aesle-xalan | 82 xauanA Jad sjusuodwod 100D ¥ nebaes | 7 37IS"AVHHV 0100
ARelre-xauan | 82 a|qeus Aelre 10j0D as|e4 pajgeu3s| g AVEYYHOTOD
Aelre-xalon | 82 Aeure p1oos Boj ay 01 Js1ulod 0 AJBIUI019D) A ¥3LNIOd™ AVHHYTHO0I D0
Aelle-xalan | 82 spJ009d Hoy usamiag apis 0 Aebaes | L7 30I4LSAVHIVTHO00 D0
Aelle-xalan | 82 susuodwod plood Boy jo adAL 1vO14 Aabalunes | ¢y 3dAL AVHEYTHO00 DO
ARelle-xalan | 82 9|qeus Ae.e plood Ho- as|e4 pajqeuss| g AVHYTHO0 D0
Aelsle-xalan | 82 Aelle [ewliou ay) 01 Jauiod 0 ABWIIOISD | A YIINIOJ™ AVHAY TYINHON
Aelre-xauan | 82 S|ewJou Uuaamiag apuls 0 nabapeo | L7 3AILS™ AVHAY TYWHON
Aelre-xalan | 8¢ SaJeulplood [ewlou Jo adAL 1vo14 nebawpes | Sz AL AVHEY TYINION
Aelle-xalan | 82 a|qeus Aele [eWION as|ed pajgeuss| g AVHY TYWHON
Aelre-xauan | 82 Aelre xalaA ay} 0} Jajulod 0 ABWIOIDD | & YILNIOD AVHYY XILTA
Aelle-xalan | 82 S9211JAA UBaMIB] apIIS 0 Aebauneo | L7 QLS AVHY X3 LA
Aelre-xauan | 82 S9)euIplood xauaA jo adAL | I1VO14 nebapes | Tz AL AVHEY X3LIIA
Aelle-xalan | 82 XauaA Jad sareuipioo) ¥ Aebauneo | L7 ER{EPATNRETREN
ARelje-xalan | 82 9|qeus Aeie xalaA as|e4 pajgeu3s| qg AVHEYXTLEIA
Aelje-xalaA | 'z | 10199]8S HUN 8INixa) 8Allde UBlD |03dNLIX3L | Mabawpes | *ey FUNDXALIALOY INTITO
anguny 093 uonduosaq anfeA puw) adAL anjeA 199
[eniul 199

Table 6.6. Vertex Array Data

Version 1.5 - October 30, 2003

233

6.2. STATE TABLES

Aesre-xalan | 262 Buipuiq Jayng Aeure Jusws|s 0 Aebaen 7z ONIGNIGYIHANG” AVHYY INIWT 3
Aesre-xalan | 6z Puipuiq sayng Aelre ayeuipiood Boy 0 Mabaluen 7z ONIGNISUIH3NE" AVHHYTHIO00DOA
Buipuiq
Relre-xalon | 62 Jayng Aelre 10j09 Arepuodas 0 Aebaen A ONIGNIBYIHHNG AVHYY IO TOOAYANOI3S
Aesle-xallan | 62 Buipuiq sayng Aeure bejebpa 0 INELEIED) A ONIANIFUIHANG Aveidy O 143903
Relre-xalon | 62 Buipuiq Jeyng Aeire pi00oxal 0 AobBaNeD | L ZX %G ONIANIETHANG AVHAIVTHO0 FUNLXIL
Aesre-xallan | 62 Buipuiq Jaynqg Aeure xapul 0 INELEIED) A ONIANIEUIHANG” AveidY XIANI
Relre-xaloA | 62 Buipuiq Jeyng Aeure 10j0d 0 Aebauen 7z ONIANIFHIHANG AVHIYAIOTOO
Aesre-xalan | 62 Buipuiq Jayng Aeure fewiou 0 Aebauen A ONIANIEYIHANG" AVHHY TYIWHON
Aesre-xalan | 62 Buipuiq Jeyng Aeire xaluan 0 Aabauen 7z ONIANIFHIHANG” AVHIY X3 LHIA
Aelje-xalan | 62 Buipuig Jayng juaiind 0 nabaupeo 7 ONIANISHTAHNG" AveiY
Aewre-xalan | 8¢ Aelre Bejy abpa ay) 01 J8iuI0d 0 AIBUI0d199D A YILNIOJ™ AvHY 9¥ 143903
Aesre-xauan | 8¢ sbeyjy abps usamiaqg apins 0 Aebaen 7z 3AILS AVHHY OY1439a3
Aesre-xalan | 82 a|qeus Aeue Be|) abp3 | os|ed pajqeus| qg AV V143903
Aeure
Reire-xauan | 82 87euIpJo0d 8INIXal 3y} 01 18I0 0 AIRIUIOI9D) | AX % HILNIO AVHIVTHO00 FUNLXAL
Aelje-xaldA | 87 $91eUIpJO0d 9INIXa) UsamIag apiisS 0 AaBaUNeD | L ZX *g 3AIM1S AYHEYTHO0D TUNIXIL
Aelle-xalen | 82 Sa1euIplood ainxal Jo adAl | 1vOT1d | AMebaupes | Yz x kg IdAL AVHUVTHOO FUNLXIL
Aelje-xalan | 82 wawaja Jad sajeulpiood ¥ AebauNeD | L ZX %G 371" AvHEYaH000 INLXAL
Reire-xauan | 82 9|qeus Aelle aleuipiood ainixa) | asied pajqeuss| gX *¢ AVHEVTHOOOFUNLXAL
angquNy BRELS uonduasag anfen puw) adAL anfeA 189
reniuj 189

Table 6.7. Vertex Array Data (cont.)
Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

234

- 62 Jaquiod Jayng paddew 11NN AJBUIOdIaNg1a0 AXU ¥3INIOd dYNY3dNg
- 6¢C Bejy dew Jayng 3STv4 ABlBWeIedIaNnglaD gxu a3ddviNd3ddnag
- 62 Bejy ssaooe Jayng | JLIHM AVIY | AUSlBWeIedIayng1a e XU SS300VHILdNG
- 6¢C wiened abesn Jayng | MvdA DIIVLS | AuBlBwelediaynglao ¢Z XU 39vSNU3IAdng
- 6'C 9ZIS eyep Jayng 0 ABlaWRIRdIalNg19D L7 XU 3ZISy344Ng
- 6¢ elep Jajng - eregqnsiaynglao AWE XU
alnguny 089S uonduosag anea puw) adAL anjeA 199
[eniu] 189

Table 6.8. Buffer Object State

Version 1.5 - October 30, 2003

235

6.2. STATE TABLES

pajqeus
B|geusjwlojsuen) | zZT'Z aue|d Buiddio Jasn yi as|ed pajgeu3s| gx*9 ANV IddITO
S1uaId1)1909
wiojsuen YA WA aue(d Buiddijo 1esn 0‘0'0'0 aue|ddi|D199 B X %9 ENVIddITO
Jjojuo
B|geus/wlojsuel) | £ TT 2 Buledasal rewsou juaiun)d as|e4 pajqeu3s| g TYWHONITVOSIY
]JO/UO uonezijewlou
B|geusjwlojsuen) |STT2 [ew.ou Juaind as|ed pajgeu3s| q 3ZITYWHON
wJojsuel 2112 apow xuyew juauny MIIATIAON | Asbaupes 4 JAON XId1vN
Jaqiod
- 2112 YOoBlS XUrew aInixa | 1 NERRUEL) +ZX * G HIdIAHIOVLS FHNIX3L
Ja1iod
_ N._”._” N V_OMHW X_‘_HGE Co_uow.—ohﬁ_ H E@@OHCZOO .TN HLd3aMOVLSNOILDO3rodd
Jaquiod
— NHHN v_OMHw X_H—GE >>®_>|_®UO_>_ H E@@@HC_HOO +N HLd3aOvLiS M3IINTIAON
Jaquiod
- €'9'¢c)oels xilew JojoD T Em@wuc_ummu A HLd3a3OVLS™ XI4LVNHOTOD
uodmain T'TT'Z | Telwy Jeau abuel yidag T'0 ARO|4199 Y XT JONVYHLAAA
1odmain T'TT'Z |ua1xa 7 uibuo Lodmaln | T TT Z99S Aabalupen 7 XY L40dMIIA
(XIYLYINFENLXILISOdSNYYL)
- 2112 Y0'lS XLew aInxal Ainuap| NEO|H199 p VX % TX * T XIMLVWIHALXAL
(XI41VNOILOICOHdISOdSNYHL)
- Z'TT'Z | Yoels xurew uonoaloid Anuap| AeO|4199 X *T XI41YIANOILOICOMd
(XI41YIW MIINTFAONISOISNYHL)
- Z'TT'C [X9ElS Xljeuw MIIA-|SPON Anuasp| Aeo|d18D N X * ¢8 XIALY MIINIIAONW
(XI4 LYW HOTODISOdSNYHL)
- e'9'e 3orlS Xujew lojod Anuap| ARO|H4199 PUX *T XIYLVINEOT00
alngLny 098 uonduosag anfea puw) adAL anjeA 199
[eniu| 199

Table 6.9. Transformation state

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

236

Bunyby |/ vT2 Bumasjsponapeys HLOOWS nebanes | L7 TIA0WIAVHS
a|qeus/bo} | 6'¢ pajgeus wns 10jo2 Ji anJit as[e4 pajqeuss| q WNSWO100
uone|noes

Boy 0TS 6o} 10} 81eUIpI002 JO 32IN0S |H1dIANINOVHL | AMebajupnes | ¢z || ousadooood

a|qeus/boy | OT'E pajceus 6oy i aniL os[ed pa|qeu3s| q o0

Boy 0T'E apow bo4 dx3 Nebeupen | f7 300WD04

Boy 0T'E pua Boj Jeaur 0T Aeo[4199 v aNaD04

Boy 0TS uels Boj Jeaul 00 ARO|4199 y 1MVISDOH

Boy oT’S Ausuap Boj [enuauodx3gy 0T ARO|4199 v ALISN3@DO04

Boy oT'e xapul 6o4 0 ATe0|H189 10 X3ANIoo4

Boy oT’e 10j02 Bo4 0‘0‘0‘'o A1RO0|H199 o) ¥0100D04
angLNy 089S uonduosag anjeA puw) adAL anfeA 199

[eniuj 199

Table 6.10. Coloring

Version 1.5 - October 30, 2003

237

6.2. STATE TABLES

Bunybiy TvT2 |0J3u02 J0j0D dOTOD IT1ONIS NELEIIETS) @7 || 1OYINOOUOTOO THAOW LHOIT
Bunyby

Bunyby TVT'¢C papis-om] asN as|eq AUB3|00g199) q 30ISOMLTIAONLHOI

Bunyby TVT2 [e90] SI JOMBIA as|ed AUB3|00g199 g ¥IMIIA OO TIAONW LHOIT
lojoo

Bunyby T'¥T'Z | 9uddsjusiquy (0'T'20'20'20) WEEIEDR) o) ANSIBWY TIAON LHOIT
[eusyew
10 Juauodxa

Bunyby TvT¢ Iejnoads 00 AJeuBIeNI®D | Y X T SSANINIHS
10j02

Bunybiy TvTe yew anIssiwg (0'T'0°0'0°0'0°0) NJ[UBIBNIRD | D X G NOISSIW3
10j02

Bunyb T'vT'2Z |[eusrew Jenoads (0'T'0'0'0°0'0°0) NeldIeNIeD | D X g ¥vIN03ds
lo0joo

Bunyby TvT'Z | [edsrew asnyiq (0'T'8'0'8°0'8°0) NJeUBIBNIBD | D X T 3snaia
10j02

Bunybiy T'vT'2 | [euslew jusiquy (0'T'20'20'20) NJeUSIENI®D | D X ¢ AINZIBNY
Bumjoes) 10j02 Aq

Bunybyy €712 | paloaye (s)soed MOVEANVINON NabaueD 7 30V TVIRIAIVRIOT0D
lojoo
ua.nd Bupjoen
soluadoud

Bunyby EV1'Z [eusleN | ISN44ITANVINIIGWY | Aebeiupe z HALINVAVA TYIREIVAHO0T0D
pajgeus
s| Bupoen

alqeus/bunybl |€vT'Z 10]03 Jl anJ L as|ed psjgqeudsi| q WIRISLYWHOTO0D
pajgeus

ajqreus/Bunyby | T'T°Z | SIBunyby yieniL asled pajqeuls| q ONILHON

anguNy 093 uonduosag anfep puw) adAL anfen 199
femul 199

Table 6.11. Lighting (see also Tal#telOfor defaults)

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

238

Bunyby
Bunyby TvT'C Xapul J0|0d Joj “'spue "“p T'T'0 N[eUBIeNIBD | Y X € X S3XIANRIOT0D
a|qeus/bunyby | T¥T'Z pajcreus 21yby j1 aniL as[ed pajqeuds| gX *8 *LHOI
Bunyb TVTC b1 jo 3|bue 1ods 0°08T MYBImeo JUX %8 4401N210ds
Bunyby TVT'2 w61 Jo usuodxa 1ybipods 00 NIYBITIe9 LA X %8 ININOdXT10dS
Bunyb TVT'C ay6i| jo uonoalip ybipods | (0°T-'0°0°'0°0) MYBImeo ax *8 NOLLOHIA10dS
Bunyby| TV1C 10108} “UBNE dNEIpeNd 00 ANYBIMBD | LY X *8 || NOUVANILIYOLVHAYND
Bunybi VT2 101o®} "uane Jeaul 00 Aybimeo LY X %8 NOLLVNNZ LY 4VaNIT
Bunypiy T¥T2 10]9€) "UsNe JURISUOD 0T NIYBITI9D 44X %8 || NOLVNNILLVINVISNOD
Bunybiy T¥T2C 1ybi| Jo uonisod (0°0°'0°'T'0°0°'0°0) | MBIMLD dX *8 NOLLISOd
Bunybi A4 w61 Jo Ausuajul sejnoads G'Z 99s Aiybimeo DX %8 ¥VINO3dS
Bunyby T¥TC aybi| o Aysusiul asnyiq G'Z 99s NWBIMeD DX 8 3SN31
Bunyby TvT2C aybif jo Aysuajuruaiqwy (0°T'0°0°0°0'0°0) | AWBITIRD DX 8 INZIBNY
ainguny 093 uonduosaq anfea puwd adAL anjeA 199
[eniuj 199

Table 6.12. Lighting (cont.)
Version 1.5 - October 30, 2003

239

6.2. STATE TABLES

a|qeusjuobAlod | z'g'¢ a|qeus a|ddns uobAjod | asjed pajqeuds| g 31ddILSNODATOd

a|ddns-uobAjod | g'¢ a|ddns uobAjod ST | 9ddnsuobAjodies I -
uoneziiaisel apow

a|qeusjuobAjod | g'g'¢ 7140} 3|qeuS 189S0 uobAjod | asied pajqeu3s| q T14135340NOOATOd
uolneziisisel spow

a|qeusajuobAjod | g'g'¢e JNIT} 9|geus 19syo uobAjod | asfed pajgeu3s| g ANIT13SHONODATIO
uolnezialsel spow

a|qeusjuobAjod | gg'¢ 1NIO&P} 91qeus 19syo uobAjod | asied pajgeuds| g INIOd13S440NODATOd

uobAjod G'G'E SHuUn 18syo uobAjod 0 AYe0|H189 m SLINN13S440NODATOd

uobAjod G'Ge 10198} 19540 UoBA|j0d 0 Ae0|H199 Yy ¥O10V413S440NODATOd
(0eq %

uobAjod #'G’€ | u04y) apow uonezusisel uobAljod | 1114 Aabauen €7 X ¢ 3QONNODATOd

a|qeusjuobAjod | g'¢ uo Buiselenue uobAjod | asie4 pajgeu3s| q HLOOWSNODATOd
Jojeoipul

uobAjod T'g¢e MOD/MD d@2ejiuod) uobAjod | MDD Aabajunen Cy 30VLINOYA

uobAjod T'GE suobAjod Buioey yoeqauoly IND [MOve Aabaueo ¢z 300W30V4 TIND

a|qeusajuobAjod | T°g'€ pajgeus Bulno uobAjod | asjeq pajgeu3s| q 30w 1IN0

s|geus/aul| Zre a|qeus ajddns auiq | asfed pa|gqeu3s| q F1ddiLs™aNN

aul| Zve jeadal ajddns aui T Aabajunen 7 1v3d3IYI1ddILS NI

aul| Ve a|ddns auiq ST Aabaueo 7 NY311Vd31ddILS INIT

a|geus/aul| v'E uo Buiserenue aui | asred pajqeuss| g HLOOWS 3NIN

oul| 7'E Yipim aui 0T Aeo|4199 Y HLAIM3NIT

wiod ee SIUSIDIYS0I uonenuany | 00T Ae0|4199 44 X ¢ || NOLVNNILLYIONVLSIQLNIOd

HC_OQ e uollenuane MLQ_G 10} pjoysaiyL 0T Aeo|d189 44 3ZISTIOHSIHHL AV LNIOd
'S9ZIS Julod Ylo0Wws pue pasele
"xewl juspuadap ‘|dwi syl Jo “Xe

wiod ce '9ZIS iod wnwixew pajenuany 1 Aeo|4199 oy XYW3ZIS"INIOd

wiod e 9zIs julod wnwiuiw payenually | 00 ARO|4199 2 NIN3ZIS"LNIOd

a|qeusuiod o uo Buiselenue wiod | asfe4 pajqeuss| g HLOOWS LNIOd

HC_OQ c'e 9ZIS Julod 0T Aleo|q199 +d 3ZIS"INIOd

anguny 093 uonduosaq anen puw) adAL anfeA 199
[emul 189

Table 6.13. Rasterization

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

240

a|dwresninw STy anjeAysew abelanod oAUl | asjeq | Auesjoodies | g L43ANIZOVEINOTTdNYS

a|dwesnjnw eTv anjeA ysew abelanod T A1e0|H1899 Y INTYAZOVHINOITTdINYS
s|qeus/oidwesninw | T abelanod Alipow 01 Xsel | asred pajgeu3s| q 39VHINODTTdINYS
p|qeua/sidwesninw | €T wnuwixew ol eyde 18S | asjeqd | pajqeuds| g ANOOL VHA TV ITdINYS
s|qeus/sidwesnnw | €T{ eydfe wo.y abelanod Ajpoln | asied pajqeuds| g 39VHIN0DOL VHA TV I TdNYS
p|qeus/sidwesninw | T2’ uonezualses ajdwesnniy | anil pajgqeuss| g FWYSILINN

alngLny 095 uonduosaq anfeA puw) adAL aneA 199

[eniu] 1899

Table 6.14. Multisampling

Version 1.5 - October 30, 2003

241

6.2. STATE TABLES

P 0’| 1e abewl ainixa)

- 18¢ dew agno ade) z— | T'g'caas | abew|xal199 I Xu Z INLYOIAN dYNIENOIUNLXIL
pojie w@m_.:_ 91N)X3al

- ._uwm Q@E GQJO womu— NA_V ._”.w.mwmw wmﬂmE_an_nuwo N X Uu Z3NILISOd dVIN'ZaNO3dNLX3L
‘Po’|1e mmﬁE_ 91N}X3al

- 18’ dew agno 9ok} fi— | 17'g'coas | abew|xal199 I Xu A"3AILVOIN AV TGN TINLXIL
P 0’| e abewi ainixa)

- 1'8'E dew agno ade} fi+ | T'g'caas | abew|xal199 I Xu AIAILISOd dVNZENDZANLXAL
pojie wme_ 91N1Xal

- ._uwm Q@E OQ_)_U @OGH_. Xr— ._”.w.mmmw mmmc.:xmn_luww N X U X"IAILYOIAN dVINZ3aNO3dNLX3L
po’jie w@,m_.c_ 91N)X3al

— '8¢ dew agno aoe] T+ | T'g'coas | abew|xalleD I XU XIAILISOd dYNIINOTUNLXIL
rpo

- 8'c Je abewl ainxa) = | g'ceas | abew|xalle IXu Qe IANLXAL
dvINFaNO3dNLX3Ll

9.1N)x3} TT'8°¢ | 01 punog Hom.—QO 9iNIxXal 0 >._®mmuc_a®0 +ZX *g dVINZENDO ONIANIgIHNLXIL
ar3adn.Lix3Lt

21N]1X3al Z1'8°¢ | 01 punoq uow.—QO 9INIXal 0 >_wmwuc_ummu 47 X EX*xQ Az ONIANIgIYNLXIL
pajgeus sI Bulnixal

plqeus/aINIXal | £T'8'S dew agna jianil | asfed pajgeuds| gX*g dYNIENOTUNLXAL
€10 ‘g2 'T Sl Zpajqeus

B|geUS/aINIXa]l | GT'8'E sI Buunxal @z Jlanil | osfed pajqeuss| g XEexX*¢ Q@ 3uNLXaL

anNgLNy EIS uonduosaq anep puw) adAL aneA 199
femui 199

Table 6.15. Textures (state per texture unit and binding point)

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

242

uonelauab

alnxal | 8'8'S dewdiw onewolny 3S7v4 Ja1oweredxalla g xu dYNAINTLYHINTD
uonouny

aInMxal |¥T'8'E uosuedwod ainxal | IvNOI1 AlISlaWRIRdXa]199) 87 X u ONNATUVINOD TANLXIL
apow

aInMxal |¥T'8'E uosLedwod ainixa] 3INON All1oWRIRdX3]199) Ty X U 300N THYINOD TUNLXIL

9.1N)X3] g'8'e 9poW ain)xal EQ&D JONVNINNT | AllSlsweledxa] 199 €7 xu IAOWFHINLXILHLIL3A
m‘cS.ﬁoo.ﬁwwme

ainxal | 8'8°¢ [Te18p JO |9A8] BInIXa] 00 AjiBloweredxal 199 g xXu Svig-aoT3uNLXAL
ELE]

2.In1xa) 8'c | Aeure ainixal WNWIXep 000T AJB1BWRIEdXaI18D) | 47 XU TIAIT XYW IHNLXAL

2IN1x8) 8'c Aelre ainixa) aseg 0 NJS)OWRIEdXDI18D) | 7 XU TIAITISVETANLXAL

2In1xa) 8'C | |re1ap JO |9A8] WNWIXe 000T AJialoweredxal 199 g X u Q0T XYWIdNLX3L

2In1xa) 8'c [1e18p JO |9AS] WNWIUIA 000T- AJld1oweredxa| 199 g xXu QOT NINZYNLXAL

aInMxal |ZT'8'E Aouapisal alnxa] | ZT'8'€99S | AldIBWRIRGX3[199) g xu IN3QISTHTANLXAL

alnxal |Z1'8'S Aioud 108lgo ainxal T NJo1aWRIedX3119D) | [X U ALIMOIMJZANLXAL
(Ajuo sainixa1 Qg)

ainxal | 2'8°¢ apow deim 4pioodxal | 1v3ad3d Jareweredxa189 7 xu W dVIMINLX3L
(Ajuo sainixal
dewsaqnd ‘gg ‘ae)

ainxal | 1'8°¢ apow deim pioodxal | 1v3d3d Jaroweredxa1a9 Sz xu Ldvam3unLxal

alnxa) | /'8'S apow deim spioodxal | 1v3d3Y Jalaweredxa] 199 Sz xu SdVEMIANLXAL
uonouny

aInxal | 6°'8°E uoneoyiubew ainixa | 8'co9s Jalaweredxal 199 Tz XU ALA OVNTUNLXAL
uonouny

ainxal | 8'8°¢ uoneILIUIW SINIXS] 8'c99s la1oweredxal1a9 97 x U U3 NINZENLXAL

alnixa) 8'c 10]092 J8ploq ainixa| 0'0'0'0 Jajoweredxalla DX u ¥0100VIAUOTIANLXAL

alnguny "09s uonduosaq anjep puw) adAL anfeA 199
emu| 199

Table 6.16. Textures (state per texture object)

Version 1.5 - October 30, 2003

243

6.2. STATE TABLES

abeuw
ainixa} passaldwod

- £'8'¢ jJo (s alkgnui) azis 0 |J91Bweled|onaIxaleD | 47 xu 371 39VN3SSTIANODTANLXAL
Jewlo}
[eulajul passaldwod e

- £'g'c sey abewl ainixa) Ji ani| | asjed |laldweledpAsxaleD | g X u QISSTUNODTUNLXAL
uonnjosal

- 8'c yidap s,abewi ainixa) 0 |looweledpAaxalle | L7 xu 3ZISHLAIATANLXAL
uonnjosal

— g8’ |Ausuaiul s,abewi ainixal 0 lajaweledaAaxalles) | Lz X u 37IS ALISNILNIFHNLXAL
uonnjosal adueUIWN

- 8'c s,abew! ainixal 0 |JSloWeled|onaIxaleD | 47 xu 37IS” IONYNINNTINLXAL
uonnjosal

- 8'c eyde s,abew! ainixal 0 |loloweledpAaxalles | Lz xu 3715 VHd TV 3NLXaL
uoinnjosal

- 8'¢c an|q s,abewl ainixa) 0 |J91BWeRIed|oAdTIXaII®D | 4+ Z XU 3ZIS3NIEIINLXAL
uonnjosal

- 8'c uaalib s,abew ainixal 0 |JS1BWeIed|oAdTIXa119D | 4+ Z XU 3ZISNIFUOTUNLXAL
uonnjosal

- 8'c paJ s,abew! ainixal 0 |JolowelredpAaxalles | Lz xu IZISaFRIIUNLXAL

Tewuoy abew (SLNINOJWOD TUNLXIL)

- 8'c | reulaul s,abewi aInixa) T lalaweledanaxallan | *¢ry x u VNSO TYNYILNIZINLXAL
yipim 1apioq

— 8’ pauloads s,abewi ainixal 0 lajaweledanaxalles) | L7 X u ¥3QHOEIUNLXAL
yidap payioads

- 8'c s,obewl ainixal Ag 0 |J9loWeled|onaIxaleD | 47 xu HLd3aTuNLXAL
wbray payroads

- 8'c s.abew! ainxal Ag/Az 0 |loloweledpAaxalles | Lz xu LHOIFHZUNLXAL
Uipim

— 8'c paulnads s,abewi ainixa)l 0 lajaweredanaxalles) | L7 X u HLAIM3HNLXAL

ainguLNy "99s uonduosag anjeA puw)d adAL anjeA 199
[emul 199

Table 6.17. Textures (state per texture image)

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

244

aInxal eT'8'c Buleos Jauiquioo-isod eyd)y 0T AJAUTX31199 X %G ITVOS VHA Y
aInxal €T'8'E Buijess Jauiquoo-isod goy 0T AAUTX31199 X X 3TvosEOY
alnxal €1'8'¢€ Z puelsado eydly | YHATIVDHES | AlAuTXa1199 Ty X % VHJTVZaNv43do
aInxal €T'8'E T puelsado eydly | YHAIVDHES | AlAUTXS1199 Cyx xQ VHJTVTANYY3d0
alnxal e1'8'e 0 puelsado eydly | YHAIVDHES | AlAuTXa1199 Ty X % VHJTYDANVH3dO
3Inixa} €ET'8'E Z puelado g9y | VHATVDYHS | NIAUFXS1199 VZX % 89UZANVHIJO
alnxal €T'8'E T puelado g9y | HOT0IDHUS | ANAUTXS1199 VX x g 89HTANVHIdO
aIn)xa) eT'8'c 0 pueiado g9y | HO102DHUS | AlAuTXa1199 VX x 894DANVHIHO
aIN)xa) €T'8'E Z9oinoseydly | INVISNOD | AlAugxal199 E7X % VHd1vZous
91N]xal €T'8'¢c T ooinos eydly | SNOINTHd NAUTX3]199 E7X % VHJIVIONS
91N}x3l €T'8'¢c 0 924n0s eyd|y JAN1IX3L AIAUTX3]199 E7X % VHJIVDOUS
aInxa) €T'8'E 292In0sS g9y | INVLISNOD | AlAugxal199 €7 X % 89420uS
91N}xal €1'8'c T92IN0S g9 | SNOIATHd AIAUTX3]199 E7X % 999TOS
aInxa) €T'8'E 092Inos g9y | JHNLX3L ANIAUTXB] 199 €7 X % 894D04S
91N)xa} €T'8’E uonouny Jauiqwod eydly | 31v1NAON AIAUTX3]199 97X * VHJV3NIEWOD
aInxa)l €T'8'E uonouny JauIquwod g9y [J1VINAOIN | Alaugxal1e9 87X x 894ANIGNOD
Opue‘y
aInIxa} 7' TT'Z |'L ‘S Jop) uabxal Jo) pasn uonoung | YvaNITIAT | AIUBDXB1I8D) | 97 X X g || FaownaozunixaL
(O pue 'y ‘L 'S I0))
aInxa) P'TT'2 | Sua101ya00 Jeaul| 108lqo uabxal | 1T 299s NUIDX31189 | 1] X IX * ¢ aNY1d103r80
(O pue 'y ‘L ‘s 10j)
aInxal ¥’ TT'Z $wa101209 uonenbas aueld uabxal ' TT Z99s NUBDX3118D | 1] X FX *¢ aNV1d3AT
plgeus/aInxal |'TT'Z | (O 10 'Y ‘1 ‘S sipsjgeus uabxa] as[ed pajqeuds| g XFX*g TNIDIUNLXAL
S UNTIY
aIn)xa) 8'8'¢e Sselq |1e1ap JO [9A3] a4nIXaL 00 AAUTXS]199 YX *g Svig"aoTaMNLXAL
aInxa) eT'8'c 10]02 JUBWIUOIIAUS 3INIXa | 0‘0‘'0‘'0 AAUTX31199) OX *¢ Y0100 ANTIHNLXAL
21N]x3al €T'8'c uonouny uonesldde aimxal | 31V 1NAOWN AIAUTX3]199 97X % ¢, 3JAOW ANTFHNLXIL
aInxa) 12 10193]9S 1lUN aIMXa]l dANdY | 03HNLX3L nsbajupen *Cry UNIX3ALTINILOVY
gLy 089S uonduosaq anfeA puw) adAL anfeA 199
[emu| 199

Table 6.18. Texture Environment and Generation

Version 1.5 - October 30, 2003

245

6.2. STATE TABLES

1a}ing-10]02 OT'TV uonouny do 21607 AdOD nabapen | 9ty 300Nd0™ID0T
a|geua/layng-10j0d | 0T T’ pajgeus do 2160] 10j0D as[e pajqeu3s| g d02I90THO10D
9|geua/layng-10j09 | 0T T pajqeus do 2160| xapu| as[e4 pajqeuds| q (dODIOT:0'TA) dO™DID0T X3ANI
3|geua/Iaung-10j0d | 6TV pajqeus Bulaylg aniy pajqeuss| g ¥3HLIa
194nQ-10]09 8TV 10]0J pusjq uelsuod | 0'0°0‘0 Ae0|d199 Q 4Ol aNTE
1ayng-10j09 8TV uonenbs Buipuslg | AAvDNN4 | Arebawnes Sz NOILYNOF-aNa 18
layng-10j09 8TV uonouny v ‘1sap Buipuaig od3z nebapeo | Ty VHAV1S"aN318
1ayng-10]02 8TV uonouny 9oy 1sap Buipus|g | 0H¥3Z ABBauNeD | Tz || UsaunNTigETy) 894 1Sa aNTTE
layng-10j09 8TV uonouny v 8aunos Buipua|g aNoO nabapeo | Sy VHdvO¥S aNI8
layng-10j02 8TV uonouny g9y aainos buipualg INO Aebaunen | 9Ty || (usunageTa) aouDdys aNas
9|geus/Jayng-10j0d | 8TV pajqeus Buipualg as[ed pajqeuds| q anag
Jayng-yidap 9TV uonouny 1sal Jayng yidaq SSan Mabaunen 87 ONN4HLd3a
B|qeus/iayng-yidsp | 9°T'¥ pajqeus Jayng yidaq as[e pajqeu3s| q 1S31'HLd3a
Jayng-1ouals STV uonoe ssed Jayng yidap [1ousis d3 nsbaen 87 SSVAH1dIASSYdTIONLS
Jayng-|1ouals STV uonoe |rey Jayng yidap [1ousls d3ai nabauen 87 TVHLd3ASSYATIONILS
lagng-|1ouals STV uonoe |rey [10UalS d3aai FNELEIELS) 87 Iv4TIIONLS
layng-jlouals STV an[eA aoualajal |1ouUdlS 0 Aebawneo | L7 4347IONALS
lagng-|1ouals STV ysew |1ouals ST Aebawneo | Lz NSV INTVATIONLS
layng-jlouals STV uonouny 19UAlS | SAYMTY | Aebaiujes 87 ONNTIIONALS
B|geUa/IaYNg-|IoUdIS | T pajqeus Bujouals as[e pajqeuss| g 1S3LIONALS
layng-i0j02 Vv anjeA aoualajal 1sa) eyd|y 0 Aebauneo | LYy 43¥1SILVHAY
13yng-10]02 v'Iv uonounyisal eydly | SAVMTY | Aebawpes | 87 ONNFLSALVHI Y
3|geua/Iaung-10j0d | ¥'T'Y pajqeus 1sa} eyd)y as[e pajqeu3s| g 1S3LVH Y
10sSI0S 2TV X0Q I0SSIOS | Z'T've9s | nabaes | Z X ¥ XO8H0SSI0S
3|geud/I0SSIaS 2TV pajgeus BullossIos as[e4 pajqeu3s| g 1S31H0SSI0S
aINgLNy 093 uonduosaq anjeA puw) adAL aneA 199
[eniuj 199

Table 6.19. Pixel Operations
Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

246

layng-wnooe |2’ anjeA Jea|d Jayng uoneNWnooy 0 A1RO0|H199 LY X || 3nmwvavatownoov
Jayng-|1ouals | £z aneA Jea|d |1ouals 0 nabaueo 7z ANTYAUYITIOTIONALS
lagng-yidep | €2'¥ aneA Jea|d layng yidag T Aabajuen oy INTYAMYIT1OHLIA
(epow xapul
layng-10109 | €Z'¥ 10]02) anjeA Jes|d Jayng J0joD 0 Ale0|d189 1D 3NTVA Y310 X3ANI
(opow
18yng-10|00 | €21 va9YH) anjea Jes|d Jayng 1ojod | 0'0'0‘0 ATe0|H4199 0 3INTVAHYITIOVOT0D
layng-|1ouals | Z2'zZ'y NSBWaIM Jayng [19Ud1S ST nabajuen 7 MSYWILIMTIONILS
Jayng-yidap |z'Z'v Bunum loy pajqeus Jayng yidaq anil | AUesj00g199) qg NSV LIIMHLAIA
1ayNg-10109 | Z'Z'¥ | V10 ‘g ‘9 ‘Y ‘sa|geua a1lum 10joD anil |Auesjoogle | g X ¥ MSYW3LIMMUOT00
layng-10109 | Z'Z'v)Sewsallm xapul 10joD ST nabaueo A MSYIILIMM XIANI
layng-10j09 | T'Z'¥ Buiwelp 10} pa109|as siayng | T'Z'v99s | Aabajuen 0Tz HIHHNET MYHa
gLy 089S uonduosaq anjeA puw) adA]L anfeA 199
[eniul 199

Table 6.20. Framebuffer Control

Version 1.5 - October 30, 2003

247

6.2. STATE TABLES

[axid €9¢ SVIg %Jo anjeA 0 Aeo|fieD 154 svig®
H1d3dio YHdTV IN1aN3I3Ido

[axid €9¢ 3y s T 31vDS 740 anjep T Aeo|fie9 q JvosTe

[oxid €9¢ 13S440"X3ANI40 anjeA 0 Agbauneo Z 1354407X3aNI

[axid €9¢ 1dIHS X3 ANIJ0 anfeA 0 AaBaueo Z L3IHS™X3ANI

|jaxid £'9'¢ | paddew are sanjea [1oua3s JI anl] | as[ed | AueajooglaD) g TONILS dvI

|axid £'9'c paddew ase si0j02 JIani] | asjeqd | AUBa|00g199) q 40100 dVIN
alois-jexid | z'e'y LININNDITVYADIVYIO0 anjea 14 INETEINIEL) +7 ANIWNDVHOvd
alois-pxid | z'e'y ST13aXId” dIXSHIOVI0 anjep 0 Agbauneo | 47 STAXId NS HOv
alois-jaxid | z'e'y SMOY dIXMSHIV40 anjep 0 Aebae | L7 SMOYdINS OV
alois-pxid | z'e'y HLONITMOINDVJO0 8njep 0 Agbawuneo | 4z HLONITMOXYOvd
alois-jaxid | z'e'y SIADVINI™ dIXSHIV IO BnjeA 0 Aebae | 7 SIOVAIAINS OV
alois-pxid | z'e'y LHOIFHIOVINIXNOV 4O anjep 0 ngbawuneo | 4z LHOIFH IOVININOV
alois-jaxid | z'e'y 1SdId9STHIVdI0 8N[eA | 8s[ed | Aues|00g1eD q 1S¥I"8S 1OV
alois-pxid | z'e'y SILAGAVMSHIV IO anjep | 8sjed | AuesjooglsD q SILAGAYMS MOV
alois-jaxid | T°9°¢ ININNDITWIDOVINNIO BnjeA 14 Asbae | 7 LNIWNOITYHOVANN
alois-jexid | T°9'¢ S13XId” dIASHAIVANNJO anjep 0 AeBaueD +Z STEXId dINSHIVANN
alois-loxid | 7'9'¢ SMOY” dIMISAOVANN40 anjeA 0 Asbae | L7 SMOY dINS™OVANN
alois-jaxid | T°9°¢ HLONITNONDIVANNJO BNjep 0 Agbawuneo | 4z HLONITMOUMOVINN
alois-axid | 7°9'c | SADVINIT INSADVANNLO 8NnjeA 0 Asbaeo | 17 SIOVIIIISHOVANN

1IHOIFHEOVINMOVANN
alois-jaxid | T°9°¢ JO anfep 0 Aabaunen L Z || LHOEH IOVAINIOVANN
alois-jaxid | T°9°¢ 1SHId dST™MOVANNJO 8NjeA | 8sjed | AUeaj00d1a9) q LSUIFESTHOVANN
alois-jaxid | T°9°¢ SALAAVYMSIDOVANNJO 3NjeA | asjed | AUes|00gleD) q STLAEAVMSHOVANN
ainquny 0es uonduasag anpen puw) adAL aneA 199
[emuj 199

Table 6.21. Pixels

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

248

salnua a|ge] 10j02 AlId18Weled
[axid ¢'9'c | 01paldde sioloelselg |0‘0‘0‘0 -9|qe110j0D189 W X € SvIg"318VIH0T0D
Salnua a|ge] 10j09 AlId1BWeIed
|axid €'9'¢ | 01 paldde si010ef 8[eds |T'T'T'T -9|0eL1 10|09 X8 31v0S 318VI0100
ALISN3LNI
J0O3ONVNIANT
YHJ1VY 3N1gGN3I3do
a3y si ziuonnjosal AlIglaWeled
- £'9'¢ | wauodwod s|ge) Joj0D 0 -9]ge1J0|0D18D | LZ X & X T X9 37IS-"31gv1 010D
yipim ALIBlaWeled
- ¢'9'c | pauads sa|gel JojoD 0 -9|qeL10|0D199 LZXEXG HLAIM 318VLH0T0D
Tew.lo} abeuwl All1oWeled
- e'9¢g [eusaiul sajgel Jojod | vagoy -9|qeL10|0D199 Ty xexyg LYWHO4"318V140 100
a|qe]
= £'9'¢ | 10]02 X11ew 1ojod 1sod | Aidwsa 9|gel.10|0D19D I 318VLHOT0O” XIHLVAHOT001S0d
s[qe)
- €'9'c 10]02 UONN|OAU0D 1S0d | Aidwia 9|(e110]|0D199 I 378VLH0TO0 NOILNTOANODLSOd
= €'9'¢ a|qer Jojo) | Aadwis 3|(eL10]|0D199 T 378140100
auop
s1 dn)ooj a|qel J10j02
a|qeus/axid | £'9'¢ | Xurew Jojod1sod Jianil | aspeq pajgeuds| g 318VLH0T0D” XIMIVAROT091SO0d
auop
s1 dn)ooj a|qel J10j02
a|qeus/axid | £'9'¢ | uonnjoAuod 1sod Jianil | aspeq pajgeu3s| g 378V1 4010 ™NOILNTOANOI1SOd
auop sI dnxooj
a|qeusyjexid | £9'¢ a[ge1 J0jo2 Jl anil | as|eq pajgeu3s| q 378140100
anNguny 095 uonduosaq anjep puw) adAL anjen 199
[eniu| 199

Table 6.22. Pixels (cont.)

Version 1.5 - October 30, 2003

249

6.2. STATE TABLES

AB1BWElRd
- G'9'e | Wbiay Jayy uonnjoauod 0 -UuonN|oAUODIRD | 1 Z X ¢ LHOIFHNOILNTOANOD
AlB18Weled
— G'9'S | UYIpIM J3}J1} UOIIN|OAUOD 0 -UONN|OAUODIRD) | L Z X € HLAIMNOLLNTOANOD
Teuwlo) feusaiul AlIR1oWeled
- S9'€ I3}l uonnjoAuod | vE9d -uonn|oAu0DIRY | 7 X ¢ LVAROFNOILATOANOD
S8L1ua I8}|l} UONN|OAUOD NJB1aweled
[oxid ¢'9'¢ | o01palndde siooe)selg | 0'0‘0‘'0 -UONNJOAUODIBD) | 4 X € SVIE LTI NOILNTOANOD
S8LIJuUd 18}|1} UOIIN|OAUOD NJa1aweled
[axid £'9'¢ | 01 paldde si010e} 91€3S | T'T'T'T -UoNNJOAUODIBD) | 4 X € 3TYOS LTI NOILNTOANOD
apouw AlIR18Weled
|oxid S9¢ J3plog uonnjoauod HoNd3d -uonnjoAuoDeD | 'Z X ¢ SAOWAIAUOENOILNTOANOD
AlS1aWeled
[axid G'9°¢ 10]09 J9pIog uonnjoAuod | 0‘0°0‘0 -UoNN|oOAUODID | D X ¢ ¥OTOOUIAHOT NOILNTOANOD
JE 191
- £'9'¢ | uonnjoAuod g|geredas | Aldwas | -4 -9|qeredasieD | [X ¢ Qea1avavdas
cloT 1914
— €'9'c | slasiayy uonnjoauod | Adwa -UONN|OAUODIRD | [X g QT'NOILNTOANOD
auop SI UON|OAUOD
a|geusyaxid | £'9°¢ dz 9|qesedas jianil | asied pajqeuss| g azanavvdas
auop
a|geus/axid | £'9°¢ |SI uonNoAUOD g Jianil | asfed pajgeus| g QZ'NOILNTOANOD
auop
3d|qeus/exid | £'9°¢ [SIUOAN|OAUOD T Ji8nil | asfed ps|gqeu3s| q AT NOILNTOANOD
aNguNy 095 uonduasaq anfeA puw) adAL anjeA 199
[eniul 199

Table 6.23. Pixels (cont.)

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

250

sdnoub jaxid sawnsuod AllI1BWRIRd
- ¢9'¢ | Pulwwelboisiy ji aniy | asred -welboisiHIe9 g YINISTWVEOOLSIH
JONVNINNTI0 YHA TV
INTANIIYD Q3 S!
aonnjosal wuauodwod ALBlaWeled
- €'9'E a|qe] welboisiH 0 -welBoIsIHIeY | +Z X T X G 37IS" T WYHOOLSIH
Jew.oy AlBlaWeled
= £'9°'¢ |feussiul a|ger welboisiH |vdoy -welbolsiHIeD Sy X g LYWHOFWYHOOLSIH
AlBlaWeled
= £'9'c | ypm a|qel welbolsiH 0 -welbolsiHIeD L7 X HLAIMWYSOOLSIH
- €'9'E a|qel weiboisiH |Adwa welbolsiHIe9 I WYHOOLSIH
pajqeusa
a|qeusyjaxid | £'9'¢ |sI Bulwwelbolsiy ji aniy | asred pajgeu3s| g WVH9OLSIH
XUTew 1ojod Jaye
[axid £'9°'¢ |slo1oe) seiq Jusuodwo) 0 AJe0|d199 Yy SVIE"@" XI4IYAOT001S0d
XUTew 1ojod laye
[exid £'9'¢ $1010®} 3[eds Jusauodwo) T N B ETS) y 31V0S 2 XIMIVINHO1091S0d
uonNjOAUOD Jaye
[axid £'9°'¢ |sloioe} seiq usuodwo) 0 DNUEEIED) Y SVIE @ NOILNTOANOJ1SOd
VHAIV
10 3IN1GN3I3IEO a3
S| ZUONN|OAUOD Jale
[oxid £'9'¢ $10]10®} 3[eds Jusauodwo) T AeO|4199 y 37Y0S 2'NOILNTOANOI1SOd
anguny 089S uonduosaq anjeA puw) adAL aneA 199
[eniu] 199

Table 6.24. Pixels (cont.)

Version 1.5 - October 30, 2003

251

6.2. STATE TABLES

[oxid AL Jayng 82.inos peay Z2'Syo9s Aabajupen €7 ¥33Hngavay

- €9¢€ 13|qe) JO 8ZIS T INEEIER) +Z azis @

g'ealqeL
wo.j sweu dew
e S| 489|ge) uone[suel]
- €9¢ de|axidxapu| S.0 dewPXIdIeD | ZX *xg& X g i
e'e9o|gel
woJ} aweu dew
e S| 489|ge) uone[suel]

- €9¢ deexid vaoy S.0 deIeXIdIeD | ¥ X *TE X 8
|axid ¥'9'¢ Jojoe) wooz fi 0T Ae0|d189 Yy AW00Z
[oxid '9°¢ 1010B] WO00Z T 0T AJRO0|d199 y X'WO0Z

sdnoub jaxid sawnsuod AllB1aWeIed

- e'9¢g Xeuwuiw JI aniy asje -XeWUuIN189 g SINIS™ XYINNIW

Jew.oy AlBlaWeled
- €9¢ [eutsjul a|gel Xewuln vdaod -XeWwulNIeD Yy LYWHOS™ XYINNIN
- €9¢ 3(0e) XewulN | (www'w) (NN IN‘IN) XewulNR9 ul XYANIW
pajgeua
a|qeus/jaxid | £9'¢ S| Xewuiw j1 sanil asied pajqeus| q XVANIN
gLy 098G uonduosaq anfeA puw) adAL anjeA 199
[emu| 199

Table 6.25. Pixels (cont.)

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

252

pajgqeus

a|geus/eAs | T'G uonelauab ewlou dijewolne Jianll | asieq4 | psjgeus| g WWHON-OLNY

|ena TG suoIsIAp pub pg T'T Aeo|4199D 47 X% SININO3S AIdOZdVIN

[ena TS SUOISIAIP pub pT T AJe0|d199 7 SINIWOIS A TdVIN

[ens TS swuiodpua pub pz |T'0‘T‘0 | Meojd189 Y X¥ NIVINOQ™QIN9ZdVIN

[ens TS sjulodpus pub pT | T'0 | AIRO|419D qxg NIVWOT QIO TdvI

a|qeusjens | T'S adA1 dew sI zsajqeusa dew pz | asfeqd | pajgeuds| g %6 T ZdvIN

a|qeusjens | T'S adA1 dew s| wsajqeus dew pT | asfeqd | pajqeu3s| g X6 @ TdYIN

- T'S swuiodpus urewop pg | 1°'geas | adepniao YXFX6 NIVINOQ

- TS sjulodpus urewop ptT | T'ge9s | Adepieo Y XgX6 NIVWOQ

— TS swuiod jouod pz | T'Geas | ANdeNIeD) | U X *x8X %8 X 6 44300

- T'G swiod |0au0d PT | T'Geds | AldeN1a9 WX *8 X6 44300

— TS siapJo dew pg T'T ndepieo 87 X T X6 ¥3aHo

- TS Japlio dew pt1 T Nde199 *87 X 6 ¥3ayo
ainquny "08s uonduosaq anjep puw) adAL anfeA 199

[emu| 1899

Table 6.26. Evaluators&SetMap takes a map name)

Version 1.5 - October 30, 2003

253

6.2. STATE TABLES

iy 9'G | 1y Aupenb uoissaidwod ainxal |3YVIINOQ | Aebaupes | &7 INIHNOISSIdINODHNLXAL
iy 9'g july uonelauab dewdi |[IHYOINOQ | AMebapes | €7 INIH dYNdINSLYY3NTD
uly 9'g iy bo4 |34VOINOQ | Mabapes | 7 ANIHDO
iy 9'G Iy yroows uobAjod |IJHVYOINOQA | Aebawpes | &7 INIHHLOOWSNODATOd
iy 9'g Wiy yroows aui] |34vO1NOQ | Mebawpes | €7 INIHHLOOWS 3NN
Uy 9'G 1UIY Yyloowss UIod |3HVYIINOQd | Mebaupes 574 INIHHLOOWS™INIOd
1y 9'G July uoIidal1i02 ®>_H0®thmn_ JHVOINOAd Emmmuc_ymw 1374 LINIHNOILOFHHOI3AILOIdSHAd
ainquuy '098s uonduasag anen puw) adA1 aneA 189
[emiu| 109

Table 6.27. Hints

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

254

- TIT¢C SUOISUBWIP MOAMBIA WNWIXeN | T'TT299s | Aebanes | 47 X g SWITLHOdMAIA XYIN
Japlio

- TS [elwouAjod Jorenjens wNWIXep 8 nabaupen A YIQUO™ VAT XVIN

- 'S Bunsau |2 1s1| Aejdsip wnwixen ¥9 INEEIVIEL) 7 ONILSAN"LSIT XYW
yidap

- 2'S >9B1S aWeu Uonda|as WNWIXe|A ¥9 INELEIIEL) A H1d3aYOVLS INYN" XYW
a|ge) uone|sues]

- £9¢ deaXie JO 9ZIS wnwixe VAS INETEIIE]S) 7z 378VLdVINT3XId XYW
uoisuawip

- T'8'c 8bewr ainixa) dew agno wnwixey 9T INELEINEL) 7z 3ZISTUNLXIL dVIWIEND" XYW
selq |re1sp

- 8'8°S |10 |9A3] 8IN1X8] SINjOSE WNWIXeN| 072 AJe0|d189 Y SVIE"a0TIUNLXAL XYW
uoisuawip

- 78S abewl ain)xal QT/dZ WNWIXe 9 nabaueo 7z 3ZISTUNLXAL XY
uoisuawip

— T'8°€ abewl ainixal A€ WNWIXe|A 9T INELEIINEL) A 3ZISTUNLXILAE XYW
™ipue "wWaalds ul uoisioaid

- € [@x1dgns J0 suq Jo JaquinN 1% NELEIIED) “Z sLigaxidans
3or1s Xurewl

- Z'TT'Z BInixal Jo yidap Jaquinu wnwixep 2 INELEIIE]S) 7z H1d3aMOVIS IUNLXAL XYW
yidap

— Z'TT°Z | Moers xurew uonosloid wnwixep Z INELEIINEL) 7z HLd3AYOVLSNOILO3r0dd™ XYW

- ¢TT¢ r_uawb Moe1S MalA-|9pow wnwixen PAS Aabalupen +7Z H1d3a3OVLS MIINTIAOW XY

- £'9'¢ |yidap yoei1s X1ew Iojod wnwixen Z INETEIIIE]S) 7 H1d3aMOVLS™ XIIYINHOT0™ XYIN
saue|d

- ZT'Z |Buiddid Jasn Jo Jaquinu winwixep 9 Adbaluen Z SINVIAdITO" XY

- TVYTC Sybi| JO Jaquinu winwixe 8 INELEIIIEL) A SLHOIT XVW

ainquuy 08s uonduoasag anen puw) adAL anen 189
WNWIUIN 199

Table 6.28. Implementation Dependent Values

Version 1.5 - October 30, 2003

255

6.2. STATE TABLES

Auenuelb

(ALIIVINNYEO HLAIMANIT T TA)

- v'E YIpIMm aul| paseljeluy - Aleo|d199 +d ALIIVINNYYO HLAIM INITHLOONS

SYIPIM aul| paseljenue (IONVE HLAIMANIT T TA)

— V'E Jo (Iy 01 0]) abuey T'T ANeO|4189 | 1Y X T JONVY HLAIM INITHLOOWS
SyIpIm aul|

— '€ |paselfe jo (1y 01 0]) abuey T'T ANeO|4199) | LY X ¢ JONVIHLAIM 3NITa3SYNY

Auenuelb (ALIMYINNYHOTZISINIOM T'TA)

— €€ 9zIs Juiod paselenuy - AJeo|d189 +dq ALIMVINNYYOFZISINIOdHLOOWS

S9ZIS E_OQ poseljenue (IONVYIZISINIOL ‘T'TA)

- c'e JO A__._ 0] o_v abuey T'T ANeO|H199 | 1Y X ¢ IONVHIZISTINIOdHLOONS
sazis juiod

— e |paselfe Jo (1y 01 0]) abuey T'T NeO|H19D) | LY X ¢ JONVHIZISINIOI"A3SVITY
1SIX9

- 9 slagng ybu 7 us| J anag - AUB3|00glaD) qg o3¥3lLs
1SIXa siajjng

- T2V Yoeq % 1Uolj Jl anil - AUR3|00g1aD) qg ¥314ng319gnoa
saxapul

- L'C 9J0]S sJiajng 10jo2 JI ani| - AUB3|00d199 qg A0~ X3ANI
eqhl

— 1'C 9101S SsJajing 10|02 JI anlj - AUB3|00dlaD) q 3A0NVE9Y
Siajing

- T2V Arejjixne Jo JaquinN 0 INELEITIELS) +7Z S¥334Ng XNV
a|qe] weliboisiy

- €9'¢ 31 JO 3ZIS WnNwixen A - 7 -
a|qe}

— €'9'¢ | 10]092 B JO 8ZIS WnwiIxXe rAS - |tz x¢ -
»oe]s ainglune ual|d

- 9 3y} Jo yidap wnwixen oT INELEIIIEDD) A HLdIAMOVLS gIdLLY INSIO™ XY
»oe]s ainglme Isniss

- 9 a9yl jo EQ@U wnuwixew 9T ?.mmmE:mO +7Z H1d3aMOVLS aId 1LY XVYIN

ainguuy '0es uonduosaq anjen puw) adAL anjen 199
wnuiuin 189

Table 6.29. Implementation Dependent Values (cont.)

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

256

suq

- ZT'T'9 Uewnod Aianb uoisniooQ | ZT T°999S WWSElle Bl 7z SLIgYILINNODAYIND
slew.o}
aIn1xa] passaldwod

—_ m”mwm UOHM._QEJCO "_.O ._mQEDZ O E@@@uc_wwo N S1IVINHO43dNLXI1ATSSTAdNOD WNN
SJeW.o} aInxa)

- £'8'¢ passaldwod pajesswnuly - nebapen | Z X0 SIVWHO TN LX3ITISSTHINOD

- AL az1s ysew abelano)d 0 nabaupen 7z SIdNYS
siaynq

- T'Z'€ | adwesnnuw jo JaquinN 0 Adbaluen 7 SHIHNGITANVS
(zs paaoxa 0110U)

- 9'¢ Sliun ainixa} JO JaquinN Z INELEIIIEL) 47 SLINNZUNLXIL XV
S92IIBASIUBW
-9|3abueymelq
JO Jaquinu wnwixew

- 87 papuawiwodsy - Eommuc:mmu A SIDILAFASLININTTI XVIN
S92IpuIsiuaw
-9|3abueymelq
J0 Jagwinu wnwixew

- 87 papuswwosay - Emmwuc_HoO +Z SIDIANISLNINITI XVIN

311} UONN|OAUOD AlI1oWeled
— M._V hO HS@_OF_ EDE_XG_\/_ m |CO_H3_O>COOHOQ +N X N 1HOIFH NOILNTOANOD™ XVIN
1311} UofN|oAUOD Alld1BWeIed
- 1o0% JO YIpIm wnwixew S -UOoIIN|OAUODIRD) | 47 X § HLAIMNOILNTOANOD™ XVIN
ainquuy 089S uonduasaq anjea puw) adAL anjen 199
WINWIUIN 199

Table 6.30. Implementation Dependent Values (cont.)

Version 1.5 - October 30, 2003

257

6.2. STATE TABLES

VHJV 10 3N1GNIIYD
a3y st yiusuodwoa Jayng

— % uoire|nwindode 2ul siq 4o JaquinN - Aebawnen | 7 || sus*wnoov
- %4 saue|d |10U8)s JO JBqWINN - Aabawpeo | L7 SLIEIONALS
- % saue|d Jayng yidap jo JaquinN - Aebawneo | L7 SLgHLd3a
X3AANI 40 YHATVY INTIGNITHD
a3¥y0 auo si tyusuodwod
— 1% Jayng 10jod aul S)iq Jo Jaguinn - nabaupnes | 7 suge
alnguuy "o8s uonduoasag anfen puw) adAL anjeA 199
[eniu] 19

Table 6.31. Implementation Dependent Pixel Depths

Version 1.5 - October 30, 2003

CHAPTER 6. STATE AND STATE REQUESTS

258

- /.’ T'v | Wunod passed-sa|dwes uoisnj2o0 0 - A
- LTV i Aanb uoisnja20 annoy 0 ISElle)ELD) A AMINOLINTHAIND
- LTV annoe Alanb uoisnjooQ | asjeq - g

10119

- G2C Buipuodsailod e siaiayl yiani] | asjed - g xu -

- (oard (s)opod 10419 uBLIND 0 lou3199 87 X U -

oeqpas) | £°G adA) yoeqpas az Aabalupnes Sz IdALYIAANEDHOVEQTIS

3oeqpasy) | £°G 9ZIS Jaynq oeqpas- 0 INEEIED) A 37IS¥334NgHOvEa3ad

Jeqpes) | €9 Jajuiod Jayng xoeqpas4 0 AJB1UI0d19D A Y3LNIOdHIANEHOVEAITS

109|8S 2'S 9ZIS Jayng UuondvIesS 0 INESEIIEL) A 37/SU344NEGNOILOT T3S

109]9S 2'S Jauiod Jayng uondves 0 AJBIUI0H18D X YIINIOdYIHINENOILOTTIS

- 2'S Bumasapolepuay MIANIY | Aebawpes A 300NUIANTY

- 2'S yidap yoeis aweN 0 nabaupes 7z H1d3aMOVLS INYN

- 9 Jauiod xoels aingune walD 0 INELEIIEDS) +Z HLd3IaMOVLS gLy INIITD

- 9 yoels aingupeal) | Aidwae - VX *9T -

— 9 Jauiod xoels ainguie JanIas 0 INELEINELD) A HLdIAMOVLS SIdLLY

- 9 yoels aingune Janes | Aidws - VX *97T -
BUOU JI pauldpun ‘UuonINIISUOD

- 'S Japun 1s1| Aejdsip Jo apoN 0 nebajupen A 3qow1sn
auou JI 0 ‘UOIONIISUOD

- ¥’ Japun 1si| Aejdsip jo JeaquinN 0 Mabalunen A X3ANI LS

181 'S asegisijo bumes 0 INEEIIE]D) <7 asvaLsi

ainguny '98s uonduosaq anjen puw) adAL anfen 199
[eniul 189

Table 6.32. Miscellaneous

Version 1.5 - October 30, 2003

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer stagetor, and for any GL command,

the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

259

260 APPENDIX A. INVARIANCE

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

e Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

e Framebuffer contents (all bitplanes)
e The color buffers enabled for writing
e The values of matrices other than the top-of-stack matrices

Version 1.5 - October 30, 2003

A.3. INVARIANCE RULES 261

Scissor parameters (other than enable)

Writemasks (color, index, depth, stencil)
Clear values (color, index, depth, stencil, accumulation)

o Current values (color, index, normal, texture coords, edgeflag)
Current raster color, index and texture coordinates.

o

o

Material properties (ambient, diffuse, specular, emission, shininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

e Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

¢ Depth test parameters (other than enable)

e Blend parameters (other than enable)

e Logical operation parameters (other than enable)
e Pixel storage and transfer state

e Evaluator state (except as it affects the vertex data generated by the
evaluators)

e Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked withe in Rule 2.

Corollary 2 The window coordinates (X, y, and z) of generated fragments are also
invariant with respect to

Required:

e Current values (color, color index, normal, texture coords, edgeflag)
e Current raster color, color index, and texture coordinates
e Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).

Version 1.5 - October 30, 2003

262 APPENDIX A. INVARIANCE

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent commaalivaysis executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

Version 1.5 - October 30, 2003

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1.

The CURRENRASTERTEXTURECOORD®NuUSt be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

. When requested, texture coordinates returned in feedback mode are always

valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

. The error semantics of upward compatible OpenGL revisions may change.

Otherwise, only additions can be made to upward compatible revisions.

GL query commands are not required to satisfy the semantics dfltish
or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

Application specified point size and line width must be returned as specified
when queried. Implementation dependent clamping affects the values only
while they are in use.

Bitmaps and pixel transfers do not cause selection hits.

. The mask specified as the third argumerstencilFuncaffects the operands

of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified ByencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

263

264

(o]

[(e]

10.

11.

12.

13.

14.

15.

16.

APPENDIX B. COROLLARIES

Polygon shading is completed before the polygon mode is interpreted. If the
shade model iSLAT, all of the points or lines generated by a single polygon
will have the same color.

Adisplay listis just a group of commands and arguments, so errors generated
by commands in a display list must be generated when the list is executed.
If the list is created iCOMPILEmode, errors should not be generated while
the list is being created.

RasterPosdoes not change the current raster index from its default value
in an RGBA mode GL context. Likewis®&asterPosdoes not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

A material property that is attached to the current colorGadorMaterial
always takes the value of the current color. Attempts to change that material
property viaMaterial calls have no effect.

Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewistgterial can be used to
modify the color index material properties, even in an RGBA context.

There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix ar&cale(with positive scaling values onlyRotate, and
Translate; (3) exactly one of eithdfrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far valudigpthRange

If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

ColorMaterial has no effect on color index lighting.

Version 1.5 - October 30, 2003

17.

18.

19.

20.

21.

265

(No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

OpenGL state continues to be modifiediBEDBACKnNode and ir6ELECT
mode. The contents of the framebuffer are not modified.

The current raster position, the user defined clip planes, the spot directions
and the light positions fotIGHT:, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed durifap#t-

trib , or when copying a context.

Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.

Version 1.5 - October 30, 2003

Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

C.1 \Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
the EXT.vertex _array extension, except that static array data are not supported
(because they complicated the interface, and were not being used), and the pre-
defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).

266

C.2. POLYGON OFFSET 267

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of tl#&XT polygon _offset extension, with two
exceptions. First, the offset is enabled separatelyP@INT, LINE , andFILL ras-
terization modes, all sharing a single affine function definition. (Shifting the depth
values of the outline fragments, instead of the fill fragments, allows the contents of
the depth buffer to be maintained correctly.) Second, the offset bias is specified in
units of depth buffer resolution, rather than in the [0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer us-
ing a logical operation, just as color index fragments are in GL version 1.0. Blend-
ing is disabled during such operation because itis rarely desired, because many sys-
tems could not support it, and to match the semantics dtdieblend _logic _op
extension, on which this addition is loosely based.

C.4 Texture Image Formats

Stored texture arrays have a format, known asitlernal format rather than a
simple count of components. The internal format is represented as a single enumer-
ated value, indicating both the organization of the image dai(NANCE RGB

etc.) and the number of bits of storage for each image component. Clients can use
the internal format specification to suggest the desired storage precision of texture
images. Nevwbase formatsALPHAandINTENSITY , provide new texture environ-
ment operations. These additions match those of a subset @&Xthexture
extension.

C.5 Texture Replace Environment
A common use of texture mapping is to replace the color values of generated

fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated

Version 1.5 - October 30, 2003

268 APPENDIX C. VERSION 1.1

by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
EXT.texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
gueries without adding new routines to the GL interface. These additions match
those of a subset of tHeXT_texture extension, except that implementations re-
turn allocation information consistent with support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
EXT.copy texture andEXT.subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single ob-
ject. Such treatment allows for greater implementation efficiency when multiple
arrays are used. In conjunction with the subtexture capability, it also allows clients
to make gradual changes to existing texture arrays, rather than completely redefin-
ing them. These additions match those of EX€T texture _object extension,

with slight additions to the texture residency semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinates, ¢, andr are divided byg during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.

Version 1.5 - October 30, 2003

C.10. ACKNOWLEDGEMENTS 269

3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chaptend chapte# were combined
into a single discussion in chaptér

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equati@oif
orMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs

Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D’Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics

Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM

Phil Huxley, 3Dlabs

Dale Kirkland, Intergraph

Hock San Lee, Microsoft

Kevin LeFebvre, Hewlett Packard

Jim Miller, IBM

Tim Misner, SunSoft

Version 1.5 - October 30, 2003

270 APPENDIX C. VERSION 1.1

Jeremy Morris, 3Dlabs

Israel Pinkas, Intel

Bimal Poddar, IBM

Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics

Igor Sinyak, Intel

Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft

Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs

Linas Vepstas, IBM

Andy Vesper, Digital Equipment
Henri Warren, Megatek

Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 1.5 - October 30, 2003

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of tEXT texture3D extension.

One important application of three-dimensional textures is rendering volumes
of image data.

D.2 BGRA Pixel Formats

BGRAextends the list of host-memory color formats. Specifically, it provides a
component order matching file and framebuffer formats common on Windows plat-
forms. The additions match those of th&T_bgra extension.

271

272 APPENDIX D. VERSION 1.2

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed pixel are not
proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of thEXT_packed _pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on tBX¥T.rescale _normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of th&XT_separate _specular _color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
rangel0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithmGCLAMPTO.EDGE clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.

Version 1.5 - October 30, 2003

D.7. TEXTURE LEVEL OF DETAIL CONTROL 273

The additions match those of tB&I1S texture _edge _clamp extension.

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parametare added. One
constraint clamps\ to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of\tharameter, it is
possible to avoid "popping” artifacts when higher resolution images are provided.

The additions match those of tB&I1S texture _lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElementsthat provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of tBXT.draw _range _elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as thenaging subset

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal format. PHAmodifies only the A component of each

pixel group, leaving the R, G, and B components unmodified.

Version 1.5 - October 30, 2003

274 APPENDIX D. VERSION 1.2

Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from host memory or
from the framebuffer.

The additions match those of theEXTcolor _table and
EXT.color _subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that API is left for a future extension.

The additions match those of theEXT.convolution and
HP.convolution _border _modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C'=MC,
where
R
G
C= B
A

and M is the4 x 4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased by a
programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of t&&1 _color _matrix extension.

Version 1.5 - October 30, 2003

D.10. ACKNOWLEDGEMENTS 275

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-

togram) and that track the minimum and maximum color component values (min-

max) are performed at the end of the pixel transfer pipeline. An optional mode

allows pixel data to be discarded after the histogram and/or minmax operations are

completed. Otherwise the pixel data continues on to the next operation unaffected.
The additions match those of tBXT_histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of tEXT blend _color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of theEXTblend minmax and
EXT.blend _subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

Pierre-Luc Bisaillon, Matrox Graphics

Drew Bliss, Microsoft

Version 1.5 - October 30, 2003

276 APPENDIX D. VERSION 1.2

David Blythe, Silicon Graphics

Jon Brewster, Hewlett Packard

Dan Brokenshire, IBM

Pat Brown, IBM

Newton Cheung, S3

Bill Clifford, Digital

Jim Cobb, Parametric Technology
Bruce D’Amora, IBM

Kevin Dallas, Microsoft

Mahesh Dandapani, Rendition

Daniel Daum, AccelGraphics

Suzy Deffeyes, IBM

Peter Doyle, Intel

Jay Duluk, Raycer

Craig Dunwoody, Silicon Graphics
Dave Erb, IBM

Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI

Ken Garnett, NCD

Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link

Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics

Paul Ho, Silicon Graphics

Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel

Phil Huxley, 3Dlabs

Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx

Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics

Tim Kelley, Real3D

Jon Khazam, Intel

Louis Khouw, Sun

Dale Kirkland, Intergraph

Chris Kitrick, Raycer

Don Kuo, S3

Herb Kuta, Quantum 3D

Version 1.5 - October 30, 2003

D.10. ACKNOWLEDGEMENTS 277

Phil Lacroute, Silicon Graphics
Prakash Ladia, S3

Jon Leech, Silicon Graphics

Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics

Kent Lin, S3

Dan McCabe, S3

Jack Middleton, Sun

Tim Misner, Intel

Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs

Gene Munce, Intel

William Newhall, Real3D

Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter Pfister, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel

Rob Putney, IBM

Mike Quinlan, Real3D

Nate Robins, University of Utah
Detlef Roettger, Elsa

Randi Rost, Hewlett Packard

Kevin Rushforth, Sun

Richard S. Wright, Real3D

Hock San Lee, Microsoft

John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA

Mark Segal, Silicon Graphics

Bob Seitsinger, S3

Min-Zhi Shao, S3

Colin Sharp, Rendition

Igor Sinyak, Intel

Bill Sweeney, Sun

William Sweeney, Sun

Nathan Tuck, Raycer

Doug Twillenger, Sun

John Tynefeld, 3dfx

Kartik Venkataraman, Intel

Andy Vesper, Digital EQuipment

Version 1.5 - October 30, 2003

278 APPENDIX D. VERSION 1.2

Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics

Steve Wright, Microsoft

David Yu, Silicon Graphics

Randy Zhao, S3

Version 1.5 - October 30, 2003

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see Appendix). The only ARB extension defined in this version is multitexture,
allowing application of multiple textures to a fragment in one rendering pass. Mul-
titexture is based on th&GIS_multitexture extension, simplified by removing
the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to Appendi® on April 1, 1999.

279

Appendix F

Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

F.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT1, are supported by extensions).

Texture compression was promoted from the
GLARBtexture _compression extension.

F.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragifa¢n} selects

280

FE3. MULTISAMPLE 281

one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A newst) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the(géws used to lookup

into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. ThHREFLECTIONMAPmMode generates tex-
ture coordinate$str) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherentSRHEREMAPmMapping.

The NORMAIMAPMode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from tAe ARBtexture _cube _mapextension.

F.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by téGLARBmultisample ~ extension.

Multisampling was promoted from theL ARBmultisample extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

F.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color

Version 1.5 - October 30, 2003

282 APPENDIX FE. VERSION 1.3

for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from thBL_ ARB multitexture extension.

F.5 Texture Add Environment Mode

The TEXTUREENV MODEtexture environment functiodDD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from the ARBtexture _env _add exten-
sion.

F.6 Texture Combine Environment Mode

The TEXTUREENV.MODHexture environment functio6OMBINEprovides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from tGe ARBtexture _env _combine ex-
tension.

F.7 Texture Dot3 Environment Mode

The TEXTUREENV.MODE COMBIN@&perations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from fBe ARBtexture _env _dot3 ex-
tension.

F.8 Texture Border Clamp

The texture wrap paramet€LAMPTOBORDERnNode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture

Version 1.5 - October 30, 2003

FE9. TRANSPOSE MATRIX 283

image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GLARBtexture _border _clamp extension.

F.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from the ARBtranspose _matrix exten-
sion.

F.10 Acknowledgements

OpenGL 1.3 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution:

Adrian Muntianu, ATI

Al Reyes, 3dfx

Alain Bouchard, Matrox

Alan Commike, SGI

Alan Heirich, Compagq

Alex Herrera, SP3D

Allen Akin, VA Linux

Allen Gallotta, ATI

Alligator Descartes, Arcane

Andy Vesper, MERL

Andy Wolf, Diamond Multimedia

Axel Schildan, S3

Barthold Lichtenbelt, 3Dlabs

Benj Lipchak, Compagq

Bill Armstrong, Evans & Sutherland

Version 1.5 - October 30, 2003

284 APPENDIX FE. VERSION 1.3

Bill Clifford, Intel

Bill Mannel, SGI

Bimal Poddar, Intel

Bob Beretta, Apple

Brent Insko, NVIDIA

Brian Goldiez, UCF

Brian Greenstone, Apple
Brian Paul, VA Linux

Brian Sharp, GLSetup
Bruce D’Amora, IBM

Bruce Stockwell, Compagq
Chris Brady, Alt.software
Chris Frazier, Raycer

Chris Hall, 3dlabs

Chris Hecker, GLSetup
Chris Lane, Intel

Chris Thornborrow, PixelFusion
Christopher Fraser, IMG
Chuck Smith, Intelligraphics
Craig Dunwoody, SGI
Dairsie Latimer, PixelFusion
Dale Kirkland, 3Dlabs / Intergraph
Dan Brokenshire, IBM

Dan Ginsburg, ATI

Dan McCabe, S3

Dave Aronson, Microsoft
Dave Gosselin, ATI

Dave Shreiner, SGI

Dave Zenz, Dell

David Aronson, Microsoft
David Blythe, SGI

David Kirk, NVIDIA

David Story, SGI

David Yu, SGI

Deanna Hohn, 3dfx

Dick Coulter, Silicon Magic
Don Mullis, 3dfx

Eamon O Dea, PixelFusion
Edward (Chip) Hill, Pixelfusion
Eiji Obata, NEC

Version 1.5 - October 30, 2003

FE10. ACKNOWLEDGEMENTS 285

Elio Del Giudice, Matrox
Eric Young, S3

Evan Hart, ATI

Fred Fisher, 3dLabs

Garry Paxinos, Metro Link
Gary Tarolli, 3dfx

George Kyriazis, NVIDIA
Graham Connor, IMG

Herb Kuta, Quantum3D
Howard Miller, Apple

Igor Sinyak, Intel

Jack Middleton, Sun

James Bowman, 3dfx

Jan C. Hardenbergh, MERL
Jason Mitchell, ATI

Jeff Weyman, ATI

Jeffrey Newquist, 3dfx

Jens Owen, Precision Insight
Jeremy Morris, 3Dlabs

Jim Bushnell, Pyramid Peak
John Dennis, Sharp Eye
John Metcalfe, IMG

John Stauffer, Apple

John Tynan, PixelFusion
John W. Polick, NEC

Jon Khazam, Intel

Jon Leech, SGI

Jon Paul Schelter, Matrox
Karl Hilleslad, NVIDIA
Kelvin Thompson

Ken Cameron, Pixelfusion
Ken Dyke, Apple

Ken Nicholson, SGI

Kent Lin, Intel

Kevin Lefebvre, HP

Kevin Martin, VA Linux

Kurt Akeley, SGI

Les Silvern, NEC

Mahesh Dandipani, Rendition
Mark Kilgard, NVIDIA

Version 1.5 - October 30, 2003

286 APPENDIX FE. VERSION 1.3

Martin Amon, 3dfx

Martina Sourada, ATI

Matt Lavoie, Pixelfusion

Matt Russo, Matrox

Matthew Papakipos, NVIDIA
Michael Gold, NVIDIA

Miriam Geller, SGI

Morgan Von Essen, Metro Link
Naruki Aruga, PFU

Nathan Tuck, Raycer Graphics
Neil Trevett, 3Dlabs

Newton Cheung, S3

Nick Triantos, NVIDIA

Patrick Brown, Intel

Paul Jensen, 3dfx

Paul Keller, NVIDIA

Paul Martz, HP

Paula Womack, 3dfx

Peter Doenges, Evans & Sutherland
Peter Graffagnino, Apple

Phil Huxley, 3Dlabs

Ralf Biermann, Elsa AG

Randi Rost, 3Dlabs

Renee Rashid, Micron

Rich Johnson, HP

Richard Pimentel, PTC
Richard Schlein, Apple

Rick Hammerstone, ATI

Rik Faith, VA Linux

Rob Glidden, Sun

Rob Wheeler, 3dfx

Shari Petersen, Rendition
Shawn Hopwood, SGI

Steve Glickman, Silicon Magic
Steve McGuigan, SGI

Steve Wright, Microsoft

Stuart Anderson, Metro Link
T. C. Zhao, MERL

Teri Morrison, HP

Thomas Fox, IBM

Version 1.5 - October 30, 2003

FE10. ACKNOWLEDGEMENTS 287

Tim Kelley, Real 3D
Tom Frisinger, ATI
Victor Vedovato, Micron
Vikram Simha, MERL
Yanjun Zhang, Sun
Zahid Hussain, Tl

Version 1.5 - October 30, 2003

Appendix G

Version 1.4

OpenGL version 1.4, released on July 24, 2002, is the fourth revision since the
original version 1.0. Version 1.4 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.4 GL implementation.

In addition to numerous additions to the classical fixed-function GL pipeline
in OpenGL 1.4, the OpenGL ARB also approved &RBvertex _program ex-
tension, which supports programmable vertex processing. Following are brief
descriptions of each addition to OpenGL 1.4; see Chadpter a description of
ARBvertex _program .

G.1 Automatic Mipmap Generation

Setting the texture paramet@eENERATEMIPMAPto TRUEintroduces a side effect
to any modification of théevely,s. Of @ mipmap array, wherein all higher levels of
the mipmap pyramid are recomputed automatically by successive filtering of the
base level array.

Automatic mipmap generation was promoted from the
SGIS_generate _mipmap extension.

G.2 Blend Squaring

Blend squaring extends the set of supported source and destination blend functions
to permit squaring RGB and alpha values during blending. FUnc8®®&COLOR

and ONEMINUS SRCCOLORare added to the allowed source blending functions,
andDST.COLORaNdONEMINUSDST.COLORare added to the allowed destination
blending functions.

288

G.3. CHANGES TO THE IMAGING SUBSET 289

Blend squaring was promoted from tB& NV blend _square extension.

G.3 Changes to the Imaging Subset

The subset of blending features described BigndEquation, BlendColor,

and theBlendFunc modesCONSTANICOLOR ONEMINUS CONSTANICOLOR
CONSTANRLPHA andONEMINUS CONSTANJALPHAare now supported. These
feature were available only in the optional imaging subset in versions 1.2 and 1.3
of the GL.

G.4 Depth Textures and Shadows

Depth textures define a new texture internal forrd&PTH normally used to repre-
sent depth values. Applications include image-based shadow casting, displacement
mapping, and image-based rendering.

Image-based shadowing is enabled with a new texture application mode de-
fined by the parametefFEXTURECOMPARBODE This mode enables comparing
texturer coordinates to depth texture values to generate a boolean result.

Depth textures and shadows were promoted fronGth@RBdepth _texture
andGL ARBshadow extensions.

G.5 Fog Coordinate

A new associated vertex and fragment datum, fige coordinatemay be used
in computing fog for a fragment, instead of using eye distance to the frag-
ment, by specifying the coordinate with tRegCoord commands and setting the
FOGCOORDINATESOURCHog parameter. Fog coordinates are particularly useful
in computing more complex fog models.

Fog coordinate was promoted from tB& EXT fog _coord extension.

G.6 Multiple Draw Arrays
Multiple primitives may be drawn in a single call using MeltiDrawArrays and
MultiDrawElements commants.

Multiple draw arrays was promoted from ti&_EXT.multi _draw _arrays
extension.

Version 1.5 - October 30, 2003

290 APPENDIX G. VERSION 1.4

G.7 Point Parameters

Point parameters defined by tReintParameterscommands support additional
geometric characteristics of points, allowing the size of a point to be affected by
linear or quadratic distance attenuation, and increasing control of the mapping from
point size to raster point area and point transparency. This effect may be used for
distance attenuation in rendering particles or light points.

Point parameters was promoted from tieARBpoint _parameters exten-
sion.

G.8 Secondary Color

The secondary color may be varied even when lighting is disabled by specifying it
as a vertex parameter with tisecondaryColorcommands.

Secondary color was promoted from t& EXT.secondary _color exten-
sion.

G.9 Separate Blend Functions

Blending capability is extended witBlendFuncSeparateto allow independent
setting of the RGB and alpha blend functions for blend operations that require
source and destination blend factors.

Separate blend functions was promoted from the
GLEXTDblend _func _separate extension.

G.10 Stencil Wrap

New stencil operationdNCR_WRARNJDECRWRARllow the stencil value to wrap

around the range of stencil values instead of saturating to the minimum or maxi-

mum values on decrement or increment. Stencil wrapping is needed for algorithms

that use the stencil buffer for per-fragment inside-outside primitive computations.
Stencil wrap was promoted from ti@&_EXT.stencil _wrap extension.

G.11 Texture Crossbar Environment Mode
Texture crossbar extends the texture combine environment @OMBINEDY al-

lowing use of the texture color from different texture units as sources to the texture
combine function.

Version 1.5 - October 30, 2003

G.12. TEXTURE LOD BIAS 291

Texture environment crossbar was promoted from the
ARBtexture _env _crossbar extension.

G.12 Texture LOD Bias

The texture filter control paramet@dEXTURELODBIAS may be set to bias the

computed\ parameter used in texturing for mipmap level of detail selection, pro-

viding a means to blur or sharpen textures. LOD bias may be used for depth of field

and other special visual effects, as well as for some types of image processing.
Texture LOD bias was based on tBET texture _lod _bias extension, with

the addition of a second per-texture object bias term.

G.13 Texture Mirrored Repeat

Texture mirrored repeat extends the set of texture wrap modes with the mode
MIRRORELREPEAT This effectively defines a texture map twice as large as the
original texture image in which the additional half, for each mirrored texture co-
ordinate, is a mirror image of the original texture. Mirrored repeat can be used
seamless tiling of a surface.

Texture mirrored repeat was promoted from the
ARBtexture _mirrored _repeat extension.

G.14 Window Raster Position

The raster position may be set directly to specified window coordinates with the

WindowPoscommands, bypassing the transformation applieRiasterPos Win-

dow raster position is particularly useful for imaging and other 2D operations.
Window raster position was promoted from t6& ARBwindow _pos exten-

sion.

G.15 Acknowledgements

OpenGL 1.4 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time
of their contribution. The editor especially thanks Bob Beretta and Pat Brown
for their sustained efforts in leading tW&RBvertex _program working group,
without which this critical extension could not have been defined and approved in
conjunction with OpenGL 1.4.

Version 1.5 - October 30, 2003

292 APPENDIX G. VERSION 1.4

Kurt Akeley, NVIDIA

Allen Akin

Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel

Chris Bentley, ATI

Bob Beretta, Apple

Daniel Brokenshire, IBM
Pat Brown, NVIDIA

Bill Clifford, Intel

Graham Connor, Videologic
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple

Cass Everitt, NVIDIA

Allen Gallotta, ATI

Lee Gross, IBM

Evan Hart, ATI

Chris Hecker, Definition 6
Alan Heirich, Compaq / HP
Gareth Hughes, VA Linux
Michael | Gold, NVIDIA
Rich Johnson, HP

Mark Kilgard, NVIDIA

Dale Kirkland, 3Dlabs

David Kirk, NVIDIA
Christian Laforte, Alias—Wavefront
Luc Leblanc, Discreet

Jon Leech, SGI

Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Jack Middleton, Sun
Howard Miller, Apple
Jeremy Morris, 3Dlabs

Jon Paul Schelter, Matrox
Brian Paul, VA Linux / Tungsten Graphics
Bimal Poddar, Intel

Thomas Roell, Xi Graphics
Randi Rost, 3Dlabs

Jeremy Sandmel, ATI

Version 1.5 - October 30, 2003

G.15. ACKNOWLEDGEMENTS 293

John Stauffer, Apple

Nick Triantos, NVIDIA

Daniel Vogel, Epic Games
Mason Woo, World Wide Woo
Dave Zenz, Dell

Version 1.5 - October 30, 2003

Appendix H

Version 1.5

OpenGL version 1.5, released on July 29, 2003, is the fifth revision since the orig-
inal version 1.0. Version 1.5 is upward compatible with earlier versions, meaning
that any program that runs with a 1.4, 1.3, 1.2, 1.1, or 1.0 GL implementation will

also run unchanged with a 1.5 GL implementation.

In addition to additions to the classical fixed-function GL pipeline in OpenGL
1.5, the OpenGL ARB also approved a related set of ARB extensions includ-
ing the OpenGL Shading Language specification anchikigshader _objects
ARBvertex _shader , and ARBfragment _shader extensions through which
high-level shading language programs can be loaded and used in place of the fixed-
function pipeline.

Following are brief descriptions of each addition to OpenGL 1.5. The low-level
and high-level shading languages are important adjuncts to the OpenGL core. They
are described in more detail in appendiand their corresponding ARB extension
specifications are available online as described in that appendix.

H.1 Buffer Objects

Buffer objects allow various types of data (especially vertex array data) to be
cached in high-performance graphics memory on the server, thereby increasing
the rate of data transfers to the GL.

Buffer objects were promoted from tWéRBvertex _buffer _object exten-
sion.

294

H.2. OCCLUSION QUERIES 295

H.2 Occlusion Queries

An occlusion query is a mechanism whereby an application can query the number

of pixels (or, more precisely, samples) drawn by a primitive or group of primitives.

The primary purpose of occlusion queries is to determine the visibility of an object.
Occlusion query was promoted from tABBocclusion _query extension.

H.3 Shadow Functions

Texture comparison functions are generalized to support all eight binary functions
rather than justEQUALandGEQUAL

Texture comparison functions were promoted from Ex@_shadow _funcs
extension.

H.4 Changed Tokens

To achieve consistency with the syntax guidelines for OpenGL function and token
names, new token names are introduced to be used in place of old, inconsistent
names. However, the old token names continue to be supported, for backwards
compatibility with code written for previous versions of OpenGL. The new names,
and the old names they replace, are shown in talhle

H.5 Acknowledgements

OpenGL 1.5 is the result of the contributions of many people. The editor especially
thanks the following individuals for their sustained efforts in leading ARB working
groups essential to the success of OpenGL 1.5 and of ARB extensions approved in
conjunction with OpenGL 1.5:

Matt Craighead led the working group which cre-
ated theARBvertex _buffer _object extension and OpenGL 1.5 core feature.
Kurt Akeley wrote the initial specification for the group.

Daniel Ginsburg and Matt Craighead led the working group which created the
ARBocclusion _query extension and OpenGL 1.5 core feature.

Benjamin Lipchak led the fragment program working group which created
the ARBfragment _program extension, completing the low-level programmable
shading interface.

Bill Licea-Kane led the GL2 working group which created the high-
level programmable shading interface, including #ieBfragment _shader ,

Version 1.5 - October 30, 2003

ARBshader _objects
Shading Language.

296

APPENDIX H. VERSION 1.5
New Token Name \ Old Token Name
FOGCOORDBRC FOGCOORDINATESOURCE
FOGCOORD FOGCOORDINATE
CURRENIFFOGCOORD CURRENIFFOGCOORDINATE
FOGCOORMARRAYTYPE FOGCOORDINATEARRAYTYPE

FOGCOORMARRAYSTRIDE

FOGCOORDINATEARRAYSTRIDE

FOGCOORMRRAYPOINTER | FOGCOORDINATEARRAYPOINTER

FOGCOORMRRAY FOGCOORDINATEARRAY
SRCQRGB SOURCEMRGB
SRC1RGB SOURCERGB
SRC2RGB SOURCERGB
SRCQALPHA SOURCEMALPHA
SRC1ALPHA SOURCEJALPHA
SRC2ALPHA SOURCEALPHA

Table H.1: New token names and the old names they replace.

, and ARBvertex _shader extensions and the OpenGL

John Kessenich was the principal editor of the OpenGL Shading Language

specification for the GL2 working group, starting from the initial glslang proposal
written by John, Dave Baldwin, and Randi Rost.

A partial list of other contributors, including the company that they represented

at the time of their contribution, follows:

Kurt Akeley, NVIDIA

Allen Akin

Chad Anson, Dell Computer
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel

Dave Baldwin, 3Dlabs

Chris Bentley, ATI

Bob Beretta, Apple

David Blythe

Alain Bouchard, Matrox
Daniel Brokenshire, IBM
Pat Brown, NVIDIA

John Carmack, Id Software
Paul Carmichael, NVIDIA

Version 1.5 - October 30, 2003

H.5. ACKNOWLEDGEMENTS

Bob Carwell, IBM

Paul Clarke, IBM

Bill Clifford, Intel

Roger Cloud, SGI

Graham Connor, Power VR
Matt Craighead, NVIDIA
Doug Crisman, SGI

Matt Cruikshank, Vital Images

Deron Dann Johnson, Sun
Suzy Deffeyes, IBM

Steve Demlow, Vital Images

Joe Deng, SiS

Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Brian Emberling, Sun
Cass Everitt, NVIDIA
Brandon Fliflet, Intel
Allen Gallotta, ATI
Daniel Ginsburg, ATI
Steve Glanville, NVIDIA
Peter Graffagnino, Apple
Lee Gross, IBM

Rick Hammerstone, ATI
Evan Hart, ATI

Chris Hecker, Definition 6
Alan Heirich, HP

Gareth Hughes, NVIDIA
Michael | Gold, NVIDIA
John Jarvis, Alt.software
Rich Johnson, HP

John Kessenich, 3Dlabs
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
Raymond Klassen, Intel
Jason Knipe, Bioware
Jayant Kolhe, NVIDIA
Steve Koren, 3Dlabs
Bob Kuehne, SGI
Christian Laforte, Alias
Luc Leblanc, Discreet

Version 1.5 - October 30, 2003

297

298 APPENDIX H. VERSION 1.5

Jon Leech, SGI

Kevin Lefebvre, HP

Bill Licea-Kane, ATI

Barthold Lichtenbelt, 3Dlabs
Kent Lin, Intel

Benjamin Lipchak, ATI

Rob Mace, ATI

Bill Mark, NVIDIA

Michael McCool, U. Waterloo
Jack Middleton, Sun

Howard Miller, Apple

Teri Morrison, HP / 3Dlabs
Marc Olano, SGI / U. Maryland
Jean-Francois Panisset, Discreet
Jon Paul Schelter, Matrox
Brian Paul, Tungsten Graphics
Scott Peterson, HP

Bimal Poddar, Intel

Thomas Roell, Xi Graphics
Phil Rogers, ATI

lan Romanick, IBM

John Rosasco, Apple

Randi Rost, 3Dlabs

Matt Russo, Matrox

Jeremy Sandmel, ATI

Paul Sargent, 3Dlabs

Folker Schamel, Spinor GMBH
Michael Schulman, Sun

John Scott, Raven Software
Avinash Seetharamaiah, Intel
John Spitzer, NVIDIA

Vlad Stamate, Power VR
Michelle Stamnes, Intel

John Stauffer, Apple

Eskil Steenberg, Obsession
Bruce Stockwell, HP
Christopher Tan, IBM

Ray Tice, Avid

Pierre P. Tremblay, Discreet
Neil Trevett, 3Dlabs

Version 1.5 - October 30, 2003

H.5. ACKNOWLEDGEMENTS 299

Nick Triantos, NVIDIA
Douglas Twilleager, Sun
Shawn Underwood, SGI
Steve Urquhart, Intelligraphics
Victor Vedovato, AT

Daniel Vogel, Epic Games
Mik Wells, Softimage

Helene Workman, Apple

Dave Zenz, Dell

Karel Zuiderveld, Vital Images

Version 1.5 - October 30, 2003

Appendix |

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in theOpenGL Extension Regist(gs are a much larger number of vendor-
specific extensions, as well as extensions to GLX and WGL). Extensions are doc-
umented as changes to the Specification. The Registry is available on the World
Wide Web at URL

http://oss.sgi.com/projects/ogl-sample/registry/

Brief descriptions of ARB extensions are provided below.

.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

e A uniguename stringof the form"GL _ARBname" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in th&XTENSIONSstring described in sectioh 1.11

e All functions defined by the extension will have names of the féumc-
tionARB

300

http://oss.sgi.com/projects/ogl-sample/registry/

1.2. PROMOTING EXTENSIONS TO CORE FEATURES 301

e All enumerants defined by the extension will have names of the form
NAMEARB

.2 Promoting Extensions to Core Features

ARB extensions can bpromotedto required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have theARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in tAETENSIONSstring, and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see appendicésG, andH respectively.

.3 Multitexture

The name string for multitexture GL ARBmultitexture . It was promoted to a
core feature in OpenGL 1.3.

I.4 Transpose Matrix

The name string for transpose matrix3s ARBtranspose _matrix . It was pro-
moted to a core feature in OpenGL 1.3.

1.5 Multisample

The name string for multisample &L ARBmultisample . It was promoted to a
core feature in OpenGL 1.3.

.6 Texture Add Environment Mode

The name string for texture add modeds ARBtexture _env _add. It was pro-
moted to a core feature in OpenGL 1.3.

Version 1.5 - October 30, 2003

302 APPENDIX I. ARB EXTENSIONS

|.7 Cube Map Textures

The name string for cube mapping @ ARBtexture _cube _map. It was pro-
moted to a core feature in OpenGL 1.3.

1.8 Compressed Textures

The name string for compressed textureSisARBtexture _compression . It
was promoted to a core feature in OpenGL 1.3.

1.9 Texture Border Clamp

The name string for texture border clamp3k ARBtexture _border _clamp . It
was promoted to a core feature in OpenGL 1.3.

.10 Point Parameters

The name string for point parametersss ARBpoint _parameters . It was pro-

moted to a core features in OpenGL 1.4.

.11 Vertex Blend

Vertex blending replaces the single modelview transformation with multiple vertex
units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the modelview matrices.

The name string for vertex blend®L__ARBvertex _blend .

.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of modelview matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette @ ARBmatrix _palette

Version 1.5 - October 30, 2003

1.13. TEXTURE COMBINE ENVIRONMENT MODE 303

.13 Texture Combine Environment Mode

The name string for texture combine mode&isARBtexture _env_combine . It
was promoted to a core feature in OpenGL 1.3.

.14 Texture Crossbhar Environment Mode

The name string for texture crossbaiGs ARBtexture _env _crossbar . It was
promoted to a core features in OpenGL 1.4.

.15 Texture Dot3 Environment Mode

The name string for DOT3 iSLARBtexture _env _dot3 . It was promoted to a
core feature in OpenGL 1.3.

.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is
GLARBtexture _mirrored _repeat . It was promoted to a core feature in
OpenGL 1.4.

.17 Depth Texture

The name string for depth textureGs. ARBdepth _texture . It was promoted to
a core feature in OpenGL 1.4.

.18 Shadow

The name string for shadow &L ARBshadow. It was promoted to a core feature
in OpenGL 1.4.

.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by tiEXTURECOMPARIEAIL VALUEARBtexture pa-
rameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambientis ARBshadow _ambient .

Version 1.5 - October 30, 2003

304 APPENDIX I. ARB EXTENSIONS

.20 Window Raster Position

The name string for window raster positiond& ARBwindow _pos. It was pro-
moted to a core feature in OpenGL 1.4.

.21 Low-Level Vertex Programming

Application-definedrertex programsnay be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programmingAiRBvertex _program .

.22 Low-Level Fragment Programming

Application-definedfragment programsnay be specified in the same low-level
language ag\RBvertex _program , replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is
ARBfragment _program .

1.23 Buffer Objects

The name string for buffer objects ARBvertex _buffer _object . It was pro-
moted to a core feature in OpenGL 1.5.
.24 Occlusion Queries

The name string for occlusion querie\BBocclusion _query . Itwas promoted
to a core feature in OpenGL 1.5.

.25 Shader Objects

Shader objects provides mechanisms necessary to manage shader and program
objects defined by thaRBvertex _shader andARBfragment _shader exten-
sions.

The name string for shader objectA\lRBshader _objects

Version 1.5 - October 30, 2003

1.26. HIGH-LEVEL VERTEX PROGRAMMING 305

.26 High-Level Vertex Programming

Vertex programs may also be written in the high-level OpenGL Shading Language
defined by theARBshading _language _100 extension.
The name string for high-level vertex programming\RBvertex _shader .

.27 High-Level Fragment Programming

Fragment programs may also be written in the high-level OpenGL Shading Lan-
guage defined by theRBshading _language _100 extension.

The name string for high-level fragment programming is
ARBfragment _shader .

.28 OpenGL Shading Language

The OpenGL Shading Language is a high-level, C-like language used to program
the vertex and fragment pipelines. The Shading Language Specification defines
the language proper, while tA&RBshader _objects , ARBvertex _shader ,and
ARBfragment _shader extensions define how vertex and fragment programs in-
teract with the fixed-function OpenGL pipeline and how applications manage those
programs.

The name string for the OpenGL Shading Language is
ARBshading _language _100. The presence of this extension string indi-
cates that programs written in version 1.00 of the Shading Language are accepted
by OpenGL.

.29 Non-Power-Of-Two Textures

Conventional OpenGL texturing is limited to images with power-of-two dimen-
sions and an optional 1-texel border. This extension relaxes the size restrictions for
the 1D, 2D, cube map, and 3D texture targets.

The name string for non-power-of-two textures is
ARBtexture _non_power _of two.

Version 1.5 - October 30, 2003

306 APPENDIX I. ARB EXTENSIONS

1.30 Point Sprites

Point sprites replaces point texture coordinates with texture coordinates interpo-
lated across the point. This allows drawing points as customized textures, useful
for particle systems.

The name string for point spritesARRBpoint _sprite

Version 1.5 - October 30, 2003

Index of OpenGL Commands

x_BIAS, 92, 247

x_SCALE, 92, 247

2D, 206, 207, 258

2 BYTES, 209

3D, 206 207

3D_COLOR, 206, 207
3D_COLORTEXTURE, 206, 207
3.BYTES, 209
4D_COLORTEXTURE, 206, 207
4 BYTES, 209

1,127,135 136, 155 218 241
2,127,135 136 218 241
3,127,135 136, 218 241
4,127,135 136,218

ACCUM, 187

Accum, 187, 188

ACCUM_BUFFERBIT, 185, 227

ACTIVE_TEXTURE, 20, 44, 51, 158§
198 214 215

ActiveTexture 44, 166

ADD, 159,161, 162 187,188 282

ADD_SIGNED, 162

ALL _ATTRIB_BITS, 225, 227

ALPHA, 92, 105 116 117 128-13Q,
143 144, 159-161, 164, 179,
191, 192, 218 247, 248, 250,
257,267,273

ALPHA12,129

ALPHA16, 129

ALPHA4, 129

ALPHAS, 129

ALPHA _BIAS, 114

ALPHA_SCALE, 114, 159

ALPHA_TEST,173

AlphaFunc,173

ALWAYS, 144, 165, 173-175 245

AMBIENT, 61, 62

AMBIENT _AND DIFFUSE,61, 62, 64

AND, 182

AND _INVERTED, 182

AND_REVERSE,182

Antialiasing,84

ARB _fragmentprogram 295 304

ARB _fragmentshader, 294, 295 304
305

ARB _occlusionquery,295 304

ARB_point_sprite,306

ARB _shaderobjects,294, 296, 304, 305

ARB _shadinglanguagel00,305

ARB_textureenv.crossbar291

ARB_texturemirroredrepeat291

ARB_texturenonpowerof_two, 305

ARB_vertexbuffer.object, 294, 295
304

ARB _vertex program,288, 291, 304

ARB_vertexshader294, 296, 304, 305

AreTexturesResident,57, 158 210

ARRAY _BUFFER,30-36, 224, 225

ARRAY _BUFFERBINDING, 35

ArrayElement,19, 25-27, 35, 208

AUTO_NORMAL, 199

AUX1, 183 184

AUXn, 183 191

AUXO0, 183 190

BACK, 60, 62, 63, 84, 85, 87, 183 184
190 191, 215, 239

BACK_LEFT, 183 184, 190

BACK_RIGHT, 183 184, 190

308

Begin, 12, 13, 15-20, 25-27, 37, 66, 77,
81, 84, 87, 200, 201, 206

BeginQuery176

BGR, 105 191, 192

BGRA, 105 107,111,191, 271

BindBuffer, 30, 31, 36, 210

BindTexture, 156, 157

BITMAP, 86, 94,97, 102 104, 111, 124,
192 219

Bitmap,124

BITMAP _TOKEN, 207

BLEND, 159 161, 177,181

BlendColor,179, 289

BlendEquation]177, 178 289

BlendFunc,178 179 289

BlendFuncSeparaté /8 179 290

BLUE, 92, 105, 191, 192, 247, 248 250,
257

BLUE_BIAS, 114

BLUE_SCALE, 114

BUFFERACCESS,31, 33, 34

BUFFERMAP_POINTER, 31, 33-35,
225

BUFFERMAPPED, 31, 33-35

BUFFERSIZE, 31, 33

BUFFERUSAGE, 31, 33, 34

BufferData,32, 33, 36, 210

BufferSubData33, 34, 36, 210

BYTE, 24, 104, 192, 193 209

C3F.V3F, 28, 29

C4F.N3F_V3F, 28, 29

C4UB.V2F, 28, 29

C4UB_V3F, 28, 29

CallList, 19, 208, 209

CallLists, 19, 208, 209

CCW, 60, 239

CLAMP, 144, 145, 149

CLAMP_TO_BORDER,144, 146, 282

CLAMP_TO_EDGE,144, 146,147,149,
272

CLEAR, 182

Clear,185-187

ClearAccum,186

ClearColor,186

INDEX

ClearDepth;186
Clearindex,186
ClearStencil 186
CLIENT_ACTIVE_TEXTURE, 25, 214,
215
CLIENT_ALL _ATTRIB_BITS, 225, 227
CLIENT_PIXEL_STOREBIT, 227
CLIENT_VERTEX_ARRAY _BIT, 227
ClientActiveTexture 19, 25, 210
CLIP_PLANE;, 49
CLIP_PLANEDO, 49
ClipPlane 49
COEFF,217
COLOR, 40, 44, 95, 99, 100, 135 194
Color, 19, 21, 55, 67
Color3,21
Color4,21
COLORARRAY, 24, 30
COLORARRAY_POINTER,222
COLORBUFFERBIT, 185, 187, 227
COLORINDEX, 86, 94, 97, 102 105,
115,124,191, 194, 217, 219
COLORINDEXES, 61, 65
COLORLOGIC.OP,181
COLORMATERIAL, 62,64
COLOR.MATRIX, 219
COLOR.MATRIX _STACK_DEPTH,
219
COLOR.SUM, 167
COLOR.TABLE, 94, 96, 115
COLOR.TABLE_ALPHA_SIZE, 219
COLOR.TABLE_BIAS, 94, 95, 219
COLOR.TABLE_BLUE_SIZE, 219
COLOR.TABLE_FORMAT, 219
COLOR.TABLE_GREENSIZE, 219
COLOR.TABLE_INTENSITY_SIZE,
220
COLOR.TABLE_LUMINANCE _SIZE,
219
COLOR.TABLE_RED.SIZE, 219
COLOR.TABLE_SCALE,94, 95,219
COLOR.TABLE_WIDTH, 219
ColorMask,184, 185
ColorMaterial,62—64, 199, 264, 269
ColorPointer,19, 23, 24, 30, 210

Version 1.5 - October 30, 2003

INDEX

ColorSubTable91, 95, 96
ColorTable91, 93, 95, 96, 120, 121, 210
ColorTableParameted4
ColorTableParameterfg4
Colorub,67
Colorui, 67
Colorus,67
COMBINE, 159, 162, 166, 282, 290
COMBINE_ALPHA, 159, 162 163
COMBINE_RGB, 159, 162, 163
COMPARER_TO_.TEXTURE, 144,
164
COMPILE, 208 264
COMPILE_AND _EXECUTE, 208, 209
COMPRESSEDALPHA, 130
COMPRESSEDNTENSITY, 130
COMPRESSEDLUMINANCE, 130
COMPRESSEDLUMINANCE _ALPHA,
130
COMPRESSEDRGB, 130
COMPRESSEDRGBA, 130
COMPRESSEDTEXTURE_FORMATS,
127
CompressedTeximage41
CompressedTeximagelD39-141
CompressedTexlmage2D39-141
CompressedTexlmage3D40, 141
CompressedTexSublmagelDil, 142
CompressedTexSublmage2Di1, 142
CompressedTexSublmage3Di1, 142
CONSTANT, 161, 163 244
CONSTANT.ALPHA, 179 289
CONSTANTATTENUATION, 61
CONSTANT.BORDER,118 119
CONSTANT.COLOR, 179, 289
CONVOLUTION_1D, 98, 99, 116, 133
220
CONVOLUTION_2D, 97-99, 116, 132,
220
CONVOLUTION_.BORDERCOLOR,
118 220
CONVOLUTION_.BORDERMODE,
118 220
CONVOLUTION_FILTER_BIAS,
97-99, 220

309

CONVOLUTION_FILTER_SCALE,
97-100 220
CONVOLUTION_FORMAT, 220
CONVOLUTION_HEIGHT, 220
CONVOLUTION_WIDTH, 220
ConvolutionFilter1D91, 98-100
ConvolutionFilter2D91, 97-100
ConvolutionParamete®8, 118
ConvolutionParameterf@7, 98, 118
ConvolutionParameterig9, 118
COPY, 181, 182, 245
COPY.INVERTED, 182
COPY_PIXEL_TOKEN, 207
CopyColorSubTable95, 96
CopyColorTable95, 96
CopyConvolutionFilter1D99
CopyConvolutionFilter2D99
CopyPixels,90, 92, 95, 99, 116, 135
188 194, 195, 205
CopyTeximagelD]16 136, 137, 151
CopyTeximage2D]16 135-137, 151
CopyTeximage3D137
CopyTexSublmagelD116, 136 137,
139
CopyTexSublmage2,16, 136-139
CopyTexSublmage3D116, 136 137,
139
CULL _FACE, 85
CullFace 84, 85, 89
CURRENT.BIT, 227
CURRENT.FOG_.COORD,296
CURRENT.FOG_.COORDINATE, 296
CURRENT.QUERY, 223
CURRENT.RASTERTEXTURE_COORDS,
51,263
CURRENT.TEXTURE.COORDS 20
CW, 60

DECAL, 159 160
DECR,174
DECRWRAP, 174, 290
DeleteBuffers31, 32, 210
DeleteLists210
DeleteQueries] 77,210
DeleteTexturesl57, 210

Version 1.5 - October 30, 2003

310

DEPTH,94, 97,101, 102 135 194, 247,
289

DEPTH.BIAS, 92, 114

DEPTHBUFFERBIT, 185 187, 227

DEPTH.COMPONENT, 94, 97, 102
105 127129 164, 190 191,
194, 217

DEPTH.COMPONENT16,129

DEPTH.COMPONENT24,129

DEPTH.COMPONENT32,129

DEPTHSCALE,92, 114

DEPTHTEST,175

DEPTHTEXTURE.MODE, 144, 155
164

DepthFunc175

DepthMask,185

DepthRange39, 53, 214, 264

DIFFUSE,61, 62

Disable,45, 48, 49, 56, 62, 72, 74, 77,
80, 84, 86, 88, 120-122, 164,
167, 172-175 177, 180, 181,
198 199

DisableClientStatel9, 24, 25, 28, 30,
210

DITHER, 180

DOMAIN, 217

DONT_CARE, 211, 212, 253

DOT3.RGB, 162

DOT3.RGBA, 162

DOUBLE, 24

DRAW_PIXEL_TOKEN, 207

DrawArrays,25, 26, 35, 208

DrawBuffer,181-185 187

DrawElements26-28, 35, 36, 208 273

DrawPixels 86, 89-92, 94, 97, 102-107,
111, 113 116 123 124, 126,
188 190,192 194, 205

DrawRangeElements?7, 35, 36, 208
256

DST.ALPHA, 179

DST_.COLOR, 179, 288

DYNAMIC _COPY, 31, 33

DYNAMIC _DRAW, 31, 33

DYNAMIC _READ, 31, 33

INDEX

EDGE FLAG_ARRAY, 24, 28

EDGE FLAG_ARRAY _POINTER,222

EdgeFlag,18, 19

EdgeFlagPointed 9, 23, 24, 210

EdgeFlagv,18

ELEMENT_ARRAY _BUFFER,36, 224,
225

EMISSION,61, 62

Enable 45, 48, 49, 56, 62, 72, 74, 77, 80,
84, 86, 88, 120-122, 164, 167,
172-175 177, 180, 181, 198
199 213

ENABLE_BIT, 227

EnableClientState.,9, 24, 25, 30, 210

End, 12, 13, 15-20, 25-27, 37, 66, 77,
84, 87, 200, 201, 206

EndList,208

EndQuery176

EQUAL, 144, 165 173-175

EQUIV, 182

EVAL _BIT, 227

EvalCoord,19, 198 199

EvalCoord1,199-201

EvalCoord1d200

EvalCoord1f,200

EvalCoord2,199-201

EvalMesh1200

EvalMesh2200, 201

EvalPoint,19

EvalPoint1,201

EvalPoint2,201

EXP, 168 169 236

EXP2,168

EXT_bgra,271

EXT _blendcolor, 275

EXT_blendlogic_op, 267

EXT _blendminmax,275

EXT_blendsubtract275

EXT_color_subtable274

EXT_color_table,274

EXT_convolution,274

EXT _copy.texture,268

EXT_draw rangeelements273

EXT _histogram275

EXT _packedpixels,272

Version 1.5 - October 30, 2003

INDEX

EXT _polygonoffset,267
EXT_rescalenormal,272

EXT _separatespecularcolor, 272
EXT_shadowfuncs,295

EXT _subtexture268

EXT _texture,267, 268

EXT _texture3D271

EXT _texturelod_bias,291

EXT _textureobject,268

EXT _vertexarray,266
EXTENSIONS,92, 223 300, 301
EYE_LINEAR, 47, 48, 215, 244
EYE_PLANE, 47

FALSE, 18, 19, 31, 33, 35, 57, 59, 90~
92, 100, 102, 111, 114, 122
123 144, 155 157, 158 173
176, 190, 214, 218 221224,
242

FASTEST,211

FEEDBACK, 203-205, 265

FEEDBACK BUFFERPOINTER,222

FeedbackBuffer204, 205, 210

FILL, 87-89, 200, 239, 264, 267

Finish,210, 211, 263

FLAT, 65, 264

FLOAT, 24, 29, 30, 104, 192 193 209,
232 233

Flush,210, 211, 263

FOG, 167

Fog,168 169

FOGBIT, 227

FOG.COLOR,168

FOG.COORD,168, 296

FOG.COORDARRAY, 24, 28, 296

FOG.COORDARRAY _POINTER,
222, 296

FOG.COORDARRAY _STRIDE, 296

FOG.COORDARRAY _TYPE, 296

FOG.COORDSRC, 51, 53, 168 169,
296

FOG.COORDINATE,296

FOG.COORDINATE ARRAY, 296

FOG.COORDINATE.ARRAY _POINTER,

296

311

FOG.COORDINATE ARRAY _STRIDE,
296

FOG.COORDINATE ARRAY _TYPE,
296

FOG.COORDINATE. SOURCE, 289
296

FOG.DENSITY, 168

FOG.END, 168

FOGHINT, 211

FOG.INDEX, 169

FOG.MODE, 168 169

FOG.START, 168

FogCoord,19, 21, 289

FogCoordPointer] 9, 23, 24, 210

FRAGMENT_DEPTH, 168 169, 236

FRONT, 60, 62, 84, 85, 87, 183 184,
190 191, 215

FRONT.AND_BACK, 60, 6264, 84,
87,183 184

FRONT.LEFT, 183 184, 190

FRONT.RIGHT, 183 184, 190

FrontFacef0, 84

Frustum4l, 42, 264

FUNC_ADD, 178 180, 245

FUNC_REVERSESUBTRACT,178

FUNC_SUBTRACT, 178

GenBuffers31, 32, 210
GENERATEMIPMAP, 143 144, 152,
288
GENERATEMIPMAP_HINT, 211
GenlLists, 209, 210
GenQueries] 76,177,210
GenTextures]57, 210, 218
GEQUAL, 144, 165 173-175, 295
Get, 20, 39, 51, 210, 213 214
GetBooleanvl73 213 214, 229
GetBufferParamete? 15
GetBufferParameteriz15
GetBufferPointerv225
GetBufferSubData?24, 225
GetClipPlane215
GetColorTable97, 190, 219
GetColorTableParameter]1 9

Version 1.5 - October 30, 2003

312

GetCompressedTexlmage, 140-142,
212 216-218
GetConvolutionFilter190, 220
GetConvolutionParametet20
GetConvolutionParameteri9y/, 98
GetDoublev213 214, 229
GetError,11
GetFloatv,173 213 214, 219,229
GetHistogram 101, 190, 221
GetHistogramParametet21
Getlntegerv,27, 44, 72, 213 214, 219,
229
GetLight,215
GetMap,215, 216
GetMaterial 215
GetMinmax,190, 221
GetMinmaxParamete?22
GetPixelMap215 216
GetPointerv222
GetPolygonStipplel 90, 218
GetQueryiv,223
GetQueryObiject[u]iv224
GetQueryObjectiv24
GetQueryObjectuivg24
GetSeparableFiltet,90, 220
GetString,222, 223
GetTexEnv215
GetTexGen215
GetTexlmagel56 190 217222
GetTexLevelParamete? 15 216
GetTexParamete?,15 216
GetTexParameterfi,56, 158
GetTexParameteri,56, 158
GL_ARB_depthtexture,289, 303
GL_ARB_matrix_palette, 302
GL_ARB _multisample281, 301
GL_ARB_multitexture,282, 301
GL_ARB_point parameters290, 302
GL_ARB_shadow?289, 303
GL_ARB_shadowambient,303
GL_ARB _textureborderclamp, 283
302
GL_ARB_texturecompression280, 302
GL_ARB_texturecubemap,281, 302
GL_ARB_textureenv.add,282, 301

INDEX

GL_ARB_textureenv.combine, 282,
303

GL_ARB _textureenv.crossbhar303

GL_ARB_textureenv.dot3,282, 303

GL_ARB_texturemirroredrepeat303

GL_ARB_transposematrix, 283 301

GL_ARB _vertexblend,302

GL_ARB_window_pos,291, 304

GL_EXT_blendfunc_separate290

GL_EXT _fog_coord,289

GL_EXT_multi_draw_arrays,289

GL_EXT _secondarycolor, 290

GL_EXT _stencilwrap,290

GL_NV _blendsquare289

glPointParameter;3, 74

GREATER,144, 165 173175

GREEN, 92, 105 191, 192, 247, 248
250, 257

GREENBIAS, 114

GREENSCALE, 114

Hint, 211
HINT_BIT, 227
HISTOGRAM, 100, 101, 122, 221
Histogram,100, 101, 122, 210
HISTOGRAM_ALPHA _SIZE, 221
HISTOGRAM_BLUE_SIZE, 221
HISTOGRAM_FORMAT, 221
HISTOGRAM_GREENSIZE, 221
HISTOGRAM_LUMINANCE _SIZE,
221
HISTOGRAM_RED_SIZE, 221
HISTOGRAM.SINK, 221
HISTOGRAM_WIDTH, 221
HP_convolutionbordermodes274

INCR, 174

INCR_.WRAP, 174, 290

INDEX, 257

Index, 19, 21

INDEX_ARRAY, 24, 28
INDEX_ARRAY _POINTER,222
INDEX_LOGIC_OP,181
INDEX_OFFSET92, 114, 247
INDEX_SHIFT, 92, 114, 247

Version 1.5 - October 30, 2003

INDEX

IndexMask,184, 185

IndexPointer]19, 23, 24, 210

InitNames,202

INT, 24, 104, 192 193 209

INTENSITY, 101, 102 116, 117, 128-
130, 143 144, 160, 161, 164,
218 248 267

INTENSITY12,129

INTENSITY16,129

INTENSITY4, 129

INTENSITYS, 129

InterleavedArraysl9, 28, 29, 210

INTERPOLATE, 162

INVALID _ENUM, 12, 25, 44, 47, 48,
60, 91, 97, 101, 102, 135, 140,
141, 156, 217

INVALID _OPERATION, 12, 19, 34-36,
91, 102 106, 127, 135 139
142 156, 176, 177, 183 188
190 191, 198 202204, 208
216,218 224

INVALID _‘VALUE, 12, 24-26, 28, 33,
39, 43,60, 73, 74, 77, 90, 92—
94, 96-98, 101, 127, 131, 132
135 137141, 151, 158 168
172 186, 197, 198 200, 208
216-218

INVERT, 174, 182

Is, 210

IsBuffer,224

IsEnabled]172 213 229

IsList, 209

IsQuery,223

IsTexture, 218

KEEP,174, 175 245

LEFT, 183 184, 190, 191

LEQUAL, 144, 155, 165, 173-175, 242,
295

LESS, 144, 165, 173-175, 245

Light, 60, 61

LIGHT3, 60, 62, 265

LIGHTO, 60

LIGHT_MODEL_AMBIENT, 61

313

LIGHT _MODEL_COLOR.CONTROL,
61

LIGHT _MODEL_LOCAL _VIEWER,
61

LIGHT _MODEL_TWO_SIDE, 61

LIGHTING, 56

LIGHTING_BIT, 227

LightModel, 60, 61

LINE, 87-89, 200, 201, 239, 267

LINE_BIT, 227

LINE_LOOP, 15

LINE_RESET.TOKEN, 207

LINE_SMOOTH, 77, 83

LINE_SMOOTHHINT, 211

LINE_STIPPLE,80

LINE_STRIP,15, 200

LINE_TOKEN, 207

LINEAR, 144, 149 152,153 155, 168

LINEAR _ATTENUATION, 61

LINEAR_MIPMAP_LINEAR, 144, 151,
152

LINEAR_MIPMAP_NEAREST, 144,
151

LINES, 15, 81

LineStipple,80

LineWidth, 77

LIST_BIT, 227

ListBase,209, 210

LOAD, 187

Loadldentity,41

LoadMatrix,40, 41

LoadMatrix[fd], 41

LoadName202

LoadTransposeMatrixj0

LoadTransposeMatrix[fd§ 1

LOGIC.OP,181

LogicOp,181, 182

LUMINANCE, 105112 116,117,127
130 143 144, 155, 160 161,
164, 191, 192, 218 242, 248
250, 267

LUMINANCE12, 129

LUMINANCE12_ALPHA12,129

LUMINANCE12_ALPHA4, 129

LUMINANCELS6, 129

Version 1.5 - October 30, 2003

314

LUMINANCE16_ALPHAL16, 129
LUMINANCES4, 129
LUMINANCE4_ALPHA4, 129
LUMINANCEG_ALPHAZ2, 129
LUMINANCES, 129
LUMINANCES8_ALPHAS, 129
LUMINANCE _ALPHA, 105 112, 116
117, 127130, 160, 161, 191,
192, 218

Map1,196-198 214

MAP1_COLORA4, 197

MAP1_INDEX, 197

MAP1_NORMAL, 197

MAP1.TEXTURE.COORD 1,197 199

MAP1_TEXTURE.COORD2,197, 199

MAP1.TEXTURE.COORDS3, 197

MAP1.TEXTURE.COORDA4, 197

MAP1 VERTEX_3, 197

MAP1 VERTEX 4, 197

Map2,197, 198 214

MAP2_VERTEX_3, 199

MAP2_VERTEX_4, 199

MAP_COLOR,92, 114, 115

MAP_STENCIL,92, 115

MAP_VERTEX_3, 199

MAP_VERTEX 4,199

Map{12}, 198

MapBuffer,34, 36, 210

MapGrid1,200

MapGrid2,200

Material, 19, 60, 61, 65, 264

MatrixMode, 40

MAX, 178

MAX _3D_TEXTURE_SIZE, 131

MAX _ATTRIB_STACK_DEPTH, 225

MAX _CLIENT_ATTRIB_STACK_DEPTH,
225

MAX _COLORMATRIX _STACK_DEPTH,
219

MAX _CONVOLUTION_HEIGHT, 97,
220

MAX _CONVOLUTION.WIDTH, 97,
98, 220

INDEX

MAX _CUBE_.MAP_TEXTURE_SIZE,
131

MAX _ELEMENTS.INDICES, 28

MAX _ELEMENTS.VERTICES,28

MAX _EVAL _ORDER,197, 198

MAX _PIXEL_MAP_TABLE, 93, 114

MAX _TEXTURE_LOD_BIAS, 147

MAX TEXTURE_SIZE, 131

MAX TEXTURE.UNITS, 13, 20, 23
30, 226

MAX _VIEWPORT.DIMS, 223

MIN, 178

MINMAX, 102, 122, 222

Minmax, 101, 123

MINMAX _FORMAT, 222

MINMAX _SINK, 222

MIRRORED_REPEAT,144, 146, 291

MODELVIEW, 40, 44

MODELVIEW_MATRIX, 214

MODULATE, 159-162, 244

MULT, 187, 188

MultiDrawArrays, 26, 35, 289

MultiDrawElements27, 35, 36, 289

MULTISAMPLE, 72, 77, 83, 89, 123
125172 181, 182

MULTISAMPLE _BIT, 227

MultiTexCoord,19, 20, 25, 44

MultMatrix, 40, 41

MultMatrix[fd], 41

MultTransposeMatrix40

MultTransposeMatrix[fd]41

N3F.V3F, 28, 29

NAND, 182

NEAREST, 144 149, 152, 153 164

NEARESTMIPMAP_LINEAR, 144
151-153 155

NEAREST-MIPMAP_NEAREST, 144
151, 153 164

NEVER, 144, 165 173-175

NewlList, 208 209

NICEST, 211

NO_ERROR,11

NONE, 144, 155 164, 181, 183 184
187,242

Version 1.5 - October 30, 2003

INDEX

NOOP,182

NOR, 182

Normal, 19, 21
Normal3,8, 20
Normal3d,8

Normal3dv,8

Normal3f,8

Normal3fv,8
NORMAL_ARRAY, 24, 30

NORMAL_ARRAY _BUFFERBINDING,

35
NORMAL_ARRAY _POINTER,222
NORMAL_MAP, 47, 48, 281
NORMALIZE, 45
NormalPointer19, 23, 24, 30, 35, 210
NOTEQUAL, 144, 165, 173-175
NULL, 31, 33-35, 225

NUM_COMPRESSEDTEXTURE_.FORMATS,

127

OBJECTLINEAR, 47, 48, 215

OBJECTPLANE, 47

ONE, 179 180, 245

ONE_.MINUS_CONSTANT.ALPHA,
179 289

ONE.MINUS_CONSTANT_.COLOR,
179, 289

ONE_MINUS_DST_ALPHA, 179

ONE_MINUS_DST_COLOR, 179, 288

ONE.MINUS_SRCALPHA, 163 179

ONE.MINUS_SRCCOLOR, 163 179,
288

OPERANDN_ALPHA, 161, 163 166

OPERANDN_RGB, 161, 163, 166

OR,182

OR.INVERTED, 182

OR REVERSE,182

ORDER,217

Ortho,41, 43, 264

OUT_OF-MEMORY, 11, 12, 33, 34, 208

PACK_ALIGNMENT, 190, 247
PACK_LIMAGE _HEIGHT, 190, 217, 247
PACK_LSB_FIRST, 190, 247
PACK_ROW_LENGTH, 190, 247

315

PACK_SKIP_IMAGES, 190, 217, 247
PACK_SKIP_PIXELS, 190, 247
PACK_SKIP_.ROWS,190, 247
PACK_SWAP.BYTES, 190, 247
PASSTHROUGH.TOKEN, 207
PassThrough06
PERSPECTIVECORRECTIONHINT,
211
PIXEL.MAP_A_TO_A, 93,114
PIXEL_.MAP_B_TO.B, 93, 114
PIXEL.MAP_G_TO_G, 93,114
PIXEL_.MAP_I_TO_A, 93,115
PIXEL_.MAP_I_TO_B, 93,115
PIXEL_.MAP_I_TO_G, 93,115
PIXEL_.MAP_I_TO.I, 93,115
PIXEL_.MAP_I_TO_R, 93,115
PIXEL_.MAP_R_.TO.R, 93 114
PIXEL_.MAP_S.TO_S,93,115
PIXEL_MODE_BIT, 227
PixelMap,90, 92, 93, 194
PixelStore, 19, 90-92, 190, 194, 210
PixelTransfer90, 92, 120, 194
PixelZoom,113 123
POINT, 8789, 200, 201, 239, 267
POINT_BIT, 227
POINT_DISTANCE_ATTENUATION,
74
POINT_FADE_.THRESHOLDSIZE, 74
POINT_SIZE_.MAX, 74
POINT_SIZE_MIN, 74
POINT_SMOQTH, 74, 77
POINT_.SMOOTHHINT, 211
POINT_TOKEN, 207
PointParameter290
POINTS,15, 200
PointSize,’3
POLYGON, 16, 18
POLYGON.BIT, 227
POLYGON.OFFSETFILL, 88
POLYGON.OFFSETLINE, 88
POLYGON.OFFSETPOINT, 88
POLYGON.SMOOTH, 84, 89
POLYGON.SMOOTHHINT, 211
POLYGON.STIPPLE,86
POLYGONSTIPPLEBIT, 227

Version 1.5 - October 30, 2003

316

POLYGON.TOKEN, 207

PolygonMode83, 87, 89, 203, 205

PolygonOffset38

PolygonStippleg6, 91

PopAttrib,225 226, 265

PopClientAttrib,19, 210, 225 226

PopMatrix,44

PopName202

POSITION,61, 215

POST.COLORMATRIX _z_BIAS, 92

POSTCOLORMATRIX _x_SCALE,
92

POST.COLORMATRIX _ALPHA BIAS,
121

POST.COLORMATRIX _ALPHA _SCALE,
121

POST.COLORMATRIX _BLUE_BIAS,
121

POST.COLORMATRIX BLUE_SCALE,
121

POSTCOLORMATRIX _COLOR.TABLE,
94,121

POST.COLORMATRIX _GREENBIAS,
121

POSTCOLORMATRIX _GREENSCALE,
121

POST.COLORMATRIX _RED_BIAS,
121

POSTCOLORMATRIX _RED_SCALE,
121

POST.CONVOLUTION_z_BIAS, 92

POST.CONVOLUTION_z_SCALE, 92

POST.CONVOLUTION_ALPHA BIAS,
120

POST.CONVOLUTION_ALPHA_SCALE,
120

POSTCONVOLUTION_BLUE_BIAS,
120

POSTCONVOLUTION_BLUE_SCALE,
120

POST.CONVOLUTION_.COLORTABLE,
94,120 121

POST.CONVOLUTION_GREENBIAS,
120

POST.CONVOLUTION_.GREEN SCALE,

INDEX

120
POST.CONVOLUTION_RED.BIAS,
120
POST.CONVOLUTION_RED_SCALE,
120
PREVIOUS,161, 163 244
PRIMARY_COLOR,163
Prioritize Textures]158
PROJECTIONA40, 44
PROXY_COLOR.TABLE, 94, 96, 210
PROXY_HISTOGRAM, 100, 101, 210,
221

PROXY_POST.COLORMATRIX_COLOR.TABLE,

94, 210

PROXY_POST.CONVOLUTION_.COLOR.TABLE,

94, 210
PROXY_TEXTURE_1D, 127, 133, 155
156, 210, 216
PROXY_TEXTURE_2D, 127, 132, 155,
156, 210, 216
PROXY_TEXTURE_3D, 126, 155, 156,
210 216
PROXY_.TEXTURE_CUBE.MAP, 132
156, 210, 216
PushAttrib,225 226
PushClientAttrib,19, 210, 225, 226
PushMatrix 44
PushName202

Q, 4648, 215

QUAD_STRIP,17
QUADRATIC_ATTENUATION, 61
QUADS, 18
QUERY_COUNTERBITS, 223
QUERY_RESULT, 224
QUERY_RESULT_AVAILABLE, 224

R, 46,47,215
R3.G3.B2,129
RasterPos1, 203 264, 291
RasterPosA1
RasterPos3h1
RasterPos41
READ_ONLY, 31, 34
READ_WRITE, 31, 33, 34

Version 1.5 - October 30, 2003

INDEX

ReadBuffer,190, 191, 194

ReadPixels90, 92, 104, 105, 107, 116,
188-192 194, 210,217,219

Rect,37, 84

RED, 92, 105, 191, 192, 247, 248, 250,
257

RED.BIAS, 114

RED_SCALE,114

REDUCE,118 120, 249

REFLECTIONMAP, 47, 48, 281

RENDER,203 204, 258

RENDERER,223

RenderMode203-205, 210

REPEAT,144, 145, 149, 150, 155, 242

REPLACE,159 160, 162, 174

REPLICATE BORDER,118 119

RESCALENORMAL, 45

ResetHistogran21

ResetMinmax222

RETURN, 187,188

RGB, 105 107,111, 116,117, 127130,
159-161, 179, 191, 192, 218
267

RGB10,129

RGB1QA2, 129

RGB12,129

RGB16,129

RGB4,129

RGB5,129

RGB5A1, 129

RGBS8,129

RGB_SCALE, 159

RGBA, 95, 96, 99-102, 105, 107, 111,
116 117, 127130, 160 161,
191, 194, 218 248251

RGBA12,129

RGBA16,129

RGBA2,129

RGBA4,129

RGBAS, 129

RIGHT, 183 184, 190, 191

Rotate 41, 264

S,46, 47,215

317

SAMPLE ALPHA_TO_COVERAGE,
172

SAMPLE ALPHA_TO_ONE, 172 173

SAMPLE BUFFERS, 72, 77, 83, 89,
123 125 172, 176, 181, 182,
185,190

SAMPLE COVERAGE,172 173

SAMPLE.COVERAGEINVERT, 172
173

SAMPLE_ COVERAGEVALUE, 172
173

SampleCoveragéd,73

SAMPLES,72, 176

SAMPLESPASSED,176

ScaleAl, 42, 264

Scissor172

SCISSORBIT, 227

SCISSORTEST, 172

SECONDARY.COLORARRAY, 24,
28

SECONDARY.COLOR ARRAY _POINTER,
222

SecondaryColor]9, 21, 290

SecondaryColor1

SecondaryColorPointet9, 23, 24, 210

SELECT,203 204, 265

SelectBuffer203 204, 210

SELECTIONBUFFERPOINTER,222

SEPARABLE?2D, 98, 99, 116, 132, 220

SeparableFilter291, 98

SEPARATESPECULARCOLOR,58

SET,182

SGl_color_matrix, 274

SGISgeneratemipmap,288

SGISmultitexture,279

SGIStextureedgeclamp,273

SGIStexturelod, 273

ShadeModelg5

SHININESS,61

SHORT,24, 104, 192, 193 209

SINGLE_COLOR,57, 58, 237

SMOOTH, 65, 236

SOURCEOQALPHA, 296

SOURCEQRGB, 296

SOURCE1ALPHA, 296

Version 1.5 - October 30, 2003

318

SOURCE1RGB, 296

SOURCE2ALPHA, 296

SOURCEZ2RGB, 296

SPECULAR61, 62

SPHEREMAP, 47, 48, 281

SPOT.CUTOFF,61

SPOT.DIRECTION, 61, 215

SPOTEXPONENT,61

SRCQALPHA, 296

SRCQRGB, 296

SRC1ALPHA, 296

SRC1RGB, 296

SRC2ALPHA, 296

SRC2RGB, 296

SRCALPHA, 161, 163 179, 244

SRCALPHA_SATURATE, 179

SRCCOLOR, 161, 163 179 244, 288

SRM_ALPHA, 161, 163 166

SRM_RGB, 161, 163 166

STACK_OVERFLOW, 12, 44, 203 225

STACK_.UNDERFLOW, 12, 44, 202
226

STATIC_COPY,31, 32

STATIC_DRAW, 31, 32

STATIC_READ, 31, 32

STENCIL, 194

STENCIL BUFFERBIT, 185,187, 227

STENCILINDEX, 94, 97, 102 105
113 126, 188 190 191, 194
217

STENCILTEST,174

StencilFunc174, 175 263

StencilMask,185, 188, 263

StencilOp,174, 175

STREAM_COPY, 31, 32

STREAM_DRAW, 31, 32

STREAM_READ, 31, 32

SUBTRACT, 162

T, 46, 215

T2F_C3F.V3F, 28, 29
T2F_CAFN3F_V3F, 28, 29
T2F_C4UB_V3F, 28, 29
T2F_N3F_V3F, 28, 29
T2F_V3F, 28, 29

INDEX

TAF_.CAFN3F.V4F, 28, 29

T4F_VAF, 28, 29

TABLE_TOO_LARGE, 12,94, 101

TexCoord,19, 20

TexCoord120

TexCoord220

TexCoord320

TexCoord4 20

TexCoordPointer]9, 23-25, 30, 210

TexEnv,158 166

TexGen46-48

Texlmage 137

TexlmagelD,91, 116 118 128 132
133 136, 137, 140 151, 155
210

TexImage2D,91, 116, 118 128 132
133 135 137, 140, 151, 155,
210

TexImage3D,91, 126, 128 131-133
137,140,151, 155,210, 217

TexParametefi42

TexParameter(if]147, 151

TexParameterf] 58

TexParameterfvl 58

TexParameteril 58

TexParameterivi58

TexSublmage] 37

TexSublmagelD®1, 116,136,137, 139,
141

TexSublmage2D91, 116, 136-139, 141

TexSublmage3D91, 136, 137, 139, 141

TEXTURE, 40, 43, 44, 161, 163, 244

TEXTURE;, 20

TEXTUREDO, 20, 44, 198, 205, 226, 232,
244

TEXTUREL1,226

TEXTURE.xD, 241

TEXTURE_1D, 127,133 136, 143 156,
157,164, 215217

TEXTURE_2D, 127,132,135, 136, 143
156, 157, 164, 215217

TEXTURE.3D, 126, 137, 143 155-157,
164, 215-217

TEXTURE.ALPHA_SIZE, 216

TEXTURE.BASE_LEVEL, 131, 143

Version 1.5 - October 30, 2003

INDEX

144,151, 155
TEXTUREBIT, 226, 227
TEXTURE.BLUE_SIZE, 216
TEXTURE.BORDER,140, 142, 216
TEXTURE.BORDERCOLOR, 143
144,150, 155
TEXTURE_.COMPAREFAIL _VALUE _ARB,
303
TEXTURE.COMPAREFUNC,
155 164
TEXTURE.COMPAREMODE,
155 164, 289
TEXTURE.COMPONENTS216
TEXTURE.COMPRESSEDMAGE_SIZE,
141,142, 216, 218
TEXTURE.COMPRESSIONHINT,
211
TEXTURE.COORDARRAY, 24, 25
30
TEXTURE.COORDARRAY _POINTER,
222
TEXTURE.CUBE_.MAP, 132 143 156,
157,164, 216, 241
TEXTURE.CUBE.MAP_*, 132
TEXTURE.CUBE_MAP_NEGATIVE_X,
132 135 136, 145 216 217
TEXTURE.CUBE_.MAP_NEGATIVE.Y,
132 135 137,145 216 217
TEXTURE.CUBE_MAP_NEGATIVE_Z,
132 135 137,145 216 217
TEXTURE.CUBE_.MAP_POSITIVEX,
132 135 136, 145 216 217
TEXTURE.CUBE_.MAP_POSITIVEY,
132 135 137,145 216 217
TEXTURE.CUBE.MAP_POSITIVEZ,
132 135 137,145 216 217
TEXTURE.DEPTH, 140, 142, 216
TEXTURE.DEPTHSIZE, 216
TEXTUREENY, 159 215
TEXTURE.ENV_COLOR,159
TEXTURE_.ENV_MODE, 159 166, 282
TEXTUREFILTER_.CONTROL, 159,
215
TEXTURE_.GEN_MODE, 47, 48
TEXTURE.GEN_Q, 48

144,

144,

319

TEXTURE_.GEN.R, 48

TEXTURE.GEN_S, 48

TEXTURE.GENL_T, 48

TEXTURE_GREENSIZE, 216

TEXTURE_HEIGHT, 140, 142,216

TEXTURELINTENSITY_SIZE, 216

TEXTURELINTERNAL _FORMAT,
140,142,216

TEXTURELOD_BIAS, 144, 147, 159,
291

TEXTURE_LUMINANCE _SIZE, 216

TEXTURE.MAG_FILTER, 144, 153
155,164

TEXTURE.MAX _LEVEL, 143 144
151, 155

TEXTURE.MAX _LOD, 143 144, 147,
155

TEXTUREMIN _FILTER, 144, 149
151, 153-155, 164

TEXTURE_MIN _LOD, 143 144, 147,
155

TEXTURE_PRIORITY, 144, 155, 158

TEXTURE_RED_SIZE, 216

TEXTURE_RESIDENT, 155,158 216

TEXTURE.WIDTH, 140, 142, 216

TEXTURE.WRAPR, 144, 145 149
150

TEXTURE.WRAP_S, 144, 145, 149

TEXTURE.WRAP_T, 144, 145 149
150

TEXTUREN, 163 166

TRANSFORMBIT, 227

Translatedl1, 42, 264

TRANSPOSECOLORMATRIX, 214
219

TRANSPOSEMODELVIEW _MATRIX,
214

TRANSPOSEPROJECTIONMATRIX,
214

TRANSPOSETEXTURE.MATRIX,
214

TRIANGLE_FAN, 16

TRIANGLE_STRIP,16

TRIANGLES, 17,18

TRUE, 18, 19, 31, 34, 35,50, 57, 59, 90—

Version 1.5 - October 30, 2003

320

92, 100, 102 143 144 152
157,173 176, 185 190, 210,
214,218 221224, 288

UnmapBuffer,35, 36, 210
UNPACK_ALIGNMENT, 91, 106, 126,
247
UNPACK_IMAGE _HEIGHT, 91, 126
247
UNPACK_LSB_FIRST,91, 111, 247
UNPACK_ROW_LENGTH, 91, 105
106, 126, 247
UNPACK_SKIPIIMAGES, 91, 126
132, 247
UNPACK_SKIP_PIXELS, 91, 106, 111,
247
UNPACK_SKIP_.ROWS, 91, 106, 111,
247
UNPACK_SWAPBYTES,91, 105, 106,
247
UNSIGNED.BYTE, 24, 26, 29, 104
108 192 193 209
UNSIGNEDBYTE_2 3.3 REV, 104
106-108 193
UNSIGNEDBYTE_3.3.2, 104, 106~
108 193
UNSIGNEDLINT, 24, 26, 104, 110, 192,
193 209
UNSIGNED.INT_10.10.10.2, 104, 106,
107,110,193
UNSIGNED.INT_2.10.10.10_.REV,
104, 106,107,110 193
UNSIGNED.INT_8.8.8.8, 104, 106
107,110,193
UNSIGNED.INT_8.8 8 8 REV, 104
106,107,110 193
UNSIGNED_SHORT, 24, 26, 104, 109,
192 193 209
UNSIGNED_.SHORT.1. 5.5 5.REV,
104, 106, 107, 109, 193
UNSIGNED_.SHORT.4_4 4 4, 104,
106, 107, 109, 193
UNSIGNED_SHORT 4.4 4 4 REV,
104, 106,107, 109, 193
UNSIGNED_SHORT5.5.5.1, 104,

INDEX

106, 107,109, 193
UNSIGNED.SHORT5.6.5, 104, 106,
107, 109, 193
UNSIGNED.SHORT5.6_.5.REV, 104
106, 107,109, 193

V2F, 28, 29

V3F, 28, 29

VENDOR, 223

VERSION, 223

Vertex, 7, 19, 20, 51, 199
Vertex2,20, 37

Vertex2sv,/

Vertex3,20

Vertex3f,7

Vertex4,20

VERTEX_ARRAY, 24, 30
VERTEX_ARRAY _POINTER,222
VertexPointer19, 23, 24, 30, 210
Viewport, 39

VIEWPORT.BIT, 227

WGL_ARB_multisample 281
WindowPos51, 53, 203 291
WindowPos253
WindowPos351
WRITE_ONLY, 31, 34

XOR, 182

ZERO, 174,179,180, 245

Version 1.5 - October 30, 2003

	Introduction
	Formatting of Optional Features
	What is the OpenGL Graphics System?
	Programmer's View of OpenGL
	Implementor's View of OpenGL
	Our View

	OpenGL Operation
	OpenGL Fundamentals
	Floating-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Begin and End Objects
	Polygon Edges
	GL Commands within Begin/End

	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Vertex Arrays in Buffer Objects
	Array Indices in Buffer Objects

	Rectangles
	Coordinate Transformations
	Controlling the Viewport
	Matrices
	Normal Transformation
	Generating Texture Coordinates

	Clipping
	Current Raster Position
	Colors and Coloring
	Lighting
	Lighting Parameter Specification
	ColorMaterial
	Lighting State
	Color Index Lighting
	Clamping or Masking
	Flatshading
	Color and Texture Coordinate Clipping
	Final Color Processing

	Rasterization
	Invariance
	Antialiasing
	Multisampling

	Points
	Basic Point Rasterization
	Point Rasterization State
	Point Multisample Rasterization

	Line Segments
	Basic Line Segment Rasterization
	Other Line Segment Features
	Line Rasterization State
	Line Multisample Rasterization

	Polygons
	Basic Polygon Rasterization
	Stippling
	Antialiasing
	Options Controlling Polygon Rasterization
	Depth Offset
	Polygon Multisample Rasterization
	Polygon Rasterization State

	Pixel Rectangles
	Pixel Storage Modes
	The Imaging Subset
	Pixel Transfer Modes
	Rasterization of Pixel Rectangles
	Pixel Transfer Operations
	Pixel Rectangle Multisample Rasterization

	Bitmaps
	Texturing
	Texture Image Specification
	Alternate Texture Image Specification Commands
	Compressed Texture Images
	Texture Parameters
	Depth Component Textures
	Cube Map Texture Selection
	Texture Wrap Modes
	Texture Minification
	Texture Magnification
	Texture Completeness
	Texture State and Proxy State
	Texture Objects
	Texture Environments and Texture Functions
	Texture Comparison Modes
	Texture Application

	Color Sum
	Fog
	Antialiasing Application
	Multisample Point Fade

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Pixel Ownership Test
	Scissor Test
	Multisample Fragment Operations
	Alpha Test
	Stencil Test
	Depth Buffer Test
	Occlusion Queries
	Blending
	Dithering
	Logical Operation
	Additional Multisample Fragment Operations

	Whole Framebuffer Operations
	Selecting a Buffer for Writing
	Fine Control of Buffer Updates
	Clearing the Buffers
	The Accumulation Buffer

	Drawing, Reading, and Copying Pixels
	Writing to the Stencil Buffer
	Reading Pixels
	Copying Pixels
	Pixel Draw/Read State

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	Simple Queries
	Data Conversions
	Enumerated Queries
	Texture Queries
	Stipple Query
	Color Matrix Query
	Color Table Query
	Convolution Query
	Histogram Query
	Minmax Query
	Pointer and String Queries
	Occlusion Queries
	Buffer Object Queries
	Saving and Restoring State

	State Tables

	Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	What All This Means

	Corollaries
	Version 1.1
	Vertex Array
	Polygon Offset
	Logical Operation
	Texture Image Formats
	Texture Replace Environment
	Texture Proxies
	Copy Texture and Subtexture
	Texture Objects
	Other Changes
	Acknowledgements

	Version 1.2
	Three-Dimensional Texturing
	BGRA Pixel Formats
	Packed Pixel Formats
	Normal Rescaling
	Separate Specular Color
	Texture Coordinate Edge Clamping
	Texture Level of Detail Control
	Vertex Array Draw Element Range
	Imaging Subset
	Color Tables
	Convolution
	Color Matrix
	Pixel Pipeline Statistics
	Constant Blend Color
	New Blending Equations

	Acknowledgements

	Version 1.2.1
	Version 1.3
	Compressed Textures
	Cube Map Textures
	Multisample
	Multitexture
	Texture Add Environment Mode
	Texture Combine Environment Mode
	Texture Dot3 Environment Mode
	Texture Border Clamp
	Transpose Matrix
	Acknowledgements

	Version 1.4
	Automatic Mipmap Generation
	Blend Squaring
	Changes to the Imaging Subset
	Depth Textures and Shadows
	Fog Coordinate
	Multiple Draw Arrays
	Point Parameters
	Secondary Color
	Separate Blend Functions
	Stencil Wrap
	Texture Crossbar Environment Mode
	Texture LOD Bias
	Texture Mirrored Repeat
	Window Raster Position
	Acknowledgements

	Version 1.5
	Buffer Objects
	Occlusion Queries
	Shadow Functions
	Changed Tokens
	Acknowledgements

	ARB Extensions
	Naming Conventions
	Promoting Extensions to Core Features
	Multitexture
	Transpose Matrix
	Multisample
	Texture Add Environment Mode
	Cube Map Textures
	Compressed Textures
	Texture Border Clamp
	Point Parameters
	Vertex Blend
	Matrix Palette
	Texture Combine Environment Mode
	Texture Crossbar Environment Mode
	Texture Dot3 Environment Mode
	Texture Mirrored Repeat
	Depth Texture
	Shadow
	Shadow Ambient
	Window Raster Position
	Low-Level Vertex Programming
	Low-Level Fragment Programming
	Buffer Objects
	Occlusion Queries
	Shader Objects
	High-Level Vertex Programming
	High-Level Fragment Programming
	OpenGL Shading Language
	Non-Power-Of-Two Textures
	Point Sprites

	Index of OpenGL Commands

