
OpenGL R© ES
Common/Common-Lite Profile Specification

Version 1.1.12 (Difference Specification) (Annotated)

Editor (version 1.0): David Blythe
Editor (version 1.1): Aaftab Munshi

April 24, 2008

Copyright (c) 2002-2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written per-
mission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specifi-
cation, but the receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe,
in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter mem-
ber of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fash-
ion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed speci-
fication may be re-formatted AS LONG AS the contents of the specification are not changed in
any way. The specification may be incorporated into a product that is sold as long as such prod-
uct includes significant independent work developed by the seller. A link to the current version
of this specification on the Khronos Group web-site should be included whenever possible with
specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual prop-
erty. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Mem-
bers or their respective partners, officers, directors, employees, agents or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Overview 1
1.1 Conventions . 1

2 OpenGL Operation 3
2.1 OpenGL Fundamentals . 3

2.1.1 Fixed-Point Computation . 4
2.2 GL State . 4
2.3 GL Command Syntax . 4
2.4 Basic GL Operation . 5
2.5 GL Errors . 5
2.6 Begin/End Paradigm . 5
2.7 Vertex Specification . 6
2.8 Vertex Arrays . 7
2.9 Buffer Objects . 8
2.10 Rectangles . 9
2.11 Coordinate Transformations . 9
2.12 Clipping . 11
2.13 Current Raster Position . 11
2.14 Colors and Coloring . 11

3 Rasterization 13
3.1 Invariance . 13
3.2 Antialiasing . 13
3.3 Points . 13
3.4 Line Segments . 14
3.5 Polygons . 14
3.6 Pixel Rectangles . 15
3.7 Bitmaps . 17
3.8 Texturing . 17

3.8.1 Copy Texture . 17
3.8.2 Compressed Textures . 18
3.8.3 Texture Addressing Modes . 18
3.8.4 Texture Completeness . 18
3.8.5 Texture State . 19
3.8.6 Texture Environments and Texture Functions . 22

3.9 Fog . 26

i

ii Contents

4 Per-Fragment Operations and the Framebuffer 27
4.1 Per-Fragment Operations . 27

4.1.1 Blending . 29
4.2 Whole Framebuffer Operations . 30
4.3 Drawing, Reading, and Copying Pixels . 30

5 Special Functions 32
5.1 Evaluators . 32
5.2 Selection . 32
5.3 Feedback . 33
5.4 Display Lists . 33
5.5 Flush and Finish . 33
5.6 Hints . 34

6 State and State Requests 35
6.1 Querying GL State . 35
6.2 State Tables . 37

7 Core Additions and Extensions 54
7.1 Byte Coordinates . 55
7.2 Fixed Point . 55
7.3 Single-precision Commands . 56
7.4 Compressed Paletted Texture . 57
7.5 Read Format . 57
7.6 Matrix Palette . 57
7.7 Point Sprites . 57
7.8 Point Size Array . 57
7.9 Matrix Get . 58
7.10 Draw Texture . 58

8 Packaging 59

A Acknowledgements 60

B OES Extension Specifications 62
B.1 OES byte coordinates . 62
B.2 OES fixed point . 65
B.3 OES single precision . 74
B.4 OES read format . 79
B.5 OES query matrix . 83
B.6 OES compressed paletted texture . 86
B.7 OES matrix palette . 92
B.8 OES point sprite . 100
B.9 OES point size array . 107
B.10 OES matrix get . 110
B.11 OES draw texture . 113

Chapter 1

Overview

This document outlines the OpenGL ES Common and Common-Lite profiles. A profile pipeline is described
in the same order as in the OpenGL specification. The specification lists supported commands and state,
and calls out commands and state that are part of the full (desktop) OpenGL specification but not part of
the profile definition. This specification is not a standalone document describing the detailed behavior of
the rendering pipeline subset and API. Instead, it provides a concise description of the differences between
a full OpenGL renderer and the Common/Common-Lite renderer. This document is defined relative to the
OpenGL 1.5 specification.

Starting with revision 1.1.10, a standalone document titled OpenGL ES Common/Common-Lite Profile
Specification (Full Specification) has been derived from the OpenGL 1.5 specification. The Full Specifi-
cation is the authoritative definition of OpenGL ES 1.1. This document, the Difference Specification, will
continue to be maintained as a quick reference, and to enable direct comparisons with OpenGL 1.5.

This document specifies the OpenGL Common/Common-Lite renderer. A companion document defines
one or more bindings to window system/OS platform combinations analogous to the GLX, WGL, and
AGL specifications. 1 If required, an additional companion document describes utility library functionality
analogous to the GLU specification.

1.1 Conventions

This document describes commands in the identical order as the OpenGL 1.5 specification. Each section
corresponds to a section in the full OpenGL specification and describes the disposition of each command
relative to Common/Common-Lite profile definition. Where necessary, the profile specification provides
additional clarification of the reduced command behavior.

Each section of the specification includes tables summarizing the commands and parameters that are
retained in the Common and Common-Lite profiles. Several symbols are used within the tables to in-
dicate various special cases. The symbol † indicates that the floating-point form of the command is re-
placed by its fixed-point variant from the OES fixed point extension. The symbol ♦ indicates that the
double-precision form of the command is replaced with its single-precision variant from the OES single -

precision extension. The symbol B indicates that an enumerant is part of a new ES-specific extension.
The superscript ‡ indicates that the command is supported subject to additional constraints described in the
section body containing the table.

1See the OpenGL ES Native Platform Graphics Interface specification.

1

2 Overview

n Additional material summarizing some of the reasoning behind certain decisions is included as an
annotation at the end of each section, set in this typeface. q

Chapter 2

OpenGL Operation

The basic GL operation remains largely unchanged. Two significant changes in the Common and Common-
Lite profiles are that commands cannot be accumulated in a display list for later processing, and the first
stage of the pipeline for approximating curve and surface geometry is eliminated. The remaining pipeline
stages include: per-vertex operations and primitive assembly, pixel operations, rasterization, per-fragment
operations, and whole framebuffer operations.

The Common/Common-Lite profile introduces several OpenGL extensions that are defined relative to
the full OpenGL 1.5 specification and then appropriately reduced to match the subset of commands in the
profile. These OpenGL extensions are divided into two categories: those that are fully integrated into the
profile definition – core additions; and those that remain extensions – profile extensions. Core additions do
not use extension suffixes, whereas profile extensions retain their extension suffixes. Chapter 7 summarizes
each extension and how it relates to the profile definition. Complete extension specifications are included in
Appendix B.

n The OpenGL ES profiles are part of a wider family of OpenGL-derived application programming
interfaces. As such, the profiles share a similar processing pipeline, command structure, and the
same OpenGL name space. Where necessary, extensions are created to augment the existing
OpenGL 1.5 functionality. OpenGL ES-specific extensions play a role in OpenGL ES profiles similar
to that played by OpenGL ARB extensions relative to the OpenGL specification. OpenGL ES-specific
extensions are either precursors of functionality destined for inclusion in future core profile revisions,
or formalization of important but non-mainstream functionality.

Extension specifications are written relative to the full OpenGL specification so that they can also be
added as extensions to an OpenGL 1.5 implementation and so that they are easily adapted to profile
functionality enhancements that are drawn from the full OpenGL specification. Extensions that are
part of the core profile do not have extension suffixes, since they are not extensions to the profile,
though they are extensions to OpenGL 1.5. q

2.1 OpenGL Fundamentals

Commands and tokens continue to be prefixed by gl and GL in all profiles. The wide range of support for
differing data types (8-bit, 16-bit, 32-bit and 64-bit; integer and floating-point) is reduced wherever possi-
ble to eliminate non-essential command variants and to reduce the complexity of the processing pipeline.
Double-precision floating-point parameters and data types are eliminated completely, while other command
and data type variations are considered on a command-by-command basis and eliminated when appropriate.
In the Common-Lite variation of the Common profile, the floating-point data type is also eliminated in favor

3

4 OpenGL Operation

of the fixed-point data type described in the OES fixed point extension specification.

2.1.1 Fixed-Point Computation

Both the Common and Common-Lite profile support fixed-point vertex attributes and command parameters
using a 32-bit two’s-complement signed representation with 16 bits to the right of the binary point (frac-
tion bits). The Common profile pipeline retains the same range and precision requirements as specified in
Section 2.1.1 of the OpenGL 1.5 specification. The Common-Lite profile pipeline must meet the range and
precision requirements specified in the OES fixed point extension:

Internal computations can use either fixed-point or floating-point arithmetic. Fixed-point com-
putations must be accurate to within ±2−15. The maximum representable magnitude for a
fixed-point number used to represent positional or normal coordinates must be at least 215;
the maximum representable magnitude for colors or texture coordinates must be at least 210.
The maximum representable magnitude for all other fixed-point values must be at least 215.
x · 0 = 0 · x = 0. 1 · x = x · 1 = x. x + 0 = 0 + x = x. 00 = 1. Fixed-point computations
may lead to overflows or underflows. The results of such computations are undefined, but must
not lead to GL interruption or termination.

Furthermore, the following additional constraint must be met for both profiles:

Using the notation 16.16 to indicate a 32-bit two’s-complement fixed-point number with 16
bits of fraction; if an incoming vertex is representable using 16.16, the modelview and projec-
tion matrices are representable in 16.16, and the resulting eye-space and NDC-space vertices
are representable in 16.16 (when computed using intermediate representations with sufficient
dynamic range), then the transformation pipeline must compute the eye-space and NDC-space
vertices to some reasonable accuracy (i.e., overflow is not acceptable).

n The Common-Lite profile is a fixed-point profile. The precision and dynamic range requirements are
minimal to allow a broad range of implementations, while strong enough to allow portable application
behavior for applications written strictly to the minimum behavior. The accuracy requirements allow
pipeline implementations to internally use either fixed-point or floating-point arithmetic. The Common
profile is a superset of the Common-Lite profile and requires floating-point-like dynamic range to
avoid unexpected behavior in applications using floating-point input. q

2.2 GL State

The Common and Common-Lite profiles retain a large subset of the client and server state described in the
full OpenGL specification. The separation of client and server state persists. Section 6.2 summarizes the
disposition of all state variables relative to the Common/Common-Lite profile.

2.3 GL Command Syntax

The OpenGL command and type naming conventions are retained identically. The new types fixed and
clampx are added with the corresponding command suffix, ’x’. Commands using the suffixes for the types:
byte, ubyte, short, and ushort are not supported, except for glColor4ub. The type double and all
double-precision commands are eliminated. The result is that the Common profile uses only the suffixes ’f’,
’i’, and ’x’ and the Common-Lite profile uses only the suffixes ’i’ and ’x’.

OpenGL Operation 5

2.4 Basic GL Operation

The basic command operation remains identical to OpenGL 1.5. The major differences from the OpenGL
1.5 pipeline are that commands cannot be placed in a display list; there is no polynomial function evaluation
stage; and blocks of fragments cannot be sent directly to the individual fragment operations.

2.5 GL Errors

The full OpenGL error detection behavior is retained, including ignoring offending commands and setting
the current error state. In all commands, parameter values that are not supported by the profile are treated
like any other unrecognized parameter value and an error results, i.e., INVALID ENUM or INVALID VALUE.
Table 2.1 lists the errors.

OpenGL 1.5 Common Common-Lite
NO ERROR � �
INVALID ENUM � �
INVALID VALUE � �
INVALID OPERATION � �
STACK OVERFLOW � �
STACK UNDERFLOW � �
OUT OF MEMORY � �
TABLE TOO LARGE – –

Table 2.1: Error Disposition

The command GetError is retained to return the current error state. As in OpenGL 1.5, it may be
necessary to call GetError multiple times to retrieve error state from all parts of the pipeline.

OpenGL 1.5 Common Common-Lite
GetError(void) � �

n Well-defined error behavior allows portable applications to be written. Retrievable error state allows
application developers to debug commands with invalid parameters during development. This is an
important feature during initial profile deployment. q

2.6 Begin/End Paradigm

The Common and Common-Lite profiles draw geometric objects exclusively using vertex arrays. Asso-
ciated colors, normals, and texture coordinates are specified using vertex arrays. The associated auxiliary
values for color, normal, and texture coordinate can also be set using a small subset of the associated attribute
specification commands described in Section 2.7. Since the commands Begin and End are not supported, no
internal state indicating the begin/end state is maintained.

The POINTS, LINES, LINE STRIP, LINE LOOP, TRIANGLES, TRIANGLE STRIP, and TRIANGLE FAN

primitives are supported. The QUADS, QUAD STRIP, and POLYGON primitives are not supported.
Color index rendering is not supported. Edge flags are not supported.

6 OpenGL Operation

OpenGL 1.5 Common Common-Lite
Begin(enum mode) – –
End(void) – –
EdgeFlag[v](T flag) – –

n The Begin/End paradigm, while convenient, leads to a large number of commands that need to
be implemented. Correct implementation also involves suppression of commands that are not legal
between Begin and End. Tracking this state creates an additional burden on the implementation.
Vertex arrays, arguably can be implemented more efficiently since they present all of the primitive
data in a single function call. Edge flags are not included, as they are only used when drawing
polygons as outlines and support for PolygonMode has not been included.
Quads and polygons are eliminated since they can be readily emulated with triangles and it reduces
an ambiguity with respect to decomposition of these primitives to triangles, since it is entirely left to
the application. Elimination of quads and polygons removes special cases for line mode drawing
requiring edge flags (should PolygonMode be re-instated). q

2.7 Vertex Specification

The Common profile does not include the concept of Begin and End. Vertices are specified using vertex
arrays exclusively. Only float, short, and byte coordinate and component types are supported with
the exception of ubyte rather than short color components. There is limited support for specifying the
current color, normal, and texture coordinate using the fixed-point or floating-point forms of the commands
Color4, Normal3, and MultiTexCoord4.

OpenGL 1.5 Common Common-Lite
Vertex{234}{sifd}[v](T coords) – –
Normal3f(float coords) � †
Normal3{bsifd}[v](T coords) – –
TexCoord{1234}{sifd}[v](T coords) – –
MultiTexCoord4f(enum texture, float coords) � †
MultiTexCoord123{sifd}[v](enum texture, T coords) – –
MultiTexCoord4{sid}[v](enum texture, T coords) – –
Color4f(float components) � †
Color4ub(T components) � �
Color{34}{bsifd ub us ui}[v](T components) – –
FogCoord{fd}[v](T coord) – –
SecondaryColor3{bsifd ub us ui}[v](T components) – –
Index{sifd ub}[v](T components) – –

n A handful of fine grain commands (Color, Normal, MultiTexCoord) are included so that per-primitive
attributes can be set. For each command, the most general form of the floating-point version of the
command is retained to simplify addition of extensions or future revisions. Since these commands
are unlikely to be issued frequently, as they can only be used to set (overall) per-primitive attributes,
performance is not an issue.
The Common and Common-Lite profiles support only the RGBA rendering model. One or more of
the RGBA component depths may be zero. Color index rendering is not supported. q

OpenGL Operation 7

2.8 Vertex Arrays

The OES byte coordinates extension allows vertex, normal and texture coordinates to be specified using
byte types. Color index and edge flags are not supported. Both indexed and non-indexed arrays are
supported, but the InterleavedArrays and ArrayElement commands are not supported.

OpenGL 1.5 Common Common-Lite
VertexPointer(int size, enum type, sizei stride, const void *ptr)

size = 2,3,4 type = BYTE B B
size = 2,3,4 type = SHORT � �
size = 2,3,4 type = FLOAT � †
size = * type = INT,DOUBLE – –

NormalPointer(enum type, sizei stride, const void *ptr)

type = SHORT,BYTE � �
type = FLOAT � †
type = INT,DOUBLE – –

ColorPointer(int size, enum type, sizei stride, const void *ptr)

size = 4 type = UNSIGNED BYTE � �
size = 4 type = FLOAT � †
size = 3 type = FLOAT,UNSIGNED BYTE – –

type = INT, DOUBLE – –
TexCoordPointer(int size, enum type, sizei stride, const void *ptr)

size = 2,3,4 type = BYTE B B
size = 2,3,4 type = SHORT � �
size = 2,3,4 type = FLOAT � †
size = 1 type = * – –

SecondaryColorPointer(int size, enum type, sizei stride,

void *ptr)
– –

FogCoordPointer(enum type, sizei stride, void *ptr) – –
EdgeFlagPointer(sizei stride, const void *ptr) – –
IndexPointer(enum type, sizei stride, const void *ptr) – –
ArrayElement(int i) – –
DrawArrays(enum mode, int first, sizei count)

mode = POINTS,LINES,LINE STRIP,LINE LOOP � �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN � �
mode = QUADS,QUAD STRIP,POLYGON – –

DrawElements(enum mode, sizei count, enum type, const void *indices)

mode = POINTS,LINES,LINE STRIP,LINE LOOP � �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN � �
mode = QUADS,QUAD STRIP,POLYGON – –
type = UNSIGNED BYTE,UNSIGNED SHORT � �
type = UNSIGNED INT – –

MultiDrawArrays(enum mode, int *first, sizei *count,

sizei primcount)
– –

MultiDrawElements(enum mode, sizei *count, enum type,

void **indices, sizei primcount)
– –

8 OpenGL Operation

OpenGL 1.5 Common Common-Lite
InterleavedArrays(enum format, sizei stride, const void

*pointer)
– –

DrawRangeElements(enum mode, uint start, uint end,

sizei count, enum type, const void *indices)
– –

ClientActiveTexture(enum texture) � �
EnableClientState(enum cap)

cap = TEXTURE COORD ARRAY,COLOR ARRAY � �
cap = NORMAL ARRAY,VERTEX ARRAY � �
cap = EDGE FLAG ARRAY,INDEX ARRAY – –
cap = FOG COORD ARRAY,SECONDARY COLOR ARRAY – –

DisableClientState(enum cap)

cap = TEXTURE COORD ARRAY,COLOR ARRAY � �
cap = NORMAL ARRAY,VERTEX ARRAY � �
cap = EDGE FLAG ARRAY, INDEX ARRAY – –
cap = FOG COORD ARRAY,SECONDARY COLOR ARRAY – –

n Float types are supported for all-around generality, short and byte types are supported for
space efficiency. Four-component vertex and texture coordinates are supported to allow an applica-
tion to fully specify post-projection vertex and texture coordinates before division by w or q. Support
for indexed vertex arrays allows for greater reuse of coordinate data between multiple faces, that is,
when the shared edges are smooth. The indexing support is limited to ubyte and ushort indices
since there is typically enough locality in the vertex array data to address the vertices with these more
compact index types.
The OpenGL 1.5 specification defines the initial type for each of the arrays to be FLOAT for the
common profile and FIXED for the common-lite profile.
Multitexture with a minimum of two texture units is required by OpenGL ES 1.1. q

2.9 Buffer Objects

The vertex data arrays described in Section 2.8 are stored in client memory. It is sometimes desirable to
store frequently used client data, such as vertex array data in high-performance server memory. GL buffer
objects provide a mechanism that clients can use to allocate, initialize and render from memory. Buffer
objects can be used to store vertex array and element index data.

OpenGL 1.5 Common Common-Lite
BindBuffer(enum target, uint buffer) � �
DeleteBuffers(sizei n, const uint *buffers) � �
GenBuffers(sizei n, uint *buffers) � �
BufferData(enum target, sizeiptr size, const void

*data, enum usage)
� �

BufferSubData(enum target, intptr offset, sizeiptr

size, const void *data)
� �

MapBuffer(enum target, enum access) – –
UnmapBuffer(enum target) – –

OpenGL Operation 9

Name Type Initial Value Legal Values
BUFFER SIZE integer 0 any non-negative integer

BUFFER USAGE enum STATIC DRAW STATIC DRAW, DYNAMIC DRAW

Table 2.2: Buffer object parameters and their values

n The STREAM DRAW, STREAM COPY, STREAM READ, STATIC COPY, STATIC READ, DYNAMIC COPY,
and DYNAMIC READ tokens and the MapBuffer and UnmapBuffer functions are not supported be-
cause it may not be possible for an application to read or get a pointer to the vertex data from the
vertex buffers in server memory.
BufferData and BufferSubData define two new types that will work well on 64-bit systems, analogous
to C’s ”intptr t”. The new type ”GLintptrARB” should be used in place of GLint whenever it is expected
that values might exceed 2 billion. The new type ”GLsizeiptrARB” should be used in place of GLsizei
whenever it is expected that counts might exceed 2 billion. Both types are defined as signed integers
large enough to contain any pointer value. As a result, they naturally scale to larger numbers of bits
on systems with 64-bit or even larger pointers. q

2.10 Rectangles

The commands for directly specifying rectangles are not supported.

OpenGL 1.5 Common Common-Lite
Rect{sifd}(T x1, T y1, T x2, T y2) – –
Rect{sifd}v(T v1[2], T v2[2]) – –

n The rectangle commands are not used enough in applications to justify maintaining a redundant
mechanism for drawing a rectangle. q

2.11 Coordinate Transformations

The full transformation pipeline is supported with the following exceptions: no support for specification
of double-precision matrices and transformation parameters; no support for the transpose form of the
LoadMatrix and MultMatrix commands; no support for COLOR matrix; and no support for texture coordi-
nate generation. The double-precision only commands DepthRange, Frustum, and Ortho are replaced with
single-precision or fixed-point variants from the OES single precision and OES fixed point exten-
sions. The minimum depth of the MODELVIEW matrix stack is changed from 32 to 16.

OpenGL 1.5 Common Common-Lite
DepthRange(clampd n, clampd f) ♦ †
Viewport(int x, int y, sizei w, sizei h) � �
MatrixMode(enum mode)

mode = MODELVIEW,PROJECTION,TEXTURE � �
mode = COLOR – –

LoadMatrixf(float m[16]) � †

10 OpenGL Operation

OpenGL 1.5 Common Common-Lite
LoadMatrixd(double m[16]) – –
MultMatrixf(float m[16]) � †
MultMatrixd(double m[16]) – –
LoadTransposeMatrix{fd}(T m[16]) – –
MultTransposeMatrix{fd}(T m[16]) – –
LoadIdentity(void) � �
Rotatef(float angle, float x, float y, float z) � †
Rotated(double angle, double x, double y, double z) – –
Scalef(float x, float y, float z) � †
Scaled(double x, double y, double z) – –
Translatef(float x, float y, float z) � †
Translated(double x, double y, double z) – –
Frustum(double l, double r, double b, double t,

double n, double f)
♦ †

Ortho(double l, double r, double b, double t, double

n, double f)
♦ †

ActiveTexture(enum texture) � �
PushMatrix(void)
TEXTURE and PROJECTION (2 deep) � �
MODELVIEW (16 deep) � �

PopMatrix(void) � �
Enable/Disable(RESCALE NORMAL) � �
Enable/Disable(NORMALIZE) � �
TexGen{ifd}[v](enum coord, enum pname, T param) – –
GetTexGen{ifd}v(enum coord, enum pname, T *params) – –
Enable/Disable(TEXTURE GEN {STRQ}) – –

n The double-precision version of the transform commands are not necessary when there is a single
precision version. The matrix stacks and convenience functions for computing rotations, scales, and
translations, as well as projection matrices are kept in their entirety since they are used by a large
number of of applications. The minimum depth for the modelview stack is reduced from 32 to 16
to reduce the storage requirements somewhat. The projection and texture stack depths are already
limited to a depth of two. The non-transpose form of the matrix load and multiply commands are
retained over the transpose versions to maximize compatibility with existing programming practices.

The viewport and depth range commands are supported since they provide necessary application
control over where primitives are drawn. While texture coordinate generation is useful, it is considered
too much of an implementation burden (applications can implement it to some extent themselves).
Texgen is a strong candidate for the next revision. Both normalization and rescaling of normals
are supported since normalization is deemed necessary and rescaling can be implemented using
normalization minimizing implementation burden. q

OpenGL Operation 11

2.12 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is defined by

−wc <= xc <= wc

−wc <= yc <= wc

−wc <= zc <= wc

This view volume may be further restricted by as many as n client-defined clip planes to generate the
clip volume. n is an implementation defined maximum that must be at least 1.

OpenGL 1.5 Common Common-Lite
ClipPlane(enum plane, const double *equation) ♦ †
GetClipPlane(enum plane, double *equation) ♦ †
Enable/Disable(CLIP PLANE{0...n-1}) � �

n User-specified clipping planes are used predominantly in engineering and scientific applications.
However, a single clipping plane is useful for some ”portal-culling” algorithms. q

2.13 Current Raster Position

The concept of the current raster position for positioning pixel rectangles and bitmaps is not supported.
Current raster state and commands for setting the raster position are not supported.

OpenGL 1.5 Common Common-Lite
RasterPos{2,3,4}{sifd}[v](T coords) – –
WindowPos{2,3}{sifd}[v](T coords) – –

n Bitmaps and pixel image primitives are not supported so there is no need to specify the raster
position. q

2.14 Colors and Coloring

The OpenGL 1.5 lighting model is supported with the following exceptions: no support for the color index
lighting, secondary color, different front and back materials, local viewer, or color material mode other than
AMBIENT AND DIFFUSE.

Directional, positional, and spot lights are all supported. An implementation must support a minimum
of 8 lights. The Material command cannot independently change the front and back face properties, so the
result is that materials always have the same front and back properties. Two-sided lighting is supported,
though the front and back material properties used in the lighting computation will also be equal. The
ColorMaterial command is not supported, so the color material mode cannot be changed from the default
AMBIENT AND DIFFUSE mode, though COLOR MATERIAL can be enabled in this mode. Neither local view-
ing computations nor separate specular color computation can be enabled using the LightModel command,
therefore only the OpenGL 1.5 default infinite viewer and single color computational models are supported.
Smooth and flat shading are fully supported for all primitives.

12 OpenGL Operation

OpenGL 1.5 Common Common-Lite
FrontFace(enum mode) � �
Enable/Disable(LIGHTING) � �
Enable/Disable(LIGHT{0-7}) � �
Materialf[v](enum face, enum pname, T param)

face = FRONT AND BACK � †
face = FRONT,BACK – –
pname = AMBIENT,DIFFUSE,SPECULAR,EMISSION,SHININESS � †
pname = AMBIENT AND DIFFUSE � †
pname = COLOR INDEXES – –

Materiali[v](enum face, enum pname, T param) – –
GetMaterialfv(enum face, enum pname, T *params) � †
GetMaterialiv(enum face, enum pname, T *params) – –
Lightf[v](enum light, enum pname, T param) � †
Lighti[v](enum light, enum pname, T param) – –
GetLightfv(enum light, enum pname, T *params) � †
GetLightiv(enum light, enum pname, T *params) – –
LightModelf[v](enum pname, T param)

pname = LIGHT MODEL TWO SIDE � †
pname = LIGHT MODEL AMBIENT � †
pname = LIGHT MODEL COLOR CONTROL – –
pname = LIGHT MODEL LOCAL VIEWER – –

LightModeli[v](enum pname, T param) – –
Enable/Disable(COLOR MATERIAL) �‡ �‡

ColorMaterial(enum face, enum mode) – –
ShadeModel(enum mode) � �

n Lighting is a desirable feature, so as much as possible is included in the Common and Common-
Lite profiles. The minimum number of lights is not reduced since reducing it only saves memory for
the state and the savings is not significant unless it is greatly reduced. The number cannot be greatly
reduced (e.g., to 1 or 2) as many applications need three or more lights. Support for secondary color
creates a non-trivial burden in the rasterization stage of the pipeline so it is not included. Local viewer
increases the amount of computation in the lighting pipeline and is not widely used (usually because
of the performance degradation), the other features controlled by the LightModel (scene ambient and
two-sided lighting) are retained. Scene ambient is retained since its default value is non-zero and
there would be no method to disable its effect if it were not included. Two-sided lighting is retained in
a simplified fashion – the front and back material values must always be equal. To ensure this, only
FRONT AND BACK can be used as the face parameter.
The most common use for the ColorMaterial functionality is to change the ambient and diffuse coef-
ficients of the material. Since this is the default mode of the command, the ColorMaterial command
is not included, but the ability to enable and disable it is, so the net effect is that only the ambient and
diffuse material parameters can be modified. q

Chapter 3

Rasterization

3.1 Invariance

The invariance rules are retained in full.

3.2 Antialiasing

Multisampling is supported though an implementation is not required to provide a multisample buffer.

OpenGL 1.5 Common Common-Lite
Enable/Disable(MULTISAMPLE) � �

n Multisampling is a desirable feature. Since an implementation need not provide an actual multi-
sample buffer and the command overhead is low, it is included. q

3.3 Points

Aliased and antialiased points are fully supported. The requested point size can also be multiplied with a
distance attenuation factor, clamped to a specified point size range, and further clamped to the implementa-
tion dependent point size range to produce the derived point size. Details of how to do distance attenuation
of point size is described in section 3.3 of the OpenGL 1.5 specification.

OpenGL 1.5 Common Common-Lite
PointSize(float size) � †
PointParameterf[v](enum pname, T param) � †
PointParameteri[v](enum pname, T param) – –
Enable/Disable(POINT SMOOTH) � �

n See below. q

13

14 Rasterization

OpenGL 1.5 Common Common-Lite
LineWidth(float width) � †
Enable/Disable(LINE SMOOTH) � �
LineStipple(int factor, ushort pattern) – –
Enable/Disable(LINE STIPPLE) – –

3.4 Line Segments

Aliased and antialiased lines are fully supported. Line stippling is not supported.

n Antialiasing is important for visual quality, particularly for devices with low spatial resolution (pix-
els per mm). Some antialiasing can be implemented within the application using 2D textures, but
antialiasing is used by enough applications that it should be in the profile rather than something left
to the application. The OpenGL 1.5 point and line antialiasing requirements provide substantial im-
plementation latitude. In particular, only size/width 1.0 is required to be supported and the coverage
computation constraints are easily satisfied. Line stippling is also used by ”presentation graphics”
and engineering applications. It can be implemented by the application, and the implementation cost
is considered too high to include in the profile. q

3.5 Polygons

Polygonal geometry support is reduced to triangle strips, triangle fans and independent triangles. All raster-
ization modes are supported except for point and line PolygonMode and antialiased polygons using polygon
smooth. Depth offset is supported in FILL mode only.

OpenGL 1.5 Common Common-Lite
CullFace(enum mode) � �
Enable/Disable(CULL FACE) � �
PolygonMode(enum face, enum mode) – –
Enable/Disable(POLYGON SMOOTH) – –
PolygonStipple(const ubyte *mask) – –
GetPolygonStipple(ubyte *mask) – –
Enable/Disable(POLYGON STIPPLE) – –
PolygonOffset(float factor, float units) � †
Enable/Disable(enum cap)

cap = POLYGON OFFSET FILL � �
cap = POLYGON OFFSET LINE, POLYGON OFFSET POINT – –

n Support for all triangle types (independents, strips, fans) is not overly burdensome and each type
has some desirable utility: strips for general performance and applicability, independents for efficiently
specifying unshared vertex attributes, and fans for representing ”corner-turning” geometry. Face
culling is important for eliminating unnecessary rasterization. Polygon stipple is desirable for doing
patterned fills for ”presentation graphics”. It is also useful for transparency, but support for alpha is
sufficient for that. Polygon stippling does represent a large burden for the polygon rasterization path
and can usually be emulated using texture mapping and alpha test, so it is omitted. Polygon offset for
filled triangles is necessary for rendering coplanar and outline polygons and if not present requires
either stencil buffers or application tricks. Antialiased polygons using POLYGON SMOOTH is just as

Rasterization 15

desirable as antialiasing for other primitives, but is too large an implementation burden to include in
the Common/Common-Lite profile. q

3.6 Pixel Rectangles

No support for directly drawing pixel rectangles is included. Limited PixelStore support is retained to allow
different pack alignments for ReadPixels and unpack alignments for TexImage2D. DrawPixels, PixelTransfer
modes and PixelZoom are not supported. The Imaging subset is not supported.

OpenGL 1.5 Common Common-Lite
PixelStorei(enum pname, T param)

pname = PACK ALIGNMENT,UNPACK ALIGNMENT � �
pname = <all other values> – –

PixelStoref(enum pname, T param) – –
PixelTransfer{if}(enum pname, T param) – –
PixelMap{ui us f}v(enum map, int size, T *values) – –
GetPixelMap{ui us f}v(enum map, T *values) – –

Enable/Disable(COLOR TABLE) – –
ColorTable(enum target, enum internalformat, sizei

width, enum format, enum type, const void *table)
– –

ColorSubTable(enum target, sizei start, sizei count,

enum format, enum type, const void *data)
– –

ColorTableParameter{if}v(enum target, enum pname, T

*params)
– –

GetColorTableParameter{if}v(enum target, enum pname, T

*params)
– –

CopyColorTable(enum target, enum internalformat, int x,

int y, sizei width)
– –

CopyColorSubTable(enum target, sizei start, int x, int

y, sizei width)
– –

GetColorTable(enum target, enum format, enum type, void

*table)
– –

ConvolutionFilter1D(enum target, enum internalformat,

sizei width, enum format, enum type, const void

*image)

– –

ConvolutionFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void *image)

– –

GetConvolutionFilter(enum target, enum format, enum type,

void*image)
– –

CopyConvolutionFilter1D(enum target, enum internalformat,

int x, int y, sizei width)
– –

16 Rasterization

OpenGL 1.5 Common Common-Lite
CopyConvolutionFilter2D(enum target, enum internalformat,

int x, int y, sizei width, sizei height)
– –

SeparableFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void *row, const void *column)

– –

GetSeparableFilter(enum target, enum format, enum type,

void *row, void *column, void *span)
– –

ConvolutionParameter{if}[v](enum target, enum pname, T

param)
– –

GetConvolutionParameter{if}v(enum target, enum pname, T

*params)
– –

Enable/Disable(POST CONVOLUTION COLOR TABLE) – –
MatrixMode(COLOR) – –
Enable/Disable(POST COLOR MATRIX COLOR TABLE) – –

Enable/Disable(HISTOGRAM) – –
Histogram(enum target, sizei width, enum

internalformat, boolean sink)
– –

ResetHistogram(enum target) – –
GetHistogram(enum target, boolean reset, enum format,

enum type, void *values)
– –

GetHistogramParameter{if}v(enum target, enum pname, T

*params)
– –

Enable/Disable(MINMAX) – –
Minmax(enum target, enum internalformat, boolean

sink)
– –

ResetMinmax(enum target) – –
GetMinmax(enum target, boolean reset, enum format,

enum types, void *values)
– –

GetMinmaxParameter{if}v(enum target, enum pname, T

*params)
– –

DrawPixels(sizei width, sizei height, enum format,

enum type, void *data)
– –

PixelZoom(float xfactor, float yfactor) – –

n The OpenGL 1.5 specification includes substantial support for operating on pixel images. In the
Common and Common-Lite profiles, the ability to draw pixel images is important, but with the con-
straint of minimizing the implementation burden. There is a concern that DrawPixels is often poorly
implemented on hardware accelerators and that many applications are better served by emulating
DrawPixels functionality by initializing a texture image with the host image and then drawing the
texture image to a screen-aligned quadrilateral. This has the advantage of eliminating the Draw-
Pixels processing path and and allows the image to be cached and drawn multiple times without

Rasterization 17

re-transferring the image data from the application’s address space. However, it requires extra pro-
cessing by the application and the implementation, possibly requiring the image to be copied twice.
The OES draw texture extension, added to OpenGL ES 1.1, addresses the above issues and pro-
vides an efficient mechanism to draw pixel images as textures.
The command PixelStore must be included to allow changing the pack alignment for ReadPixels and
unpack alignment for TexImage2D to something other than the default value of 4 to support ubyte
RGB image formats. The integer version of PixelStore is retained rather than the floating-point version
since all parameters can be fully expressed using integer values. q

3.7 Bitmaps

Bitmap images are not supported.

OpenGL 1.5 Common Common-Lite
Bitmap(sizei width, sizei height, float xorig, float

yorig, float xmove, float ymove, const ubyte

*bitmap)

– –

n The Bitmap command is useful for representing image data compactly and for positioning images
directly in window coordinates. Since DrawPixels is not supported, the positioning functionality is not
required. A strong enough case hasn’t been made for the ability to represent font glyphs or other
data more efficiently before transfer to the rendering pipeline. q

3.8 Texturing

OpenGL ES 1.1 requires a minimum of two texture units to be supported. 1D textures, 3D textures,
and cube maps are not supported. 2D textures are supported with the following exceptions: only a limited
number of image format and type combinations are supported, listed in Table 3.1. Table 3.2 summarizes
the disposition of all image types. The only internal formats supported are the base internal formats: RGBA,
RGB, LUMINANCE, ALPHA, and LUMINANCE ALPHA. The format must match the base internal format (no
conversions from one format to another during texture image processing are supported) as described in
Table 3.1. If the texture format does not match the base internal format an INVALID OPERATION error
results. Texture borders are not supported (the border parameter must be zero, and an INVALID VALUE

error results if it is non-zero).

3.8.1 Copy Texture

CopyTexture and CopyTexSubImage are supported. The internal format parameter can be any of the base
internal formats described for TexImage2D subject to the constraint that color buffer components can be
dropped during the conversion to the base internal format, but new components cannot be added. For exam-
ple, an RGB color buffer can be used to create LUMINANCE or RGB textures, but not ALPHA, LUMINANCE -

ALPHA, or RGBA textures. Table 3.3 summarizes the allowable framebuffer and base internal format combi-
nations. If the framebuffer format is not compatible with the base texture format an INVALID OPERATION

error results.

OpenGL 1.5 Common Common-Lite
UNSIGNED BYTE � �

18 Rasterization

OpenGL 1.5 Common Common-Lite
BITMAP – –
BYTE – –
UNSIGNED SHORT – –
SHORT – –
UNSIGNED INT – –
INT – –
FLOAT – –
UNSIGNED BYTE 3 3 2 – –
UNSIGNED BYTE 3 3 2 REV – –
UNSIGNED SHORT 5 6 5 � �
UNSIGNED SHORT 5 6 5 REV – –
UNSIGNED SHORT 4 4 4 4 � �
UNSIGNED SHORT 4 4 4 4 REV – –
UNSIGNED SHORT 5 5 5 1 � �
UNSIGNED SHORT 5 5 5 1 REV – –
UNSIGNED INT 8 8 8 8 – –
UNSIGNED INT 8 8 8 8 REV – –
UNSIGNED INT 10 10 10 2 – –
UNSIGNED INT 10 10 10 2 REV – –

Table 3.2: Image Types

3.8.2 Compressed Textures

Compressed textures are supported including sub-image specification; however, no method for reading back
a compressed texture image is included, so implementation vendors must provide separate tools for creating
compressed images. The generic compressed internal formats are not supported, so compression of textures
using TexImage2D is not supported. The OES compressed paletted texture extension defines several
compressed texture formats.

3.8.3 Texture Addressing Modes

Wrap modes REPEAT and CLAMP TO EDGE are supported, but not CLAMP, CLAMP TO BORDER and MIRRORED -

REPEAT. Wrap mode for ”R” coordinate i.e. TEXTURE WRAP R is not supported. Texture priorities, LOD
clamps, and explicit base and maximum level specification are not supported. The remaining OpenGL 1.5
texture parameters are supported including all filtering modes. Texture objects are supported, but proxy
textures are not supported.

3.8.4 Texture Completeness

For 2D textures, a texture is complete in OpenGL ES if the following conditions all hold true:

• the set of mipmap arrays are specified with the same internal format.

• the dimensions of the arrays follow the sequence described in the Mimapping discussion of section
3.8.7 of the OpenGL 1.5 specification.

Rasterization 19

Internal Format External Format Type Bytes per Pixel
RGBA RGBA UNSIGNED BYTE 4
RGB RGB UNSIGNED BYTE 3
RGBA RGBA UNSIGNED SHORT 4 4 4 4 2
RGBA RGBA UNSIGNED SHORT 5 5 5 1 2
RGB RGB UNSIGNED SHORT 5 6 5 2
LUMINANCE ALPHA LUMINANCE ALPHA UNSIGNED BYTE 2
LUMINANCE LUMINANCE UNSIGNED BYTE 1
ALPHA ALPHA UNSIGNED BYTE 1

Table 3.1: Texture Image Formats and Types

Texture Format
Color Buffer A L LA RGB RGBA
A � – – – –
L – � – – –
LA � � � – –
RGB – � – � –
RGBA � � � � �

Table 3.3: CopyTexture Internal Format/Color Buffer Combinations

The check for completeness is done when a given texture is used to render geometry.

3.8.5 Texture State

The state necessary for texture can be divided into two categories. First, there is the set of mipmap arrays
(for the two-dimensional texture target) and their number. Each array has associated with it a width, height,
an integer describing the internal format of the image, a boolean describing whether the image is compressed
or not, and an integer size of a compressed image. Each initial texture array is null (zero width, and height,
internal format is undefined, with the compressed flag set to FALSE, a zero compressed size, and zero-
sized components). Next, we have the texture properties which consists of the selected minification and
magnification filters, the wrap modes for s, and t, a boolean flag indicating whether the texture is resident,
and a boolean indicating whether automatic mipmap generation should be performed. The value of the
resident flag is determined by the GL and may change as a result of other GL operations. The flag may
only be queried, not set, by applications. In the initial state, the value assigned to TEXTURE MIN FILTER
is NEAREST MIPMAP LINEAR, and the value for TEXTURE MAG FILTER is LINEAR. s, and t wrap
modes are all set to REPEAT.

OpenGL 1.5 Common Common-Lite
TexImage1D(enum target, int level, int

internalFormat, sizei width, int border, enum

format, enum type, const void *pixels)

– –

TexImage2D(enum target, int level, int internalFormat, sizei width, sizei

height, int border, enum format, enum type, const void *pixels)

20 Rasterization

OpenGL 1.5 Common Common-Lite
target = TEXTURE 2D border = 0 �‡ �‡

target = PROXY TEXTURE 2D – –
border > 0 – –

TexImage3D(enum target, int level, enum

internalFormat, sizei width, sizei height, sizei

depth, int border, enum format, enum type, const

void *pixels)

– –

GetTexImage(enum target, int level, enum format, enum

type, void *pixels)
– –

TexSubImage1D(enum target, int level, int xoffset,

sizei width, enum format, enum type, const void

*pixels)

– –

TexSubImage2D(enum target, int level, int xoffset, int

yoffset, sizei width, sizei height, enum format,

enum type, const void *pixels)

�‡ �‡

TexSubImage3D(enum target, int level, int xoffset, int

yoffset, int zoffset, sizei width, sizei height,

sizei depth, enum format, enum type, const void

*pixels)

– –

CopyTexImage1D(enum target, int level, enum

internalformat, int x, int y, sizei width, int

border)

– –

CopyTexImage2D(enum target, int level, enum internalformat, int x, int y,

sizei width, sizei height, int border)

border = 0 �‡ �‡

border > 0 – –
CopyTexSubImage1D(enum target, int level, int xoffset,

int x, int y, sizei width)
– –

CopyTexSubImage2D(enum target, int level, int xoffset,

int yoffset, int x, int y, sizei width, sizei

height)

�‡ �‡

CopyTexSubImage3D(enum target, int level, int xoffset,

int yoffset, int zoffset, int x, int y, sizei width,

sizei height)

– –

CompressedTexImage1D(enum target, int level, enum

internalformat, sizei width, int border, sizei

imageSize, const void *data)

– –

CompressedTexImage2D(enum target, int level, enum internalformat, sizei

width, sizei height, int border, sizei imageSize, const void *data)

target = TEXTURE 2D border = 0 �‡ �‡

target = PROXY TEXTURE 2D – –
border > 0 – –

Rasterization 21

OpenGL 1.5 Common Common-Lite
CompressedTexImage3D(enum target, int level, enum

internalformat, sizei width, sizei height, sizei

depth, int border, sizei imageSize, const void

*data)

– –

CompressedTexSubImage1D(enum target, int level, int

xoffset, sizei width, enum format, sizei imageSize,

const void *data)

– –

CompressedTexSubImage2D(enum target, int level, int

xoffset, int yoffset, sizei width, sizei height,

enum format, sizei imageSize, const void *data)

�‡ �‡

CompressedTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, sizei width,

sizei height, sizei depth, enum format, sizei

imageSize, const void *data)

– –

GetCompressedTexImage(enum target, int lod, void *img) – –
TexParameter{if}[v](enum target, enum pname, T param)

target = TEXTURE 2D � †
target = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP – –
pname = TEXTURE MIN FILTER,TEXTURE MAG FILTER � †
pname = TEXTURE WRAP S,TEXTURE WRAP T � †
pname = TEXTURE BORDER COLOR – –
pname = TEXTURE MIN LOD,TEXTURE MAX LOD – –
pname = TEXTURE BASE LEVEL,TEXTURE MAX LEVEL – –
pname = TEXTURE WRAP R – –
pname = TEXTURE LOD BIAS – –
pname = DEPTH TEXTURE MODE – –
pname = TEXTURE COMPARE MODE – –
pname = TEXTURE COMPARE FUNC – –
pname = TEXTURE PRIORITY – –
pname = GENERATE MIPMAP � †

GetTexParameter{if}v(enum target, enum pname, T *params) � †
GetTexLevelParameter{if}v(enum target, int level, enum

pname, T *params)
– –

BindTexture(enum target, uint texture)

target = TEXTURE 2D � �
target = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP – –

DeleteTextures(sizei n, const uint *textures) � �
GenTextures(sizei n, uint *textures) � �
IsTexture(uint texture) � �
AreTexturesResident(sizei n, uint *textures, boolean

*residences)
– –

PrioritizeTextures(sizei n, uint *textures, clampf

*priorities)
– –

Enable/Disable(enum cap)

cap = TEXTURE 2D � �

22 Rasterization

OpenGL 1.5 Common Common-Lite
cap = TEXTURE 1D,TEXTURE 3D,TEXTURE CUBE MAP – –

TexEnv{if}[v](enum target, enum pname, T param)

pname = TEXTURE ENV COLOR � †
pname = TEXTURE ENV MODE:

param = MODULATE,REPLACE,DECAL � †
param = BLEND,ADD � †
param = COMBINE � †

pname = COMBINE RGB,COMBINE ALPHA � †
pname = SRC{012} RGB,SRC{012} ALPHA � †
pname = OPERAND{012} RGB,OPERAND{012} ALPHA � †
pname = RGB SCALE,ALPHA SCALE � †

GetTexEnv{if}v(enum target, enum pname, T *params) � †

n Texturing with 2D images is a critical feature for entertainment, presentation, and engineering
applications. 1D, 3D, and cube map textures are less important. Texture objects are required for
managing multiple textures. In some applications packing multiple textures into a single large texture
is necessary for performance, therefore subimage support is also included. Copying from the frame-
buffer is useful for many shading algorithms. A limited set of formats, types and internal formats is
included. The RGB component ordering is always RGB or RGBA rather than BGRA since there is no
real perceived advantage to using BGRA. Format conversions for copying from the framebuffer are
more liberal than for images specified in application memory, since an application usually has control
over images authored as part of the application, but has little control over the framebuffer format.
Unsupported CopyTexture conversions generate an INVALID OPERATION error, since the error is
dependent on the presence of a particular color component in the colorbuffer. This behavior parallels
the error treatment for attempts to read from a non-existent depth or stencil buffer.
Texture borders are not included, since they are often not completely supported by full OpenGL
implementations. All filter modes are supported since they represent a useful set of quality and speed
options. Edge clamp and repeat wrap modes are both supported since these are most commonly
used. Texture priorities are not supported since they are seldom used by applications. Similarly, the
ability to control the LOD range and the base and maximum mipmap image levels is not included,
since these features are used by a narrow set of applications. Since all of the supported texture
parameters are scalar valued, the vector form of the parameter command is eliminated.
Auto mipmap generation has been added to OpenGL ES 1.1 since it can offload the application from
having to generate mip-levels. Hardware implementations can potentially accelerate auto mip-level
generation especially for video textures or when rendering to texture.
Compressed textures are important for reducing space and bandwidth requirements. The OpenGL
1.5 compression infrastructure is retained (for 2D textures) and a simple palette-based compression
format is added as a required profile extension. q

3.8.6 Texture Environments and Texture Functions

All OpenGL 1.5 texture environments except for the texture crossbar are supported.
The definition of texture functions REPLACE, MODULATE, and DECAL in table 3.22 of the OpenGL 1.5

specification, and of texture functions BLEND and ADD in table 3.23 of the OpenGL 1.5 specification, are
altered by replacing the term Cf with Cp everywhere it occurs. The resulting texture functions are as defined
in tables 3.5 and 3.6 below.

The reason for this change is not to alter behavior relative to desktop OpenGL 1.5 implementations, but
to correct an error in the OpenGL 1.5 specification. Actual implementations of OpenGL 1.5 perform as

Rasterization 23

described below. The same correction was made in the OpenGL 2.0 specification, but a corrected version
of the OpenGL 1.5 specification was never issued.

Texture Base REPLACE MODULATE DECAL

Internal Format Function Function Function
ALPHA Cv = Cp Cv = Cp undefined

Av = As Av = ApAs

LUMINANCE Cv = Cs Cv = CpCs undefined
(or 1) Av = Ap Av = Ap

LUMINANCE ALPHA Cv = Cs Cv = CpCs undefined
(or 2) Av = As Av = ApAs

RGB Cv = Cs Cv = CpCs Cv = Cs

(or 3) Av = Ap Av = Ap Av = Ap

RGBA Cv = Cs Cv = CpCs Cv = Cp(1−As) + CsAs

(or 4) Av = As Av = ApAs Av = Ap

Table 3.5: Texture functions REPLACE, MODULATE, and DECAL. Replaces table 3.22 of the OpenGL 1.5
specification.

Texture Base BLEND ADD

Internal Format Function Function
ALPHA Cv = Cp Cv = Cp

Av = ApAs Av = ApAs

LUMINANCE Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 1) Av = Ap Av = Ap

LUMINANCE ALPHA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 2) Av = ApAs Av = ApAs

RGB Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 3) Av = Ap Av = Ap

RGBA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 4) Av = ApAs Av = ApAs

Table 3.6: Texture functions BLEND and ADD. Replaces table 3.23 of the OpenGL 1.5 specification.

24 Rasterization

COMBINE RGB Texture Function
REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 + Arg1
ADD SIGNED Arg0 + Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 + Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1
DOT3 RGB 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+

(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

DOT3 RGBA 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

COMBINE ALPHA Texture Function
REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 + Arg1
ADD SIGNED Arg0 + Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 + Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1

Table 3.4: COMBINE texture functions. The scalar expression computed for the DOT3 RGB and DOT3 RGBA

functions is placed into each of the 3 (RGB) or 4 (RGBA) components of the output. The result generated
from COMBINE ALPHA is ignored for DOT3 RGBA.

Rasterization 25

SRCn RGB OPERANDn RGB Argument
TEXTURE SRC COLOR Cs

ONE MINUS SRC COLOR 1− Cs

SRC ALPHA As

ONE MINUS SRC ALPHA 1−As

CONSTANT SRC COLOR Cc

ONE MINUS SRC COLOR 1− Cc

SRC ALPHA Ac
ONE MINUS SRC ALPHA 1−Ac

PRIMARY COLOR SRC COLOR Cf

ONE MINUS SRC COLOR 1− Cf

SRC ALPHA Af

ONE MINUS SRC ALPHA 1−Af

PREVIOUS SRC COLOR Cp

ONE MINUS SRC COLOR 1− Cp

SRC ALPHA Ap

ONE MINUS SRC ALPHA 1−Ap

Table 3.5: Arguments for COMBINE RGB functions.

SRCn ALPHA OPERANDn ALPHA Argument
TEXTURE SRC ALPHA As

ONE MINUS SRC ALPHA 1−As

CONSTANT SRC ALPHA Ac

ONE MINUS SRC ALPHA 1−Ac

PRIMARY COLOR SRC ALPHA Af

ONE MINUS SRC ALPHA 1−Af

PREVIOUS SRC ALPHA Ap

ONE MINUS SRC ALPHA 1−Ap

Table 3.6: Arguments for COMBINE ALPHA functions.

26 Rasterization

3.9 Fog

Fog is fully supported except for FOG COORD SRC and color index related modes.

OpenGL 1.5 Common Common-Lite
Fogf[v](enum pname, T param)

pname = FOG MODE,FOG DENSITY,FOG START,FOG END,FOG COLOR � †
pname = FOG INDEX – –
pname = FOG COORD SRC – –

Fogi[v](enum pname, T param) – –
Enable/Disable(FOG) � �

n Fog is useful for entertainment applications as a way to manage frame rate while hiding drawing
mistakes. It can be emulated using texturing, but is often needed in applications that already use
texturing for other purposes. Fog does present an implementation burden, but is used in enough
applications to justify inclusion. Implementations can reduce the computational burden by computing
fog values at each vertex rather than each pixel. q

Chapter 4

Per-Fragment Operations and the
Framebuffer

4.1 Per-Fragment Operations

All OpenGL 1.5 per-fragment operations are supported, except for color index related operations and certain
advanced blending features (BlendColor, BlendEquation, and blend squaring). Depth and stencil operations
are supported, but a selected config is not required to include a depth or stencil buffer.

OpenGL 1.5 Common Common-Lite
Enable/Disable(SCISSOR TEST) � �
Scissor(int x, int y, sizei width, sizei height) � �

Enable/Disable(SAMPLE COVERAGE) � �
Enable/Disable(SAMPLE ALPHA TO COVERAGE) � �
Enable/Disable(SAMPLE ALPHA TO ONE) � �
SampleCoverage(clampf value, boolean invert) � †

Enable/Disable(ALPHA TEST) � �
AlphaFunc(enum func, clampf ref) � †

Enable/Disable(STENCIL TEST) � �
StencilFunc(enum func, int ref, uint mask) � �
StencilOp(enum fail, enum zfail, enum zpass)

fail, zfail, zpass = KEEP � �
fail, zfail, zpass = ZERO � �
fail, zfail, zpass = REPLACE � �
fail, zfail, zpass = INCR � �
fail, zfail, zpass = DECR � �
fail, zfail, zpass = INVERT � �
fail, zfail, zpass = INCR WRAP – –
fail, zfail, zpass = DECR WRAP – –

27

28 Per-Fragment Operations and the Framebuffer

OpenGL 1.5 Common Common-Lite
Enable/Disable(DEPTH TEST) � �
DepthFunc(enum func) � �

Enable/Disable(BLEND) � �
BlendFunc(enum sfactor, enum dfactor) � �
BlendFuncSeparate(enum srcRGB, enum dstRGB, enum

srcAlpha, enum dstAlpha)
– –

BlendEquation(enum mode) – –
BlendColor(clampf red, clampf green, clampf blue,

clampf alpha)
– –

Enable/Disable(DITHER) � �

Enable/Disable(INDEX LOGIC OP) – –

Enable/Disable(COLOR LOGIC OP) � �
LogicOp(enum opcode) � �

BeginQuery(enum target, uint id) – –
EndQuery(enum target) – –
GenQueries(sizei n, uint *ids) – –
DeleteQueries(sizei n, uint *ids) – –

Per-Fragment Operations and the Framebuffer 29

4.1.1 Blending

The BlendFuncSeparate, BlendEquation and BlendColor commands defined in the OpenGL 1.5 specification
are not supported by OpenGL ES 1.1. Only BlendFunc is supported. BlendFunc src indicates how to
compute a source blending factor, while dst indicates how to compute a destination factor. The possible
arguments and their corresponding computed source and destination factors are summarized in tables 4.2
and 4.3.

Value Blend Factors
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
DST COLOR (Rd, Gd, Bd, Ad)
ONE MINUS DST COLOR (1, 1, 1, 1)− (Rd, Gd, Bd, Ad)
SRC ALPHA (As, As, As, As)
ONE MINUS SRC ALPHA (1, 1, 1, 1)− (As, As, As, As)
DST ALPHA (Ad, Ad, Ad, Ad)
ONE MINUS DST ALPHA (1, 1, 1, 1)− (Ad, Ad, Ad, Ad)
SRC ALPHA SATURATE (f, f, f, 1)

Table 4.2: Values controlling the source blending function and the source blending values they compute.
f = min(As, 1−Ad).

Value Blend Factors
ZERO (0, 0, 0, 0)
ONE (1, 1, 1, 1)
SRC COLOR (Rs, Gs, Bs, As)
ONE MINUS SRC COLOR (1, 1, 1, 1)− (Rs, Gs, Bs, As)
SRC ALPHA (As, As, As, As)
ONE MINUS SRC ALPHA (1, 1, 1, 1)− (As, As, As, As)
DST ALPHA (Ad, Ad, Ad, Ad)
ONE MINUS DST ALPHA (1, 1, 1, 1)− (Ad, Ad, Ad, Ad)

Table 4.3: Values controlling the destination blending function and the destination blending values they
compute.

n Scissor is useful for providing complete control over where pixels are drawn and some form of
window/drawing-surface scissoring is typically present in most rasterizers so the cost is small. Alpha
testing is useful for early rejection of transparent pixels and for some kinds of keying. Stenciling is
useful for drawing with masks and for a number of presentation effects and an implementation is
not required to support a stencil buffer (just the API and the correct behavior when not present).
Depth buffering is essential for many 3D applications and the profile should require some form of
depth buffer to be present. Blending is necessary for implementing transparency, color sums, and
some other useful rendering effects. Dithering is useful on displays with low color resolution, and the
inclusion doesn’t require dithering to be implemented in the renderer. Logic op is useful for efficient
highlighting operations. Masked operations are supported since they are often used in more complex

30 Per-Fragment Operations and the Framebuffer

operations and are needed to achieve invariance. Support for blend equations other than add and
blend color would be useful, but are only included in the Imaging Subset of OpenGL 1.3 and are
therefore not included. In addition, the BlendFunc arguments are the same as defined in the OpenGL
1.3 specification. Changes to the BlendFunc functionality described in the OpenGL 1.5 specification
are not included. q

4.2 Whole Framebuffer Operations

All whole framebuffer operations are supported except for color index related operations, drawing to differ-
ent color buffers, and accumulation buffer.

OpenGL 1.5 Common Common-Lite
DrawBuffer(enum mode) – –
IndexMask(uint mask) – –
ColorMask(boolean red, boolean green, boolean blue,

boolean alpha)
� �

DepthMask(boolean flag) � �
StencilMask(uint mask) � �
Clear(bitfield mask) � �
ClearColor(clampf red, clampf green, clampf blue,

clampf alpha)
� †

ClearIndex(float c) – –
ClearDepth(clampd depth) ♦ †
ClearStencil(int s) � �

ClearAccum(float red, float green, float blue, float

alpha)
– –

Accum(enum op, float value) – –

n Multiple drawing buffers are not exposed; an application can only draw to the default buffer, so
DrawBuffer is not necessary. The accumulation buffer is not used in many applications, though it is
useful as a non-interactive antialiasing technique. q

4.3 Drawing, Reading, and Copying Pixels

ReadPixels is supported with the following exceptions: the depth and stencil buffers cannot be read from and
the number of format and type combinations for ReadPixels is severely restricted. Two format/type com-
binations are supported: format RGBA and type UNSIGNED BYTE for portability; and one implementation-
specific format/type combination queried using the tokens IMPLEMENTATION COLOR READ FORMAT OES

and IMPLEMENTATION COLOR READ TYPE OES (OES read format extension). The format and type com-
binations that can be returned from these queries are listed in Table 3.1. CopyPixels and ReadBuffer are not
supported. Read operations return data from the default color buffer.

OpenGL 1.5 Common Common-Lite
ReadBuffer(enum mode) – –

Per-Fragment Operations and the Framebuffer 31

OpenGL 1.5 Common Common-Lite
ReadPixels(int x, int y,sizei width, sizei height, enum

format, enum type, void *pixels)
�‡ �‡

CopyPixels(int x, int y, sizei width, sizei height,

enum type)
– –

n Reading the color buffer is useful for some applications and also provides a platform independent
method for testing. The inclusion of the OES read format extension allows an implementation to
support a more efficient format without increasing the number of formats that must be supported.
Pixel copies can be implemented by reading to the host and then drawing to the color buffer (using
texture mapping for the drawing part). Image copy performance is important to many presentation
applications, so CopyPixels may be revisited in a future revision. Drawing to and reading from the
depth and stencil buffers is not used frequently in applications (though it would be convenient for
testing), so it is not included. ReadBuffer is not required since the concept of multiple drawing buffers
is not exposed. q

Chapter 5

Special Functions

5.1 Evaluators

Evaluators are not supported.

OpenGL 1.5 Common Common-Lite
Map1{fd}(enum target, T u1, T u2, int stride, int

order, T points)
– –

Map2{fd}(enum target, T u1, T u2, int ustride, int

uorder, T v1, T v2, int vstride, int vorder, T

*points)

– –

GetMap{ifd}v(enum target, enum query, T *v) – –
EvalCoord{12}{fd}[v](T coord) – –
MapGrid1{fd}(int un, T u1, T u2) – –
MapGrid2{fd}(int un, T u1, T u2, T v1, T v2) – –
EvalMesh1(enum mode, int i1, int i2) – –
EvalMesh2(enum mode, int i1, int i2, int j1, int j2) – –
EvalPoint1(int i) – –
EvalPoint2(int i, int j) – –

n Evaluators are not used by many applications other than sophisticated CAD applications. q

5.2 Selection

Selection is not supported.

OpenGL 1.5 Common Common-Lite
InitNames(void) – –
LoadName(uint name) – –
PushName(uint name) – –
PopName(void) – –
RenderMode(enum mode) – –
SelectBuffer(sizei size, uint *buffer) – –

32

Special Functions 33

n Selection is not used by many applications. There are other methods that applications can use to
implement picking operations. q

5.3 Feedback

Feedback is not supported.

OpenGL 1.5 Common Common-Lite
FeedbackBuffer(sizei size, enum type, float *buffer) – –
PassThrough(float token) – –

n Feedback is seldom used. q

5.4 Display Lists

Display lists are not supported.

OpenGL 1.5 Common Common-Lite
NewList(uint list, enum mode) – –
EndList(void) – –
CallList(uint list) – –
CallLists(sizei n, enum type, const void *lists) – –
ListBase(uint base) – –
GenLists(sizei range) – –
IsList(uint list) – –
DeleteLists(uint list, sizei range) – –

n Display lists are used by many applications — sometimes to achieve better performance and some-
times for convenience. The implementation complexity associated with display lists is too large for
the implementation targets envisioned for this profile. q

5.5 Flush and Finish

Flush and Finish are supported.

OpenGL 1.5 Common Common-Lite
Flush(void) � �
Finish(void) � �

n Applications need some manner to guarantee rendering has completed, so Finish needs to be
supported. Flush can be trivially supported. q

34 Special Functions

5.6 Hints

Hints are retained except for the hints relating to the unsupported polygon smoothing and compression of
textures (including retrieving compressed textures) features.

OpenGL 1.5 Common Common-Lite
Hint(enum target, enum mode)

target = PERSPECTIVE CORRECTION HINT � �
target = POINT SMOOTH HINT � �
target = LINE SMOOTH HINT � �
target = FOG HINT � �
target = TEXTURE COMPRESSION HINT – –
target = POLYGON SMOOTH HINT – –
target = GENERATE MIPMAP HINT � �

n Applications and implementations still need some method for expressing permissible speed versus
quality trade-offs. The implementation cost is minimal. There is no value in retaining the hints for
unsupported features. q

Chapter 6

State and State Requests

6.1 Querying GL State

State queries are supported for static and dynamic state explicitly supported in the profile. The supported
GL state queries can be categorized into simple queries, enumerated queries, texture queries, pointer and
string queries, and buffer object queries.

The values of the strings returned by GetString are specified as part of the profile definition. In particular,
the version string indicates the particular OpenGL ES profile as well as the version of that profile. Strings
are listed in Table 6.1.

As the profile is revised, the VERSION string is updated to indicate the revision. The string format
is fixed and includes a two-character profile identifier: CM for the Common and CL for the Common-Lite
profile; and the two-digit version number (X.Y).

Strings
VENDOR as defined by OpenGL 1.5
RENDERER as defined by OpenGL 1.5
VERSION ”OpenGL ES-XX 1.1” XX={CM,CL}
EXTENSIONS as defined by OpenGL 1.5

Table 6.1: String State

35

36 State and State Requests

Client and server attribute stacks are not supported by the profiles; consequently, the commands PushAt-
trib, PopAttrib, PushClientAttrib, and PopClientAttrib are not supported. Gets are supported by the profiles
to allow an application to save and restore dynamic state.

OpenGL 1.5 Common Common-Lite
GetBooleanv(enum pname, boolean *params) � �
GetIntegerv(enum pname, int *params) � �
GetFloatv(enum pname, float *params) � †
GetDoublev(enum pname, double *params) – –
IsEnabled(enum cap) � �
GetClipPlane(enum plane, double eqn[4]) – –
GetClipPlanef(enum plane, float eqn[4]) ♦ †
GetLightfv(enum light, enum pname, float *params) � †
GetLightiv(enum light, enum pname, int *params) – –
GetMaterialfv(enum face, enum pname, float *params) � †
GetMaterialiv(enum face, enum pname, int *params) – –
GetTexEnv{if}v(enum env, enum pname, T *params) � †
GetTexGen{ifd}v(enum env, enum pname, T *params) – –
GetTexParameter{if}v(enum target, enum pname, T *params) � †
GetTexLevelParameter{if}v(enum target, int lod, enum

pname, T *params)
– –

GetPixelMap{ui us f}v(enum map, T data) – –
GetMap{ifd}v(enum map, enum value, T data) – –
GetBufferParameteriv(enum target, enum pname, boolean

*params)
� �

GetTexImage(enum tex, int lod, enum format, enum type,

void *img)
– –

GetCompressedTexImage(enum tex, int lod, void *img) – –
IsTexture(uint texture) � �
GetPolygonStipple(void *pattern) – –
GetColorTable(enum target, enum format, enum type, void

*table)
– –

GetColorTableParameter{if}v(enum target, enum pname, T

params)
– –

GetPointerv(enum pname, void **params) � �
GetString(enum name) � �
IsQuery(uint id) – –
GetQueryiv(enum target, enum pname, int *params) – –
GetQueryObjectiv(uint id, enum pname, int *params) – –
GetQueryObjectuiv(uint id, enum pname, uint *params) – –
IsBuffer(uint buffer) � �
GetBufferSubData(enum target, intptr offset, sizeiptr

size, void *data)
– –

GetBufferPointerv(enum target, enum pname, void

**params)
– –

State and State Requests 37

OpenGL 1.5 Common Common-Lite
PushAttrib(bitfield mask) – –
PopAttrib(void) – –
PushClientAttrib(bitfield mask) – –
PopClientAttrib(void) – –

n There are several reasons why one type or another of internal state needs to be queried by an ap-
plication. The application may need to dynamically discover implementation limits (pixel component
sizes, texture dimensions, etc.), or the application might be part of a layered library and it may need
to save and restore any state that it disturbs as part of its rendering. PushAttrib and PopAttrib can
be used to perform this but they are expensive to implement in hardware since we need an attribute
stack depth greater than 1. An attribute stack depth of 4 was proposed but was rejected because
an application would still have to handle stack overflow which was considered unacceptable. Gets
can be efficiently implemented if the implementation shadows states on the CPU. Gets also allow an
infinite stack depth so an application will never have to worry about stack overflow errors. The string
queries are retained as they provide important versioning, and extension information. q

6.2 State Tables

The following tables summarize state that is present in the Common and Common-Lite profiles. The tables
also indicate which state variables are obtained with what commands. State variables that can be obtained
using any of GetBooleanv, GetIntegerv, or GetFloatv are listed with just one of these commands - the one
that is most appropriate given the type of data to be returned and the profile used. These state variables
cannot be obtained using IsEnabled. However, state variables for which IsEnabled is listed as the query
command can also be obtained using GetBooleanv, GetIntegerv, and GetFloatv. State variables for which
any other command is listed as the query command can be obtained only by using that command.

State appearing in italic indicates unnamed state. All state has initial values identical to those specified
in OpenGL 1.5.

State Exposed Queriable Common
Get

Common-Lite
Get

Begin/end object – – – –
Previous line vertex � – – –
First line-vertex flag � – – –
First vertex of line loop � – – –
Line stipple counter – – – –
Polygon vertices – – – –
Number of polygon vertices – – – –
Previous two triangle strip vertices � – – –
Number of triangle strip vertices � – – –
Triangle strip A/B pointer � – – –
Quad vertices – – – –
Number of quad strip vertices – – – –

Table 6.4: GL Internal begin-end state variables

38 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

CURRENT COLOR � � GetIntegerv
GetFloatv

GetIntegerv
GetFixedv

CURRENT INDEX – – – –
CURRENT TEXTURE COORDS � � GetFloatv GetFixedv
CURRENT NORMAL � � GetFloatv GetFixedv
Color associated with last vertex � – – –
Color index associated with last vertex – – – –
Texture coordinates associated with last vertex � – – –
CURRENT RASTER POSITION – – – –
CURRENT RASTER DISTANCE – – – –
CURRENT RASTER COLOR – – – –
CURERNT RASTER INDEX – – – –
CURRENT RASTER TEXTURE COORDS – – – –
CURRENT RASTER POSITION VALID – – – –
EDGE FLAG – – –

Table 6.5: Current Values and Associated Data

State and State Requests 39

State Exposed Queriable Common
Get

Common-Lite
Get

CLIENT ACTIVE TEXTURE � � GetIntegerv GetIntegerv
VERTEX ARRAY � � IsEnabled IsEnabled
VERTEX ARRAY SIZE � � GetIntegerv GetIntegerv
VERTEX ARRAY STRIDE � � GetIntegerv GetIntegerv
VERTEX ARRAY TYPE � � GetIntegerv GetIntegerv
VERTEX ARRAY POINTER � � GetPointerv GetPointerv
NORMAL ARRAY � � IsEnabled IsEnabled
NORMAL ARRAY STRIDE � � GetIntegerv GetIntegerv
NORMAL ARRAY TYPE � � GetIntegerv GetIntegerv
NORMAL ARRAY POINTER � � GetPointerv GetPointerv
FOG COORD ARRAY – – – –
FOG COORD ARRAY STRIDE – – – –
FOG COORD ARRAY TYPE – – – –
FOG COORD ARRAY POINTER – – – –
COLOR ARRAY � � IsEnabled IsEnabled
COLOR ARRAY SIZE � � GetIntegerv GetIntegerv
COLOR ARRAY STRIDE � � GetIntegerv GetIntegerv
COLOR ARRAY TYPE � � GetIntegerv GetIntegerv
COLOR ARRAY POINTER � � GetPointerv GetPointerv
SECONDARY COLOR ARRAY – – – –
SECONDARY COLOR ARRAY SIZE – – – –
SECONDARY COLOR ARRAY STRIDE – – – –
SECONDARY COLOR ARRAY TYPE – – – –
SECONDARY COLOR ARRAY POINTER – – – –
INDEX ARRAY – – – –
INDEX ARRAY STRIDE – – – –
INDEX ARRAY TYPE – – – –
INDEX ARRAY POINTER – – – –
TEXTURE COORD ARRAY � � IsEnabled IsEnabled
TEXTURE COORD ARRAY SIZE � � GetIntegerv GetIntegerv
TEXTURE COORD ARRAY STRIDE � � GetIntegerv GetIntegerv
TEXTURE COORD ARRAY TYPE � � GetIntegerv GetIntegerv
TEXTURE COORD ARRAY POINTER � � GetPointerv GetPointerv
EDGE FLAG ARRAY – – – –
EDGE FLAG ARRAY STRIDE – – – –
EDGE FLAG ARRAY POINTER – – – –
ARRAY BUFFER BINDING � � GetIntegerv GetIntegerv
VERTEX ARRAY BUFFER BINDING � � GetIntegerv GetIntegerv
NORMAL ARRAY BUFFER BINDING � � GetIntegerv GetIntegerv
FOG COORD ARRAY BUFFER BINDING – – – –
COLOR ARRAY BUFFER BINDING � � GetIntegerv GetIntegerv
SECONDARY COLOR ARRAY BUFFER BINDING – – – –
TEXTURE COORD ARRAY BUFFER BINDING � � GetIntegerv GetIntegerv
ELEMENT ARRAY BUFFER BINDING � � GetIntegerv GetIntegerv

Table 6.6: Vertex Array Data

40 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

BUFFER SIZE � � GetBufferParameteriv GetBufferParameteriv
BUFFER USAGE � � GetBufferParameteriv GetBufferParameteriv
BUFFER ACCESS – – – –
BUFFER MAPPED – – – –
BUFFER MAP POINTER – – – –

Table 6.7: Buffer Object State

State Exposed Queriable Common
Get

Common-Lite
Get

COLOR MATRIX – – – –
MODELVIEW MATRIX � � GetFloatv GetFixedv
PROJECTION MATRIX � � GetFloatv GetFixedv
TEXTURE MATRIX � � GetFloatv GetFixedv
VIEWPORT � � GetIntegerv GetIntegerv
DEPTH RANGE � � GetFloatv GetFixedv
COLOR MATRIX STACK DEPTH – – – –
MODELVIEW STACK DEPTH � � GetIntegerv GetIntegerv
PROJECTION STACK DEPTH � � GetIntegerv GetIntegerv
TEXTURE STACK DEPTH � � GetIntegerv GetIntegerv
MATRIX MODE � � GetIntegerv GetIntegerv
NORMALIZE � � IsEnabled IsEnabled
RESCALE NORMAL � � IsEnabled IsEnabled
CLIP PLANE{0-5} � � GetClipPlanef GetClipPlanex
CLIP PLANE{0-5} � � IsEnabled IsEnabled

Table 6.8: Transformation State

State Exposed Queriable Common
Get

Common-Lite
Get

FOG COLOR � � GetFloatv GetFixedv
FOG INDEX – – – –
FOG DENSITY � � GetFloatv GetFixedv
FOG START � � GetFloatv GetFixedv
FOG END � � GetFloatv GetFixedv
FOG MODE � � GetIntegerv GetIntegerv
FOG � � IsEnabled IsEnabled
SHADE MODEL � � GetIntegerv GetIntegerv

Table 6.9: Coloring

State and State Requests 41

State Exposed Queriable Common
Get

Common-Lite
Get

LIGHTING � � IsEnabled IsEnabled
COLOR MATERIAL � � Is Enabled IsEnabled
COLOR MATERIAL PARAMETER – – – –
COLOR MATERIAL FACE – – – –
AMBIENT (material) � � GetMaterialfv GetMaterialxv
DIFFUSE (material) � � GetMaterialfv GetMaterialxv
SPECULAR (material) � � GetMaterialfv GetMaterialxv
EMISSION (material) � � GetMaterialfv GetMaterialxv
SHININESS (material) � � GetMaterialfv GetMaterialxv
LIGHT MODEL AMBIENT � � GetFloatv GetFixedv
LIGHT MODEL LOCAL VIEWER – – – –
LIGHT MODEL TWO SIDE � � GetBooleanv GetBooleanv
LIGHT MODEL COLOR CONTROL – – – –
AMBIENT (lighti) � � GetLightfv GetLightxv
DIFFUSE (lighti) � � GetLightfv GetLightxv
SPECULAR (lighti) � � GetLightfv GetLightxv
POSITION (lighti) � � GetLightfv GetLightxv
CONSTANT ATTENUATION � � GetLightfv GetLightxv
LINEAR ATTENUATION � � GetLightfv GetLightxv
QUADRATIC ATTENUATION � � GetLightfv GetLightxv
SPOT DIRECTION � � GetLightfv GetLightxv
SPOT EXPONENT � � GetLightfv GetLightxv
SPOT CUTOFF � � GetLightfv GetLightxv
LIGHT{0-7} � � IsEnabled IsEnabled
COLOR INDEXES – – – –

Table 6.10: Lighting

42 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

POINT SIZE � � GetFloatv GetFixedv
POINT SMOOTH � � IsEnabled IsEnabled
POINT SIZE MIN � � GetFloatv GetFixedv
POINT SIZE MAX � � GetFloatv GetFixedv
POINT FADE THRESHOLD SIZE � � GetFloatv GetFixedv
POINT DISTANCE ATTENUATION � � GetFloatv GetFixedv
LINE WIDTH � � GetFloatv GetFixedv
LINE SMOOTH � � IsEnabled IsEnabled
LINE STIPPLE PATTERN – – – –
LINE STIPPLE REPEAT – – – –
LINE STIPPLE – – – –
CULL FACE � � IsEnabled IsEnabled
CULL FACE MODE � � GetIntegerv GetIntegerv
FRONT FACE � � GetIntegerv GetIntegerv
POLYGON SMOOTH – – – –
POLYGON MODE – – – –
POLYGON OFFSET FACTOR � � GetFloatv GetFixedv
POLYGON OFFSET UNITS � � GetFloatv GetFixedv
POLYGON OFFSET POINT – – – –
POLYGON OFFSET LINE – – – –
POLYGON OFFSET FILL � � IsEnabled IsEnabled
POLYGON STIPPLE – – – –

Table 6.11: Rasterization

State Exposed Queriable Common
Get

Common-Lite
Get

MULTISAMPLE � � IsEnabled IsEnabled
SAMPLE ALPHA TO COVERAGE � � IsEnabled IsEnabled
SAMPLE ALPHA TO ONE � � IsEnabled IsEnabled
SAMPLE COVERAGE � � IsEnabled IsEnabled
SAMPLE COVERAGE VALUE � � GetFloatv GetFixedv
SAMPLE COVERAGE INVERT � � GetBooleanv GetBooleanv

Table 6.12: Multisampling

State and State Requests 43

State Exposed Queriable Common
Get

Common-Lite
Get

TEXTURE 1D – – – –
TEXTURE 2D � � IsEnabled IsEnabled
TEXTURE 3D – – – –
TEXTURE CUBE MAP – – – –
TEXTURE BINDING 1D – – – –
TEXTURE BINDING 2D � � GetIntegerv GetIntegerv
TEXTURE BINDING 3D – – – –
TEXTURE BINDING CUBE MAP – – –
TEXTURE CUBE MAP POSITIVE X – – – –
TEXTURE CUBE MAP NEGATIVE X – – – –
TEXTURE CUBE MAP POSITIVE Y – – – –
TEXTURE CUBE MAP NEGATIVE Y – – – –
TEXTURE CUBE MAP POSITIVE Z – – – –
TEXTURE CUBE MAP NEGATIVE Z – – – –
TEXTURE WIDTH � – – –
TEXTURE HEIGHT � – – –
TEXTURE DEPTH – – – –
TEXTURE BORDER – – – –
TEXTURE INTERNAL FORMAT � – – –
TEXTURE RED SIZE � – – –
TEXTURE GREEN SIZE � – – –
TEXTURE BLUE SIZE � – – –
TEXTURE ALPHA SIZE � – – –
TEXTURE LUMINANCE SIZE � – – –
TEXTURE INTENSITY SIZE – – – –
TEXTURE COMPRESSED � – – –
TEXTURE COMPRESSED IMAGE SIZE � – – –
TEXTURE BORDER COLOR – – – –
TEXTURE MIN FILTER � � GetTexParameteriv GetTexParameteriv
TEXTURE MAG FILTER � � GetTexParameteriv GetTexParameteriv
TEXTURE WRAP S � � GetTexParameteriv GetTexParameteriv
TEXTURE WRAP T � � GetTexParameteriv GetTexParameteriv
TEXTURE WRAP R – – – –
TEXTURE PRIORITY – – – –
TEXTURE RESIDENT – – – –
TEXTURE MIN LOD – – – –
TEXTURE MAX LOD – – – –
TEXTURE BASE LEVEL – – – –
TEXTURE MAX LEVEL – – – –
GENERATE MIPMAP � � GetTexParameteriv GetTexParameteriv

Table 6.13: Texture Objects

44 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

ACTIVE TEXTURE � � GetIntegerv GetIntegerv
TEXTURE ENV MODE � � GetTexEnviv GetTexEnviv
TEXTURE ENV COLOR � � GetTexEnvfv GetTexEnvxv
TEXTURE GEN {STRQ} – – – –
EYE PLANE – – – –
OBJECT PLANE – – – –
TEXTURE GEN MODE – – – –
COMBINE RGB � � GetTexEnviv GetTexEnviv
COMBINE ALPHA � � GetTexEnviv GetTexEnviv
SRC{012} RGB � � GetTexEnviv GetTexEnviv
SRC{012} ALPHA � � GetTexEnviv GetTexEnviv
OPERAND{012} RGB � � GetTexEnviv GetTexEnviv
OPERAND{012} ALPHA � � GetTexEnviv GetTexEnviv
RGB SCALE � � GetTexEnviv GetTexEnviv
ALPHA SCALE � � GetTexEnviv GetTexEnviv

Table 6.14: Texture Environment and Generation

State Exposed Queriable Common
Get

Common-Lite
Get

DRAW BUFFER – – – –
INDEX WRITEMASK – – – –
COLOR WRITEMASK � � GetBooleanv GetBooleanv
DEPTH WRITEMASK � � GetBooleanv GetBooleanv
STENCIL WRITEMASK � � GetIntegerv GetIntegerv
COLOR CLEAR VALUE � � GetFloatv GetFixedv
INDEX CLEAR VALUE – – – –
DEPTH CLEAR VALUE � � GetIntegerv GetIntegerv
STENCIL CLEAR VALUE � � GetIntegerv GetIntegerv
ACCUM CLEAR VALUE – – – –

Table 6.15: Framebuffer Control

State and State Requests 45

State Exposed Queriable Common
Get

Common-Lite
Get

SCISSOR TEST � � IsEnabled IsEnabled
SCISSOR BOX � � GetIntegerv GetIntegerv
ALPHA TEST � � IsEnabled IsEnabled
ALPHA TEST FUNC � � GetIntegerv GetIntegerv
ALPHA TEST REF � � GetIntegerv GetIntegerv
STENCIL TEST � � IsEnabled IsEnabled
STENCIL FUNC � � GetIntegerv GetIntegerv
STENCIL VALUE MASK � � GetIntegerv GetIntegerv
STENCIL REF � � GetIntegerv GetIntegerv
STENCIL FAIL � � GetIntegerv GetIntegerv
STENCIL PASS DEPTH FAIL � � GetIntegerv GetIntegerv
STENCIL PASS DEPTH PASS � � GetIntegerv GetIntegerv
DEPTH TEST � � IsEnabled IsEnabled
DEPTH FUNC � � GetIntegerv GetIntegerv
BLEND � � IsEnabled IsEnabled
BLEND SRC � � GetIntegerv GetIntegerv
BLEND DST � � GetIntegerv GetIntegerv
BLEND EQUATION – – – –
BLEND COLOR – – – –
DITHER � � IsEnabled IsEnabled
INDEX LOGIC OP – – – –
COLOR LOGIC OP � � IsEnabled IsEnabled
LOGIC OP MODE � � GetIntegerv GetIntegerv

Table 6.16: Pixel Operations

46 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

UNPACK SWAP BYTES – – – –
UNPACK LSB FIRST – – – –
UNPACK IMAGE HEIGHT – – – –
UNPACK SKIP IMAGES – – – –
UNPACK ROW LENGTH – – – –
UNPACK SKIP ROWS – – – –
UNPACK SKIP PIXELS – – – –
UNPACK ALIGNMENT � � GetIntegerv GetIntegerv
PACK SWAP BYTES – – – –
PACK LSB FIRST – – – –
PACK IMAGE HEIGHT – – – –
PACK SKIP IMAGES – – – –
PACK ROW LENGTH – – – –
PACK SKIP ROWS – – – –
PACK SKIP PIXELS – – – –
PACK ALIGNMENT � � GetIntegerv GetIntegerv
MAP COLOR – – – –
MAP STENCIL – – – –
INDEX SHIFT – – – –
INDEX OFFSET – – – –
RED SCALE – – – –
GREEN SCALE – – – –
BLUE SCALE – – – –
ALPHA SCALE – – – –
DEPTH SCALE – – – –
RED BIAS – – – –
GREEN BIAS – – – –
BLUE BIAS – – – –
ALPHA BIAS – – – –
DEPTH BIAS – – – –

Table 6.17: Pixels

State and State Requests 47

State Exposed Queriable Common
Get

Common-Lite
Get

COLOR TABLE – – – –
POST CONVOLUTION COLOR TABLE – – – –
POST COLOR MATRIX COLOR TABLE – – – –
COLOR TABLE FORMAT – – – –
COLOR TABLE WIDTH – – – –
COLOR TABLE RED SIZE – – – –
COLOR TABLE GREEN SIZE – – – –
COLOR TABLE BLUE SIZE – – – –
COLOR TABLE ALPHA SIZE – – – –
COLOR TABLE LUMINANCE SIZE – – – –
COLOR TABLE INTENSITY SIZE – – – –
COLOR TABLE SCALE – – – –
COLOR TABLE BIAS – – – –

Table 6.18: Pixels (cont.)

State Exposed Queriable Common
Get

Common-Lite
Get

CONVOLUTION 1D – – – –
CONVOLUTION 2D – – – –
SEPARABLE 2D – – – –
CONVOLUTION – – – –
CONVOLUTION BORDER COLOR – – – –
CONVOLUTION BORDER MODE – – – –
CONVOLUTION FILTER SCALE – – – –
CONVOLUTION FILTER BIAS – – – –
CONVOLUTION FORMAT – – – –
CONVOLUTION WIDTH – – – –
CONVOLUTION HEIGHT – – – –

Table 6.19: Pixels (cont.)

48 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

POST CONVOLUTION RED SCALE – – – –
POST CONVOLUTION GREEN SCALE – – – –
POST CONVOLUTION BLUE SCALE – – – –
POST CONVOLUTION ALPHA SCALE – – – –
POST CONVOLUTION RED BIAS – – – –
POST CONVOLUTION GREEN BIAS – – – –
POST CONVOLUTION BLUE BIAS – – – –
POST CONVOLUTION ALPHA BIAS – – – –
POST COLOR MATRIX RED SCALE – – – –
POST COLOR MATRIX GREEN SCALE – – – –
POST COLOR MATRIX BLUE SCALE – – – –
POST COLOR MATRIX ALPHA SCALE – – – –
POST COLOR MATRIX RED BIAS – – – –
POST COLOR MATRIX GREEN BIAS – – – –
POST COLOR MATRIX BLUE BIAS – – – –
POST COLOR MATRIX ALPHA BIAS – – – –
HISTOGRAM – – – –
HISTOGRAM WIDTH – – – –
HISTOGRAM FORMAT – – – –
HISTOGRAM RED SIZE – – – –
HISTOGRAM GREEN SIZE – – – –
HISTOGRAM BLUE SIZE – – – –
HISTOGRAM ALPHA SIZE – – – –
HISTOGRAM LUMINANCE SIZE – – – –
HISTOGRAM SINK – – – –

Table 6.20: Pixels (cont.)

State and State Requests 49

State Exposed Queriable Common
Get

Common-Lite
Get

MINMAX – – – –
MINMAX FORMAT – – – –
MINMAX SINK – – – –
ZOOM X – – – –
ZOOM Y – – – –
PIXEL MAP I TO I – – – –
PIXEL MAP S TO S – – – –
PIXEL MAP I TO {RGBA} – – – –
PIXEL MAP R TO R – – – –
PIXEL MAP G TO G – – – –
PIXEL MAP B TO B – – – –
PIXEL MAP A TO A – – – –
PIXEL MAP x TO y SIZE – – – –
READ BUFFER – – – –

Table 6.21: Pixels (cont.)

State Exposed Queriable Common
Get

Common-Lite
Get

ORDER – – – –
COEFF – – – –
DOMAIN – – – –
MAP1 x – – – –
MAP2 x – – – –
MAP1 GRID DOMAIN – – – –
MAP2 GRID DOMAIN – – – –
MAP1 GRID SEGMENTS – – – –
MAP2 GRID SEGMENTS – – – –
AUTO NORMAL – – – –

Table 6.22: Evaluators

50 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

PERSPECTIVE CORRECTION HINT � � GetIntegerv GetIntegerv
POINT SMOOTH HINT � � GetIntegerv GetIntegerv
LINE SMOOTH HINT � � GetIntegerv GetIntegerv
POLYGON SMOOTH HINT – – – –
FOG HINT � � GetIntegerv GetIntegerv
GENERATE MIPMAP HINT � � GetIntegerv GetIntegerv
TEXTURE COMPRESSION HINT – – – –

Table 6.23: Hints

State Exposed Queriable Common
Get

Common-Lite
Get

MAX LIGHTS � � GetIntegerv GetIntegerv
MAX CLIP PLANES � � GetIntegerv GetIntegerv
MAX COLOR MATRIX STACK DEPTH – – – –
MAX MODELVIEW STACK DEPTH � � GetIntegerv GetIntegerv
MAX PROJECTION STACK DEPTH � � GetIntegerv GetIntegerv
MAX TEXTURE STACK DEPTH � � GetIntegerv GetIntegerv
SUBPIXEL BITS � � GetIntegerv GetIntegerv
MAX 3D TEXTURE SIZE – – – –
MAX TEXTURE SIZE � � GetIntegerv GetIntegerv
MAX CUBE MAP TEXTURE SIZE – – – –
MAX PIXEL MAP TABLE – – – –
MAX NAME STACK DEPTH – – – –
MAX LIST NESTING – – – –
MAX EVAL ORDER – – – –
MAX VIEWPORT DIMS � � GetIntegerv GetIntegerv

Table 6.24: Implementation Dependent Values

State and State Requests 51

State Exposed Queriable Common
Get

Common-Lite
Get

MAX ATTRIB STACK DEPTH – – – –
MAX CLIENT ATTRIB STACK DEPTH – – – –
Maximum size of a color table – – – –
Maximum size of the histogram table – – – –
AUX BUFFERS – – – –
RGBA MODE – – – –
INDEX MODE – – – –
DOUBLEBUFFER – – – –
ALIASED POINT SIZE RANGE � � GetFloatv GetFixedv
SMOOTH POINT SIZE RANGE � � GetFloatv GetFixedv
SMOOTH POINT SIZE GRANULARITY – – – –
ALIASED LINE WIDTH RANGE � � GetFloatv GetFixedv
SMOOTH LINE WIDTH RANGE � � GetFloatv GetFixedv
SMOOTH LINE WIDTH GRANULARITY – – – –

Table 6.25: Implementation Dependent Values (cont.)

State Exposed Queriable Common
Get

Common-Lite
Get

MAX CONVOLUTION WIDTH – – – –
MAX CONVOLUTION HEIGHT – – – –
MAX ELEMENTS INDICES – – – –
MAX ELEMENTS VERTICES – – – –
MAX TEXTURE UNITS � � GetIntegerv GetIntegerv
SAMPLE BUFFERS � � GetIntegerv GetIntegerv
SAMPLES � � GetIntegerv GetIntegerv
COMPRESSED TEXTURE FORMATS � � GetIntegerv GetIntegerv
NUM COMPRESSED TEXTURE FORMATS � � GetIntegerv GetIntegerv

Table 6.26: Implementation Dependent Values (cont.)

52 State and State Requests

State Exposed Queriable Common
Get

Common-Lite
Get

RED BITS � � GetIntegerv GetIntegerv
GREEN BITS � � GetIntegerv GetIntegerv
BLUE BITS � � GetIntegerv GetIntegerv
ALPHA BITS � � GetIntegerv GetIntegerv
INDEX BITS – – – –
DEPTH BITS � � GetIntegerv GetIntegerv
STENCIL BITS � � GetIntegerv GetIntegerv
ACCUM BITS – – – –

Table 6.27: Implementation Dependent Pixel Depths

State Exposed Queriable Common
Get

Common-Lite
Get

LIST BASE – – – –
LIST INDEX – – – –
LIST MODE – – – –
Server attribute stack – – – –
ATTRIB STACK DEPTH – – – –
Client attribute stack – – – –
CLIENT ATTRIB STACK DEPTH – – – –
NAME STACK DEPTH – – – –
RENDER MODE – – – –
SELECTION BUFFER POINTER – – – –
SELECTION BUFFER SIZE – – – –
FEEDBACK BUFFER POINTER – – – –
FEEDBACK BUFFER SIZE – – – –
FEEDBACK BUFFER TYPE – – – –
Current error code(s) � � GetError GetError
Corresponding error flags � � – –

Table 6.28: Miscellaneous

State and State Requests 53

State Exposed Queriable Common
Get

Common-Lite
Get

IMPLEMENTATION COLOR READ TYPE OES � � GetIntegerv GetIntegerv
IMPLEMENTATION COLOR READ FORMAT OES � � GetIntegerv GetIntegerv
MATRIX PALETTE OES � � IsEnabled IsEnabled
MAX PALETTE MATRICES OES � � GetIntegerv GetIntegerv
MAX VERTEX UNITS OES � � GetIntegerv GetIntegerv
MATRIX INDEX ARRAY OES � � IsEnabled IsEnabled
MATRIX INDEX ARRAY SIZE OES � � GetIntegerv GetIntegerv
MATRIX INDEX ARRAY TYPE OES � � GetIntegerv GetIntegerv
MATRIX INDEX ARRAY STRIDE OES � � GetIntegerv GetIntegerv
MATRIX INDEX ARRAY POINTER OES � � GetPointerv GetPointerv
MATRIX INDEX ARRAY BUFFER BINDING OES � � GetIntegerv GetIntegerv
WEIGHT ARRAY OES � � IsEnabled IsEnabled
WEIGHT ARRAY SIZE OES � � GetIntegerv GetIntegerv
WEIGHT ARRAY TYPE OES � � GetIntegerv GetIntegerv
WEIGHT ARRAY STRIDE OES � � GetIntegerv GetIntegerv
WEIGHT ARRAY POINTER OES � � GetPointerv GetPointerv
WEIGHT ARRAY BUFFER BINDING OES � � GetIntegerv GetIntegerv
CURRENT PALETTE MATRIX OES � � GetIntegerv GetIntegerv
POINT SPRITE OES � � IsEnabled IsEnabled
COORD REPLACE OES � � GetTexEnviv GetTexEnviv
POINT SIZE ARRAY OES � � IsEnabled IsEnabled
POINT SIZE ARRAY TYPE OES � � GetIntegerv GetIntegerv
POINT SIZE ARRAY STRIDE OES � � GetIntegerv GetIntegerv
POINT SIZE ARRAY POINTER OES � � GetPointerv GetPointerv
POINT SIZE ARRAY BUFFER BINDING OES � � GetIntegerv GetIntegerv

Table 6.29: Core Additions and Extensions

Chapter 7

Core Additions and Extensions

An OpenGL ES profile consists of two parts: a subset of the full OpenGL pipeline, and some extended
functionality that is drawn from a set of OpenGL ES-specific extensions to the full OpenGL specification.
Each extension is pruned to match the profile’s command subset and added to the profile as either a core
addition or a profile extension. Core additions differ from profile extensions in that the commands and
tokens do not include extension suffixes in their names.

Profile extensions are further divided into required (mandatory) and optional extensions. Required ex-
tensions must be implemented as part of a conforming implementation, whereas the implementation of
optional extensions is left to the discretion of the implementor. Both types of extensions use extension
suffixes as part of their names, are present in the EXTENSIONS string, and participate in function address
queries defined in the platform embedding layer. Required extensions have the additional packaging con-
straint, that commands defined as part of a required extension must also be available as part of a static
binding if core commands are also available in a static binding. The commands comprising an optional
extension may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprising a core addition are indistinguishable from
the original OpenGL subset. However, to increase application portability, an implementation may also
implement a core addition as an extension by including suffixed versions of commands and tokens in the
appropriate dynamic and optional static bindings and the extension name in the EXTENSIONS string.

n Extensions preserve all traditional extension properties regardless of whether they are required
or optional. Required extensions must be present; therefore, additionally providing static bindings
simplifies application usage and reinforces the ubiquity of the extension. Permitting core additions
to be included as extensions allows extensions that are promoted to core additions in later profile
revisions to continue to be available as extensions, retaining application compatibility. q

The Common and Common-Lite profiles add subsets of the OES byte coordinates, OES fixed -

point, OES single precision and OES matrix get ES-specific extensions as core additions; OES -

read format, OES compressed paletted texture, OES point size array and OES point sprite

as required profile extensions; and OES matrix palette and OES draw texture as optional profile ex-
tensions.

The OES query matrix optional extension in OpenGL ES 1.0 has been deprecated in OpenGL ES
1.1. The various matrices in GL can be obtained by calling the fixed, float version of get or by using the
OES matrix get core extension.

54

Core Additions and Extensions 55

Extension Name Common Common-Lite
OES byte coordinates core addition core addition
OES fixed point core addition core addition
OES single precision core addition n/a
OES matrix get core addition core addition
OES read format required extension required extension
OES compressed paletted texture required extension required extension
OES point size array required extension required extension
OES point sprite required extension required extension
OES matrix palette optional extension optional extension
OES draw texture optional extension optional extension

Table 7.1: OES Extension Disposition

7.1 Byte Coordinates

The OES byte coordinates extension allows byte data types to be used as vertex and texture coordi-
nates. The Common/Common-Lite profile supports byte coordinates in vertex array commands.

7.2 Fixed Point

The OES fixed point extension defines an integer fixed-point data type for vertex attributes and com-
mand parameters. The extension specification includes commands that parallel all OpenGL 1.5 commands
with floating-point parameters (including commands that support a single parameter type version such as
DepthRange, PointSize, and LineWidth). The subset of commands included in the Common and Common-
Lite profiles matches exactly the subset of floating-point commands included in the Common profile. The
subset of commands is summarized in Table 7.2

Normal3x(fixed coords)

MultiTexCoord4x(fixed coords)

Color4x(fixed coords)

VertexPointer(int size, enum type, sizei stride, const void *ptr)

size = 2,3,4 type = FIXED

ColorPointer(int size, enum type, sizei stride, const void *ptr)

size=3,4 type = FIXED

NormalPointer(enum type, sizei stride, const void *ptr)

type = FIXED

TexCoordPointer(int size, enum type, sizei stride, const void *ptr)

size = 2,3,4 type = FIXED

DepthRangex(clampx n, clampx f)

LoadMatrixx(fixed m[16])

MultMatrixx(fixed m[16])

Rotatex(fixed angle, fixed x, fixed y, fixed z)

56 Core Additions and Extensions

Scalex(fixed x, fixed y, fixed z)

Translatex(fixed x, fixed y, fixed z)

Frustumx(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f)

Orthox(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f)

ClipPlanex(enum plane, const fixed *equation)

Materialx[v](enum face, enum pname, T param)

Lightx[v](enum light, enum pname, T param)

LightModelx[v](enum pname, T param)

PointParameterx[v](enum pname, T param)

PointSizex(fixed size)

LineWidthx(fixed width)

PolygonOffsetx(fixed factor, fixed units)

TexParameterx(enum target, enum pname, T param)

TexEnvx[v](enum target, enum pname, T param)

Fogx[v](enum pname, T param)

SampleCoveragex(clampx value, boolean invert)

AlphaFuncx(enum func, clampx ref)

ClearColorx(clampx red, clampx green, clampx blue, clampx alpha)

ClearDepthx(clampx depth)

GetFixedxv(enum pname, T *params)

GetClipPlanex(enum pname, T eqn[4])

GetLightxv(enum light, enum pname, T *params)

GetMaterialxv(enum face, enum pname, T *params)

GetTexEnvxv(enum env, enum pname, T *params)

GetTexParameterxv(enum target, enum pname, T *params)

Table 7.2: Common/Common-Lite profile subset of OES fixed point

7.3 Single-precision Commands

The OES single precision commands extension creates new single-precision parameter command vari-
ants of commands that have no such variants (DepthRange, TexGen, Frustum, Ortho, etc.). Only the subset
matching the profile feature set is included in the Common profile.

DepthRangef(clampf n, clampf f)

Frustumf(float l, float r, float b, float t, float n, float f)

Orthof(float l, float r, float b, float t, float n, float f)

ClearDepthf(clampf depth)

Core Additions and Extensions 57

GetClipPlanef(enum pname, float eqn[4])

7.4 Compressed Paletted Texture

The OES compressed paletted texture extension provides a method for specifying a compressed tex-
ture image as a color index image accompanied by a palette. The extension adds ten new texture internal
formats to specify different combinations of index width and palette color format:
PALETTE4 RGB8 OES, PALETTE4 RGBA8 OES, PALETTE4 R5 G6 B5 OES, PALETTE4 RGBA4 OES,
PALETTE4 RGB5 A1 OES, PALETTE8 RGB8 OES, PALETTE8 RGBA8 OES, PALETTE8 R5 G6 B5 OES,
PALETTE8 RGBA4 OES, and PALETTE8 RGB5 A1 OES. The state queries for NUM COMPRESSED TEXTURE -

FORMATS and COMPRESSED TEXTURE FORMATS include these formats.

7.5 Read Format

The OES read format extension allows implementation-specific pixel type and format parameters to be
queried by an application and used in ReadPixel commands. The format and type values must be from the
set of supported texture image format and type values specified in Table 3.1.

7.6 Matrix Palette

The optional OES matrix palette extension adds the ability to support vertex skinning in OpenGL ES.
This extension allow OpenGL ES to support a palette of matrices. The matrix palette defines a set of
matrices that can be used to transform a vertex. The matrix palette is not part of the model view matrix
stack and is enabled by setting the MATRIX MODE to MATRIX PALETTE OES.

The n vertex units use a palette of m modelview matrices (where n and m are constrained to implemen-
tation defined maxima). Each vertex has a set of n indices into the palette, and a corresponding set of n
weights. Matrix indices and weights can be changed for each vertex.

When this extension is utilized, the enabled units transform each vertex by the modelview matrices
specified by the vertices’ respective indices. These results are subsequently scaled by the weights of the
respective units and then summed to create the eyespace vertex.

7.7 Point Sprites

The OES point sprites extension provides a method for application to draw particles using points in-
stead of quads. This extension also allows an app to specify texture coordinates that are interpolated across
the point instead of the same texture coordinate used by traditional GL points.

7.8 Point Size Array

This OES point size array extension extends how points and point sprites are rendered by allowing
an array of point sizes instead of a fixed input point size given by PointSize. This provides flexibility for
applications to do particle effects.

58 Core Additions and Extensions

The vertex arrays will be extended to include a point size array. The point size array can be en-
abled/disabled via POINT SIZE ARRAY OES. The point size array, if enabled, controls the sizes used
to render points and point sprites. If point size array is enabled, the point size defined by PointSize is ig-
nored. The point sizes supplied in the point size arrays will be the sizes used to render both points and point
sprites.

Distance-based attenuation works in conjunction with POINT SIZE ARRAY OES. If distance-based
attenuation is enabled the point size from the point size array will be attenuated as defined by point param-
eters to compute the final point size.

7.9 Matrix Get

Many applications require the ability to be able to read the GL matrices. OpenGL ES 1.1 will allow an
application to read the matrices using the GetFloatv command for the common profile and the GetFixedv
command for the common-lite profile.

In cases where the common-lite implementation stores matrices and performs matrix operations inter-
nally using floating point (example would be OpenGL ES implementations that support JSR184 etc.) the GL
cannot return the floating pt matrix elements since the float data type is not supported by the common-lite
profile. Using GetFixedv to get the matrix data will result in a loss of information.

To take care of this issue, new tokens are proposed by this extension. These tokens will allow the GL to
return a representation of the floating pt matrix elements as as an array of integers, according to the IEEE
754 floating pt ”single format” bit layout.

7.10 Draw Texture

This OES draw texture extension defines a mechanism for writing pixel rectangles from one or more
textures to a rectangular region of the screen. This capability is useful for fast rendering of background
paintings, bitmapped font glyphs, and 2D framing elements in games

Chapter 8

Packaging

Appendix C.4 of the Full Specification, and the Khronos API Implementers Guide referred to from that
appendix, describe recommended and required practice for implementing OpenGL ES, including names of
header files and libraries making up the implementation, and links to standard versions of the header files
defining interfaces for the core OpenGL ES API

59

Appendix A

Acknowledgements

The OpenGL ES Common and Common-Lite profiles are the result of the contributions of many people,
representing a cross section of the desktop, hand-held, and embedded computer industry. Following is a
partial list of the contributors, including the company that they represented at the time of their contribution:

Aaftab Munshi, ATI

Andy Methley, Panasonic

Axel Mamode, Sony Computer Entertainment

Barthold Lichtenbelt, 3Dlabs

Benji Bowman, Imagination Technologies

Borgar Ljosland, Falanx

Brian Murray, Motorola

Bryce Johnstone, Texas Instruments

Carlos Sarria, Imagination Technologies

Chris Tremblay, Motorola

Claude Knaus, Esmertec

Clay Montgomery, Nokia

Dan Petersen, Sun

Dan Rice, Sun

David Blythe, HI

David Yoder, Motorola

Doug Twilleager, Sun

Ed Plowman, ARM

Graham Connor, Imagination Technologies

Greg Stoner, Motorola

Hannu Napari, Hybrid

Harri Holopainen, Hybrid

Jacob Ström, Ericsson

60

Acknowledgements 61

Jani Vaarala, Nokia

Jerry Evans, Sun

John Metcalfe, Imagination Technologies

Jon Leech, Silicon Graphics

Kari Pulli, Nokia

Lane Roberts, Symbian

Madhukar Budagavi, Texas Instruments

Mathias Agopian, PalmSource

Mark Callow, HI

Mark Tarlton, Motorola

Mike Olivarez, Motorola

Neil Trevett, 3Dlabs

Nick Triantos, Nvidia

Petri Kero, Hybrid

Petri Nordlund, Bitboys

Phil Huxley, Tao Group

Remi Arnaud, Sony Computer Entertainment

Robert Simpson, Bitboys

Tero Sarkinnen, Futuremark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

Tomi Aarnio, Nokia

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

Appendix B

OES Extension Specifications

B.1 OES byte coordinates

Name

OES_byte_coordinates

Name Strings

GL_OES_byte_coordinates

Contact

Kari Pulli, Nokia (kari.pulli ’at’ nokia.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

$Date: 2003/07/23 04:23:25 $ $Revision: 1.5 $

Number

OpenGL ES Extension #4 (formerly OpenGL Extension #291)

Dependencies

OpenGL 1.1 is required.

Overview

This extension allows specifying, additionally to all existing
values, byte-valued vertex and texture coordinates to be used.

The main reason for introducing the byte-argument is to allow
storing data more compactly on memory-restricted environments.

62

OES Extension Specifications 63

IP Status

There is no intellectual property associated with this extension.

Issues

None known.

New Procedures and Functions

None

New Tokens

Accepted by the <type> parameter of VertexPointer and TexCoordPointer

BYTE 0x1400

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Add signed byte entry points to first paragraph of
section 2.7 (Vertex Specification):

void Vertex{234}bOES(T coords);
void Vertex{234}bvOES(T coords);

and to the second paragraph:

void TexCoord{1234}bOES(T coords);
void TexCoord{1234}bvOES(T coords);

and to the third paragraph:

void MultiTexCoord{1234}bOES(enum texture, T coords);
void MultiTexCoord{1234}bvOES(enum texture, T coords);

Add byte to supported types in Table 2.4 (Vertex Array Sizes):

Command Sizes Types
VertexPointer 2,3,4 byte,short,int,float,double
TexCoordPointer 1,2,3,4 byte,short,int,float,double

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

64 OES Extension Specifications

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

GLX Protocol

Byte type commands are mapped on the client-side to the
appropriate short or int command protocol.

Errors

No new errors, giving byte as <type> argument to VertexPointer or
TexCoordPointer is not an error any more.

New State

(table 6.6, pp. 214-215)

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ----- ----------- ---- ---------

VERTEX_x Z_5 GetIntegerv FLOAT Type of 2.8 vertex-array
vertex
coordinates

TEXTURE_COORD_x 2 * x Z_5 GetIntegerv FLOAT Type of 2.8 vertex-array
texture
coordinates

_x = _ARRAY_TYPE

New Implementation Dependent State

None

Revision History

Sep 23, 2002 Kari Pulli Created the document
Sep 26, 2002 Kari Pulli Incorporated comments by Jon Leech
Feb 26, 2003 David Blythe Changed prefix to OES
Jul 08, 2003 David Blythe Deleted Dependencies on section, added

extension number, narrow state table
Jul 11, 2003 David Blythe Changed to use OES suffixes
Jul 12, 2003 David Blythe Added note about GLX protocol

OES Extension Specifications 65

B.2 OES fixed point

Name

OES_fixed_point

Name Strings

GL_OES_fixed_point

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.
Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modifed Date: 16 June 2004
Author Revision: 0.8

Number

OpenGL ES Extension #9 (formerly ARB Extension #292)

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension provides the capability, for platforms that do
not have efficient floating-point support, to input data in a
fixed-point format, i.e., a scaled-integer format. There are
several ways a platform could try to solve the problem, such as
using integer only commands, but there are many OpenGL commands
that have only floating-point or double-precision floating-point
parameters. Also, it is likely that any credible application
running on such a platform will need to perform some computations
and will already be using some form of fixed-point representation.
This extension solves the problem by adding new ‘‘fixed’, and
‘‘clamp fixed’’ data types based on a a two’s complement
S15.16 representation. New versions of commands are created
with an ’x’ suffix that take fixed or clampx parameters.

IP Status

66 OES Extension Specifications

None

Issues

* Add double-precision (S31.32) form too?
NO

* Additional InterleavedArray formats?
NO

* Should newly suffixed commands, e.g., PointSize, get an alias with
a float or double suffix for consistency?

NO

* Are enums converted to fixed by scaling by 2ˆ16.
NO. An enums are passed through as if they are already in
S15.16 form. Requiring scaling is too error prone.

New Procedures and Functions

NOTE: ‘T’ expands to ’const fixed*’ or ‘fixed’ as appropriate

void Vertex{234}x[v]OES(T coords);
void Normal3x[v]OES(T coords);
void TexCoord{1234}x[v]OES(T coords);
void MultiTexCoord{1234}x[v]OES(enum texture, T coords);
void Color{34}x[v]OES(T components);
void Indexx[v]OES(T component);
void RectxOES(fixed x1, fixed y1, fixed x2, fixed y2);
void RectxvOES(const fixed v1[2], const fixed v2[2]);

void DepthRangexOES(clampx n, clampx f);
void LoadMatrixxOES(const fixed m[16]);
void MultMatrixxOES(const fixed m[16]);
void LoadTransposeMatrixxOES(const fixed m[16]);
void MultTransposeMatrixxOES(const fixed m[16]);
void RotatexOES(fixed angle, fixed x, fixed y, fixed z);
void ScalexOES(fixed x, fixed y, fixed z);
void TranslatexOES(fixed x, fixed y, fixed z);
void FrustumxOES(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f);
void OrthoxOES(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f);
void TexGenx[v]OES(enum coord, enum pname, T param);
void GetTexGenxvOES(enum coord, enum pname, T* params);

void ClipPlanexOES(enum plane, const fixed* equation);
void GetClipPlanexOES(enum plane, fixed* equation);

void RasterPos{234}x[v]OES(T coords);

void Materialx[v]OES(enum face, enum pname, T param);
void GetMaterialxOES(enum face, enum pname, T param);
void Lightx[v]OES(enum light, enum pname, T* params);

OES Extension Specifications 67

void GetLightxOES(enum light, enum pname, T* params);
void LightModelx[v]OES(enum pname, T param);

void PointSizexOES(fixed size);
void PointParameterxvOES(enum pname, const fixed *params)
void LineWidthxOES(fixed width);
void PolygonOffsetxOES(fixed factor, fixed units);

void PixelStorex{enum pname, T param);
void PixelTransferxOES(enum pname, T param);
void PixelMapx{enum map int size T* values);
void GetPixelMapxv{enum map int size T* values);

void ConvolutionParameterx[v]OES(enum target, enum pname, T param);
void GetConvolutionParameterxvOES(enum target, enum pname, T* params);
void GetHistogramParameterxvOES(enum target, enum pname, T *params);

void PixelZoomxOES(fixed xfactor, fixed yfactor);

void BitmapxOES(sizei width, sizei height, fixed xorig, fixed yorig,
fixed xmove, fixed ymove, const ubyte* bitmap);

void TexParameterx[v]OES(enum target, enum pname, T param);
void GetTexParameterxvOES(enum target, enum pname, T* params);
void GetTexLevelParameterxvOES(enum target, int level, enum pname, T* params);
void PrioritizeTexturesxOES(sizei n, uint* textures, clampx* priorities);
void TexEnvx[v]OES(enum target, enum pname, T param);
void GetTexEnvxvOES(enum target, enum pname, T* params);

void Fogx[v]OES(enum pname, T param);

void SampleCoverageOES(clampx value, boolean invert);
void AlphaFuncxOES(enum func, clampx ref);

void BlendColorxOES(clampx red, clampx green, clampx blue, clampx alpha);

void ClearColorxOES(clampx red, clampx green, clampx blue, clampx alpha);
void ClearDepthxOES(clampx depth);
void ClearAccumxOES(clampx red, clampx green, clampx blue, clampx alpha);
void AccumxOES(enum op, fixed value);

void Map1xOES(enum target, T u1, T u2, int stride, int order, T points);
void Map2xOES(enum target, T u1, T u2, int ustride, int uorder,

T v1, T v2, int vstride, int vorder, T points);
void MapGrid1xOES(int n, T u1, T u2);
void MapGrid2xOES(int n, T u1, T u2, T v1, T v2);
void GetMapxvOES(enum target, enum query, T* v);
void EvalCoord{12}x[v]OES(T coord);

void FeedbackBufferxOES(sizei n, enum type, fixed* buffer);
void PassThroughxOES(fixed token);

68 OES Extension Specifications

GetFixedvOES(enum pname, fixed* params);

New Tokens

FIXED_OES 0x140C

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Section 2.1.1 Floating-Point Computation

Add the following paragraphs:

On some platforms, floating-point computations are not sufficiently
well supported to be used in an OpenGL implementation. On such
platforms, fixed-point representations may be a viable substitute for
floating-point. Internal computations can use either fixed-point
or floating-point arithmetic. Fixed-point computations must be
accurate to within +/-2ˆ-15. The maximum representable magnitude
for a fixed-point number used to represent positional or normal
coordinates must be at least 2ˆ15; the maximum representable
magnitude for colors or texture coordinates must be at least 2ˆ10.
The maximum representable magnitude for all other fixed-point
values must be at least 2ˆ15. x*0 = 0*x = 0. 1*x = x*1 = x. x +
0 = 0 + x = x. 0ˆ0 = 1. Fixed-point computations may lead to
overflows or underflows. The results of such computations are
undefined, but must not lead to GL interruption or termination.

Section 2.3 GL Command Syntax

Paragraph 3 is updated to include the ’x’ suffix and

Table 2.1 is modified to include the row:

| x | fixed |

Table 2.2 is modified to include the rows:

--
| fixed | 32 | signed 2’s complement S15.16 scaled integer|
--
| clampx | 32 | S15.16 scaled integer clamped to [0, 1] |
--

and the count of the number of rows in the text is changed to 16.

Add paragraph

The mapping of GL data types to data types of a specific

OES Extension Specifications 69

language binding are part of the language binding definition and
may be platform-dependent. Type conversion and type promotion
behavior when mixing actual and formal arguments of different
data types are specific to the language binding and platform.
For example, the C language includes automatic conversion
between integer and floating-point data types, but does not
include automatic conversion between the int and fixed or
float and fixed GL types since the fixed data type is not a
distinct built-in type. Regardless of language binding,
the enum type converts to fixed-point without scaling and
integer types are converted by multiplying by 2ˆ16.

Section 2.7 Vertex Specification

Commands are revised to included ’x’ suffix.

Section 2.8 Vertex Arrays

Table 2.4 Vertex Array Sizes is revised to include the ’fixed’ type
for all commands except EdgeFlagPointer.

References to Vertex command suffixes are revised to include ’x’.

Section 2.9 Rectangles

Revise to include ’x’ suffix.

Section 2.10 Coordinate Transformations

Revise to include ’x’ suffix. Section 2.10.1 describes clampx.
Add alternate suffixed versions of Ortho and Frustum.

Section 2.11 Clipping

Add alternate suffixed version of ClipPlane.

Section 2.12 Current Raster Position

Revise to include ’x’ suffix.

Section 2.13 Colors and Coloring

Revise to include ’x’ suffix and
Table 2.6 is modified to include row:

| fixed | c |

70 OES Extension Specifications

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

Section 3.3 Points

Add alternate suffixed PointSize command.

Section 3.4 Line Segments

Add alternate suffixed LineWidth command.

Section 3.5 Polygons

Add alternate suffixed PolygonOffset command.

Section 3.6 Pixel Rectangles

Revise to include ’x’ suffix on PixelStore, PixelTransfer, PixelMap,
ConvolutionParameter.

Table 3.5 is modified to include row:

| FIXED | fixed | No |

Add alternate suffixed PixelZoom to Section 3.6.5

Section 3.7 Bitmaps

Add alternate suffixed Bitmap command.

Section 3.8 Texturing

Revise to include ’x’ suffix in TexParameter (Section 3.8.4).

Add alternate suffixed PrioritizeTextures command (Section 3.8.11).

Revise to include ’x’ suffix in TexEnv (Section 3.8.12).

Section 3.10 Fog

Revise to include ;x; suffix in Fog command.

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.1 Fragment Operations

Add alternate suffixed SampleCoverage command (Section 4.1.3),
AlphaFunc command (Section 4.1.4), BlendColor command (Section 4.1.7).

OES Extension Specifications 71

Section 4.2 Whole Framebuffer Operations

Add alternate suffixed ClearColor, ClearDepth, and ClearAccum commands
(Section 4.2.3).

Add alternate suffixed Accum command (Section 4.2.4).

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

Section 5.1 Evaluators

Revise to include ’x’ suffix on Map1, Map2, Map1Grid, and Map2Grid
commands.

Section 5.3 Feedback

Add alternate suffixed FeedbackBuffer and PassThrough commands.
Revise Figure 5.2 to indicate ’f’ values may also be ’x’ values.

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

Add GetFixedv to Section 6.1.1. Revise Section 6.1.2 to
include implied conversions for GetFixedv.

Revise to include ’x’ suffix for GetClipPlane, GetLightm GetMaterial,
GetTexEnv, GetTexGen, GetTexParameter, GetTexLevelParameter,
GetPixelMap, and GetMap in Section 6.1.3.

Revise to include ’x’ suffix for GetHistogramParameter (Section 6.1.9).

Section 6.2 State Tables

Revise intro paragraph to include GetFixedv.

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

72 OES Extension Specifications

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

The data representation is client-side only. The GLX layer
performs translation between fixed and float representations.

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

Fixed type entry points are mapped on the client-side to the
appropriate floating-point command protocol. To preserve precision,
double-precision protocol is encouraged, but not required.

Errors

None

New State

None

New Implementation Dependent State

None

Revision History

12/15/2002 0.1
- Original draft.

03/31/2003 0.2
- Corrected a typo in GetClipPlanex and FIXED_OES.

04/24/2003 0.3
- Added clarification that enums must be converted to fixed

by scaling when passed in a fixed parameter type. Corrected
some typos.

05/29/2003 0.4
- Changed enums to be passed unscaled when passed to a

fixed formal parameter.

07/08/2003 0.5
- Removed bogus Dependencies on section
- Added extension number and enumerant value

OES Extension Specifications 73

07/11/2003 0.6
- Added OES suffixes

07/12/2003 0.7
- Added note about GLX protocol

06/16/2004 0.8
- Added ClipPlanex, and various Get functions

74 OES Extension Specifications

B.3 OES single precision

Name

OES_single_precision

Name Strings

GL_OES_single_precision

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.
Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modifed Date: April 22, 2007
Author Revision : 0.6

Number

OpenGL ES Extension #18 (formerly OpenGL Extension #293)

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension adds commands with single-precision floating-point
parameters corresponding to the commands that only variants that
accept double-precision floating-point input. This allows an
application to avoid using double-precision floating-point
data types. New commands are added with an ’f’ prefix.

IP Status

None

Issues

* An alternative is to suggest platforms define GLfloat and
GLdouble to be the same type, since it is unlikely that both
single- and double-precision are required at the same time.

OES Extension Specifications 75

Resolved: This might create additional confusion, so it is
better to define new commands.

New Procedures and Functions

void DepthRangefOES(clampf n, clampf f);
void FrustumfOES(float l, float r, float b, float t, float n, float f);
void OrthofOES(float l, float r, float b, float t, float n, float f);

void ClipPlanefOES(enum plane, const float* equation);
void GetClipPlanefOES(enum plane, float* equation);

void glClearDepthfOES(clampd depth);

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Section 2.10 Coordinate Transformations

Revise to include ’f’ suffix.
Add alternate suffixed versions of DepthRange (2.10.1).
Add alternate suffixed versions of Ortho and Frustum (2.10.2).

Section 2.11 Clipping

Add alternate suffixed version of ClipPlane.

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.2.3 Clearing the Buffers

Add alternate suffixed version of ClearDepth.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

76 OES Extension Specifications

None

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

The data representation is client-side only. The GLX layer
performs translation between float and double representations.

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

Five new GL rendering commands are added. The following commands
are sent to the server as part of a glXRender request:

ClearDepthfOES
2 8 rendering command length
2 4308 rendering command opcode
4 FLOAT32 z

DepthRangefOES
2 12 rendering command length
2 4309 rendering command opcode
4 FLOAT32 n
4 FLOAT32 f

FrustumfOES
2 28 rendering command length
2 4310 rendering command opcode
4 FLOAT32 l
4 FLOAT32 r
4 FLOAT32 b
4 FLOAT32 t
4 FLOAT32 n

OES Extension Specifications 77

4 FLOAT32 f

OrthofOES
2 28 rendering command length
2 4311 rendering command opcode
4 FLOAT32 l
4 FLOAT32 r
4 FLOAT32 b
4 FLOAT32 t
4 FLOAT32 n
4 FLOAT32 f

ClipPlanefOES
2 24 rendering command length
2 4312 rendering command opcode
4 ENUM plane
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]

The remaining commands are non-rendering commands. These commands are
sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

GetClipPlanefOES
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 1421 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM plane

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]
8 unused

Errors

None

New State

None

78 OES Extension Specifications

New Implementation Dependent State

None

Revision History

03/27/2003 0.1
- First draft created.

07/08/2003 0.2
- Delete unused Dependencies on section
- Added extension number

07/09/2003 0.3
- Added missing ClearDepthfOES
- Removed ’_’s from names.

07/22/2003 0.4
- Added GLX protocol (Thomas Roell)

06/28/2004 0.5
- Added ClipPlanef function (Aaftab Munshi)

04/22/2007 0.6
- Fixed ’void void’ typo (Jon Leech)

OES Extension Specifications 79

B.4 OES read format

Name

OES_read_format

Name Strings

GL_OES_read_format

Contact

Aaftab Munshi (amunshi@ati.com)

Status

Revision 0.2 ratified by the Khronos BOP, July 23, 2003.
Revision 0.3 to be ratified

Version

Last Modifed Date: Jan 4, 2006
Author Revision: 0.3

Number

OpenGL ES Extension #17 (formerly OpenGL Extension #295)

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension provides the capability to query an OpenGL
implementation for a preferred type and format combination
for use with reading the color buffer with the ReadPixels
command. The purpose is to enable embedded implementations
to support a greatly reduced set of type/format combinations
and provide a mechanism for applications to determine which
implementation-specific combination is supported.

The preferred type and format combination returned may depend
on the read surface bound to the current GL context.

IP Status

None

Issues

80 OES Extension Specifications

* Should this be generalized for other commands: DrawPixels, TexImage?

Resolved: No need to aggrandize.

New Procedures and Functions

None

New Tokens

IMPLEMENTATION_COLOR_READ_TYPE_OES 0x8B9A
IMPLEMENTATION_COLOR_READ_FORMAT_OES 0x8B9B

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.3 Drawing, Reading, and Copying Pixels

Section 4.3.2 Reading Pixels

(add paragraph)
A single format and type combination, designated the
preferred format, is associated with the state variables
IMPLEMENTATION_COLOR_READ_FORMAT_OES and
IMPLEMENTATION_COLOR_READ_TYPE_OES. The preferred format
indicates a read format and type combination that provides optimal
performance, for the read surface that is bound to the current
GL context, for a particular implementation. The state values
are chosen from the set of regularly accepted format
and type parameters as shown in tables 3.6 and 3.5.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

OES Extension Specifications 81

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

TBD

Errors

None

New State

None

New Implementation Dependent State

(table 6.28)

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ----- ----------- ----- ---------
x_FORMAT_OES Z_11 GetIntegerv - read format 4.3.2 -
x_TYPE_OES Z_20 GetIntegerv - read type 4.3.2 -

x_ = IMPLEMENTATION_COLOR_READ_

Revision History

82 OES Extension Specifications

02/20/2003 0.1
- Original draft.

07/08/2003 0.2
- Marked issue regarding extending to other commands to resolved.
- Hackery to make state table fit in 80 columns
- Removed Dependencies on section
- Added extension number and enumerant values

01/04/2006 0.3
- Added clarification that format and type value returned

depends on the current read surface attached to the current context

OES Extension Specifications 83

B.5 OES query matrix

Name

OES_query_matrix

Name Strings

GL_OES_query_matrix

Contact

Kari Pulli, Nokia (kari.pulli ’at’ nokia.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

$Date: 2003/07/23 04:23:25 $ $Revision: 1.2 $

Number

OpenGL ES Extension #16 (formerly OpenGL Extension #296)

Dependencies

OpenGL 1.3 is required.
OES_fixed_point is required.

Overview

Many applications may need to query the contents and status of the
current matrix at least for debugging purposes, especially as the
implementations are allowed to implement matrix machinery either in
any (possibly proprietary) floating point format, or in a fixed point
format that has the range and accuracy of at least 16.16 (signed 16 bit
integer part, unsigned 16 bit fractional part).

This extension is intended to allow application to query the components
of the matrix and also their status, regardless whether the internal
representation is in fixed point or floating point.

IP Status

There is no intellectual property associated with this extension.

Issues

None known.

84 OES Extension Specifications

New Procedures and Functions

GLbitfield glQueryMatrixxOES(GLfixed mantissa[16],
GLint exponent[16])

mantissa[16] contains the contents of the current matrix in GLfixed
format. exponent[16] contains the unbiased exponents applied to the
matrix components, so that the internal representation of component i
is close to mantissa[i] * 2ˆexponent[i]. The function returns a status
word which is zero if all the components are valid. If
status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
The implementations are not required to keep track of overflows. In
that case, the invalid bits are never set.

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

Insert Overview and New Procedures and Functions to become Section 6.1.13.

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

GLX Protocol

QueryMatrixxOES() is mapped to the equivalent protocol for
floating-point state queries. Two queries are required; one to
retrieve the current matrix mode and another to retrieve the
matrix values.

OES Extension Specifications 85

Dependencies on OES_fixed_point

OES_fixed_point is required for the GLfixed definition.

Errors

None

New State

None

New Implementation Dependent State

None

Revision History

Apr 15, 2003 Kari Pulli Created the document
Jul 08, 2003 David Blythe Clarified the Dependencies section,

Added extension number
Jul 12, 2003 David Blythe Add GLX protocol note

86 OES Extension Specifications

B.6 OES compressed paletted texture

Name

OES_compressed_paletted_texture

Name Strings

GL_OES_compressed_paletted_texture

Contact

Aaftab Munshi, ATI (amunshi@ati.com)

Notice

IP Status

No known IP issues

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

Last Modifed Date: 12 November 2005
Author Revision: 0.6

Number

OpenGL ES Extension #6 (formerly OpenGL Extension #294)

Dependencies

Written based on the wording of the OpenGL ES 1.0 specification

Overview

The goal of this extension is to allow direct support of palettized
textures in OpenGL ES.

Palettized textures are implemented in OpenGL ES using the
CompressedTexImage2D call. The definition of the following parameters
"level" and "internalformat" in the CompressedTexImage2D call have
been extended to support paletted textures.

A paletted texture is described by the following data:

palette format
can be R5_G6_B5, RGBA4, RGB5_A1, RGB8, or RGBA8

OES Extension Specifications 87

number of bits to represent texture data
can be 4 bits or 8 bits per texel. The number of bits
also detemine the size of the palette. For 4 bits/texel
the palette size is 16 entries and for 8 bits/texel the
palette size will be 256 entries.

The palette format and bits/texel are encoded in the
"internalformat" parameter.

palette data and texture mip-levels
The palette data followed by all necessary mip levels are
passed in "data" parameter of CompressedTexImage2D.

The size of palette is given by palette format and bits / texel.
A palette format of RGB_565 with 4 bits/texel imply a palette
size of 2 bytes/palette entry * 16 entries = 32 bytes.

The level value is used to indicate how many mip levels
are described. Negative level values are used to define
the number of miplevels described in the "data" component.
A level of zero indicates a single mip-level.

Issues

* Should glCompressedTexSubImage2D be allowed for modifying paletted
texture data.

RESOLVED: No, this would then require implementations that do not
support paletted formats internally to also store the palette
per texture. This can be a memory overhead on platforms that are
memory constrained.

* Should palette format and number of bits used to represent each
texel be part of data or internal format.

RESOLVED: Should be part of the internal format since this makes
the palette format and texture data size very explicit for the
application programmer.

* Should the size of palette be fixed i.e 16 entries for 4-bit texels
and 256 entries for 8-bit texels or be programmable.

RESOLVED: Should be fixed. The application can expand the palette
to 16 or 256 if internally it is using a smaller palette.

New Procedures and Functions

None

88 OES Extension Specifications

New Tokens

Accepted by the <level> parameter of CompressedTexImage2D

Zero and negative values. |level| + 1 determines the number of
mip levels defined for the paletted texture.

Accepted by the <internalformat> paramter of CompressedTexImage2D

PALETTE4_RGB8_OES 0x8B90
PALETTE4_RGBA8_OES 0x8B91
PALETTE4_R5_G6_B5_OES 0x8B92
PALETTE4_RGBA4_OES 0x8B93
PALETTE4_RGB5_A1_OES 0x8B94
PALETTE8_RGB8_OES 0x8B95
PALETTE8_RGBA8_OES 0x8B96
PALETTE8_R5_G6_B5_OES 0x8B97
PALETTE8_RGBA4_OES 0x8B98
PALETTE8_RGB5_A1_OES 0x8B99

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

Add to Table 3.17: Specific Compressed Internal Formats

Compressed Internal Format Base Internal Format
========================== ====================
PALETTE4_RGB8_OES RGB
PALETTE4_RGBA8_OES RGBA
PALETTE4_R5_G6_B5_OES RGB
PALETTE4_RGBA4_OES RGBA
PALETTE4_RGB5_A1_OES RGBA
PALETTE8_RGB8_OES RGB
PALETTE8_RGBA8_OES RGBA
PALETTE8_R5_G6_B5_OES RGB
PALETTE8_RGBA4_OES RGBA
PALETTE8_RGB5_A1_OES RGBA

Add to Section 3.8.3, Alternate Image Specification

If <internalformat> is PALETTE4_RGB8, PALETTE4_RGBA8, PALETTE4_R5_G6_B5,
PALETTE4_RGBA4, PALETTE4_RGB5_A1, PALETTE8_RGB8, PALETTE8_RGBA8,
PALETTE8_R5_G6_B5, PALETTE8_RGBA4 or PALETTE8_RGB5_A1, the compressed
texture is a compressed paletted texture. The texture data contains the
palette data following by the mip-levels where the number of mip-levels
stored is given by |level| + 1. The number of bits that represent a
texel is 4 bits if <interalformat> is given by PALETTE4_xxx and is 8

OES Extension Specifications 89

bits if <internalformat> is given by PALETTE8_xxx.

The number of bits that represent each palette entry is:

Compressed Internal Format # of bits / palette entry
========================== =========================
PALETTE4_RGB8_OES 24
PALETTE4_RGBA8_OES 32
PALETTE4_R5_G6_B5_OES 16
PALETTE4_RGBA4_OES 16
PALETTE4_RGB5_A1_OES 16
PALETTE8_RGB8_OES 24
PALETTE8_RGBA8_OES 32
PALETTE8_R5_G6_B5_OES 16
PALETTE8_RGBA4_OES 16
PALETTE8_RGB5_A1_OES 16

Compressed paletted textures support only 2D images without
borders. CompressedTexImage2D will produce an INVALID_OPERATION
error if <border> is non-zero.

To determine palette format refer to tables 3.10 and 3.11 of Chapter
3 where the data ordering for different <type> formats are described.

Add table 3.17.1: Texel Data Formats for compressed paletted textures

PALETTE4_xxx:

7 6 5 4 3 2 1 0

| 1st | 2nd |
| texel | texel |

PALETTE8_xxx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 4th | 3nd | 2rd | 1st |
| texel | texel | texel | texel |

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

90 OES Extension Specifications

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

Additions to the AGL/GLX/WGL Specification

None

GLX Protocol

None

Errors

INVALID_OPERATION is generated by TexImage2D, CompressedTexSubImage2D,
CopyTexSubImage2D if <internalformat> is PALETTE4_RGB8_OES,
PALETTE4_RGBA8_OES, PALETTE4_R5_G6_B5_OES, PALETTE4_RGBA4_OES,
PALETTE4_RGB5_A1_OES, PALETTE8_RG8_OES, PALETTE8_RGBA8_OES,
PALETTE8_R5_G6_B5_OES, PALETTE8_RGBA4_OES, or PALETTE8_RGB5_A1_OES.

INVALID_VALUE is generated by CompressedTexImage2D if
if <internalformat> is PALETTE4_RGB8_OES, PALETTE4_RGBA8_OES,
PALETTE4_R5_G6_B5_OES, PALETTE4_RGBA4_OES, PALETTE4_RGB5_A1_OES,
PALETTE8_RGB8_OES, PALETTE8_RGBA8_OES, PALETTE8_R5_G6_B5_OES,
PALETTE8_RGBA4_OES, or PALETTE8_RGB5_A1_OES and <level> value is
neither zero or a negative value.

New State

The queries for NUM_COMPRESSED_TEXTURE_FORMATS and
COMPRESSED_TEXTURE_FORMATS include these ten new formats.

Revision History
04/28/2003 0.1 (Aaftab Munshi)

- Original draft.

05/29/2003 0.2 (David Blythe)
- Use paletted rather than palettized. Change naming of internal

OES Extension Specifications 91

format tokens to match scheme used for other internal formats.

07/08/2003 0.3 (David Blythe)
- Add official enumerant values and extension number.

07/09/2003 0.4 (David Blythe)
- Note that [NUM_]COMPRESSED_TEXTURE_FORMAT queries include the

new formats.

07/21/2004 0.5 (Aaftab Munshi)
- Fixed PALETTE_8xxx drawing

11/12/2005 0.6 (Aaftab Munshi)
- Corrections

92 OES Extension Specifications

B.7 OES matrix palette

Name

OES_matrix_palette

Name Strings

GL_OES_matrix_palette

Contact

Aaftab Munshi (amunshi@ati.com)

Status

Ratified by the Khronos BOP, Aug 5, 2004.

Version

Number

OpenGL ES Extension #12

Dependencies

OpenGL ES 1.0 is required.

Overview

This extension adds the ability to support vertex skinning in OpenGL ES.
A simplified version of the ARB_matrix_palette extension is used to
define OES_matrix_palette extension.

This extension allow OpenGL ES to support a palette of matrices. The matrix
palette defines a set of matrices that can be used to transform a vertex.
The matrix palette is not part of the model view matrix stack and is enabled
by setting the MATRIX_MODE to MATRIX_PALETTE_OES.

The n vertex units use a palette of m modelview matrices (where n and m are
constrained to implementation defined maxima.) Each vertex has a set of n
indices into the palette, and a corresponding set of n weights.
Matrix indices and weights can be changed for each vertex.

When this extension is utilized, the enabled units transform each
vertex by the modelview matrices specified by the vertices’
respective indices. These results are subsequently scaled by the
weights of the respective units and then summed to create the
eyespace vertex.

A similar procedure is followed for normals. Normals, however,

OES Extension Specifications 93

are transformed by the inverse transpose of the modelview matrix.

IP Status

Unknown, but believed to be none.

Issues

Should this extension be an optional or mandatory extension

Will be an optional extension since ARB_matrix_palette didn’t
see much usage in OpenGL.

Should we allow the ability to load the current model view matrix
into the matrix palette

Yes. This will be very helpful since it makes it very easy
to load an object heirarchy. This will also be helpful for JSR184

Should the Matrix palette be loaded with a new LoadMatrixPalette
command?

No, although this provides an easy way to support arbitrary
palette sizes, the method loses the current (MultMatrix,
Rotate, Translate, Scale..) matrix functionality.

Matrices will be Loaded into the palette with current
functions when MATRIX_MODE is MATRIX_PALETTE_OES. The current
palette index is set by an explicit command:
CurrentPaletteMatrixARB().

Should the Matrix Palette have a stack?

Not required, this wastes a lot of space.

Should the matrix palette be gettable?

No.

Should MatrixIndexARB be changed to imply LoadMatrix calls to the
applicable MODELVIEW_MATRIXn stacks?

No, the MODELVIEW_MATRIXn matrices are unused when
MATRIX_PALETTE is enabled.

Should there be a way to specify that the modelview matrices
for two different vertex units are identical?

Not explicitly, but indexing the matrix palette provides this

94 OES Extension Specifications

functionality. (Both units will have the same matrix index.)

New Procedures and Functions

void CurrentPaletteMatrixOES(uint index)

void LoadPaletteFromModelViewMatrixOES()

void MatrixIndexPointerOES(int size, enum type, sizei stride, void *pointer)

void WeightPointerOES(int size, enum type, sizei stride, void *pointer);

New Tokens

Accepted by the <mode> parameter of MatrixMode, and by the
<cap> parameters of Enable and Disable:

MATRIX_PALETTE_OES 0x8840

Accepted by the <pname> parameters of GetIntegerv:

MAX_PALETTE_MATRICES_OES 0x8842
MAX_VERTEX_UNITS_OES 0x86A4
CURRENT_PALETTE_MATRIX_OES 0x8843

The default values for MAX_PALETTE_MATRICES_OES and MAX_VERTEX_UNITS_OES
are 9 and 3 resp.

Accepted by the <cap> parameters of EnableClientState and DisableClientState and
by the <pname> parameter of IsEnabled:

MATRIX_INDEX_ARRAY_OES 0x8844
WEIGHT_ARRAY_OES 0x86AD

Accepted by the <pname> parameter of GetIntegerv:

MATRIX_INDEX_ARRAY_SIZE_OES 0x8846
MATRIX_INDEX_ARRAY_TYPE_OES 0x8847
MATRIX_INDEX_ARRAY_STRIDE_OES 0x8848
MATRIX_INDEX_ARRAY_BUFFER_BINDING_OES 0x8B9E

WEIGHT_ARRAY_SIZE_OES 0x86AB
WEIGHT_ARRAY_TYPE_OES 0x86A9
WEIGHT_ARRAY_STRIDE_OES 0x86AA
WEIGHT_ARRAY_BUFFER_BINDING_OES 0x889E

Accepted by the <pname> parameter of GetPointerv:

MATRIX_INDEX_ARRAY_POINTER_OES 0x8849
WEIGHT_ARRAY_POINTER_OES 0x86AC

OES Extension Specifications 95

Additions to Chapter 2 of the OpenGL ES 1.0 Specification

- Added to section 2.8

void WeightPointerOES(int size, enum type, sizei stride, void *pointer);

void MatrixIndexPointerOES(int size, enum type, sizei stride, void *pointer);

WeightPointerOES & MatrixIndexPointerOES are used to describe the weights and
matrix indices used to blend corresponding matrices for a given vertex.

For implementations supporting matrix palette, note that <size> values for
WeightPointerOES & MatrixIndexPointerOES must be less than or equal to the
implementation defined value MAX_VERTEX_UNITS_OES.

- Added to table in section 2.8

Command Sizes Types
------- ----- -----
WeightPointerOES 1..MAX_VERTEX_UNITS_OES fixed, float
MatrixIndexPointerOES 1..MAX_VERTEX_UNITS_OES ubyte

- (section 2.8) Extend the cap flags passed to EnableClientState/DisableClientState
to include

MATRIX_INDEX_ARRAY_OES, or WEIGHT_ARRAY_OES

- (section 2.10) Add the following:

"The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these
coordinates to yield eye coordinates. In implementations with
matrix palette, the matrices specified by the indices per vertex
are applied to these coordinates and the weighted sum of the
results are the eye coordinates. Then another matrix, called the
projection matrix, is applied to eye coordinates to yield clip
coordinates. A perspective division is carried out on clip
coordinates to yield normalized device coordinates.

A final viewport transformation is applied to convert these
coordinates into window coordinates."

"... the vertex’s eye coordinates are found as:

(xe) n-1 (xo)
(ye) = SUM w_i * M_i * (yo)
(ze) i=0 (zo)
(we) (wo)

where M_i is the palette matrix associated with the i’th
Vertex unit:

96 OES Extension Specifications

M_i = MatrixPalette[MatrixIndex[i]],
if MATRIX_PALETTE_OES is enabled, and

M_i = MODELVIEW_MATRIX, otherwise.

w_i is the Vertex’s associated weight for vertex unit i:

w_i = weight_i, if MATRIX_PALETTE_OES is enabled,
1, if MATRIX_PALETTE_OES is disabled,

and,

n = <size> value passed into glMatrixIndexPointerOES."

"The projection matrix and model-view matrices are set
with a variety of commands. The affected matrix is
determined by the current matrix mode. The current
matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE,
MODELVIEW, PROJECTION, MATRIX_PALETTE_OES.

In implementations supporting OES_matrix_palette,

void CurrentPaletteMatrixOES(uint index);

defines which of the palette’s matrices is affected by
subsequent matrix operations when the current matrix mode is
MATRIX_PALETTE_OES. CurrentPaletteMatrixOES generates the
error INVALID_VALUE if the <index> parameter is not between
0 and MAX_PALETTE_MATRICES_OES - 1.

In implementations supporting OES_matrix_palette,

void LoadPaletteFromModelViewMatrixOES();

copies the current model view matrix to a matrix in the matrix
palette, specified by CurrentPaletteMatrixOES.

DrawArrays and DrawElements will not render the primitive if
the matrix palette was enabled and the weights and/or matrix
index vertex pointers are disabled or are not valid.

"The state required to implement transformations consists of a
four-valued integer indicating the current matrix mode, a
stack of at least two 4 x 4 matrices for each of PROJECTION,
and TEXTURE with associated stack pointers, a stack of at least
32 4 x 4 matrices with an associated stack pointer for MODELVIEW,

OES Extension Specifications 97

and a set of MAX_PALETTE_MATRICES_OES matrices of at least 9
4 x 4 matrices each for the matrix palette.

Initially, there is only one matrix on each stack, and all
matrices are set to the identity. The initial matrix mode
is MODELVIEW.

"When matrix palette is enabled, the normal is transformed
to eye space by:

n-1
(nx’ ny’ nz’) = (nx ny nz) Inv (SUM w_i * Mu_i)

i=0

Alternatively implementations may choose to transform the
normal to eye-space by:

n-1
(nx’ ny’ nz’) = SUM w_i * (nx ny nz) Inv(Mu_i)

i=0

where Mu_i is the upper leftmost 3x3 matrix taken from the
modelview for vertex unit i (M_i),

M_i = MatrixPalette[MatrixIndex[i]],
if MATRIX_PALETTE_OES is enabled, and

M_i = MODELVIEW_MATRIX, otherwise

otherwise.

weight_i is the vertex’s associated weight for vertex unit i,

w_i = weight_i

and

n = <size> value passed into glMatrixIndexPointerOES."

Errors

INVALID_VALUE is generated if the <size> parameter for
MatrixIndexPointerOES or WeightPointerOES is greater
than MAX_VERTEX_UNITS_OES.

INVALID_VALUE is generated if the <count> parameter to
CurrentPaletteMatrixOES is greater than MAX_PALETTE_MATRICES_OES - 1

New State

(table 6.6, p. 232)

98 OES Extension Specifications

Get Initial
Get Value Type Command Value Description
--------- ---- ------- ------- -----------
MATRIX_INDEX_ARRAY_OES B IsEnabled False matrix index array enable
MATRIX_INDEX_ARRAY_SIZE_OES Z+ GetIntegerv 0 matrix indices per vertex
MATRIX_INDEX_ARRAY_TYPE_OES Z+ GetIntegerv UBYTE type of matrix index data
MATRIX_INDEX_ARRAY_STRIDE_OES Z+ GetIntegerv 0 stride between

matrix indices
MATRIX_INDEX_ARRAY_POINTER_OES Y GetPointerv 0 pointer to matrix

index array

WEIGHT_ARRAY_OES B IsEnabled False weight array enable
WEIGHT_ARRAY_SIZE_OES Z+ GetIntegerv 0 weights per vertex
WEIGHT_ARRAY_TYPE_OES Z2 GetIntegerv FLOAT type of weight data
WEIGHT_ARRAY_STRIDE_OES Z+ GetIntegerv 0 stride between weights

per vertex
WEIGHT_ARRAY_POINTER_OES Y GetPointerv 0 pointer to weight array

(table 6.7, p. 233)

Get Initial
Get Value Type Command Value Description
--------- ---- ------- ----- -----------

MATRIX_INDEX_ARRAY_BUFFER_BINDING_OES Z+ GetIntegerv 0 matrix index array
buffer binding

WEIGHT_ARRAY_BUFFER_BINDING_OES Z+ GetIntegerv 0 weight array
buffer binding

(table 6.9, p. 235)

Get Initial
Get Value Type Command Value Description
--------- ---- ------- ------- -----------

MATRIX_PALETTE_OES B IsEnabled False matrix palette enable
MAX_PALETTE_MATRICES_OES Z+ GetIntegerv 9 size of matrix palette
MAX_VERTEX_UNITS_OES Z+ GetIntegerv 3 number of matrices per vertex
CURRENT_PALETTE_MATRIX_OES Z+ GetIntegerv 0 transform index of current

modelview matrix in the palette,
as set by CurrentPaletteMatrixOES()

Revision History

Addendum: Using this extension.

OES Extension Specifications 99

/* position viewer */
glMatrixMode(GL_MATRIX_PALETTE_OES);
glCurrentPaletteMatrixOES(0);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -7.0f);
glRotatef(yrot, 0.0f, 1.0f, 0.0f);

glCurrentPaletteMatrixOES(1);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -7.0f);

glRotatef(yrot, 0.0f, 1.0f, 0.0f);
glRotatef(zrot, 0.0f, 0.0f, 1.0f);

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnableClientState(GL_MATRIX_INDEX_ARRAY_OES);
glEnableClientState(GL_WEIGHT_ARRAY_OES);

glVertexPointer(3, GL_FLOAT, 7 * sizeof(GLfloat), vertexdata);
glTexCoordPointer(2, GL_FLOAT, 7 * sizeof(GLfloat), vertexdata + 3);
glWeightPointerOES(2, GL_FLOAT, 7 * sizeof(GLfloat),vertexdata + 5);
glMatrixIndexPointerOES(2, GL_UNSIGNED_BYTE, 0, matrixindexdata);

for(int i = 0; i < (numSegments << 2) + 2; i ++)
glDrawArrays(GL_TRIANGLE_FAN, i << 2, 4);

100 OES Extension Specifications

B.8 OES point sprite

Name

OES_point_sprite

Name Strings

GL_OES_point_sprite

Contact

Aaftab Munshi (amunshi@ati.com)

Status

Ratified by the Khronos BOP, Aug 5, 2004.

IP Status

No known IP issues.

Version

Last Modified Date: August 5, 2004

Number

OpenGL ES Extension #15

Dependencies

OpenGL ES 1.0 is required

Overview

Applications such as particle systems have tended to use OpenGL quads
rather than points to render their geometry, since they would like
to use a custom-drawn texture for each particle, rather than the
traditional OpenGL round antialiased points, and each fragment in
a point has the same texture coordinates as every other fragment.

Unfortunately, specifying the geometry for these quads can be
expensive, since it quadruples the amount of geometry required, and
may also require the application to do extra processing to compute
the location of each vertex.

The purpose of this extension is to allow such applications to use
points rather than quads. When GL_POINT_SPRITE_OES is enabled,
the state of point antialiasing is ignored. For each texture unit,
the app can then specify whether to replace the existing texture
coordinates with point sprite texture coordinates, which are

OES Extension Specifications 101

interpolated across the point.

Issues

The following are the list of issues as discussed in the
ARB_point_sprite extension. I’ve deleted issues that are not related
to OpenGL ES such as vertex shader programs etc.

Tokens that use _ARB names are modified to use _OES.

* Should this spec say that point sprites get converted into quads?

RESOLVED: No, this would make the spec much uglier, because then
we’d have to say that polygon smooth and stipple get turned off,
etc. Better to provide a formula for computing the texture
coordinates and leave them as points.

* How are point sprite texture coordinates computed?

RESOLVED: They move smoothly as the point moves around on the
screen, even though the pixels touched by the point do not. The
exact formula is given in the spec below.

A point sprite can be thought of as a quad whose upper-left corner has
(s,t) texture coordinates of (0,0) and whose lower-right corner has
texture coordinates of (1,1), as illustrated in the following figure.
In the figure "P" is the center of the point sprite, and "O" is the
origin (0,0) of the window coordinate system. Note that the y window
coordinate increases from bottom-to-top but the t texture coordinate
of point sprites increases from top-to-bottom.

ˆ
+y| (0,0)

| +-----+
	P
+-----+	
(1,1)	
+x	
O--------------->

Applications using a single texture for both point sprites and other
geometry need to account for the fixed coordinate mapping of point
sprites.

* How do point sizes for point sprites work?

RESOLVED: This specification treats point sprite sizes like
antialiased point sizes, but with more leniency. Implementations
may choose to not clamp the point size to the antialiased point
size range. The set of point sprite sizes available must be

102 OES Extension Specifications

a superset of the antialiased point sizes. However, whereas
antialiased point sizes are all evenly spaced by the point size
granularity, point sprites can have an arbitrary set of sizes.
This lets implementations use, e.g., floating-point sizes.

* Should there be a way to query the list of supported point sprite
sizes?

RESOLVED: No. If an implementation were to use, say, a single-
precision IEEE float to represent point sizes, the list would be
rather long.

* Do mipmaps apply to point sprites?

RESOLVED: Yes. They are similar to quads in this respect.

* What of this extension’s state is per-texture unit and what
of this extension’s state is state is global?

RESOLVED: The GL_POINT_SPRITE_OES enable is global. The
COORD_REPLACE_OES state is per-texture unit (state set by TexEnv is
per-texture unit).

* Should there be a global on/off switch for point sprites, or
should the per-unit enable imply that switch?

RESOLVED: There is a global switch to turn it on and off. This
is probably more convenient for both driver and app, and it
simplifies the spec.

* What should the TexEnv mode for point sprites be called?

RESOLVED: COORD_REPLACE_OES.

* What is the interaction with multisample points, which are round?

RESOLVED: Point sprites are rasterized as squares, even in
multisample mode. Leaving them as round points would make the
feature useless.

* How does this extension interact with the point size attenuation
functionality in OES_point_parameters and OpenGL 1.4?

RESOLVED: Point sprites sizes are attenuated just like the sizes of
non-sprite points.

* How are point sprites clipped?

RESOLVED: Point sprites are transformed as points, and standard point
clipping operations are performed. This can cause point sprites that
move off the edge of the screen to disappear abruptly, in the same way
that regular points do. As with any other primitive, standard

OES Extension Specifications 103

per-fragment clipping operations (scissoring, window ownership test)
still apply.

New Procedures and Functions

None

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and by the
<target> parameter of TexEnvf, TexEnvfv, TexEnvx, TexEnvxv:

POINT_SPRITE_OES 0x8861

When the <target> parameter of TexEnvf, TexEnvfv, TexEnvx, TexEnvxv,
is POINT_SPRITE_OES, then the value of <pname> may be:

COORD_REPLACE_OES 0x8862

When the <target> and <pname> parameters of TexEnvf, TexEnvfv,
TexEnvx, TexEnvxv, are POINT_SPRITE_OES and COORD_REPLACE_OES
respectively, then the value of <param> or the value pointed
to by <params> may be:

FALSE
TRUE

Additions to Chapter 2 of the OpenGL 1.4 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.4 Specification (Rasterization)

Insert the following paragraphs after the second paragraph of section
3.3 (page 66):

"Point sprites are enabled or disabled by calling Enable or Disable
with the symbolic constant POINT_SPRITE_OES. The default state is for
point sprites to be disabled. When point sprites are enabled, the
state of the point antialiasing enable is ignored.

The point sprite texture coordinate replacement mode is set with one
of the commands

void TexEnv{ixf}(enum target, enum pname, T param)
void TexEnv{ixf}v(enum target, enum pname, const T *params)

where target is POINT_SPRITE_OES and pname is COORD_REPLACE_OES. The
possible values for param are FALSE and TRUE. The default value for
each texture unit is for point sprite texture coordinate replacement
to be disabled."

104 OES Extension Specifications

Replace the first two sentences of the second paragraph of section
3.3.1 (page 67) with the following:

"The effect of a point width other than 1.0 depends on the state of
point antialiasing and point sprites. If antialiasing and point
sprites are disabled, ..."

Replace the first sentences of the fourth paragraph of section 3.3.1
(page 68) with the following:

"If antialiasing is enabled and point sprites are disabled, ..."

Insert the following paragraphs at the end of section 3.3.1 (page
70):

"When point sprites are enabled, then point rasterization produces a
fragment for each framebuffer pixel whose center lies inside a square
centered at the point’s (x_w, y_w), with side length equal to the
current point size.

All fragments produced in rasterizing a point sprite are assigned the
same associated data, which are those of the vertex corresponding to
the point, with texture coordinates s, t, and r replaced with s/q,
t/q, and r/q, respectively. If q is less than or equal to zero, the
results are undefined. However, for each texture unit where
COORD_REPLACE_OES is TRUE, these texture coordinates are replaced
with point sprite texture coordinates. The s coordinate varies
from 0 to 1 across the point horizontally left-to-right, while
the t coordinate varies from 0 to 1 vertically top-to-bottom.
The r and q coordinates are replaced with the constants 0 and 1,
respectively.

The following formula is used to evaluate the s and t coordinates:

s = 1/2 + (x_f + 1/2 - x_w) / size
t = 1/2 - (y_f + 1/2 - y_w) / size

where size is the point’s size, x_f and y_f are the (integral) window
coordinates of the fragment, and x_w and y_w are the exact, unrounded
window coordinates of the vertex for the point.

The widths supported for point sprites must be a superset of those
supported for antialiased points. There is no requirement that these
widths must be equally spaced. If an unsupported width is requested,
the nearest supported width is used instead."

Replace the text of section 3.3.2 (page 70) with the following:

"The state required to control point rasterization consists of the
floating-point point width, three floating-point values specifying
the minimum and maximum point size and the point fade threshold size,

OES Extension Specifications 105

three floating-point values specifying the distance attenuation
coefficients, a bit indicating whether or not antialiasing is
enabled, a bit indicating whether or not point sprites are enabled,
and a bit for the point sprite texture coordinate replacement mode
for each texture unit."

Replace the text of section 3.3.3 (page 70) with the following:

"If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one,
then points are rasterized using the following algorithm, regardless
of whether point antialiasing (POINT_SMOOTH) is enabled or disabled.
Point rasterization produces a fragment for each framebuffer pixel
with one or more sample points that intersect a region centered at
the point’s (x_w, y_w). This region is a circle having diameter
equal to the current point width if POINT_SPRITE_OES is disabled, or
a square with side equal to the current point width if
POINT_SPRITE_OES is enabled. Coverage bits that correspond to sample
points that intersect the region are 1, other coverage bits are 0.
All data associated with each sample for the fragment are the data
associated with the point being rasterized, with the exception of
texture coordinates when POINT_SPRITE_OES is enabled; these texture
coordinates are computed as described in section 3.3.

Point size range and number of gradations are equivalent to those
supported for antialiased points when POINT_SPRITE_OES is disabled.
The set of point sizes supported is equivalent to those for point
sprites without multisample when POINT_SPRITE_OES is enabled."

Additions to Chapter 4 of the OpenGL 1.4 Specification (Per-Fragment
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 1.4 Specification (Special
Functions)

None.

Additions to Chapter 6 of the OpenGL 1.4 Specification (State and
State Requests)

None.

Errors

None.

New State

(table 6.12, p. 220)

Get Value Type Get Command Initial Value Description

106 OES Extension Specifications

--------- ---- ----------- ------------- -----------
POINT_SPRITE_OES B IsEnabled False point sprite enable

(table 6.17, p. 225)

Get Value Type Get Command Initial Value Description
--------- ---- ----------- ------------- -----------
COORD_REPLACE_OES 2* x B GetTexEnviv False coordinate replacement

enable

Revision History

OES Extension Specifications 107

B.9 OES point size array

Name

OES_point_size_array

Name Strings

GL_OES_point_size_array

Contact

Aaftab Munshi (amunshi@ati.com)

Status

Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modifed Date: 17 Dec 2004

Number

OpenGL ES Extension #14

Dependencies

OpenGL ES 1.0 is required.
OES_point_sprite is required

The extension is written against the OpenGL 1.5 Specification.

Overview

This extension extends how points and point sprites are rendered
by allowing an array of point sizes instead of a fixed input point
size given by PointSize. This provides flexibility for applications
to do particle effects.

The vertex arrays will be extended to include a point size array.
The point size array can be enabled/disabled via POINT_SIZE_ARRAY_OES.

The point size array, if enabled, controls the sizes used to render
points and point sprites. If point size array is enabled, the point
size defined by PointSize is ignored. The point sizes supplied in the
point size arrays will be the sizes used to render both points and
point sprites.

IP Status

None.

108 OES Extension Specifications

Issues

New Procedures and Functions

void PointSizePointerOES(enum type, sizei stride, const void *ptr)

valid values of type are GL_FIXED and GL_FLOAT
the <size> parameter is removed since <size> is always 1

New Tokens

Accepted by the <cap> parameters of EnableClientState/DisableClientState
and by the <pname> parameter of IsEnabled:

POINT_SIZE_ARRAY_OES 0x8B9C

Accepted by the <pname> parameter of GetIntegerv:

POINT_SIZE_ARRAY_TYPE_OES 0x898A
POINT_SIZE_ARRAY_STRIDE_OES 0x898B
POINT_SIZE_ARRAY_BUFFER_BINDING_OES 0x8B9F

Accepted by the <pname> parameter of GetPointerv:

POINT_SIZE_ARRAY_POINTER_OES 0x898C

Additions to Chapter 2 of the OpenGL 1.5 specification

- section 2.8, added the following

void PointSizePointerOES(enum type, sizei stride, const void *ptr);

PointSizePointerOES is used to describe the point size for a given vertex

- Added to table 2.4

Command Sizes Types
------- ----- -----
PointSizePointerOES 1 float, fixed

- (section 2.8), added the following
Extend the cap flags passed to EnableClientState/DisableClientState
to include POINT_SIZE_ARRAY_OES

If point size array is enabled but the point size vertex pointers are invalid,
then DrawArrays and DrawElements will not render the point primitive.

Errors

None.

OES Extension Specifications 109

New State

(table 6.6, p. 232)
Get Initial

Get Value Type Command Value Description
--------- ---- ------- ------- -----------
POINT_SIZE_ARRAY_OES B IsEnabled False point sprite array enable
POINT_SIZE_ARRAY_TYPE_OES Z2 GetIntegerv Float type of point size
POINT_SIZE_ARRAY_STRIDE_OES Z+ GetIntegerv 0 stride between point sizes
POINT_SIZE_ARRAY_POINTER_OES Y GetPointerv 0 pointer to point sprite array

(table 6.7, p. 233)

Get Initial
Get Value Type Command Value Description
--------- ---- ------- ------- -----------

POINT_SIZE_ARRAY_BUFFER_BINDING_OES Z+ GetIntegerv 0 point size array
buffer binding

Revision History

110 OES Extension Specifications

B.10 OES matrix get

Name

OES_matrix_get

Name Strings

GL_OES_matrix_get

Contact

Aaftab Munshi (amunshi@ati.com)

Status

Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modified Date: July 16, 2004

Number

OpenGL ES Extension #11

Dependencies

OpenGL 1.5 is required

Overview

Many applications require the ability to be able to read the
GL matrices. OpenGL ES 1.1 will allow an application to read
the matrices using the GetFloatv command for the common profile
and the GetFixedv command for the common-lite profile.

In cases where the common-lite implementation stores matrices
and performs matrix operations internally using floating pt
(example would be OpenGL ES implementations that support JSR184 etc.)
the GL cannot return the floating pt matrix elements since the float
data type is not supported by the common-lite profile.
Using GetFixedv to get the matrix data will result in a loss of
information.

To take care of this issue, new tokens are proposed by this
extension. These tokens will allow the GL to return a
representation of the floating pt matrix elements as as an array
of integers, according to the IEEE 754 floating pt "single format"
bit layout.

Bit 31 represents the sign of the floating pt number.

OES Extension Specifications 111

Bits 30 - 23 represent the exponent of the floating pt number.
Bits 22 - 0 represent the mantissa of the floating pt number.

IP Status

There is no intellectual property associated with this extension.

Issues

None known.

New Procedures and Functions

New Tokens

Accepted by the <pname> parameter of GetIntegerv:

MODELVIEW_MATRIX_FLOAT_AS_INT_BITS_OES 0x898d
PROJECTION_MATRIX_FLOAT_AS_INT_BITS_OES 0x898e
TEXTURE_MATRIX_FLOAT_AS_INT_BITS_OES 0x898f

Additions to Chapter 2 of the OpenGL 1.4 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.4 Specification (Rasterization)

None.

Additions to Chapter 4 of the OpenGL 1.4 Specification (Per-Fragment
Operations and the Frame Buffer)

None.

Additions to Chapter 5 of the OpenGL 1.4 Specification (Special
Functions)

None.

Additions to Chapter 6 of the OpenGL 1.4 Specification (State and
State Requests)

The new matrix tokens return the matrix elements as exponent
and mantissa terms. These tokens will allow the GL to return a
representation of the floating pt matrix elements as as an array
of integers, according to the IEEE 754 floating pt "single format"
bit layout.

Errors

None.

112 OES Extension Specifications

New State

Get Value Type Command Value
--------- ---- ------- -------
MODELVIEW_MATRIX_FLOAT_AS_INT_BITS_OES 4* x 4* x Z GetIntegerv 0
PROJECTION_MATRIX_FLOAT_AS_INT_BITS_OES 4* x 4* x Z GetIntegerv 0
TEXTURE_MATRIX_FLOAT_AS_INT_BITS_OES 4* x 4* x Z GetIntegerv 0

Revision History

June 30, 2004 Aaftab Munshi Initial version of document
July 16, 2004 Aaftab Munshi Removed the description of NaN & denorms

OES Extension Specifications 113

B.11 OES draw texture

Name

OES_draw_texture

Name Strings

GL_OES_draw_texture

Contact

Tom Olson (t-olson ’at’ ti.com)

Status

Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modified Date: 21 July 2004
Author Revision 0.96

Number

OpenGL ES Extension #7

Dependencies

OES_fixed_point is required.
EXT_fog_coord affects the definition of this extension.
This extension is written against the OpenGL 1.3 and
OpenGL ES 1.0 Specifications.

Overview

This extension defines a mechanism for writing pixel
rectangles from one or more textures to a rectangular
region of the screen. This capability is useful for
fast rendering of background paintings, bitmapped font
glyphs, and 2D framing elements in games. This
extension is primarily intended for use with OpenGL ES.

The extension relies on a new piece of texture state
called the texture crop rectangle, which defines a
rectangular subregion of a texture object. These
subregions are used as sources of pixels for the texture
drawing function.

Applications use this extension by configuring the
texture crop rectangle for one or more textures via
ActiveTexture() and TexParameteriv() with pname equal to

114 OES Extension Specifications

TEXTURE_CROP_RECT_OES. They then request a drawing
operation using DrawTex{sifx}[v]OES(). The effect of
the latter function is to generate a screen-aligned
target rectangle, with texture coordinates chosen to map
the texture crop rectangle(s) linearly to fragments in
the target rectangle. The fragments are then processed
in accordance with the fragment pipeline state.

IP Status

No known IP issues.

Issues

(1) Should we pass a texture name to the draw function,
or use the currently bound texture?

RESOLVED. Use the textures bound to currently
enabled texture units. This makes it easy for
drivers to implement DrawTex*() using existing
texture hardware. If we didn’t do this, they would
have to save and restore the state of the texture
unit(s).

(2) Doesn’t DrawPixels make this extension unnecessary?

RESOLVED. No. DrawPixels is hard to support
efficiently in hardware because the source pixels
are in application memory. Also, the pixel setup
pipeline (PixelTransfer, PixelMap etc.) is redundant
for the intended applications. Also, PixelZoom
looks ugly when the zoom factors are large, and there
is no way to control filtering. Using textures and
texture units solves all of these problems.

(3) Doesn’t ARB_point_sprite make this extension unnecessary?

RESOLVED. No. Key differences include:

* ARB_point_sprite uses the entire source texture to
paint a point, i.e. its texture coordinates range
from 0.0 to 1.0. This extension allows a
subregion of a texture to be used as the source.

* ARB_point_sprite sprites are limited by the
maximum point size, which may be small. This
extension is limited only by the maximum supported
texture size and the screen size.

* ARB_point_sprite sprites are square. This
extension supports general rectangles as sprite
shapes.

* ARB_point_sprite sprites are clipped as points, so
if the center of a sprite falls outside the
frustrum, nothing is drawn. This extension draws

OES Extension Specifications 115

any portion of a sprite that lies within the
viewing frustrum. (There is a well-known
work-around for this, but it’s ugly.)

(4) How is the texture sampled?

RESOLVED. It is sampled like a normal texture, and
not like an image sent to DrawPixels. This
facilitates implementing with texture hardware.

(5) How does this work when multisampling is enabled?

RESOLVED. Implementations should generate
multisample texture coordinates using the same
method they use in normal texture mapping.
Approximations are acceptable, e.g. they may use the
same texture value for all samples associated with a
fragment generated by DrawTex*(), even if they use
another policy for multisampled triangle rendering.

(6) Do we really want the full fragment pipeline to be
active?

RESOLVED. Yes, on grounds of orthogonality and
simplicity. Again, this makes it easy for existing
hardware to implement the extension.

(7) How does this interact with user clip planes?

RESOLVED. User clip planes are ignored. This is a
screen-level operation, so geometric entities like
clip planes are irrelevant.

(8) How does this interact with mip-mapping?

RESOLVED. It behaves exactly as in texturing.
This is really easy to do as LOD is a constant
across the target rectangle.

(9) What happens when multiple texture units are
enabled?

RESOLVED. All enabled texture units participate in
generating the final fragment color. Each unit
generates its own s,t based on its texture’s crop
rectangle.

(10) Should the target location be specified by the
current raster position (RasterPos or WindowPos),
or by arguments to DrawTex*OES()?

RESOLVED. Use arguments passed to DrawTex*. In the

116 OES Extension Specifications

intended uses, the target will be set once per call,
so using arguments saves one inner loop function
call.

(11) Do we want stretch-blt capability?

RESOLVED. Yes. Supply a window size as well as
window position to DrawTex*()

(12) OpenGL ES issue: WindowPos (if we use it) adds 16
entry points ({23}{sifd}[v]), which seems like a lot
even if they are trivial. Can we live with a
subset? (Note that the ’d’ versions go away, but
they are replaced by ’x’ versions.)

RESOLVED. Moot, as we do not use WindowPos. But the
intent was to add only 3{si}[v] versions (four entry
points). This is not orthogonal and may be
surprising. But there is no intent to support
sub-pixel placement of rectangles, so the {fx}
versions are superfluous. {2} versions are easy to
express using {3} versions. Vector and individual
argument versions are kept to reduce the surprise
factor, and because constructing calls to a v-type
function is a huge pain if you don’t already have
the data in vector format.

(13) TexCropRect*OES adds eight entry points. Can we live
with a subset? For the intended use, integer values
suffice, so the {fx} versions are superfluous. But
orthogonality and ’least-astonishment’ are virtues
too.

RESOLVED. Moot. Replace with TexParameteriv().

(14) Would it be better to remove the texture crop
rectangle from the state, and instead pass
parameters to DrawTextureOES()?

RESOLVED. No. Drawing the same pixel pattern multiple
times is a plausible usage scenario.

(15) Should texture crop rect parameters be stored internally
as integers, or as float/fixed? I.e. should we allow
the crop rect to include fractional texels? This is
more flexible, but is not the intended use. Software
implementations would have to add a test for the (normal)
special case of integer bounds.

RESOLVED. Integer only. Texture crop rect is
conceptually a subregion of an integer grid, so its
natural coordinates are integers.

OES Extension Specifications 117

(16) Should we have a single global crop rect, or one per
texture unit?

RESOLVED. Neither. We should have one per texture,
with TexParameter setting the rect for the currently
active texture. It isn’t a lot of state, it
attaches the rect to a specific texture (which makes
sense) rather than a texture unit (which doesn’t),
it is more orthogonal, and it allows tex coords to
be meaningful (if not actually useful) when multiple
texture units are enabled.

(17) Should the destination rectangle specified by
DrawTex*() be defined as integer only like the crop
rectangle, or should its parameters be real-valued?

RESOLVED. Real-valued. Since we now support
stretch-blit, we want the ability to animate the
scaling factor smoothly. If the destination rectangle
size is rounded to an integer, you won’t get smooth
animation.

New Procedures and Functions

Added to OpenGL 1.3 and OpenGL ES 1.0:

void DrawTex{sifx}OES(T X, T Y, T Z, T W, T H);
void DrawTex{sifx}vOES(T* coords);

Added to OpenGL ES 1.0:

void TexParameter{ifx}v(enum target, enum pname, T param);

New Types

None

New Tokens

Accepted by the <pname> parameter of TexParameter()
and GetTexParameter():

TEXTURE_CROP_RECT_OES 0x8B9D

Additions to Chapter 2 of the OpenGL 1.3 Specification
(OpenGL Operation):

None

118 OES Extension Specifications

Additions to Chapter 3 of the OpenGL 1.3 Specification
(Rasterization):

In Table 3.19: Texture parameters and their values, p. 133,
add this line at the end of the table:

Name Type Legal Values
--
TEXTURE_CROP_RECT_OES 4 integers any value

In section 3.8.4, Texture Parameters, after paragraph 3
(page 132) insert new paragraph:

The texture parameter TEXTURE_CROP_RECT_OES controls the
operation of DrawTex{sifx}[v]OES(), as described in
section 5.7. It has no effect on the rasterization of
other primitives.

Additions to Chapter 4 of the OpenGL 1.3 Specification
(Per-Fragment Operations and the Frame Buffer):

None

Additions to Chapter 5 of the OpenGL 1.3 Specification
(Special Functions):

In Chapter 5, paragraph one, replace the last two words
("and hints.") with the words "hints, and texture
rectangle drawing."

After section 5.6, p. 196, insert:

5.7 Texture Rectangle Drawing

OpenGL supports drawing sub-regions of a texture to
rectangular regions of the screen using the texturing
pipeline. Source region size and content are determined
by the texture crop rectangle(s) of the enabled
texture(s) (see section 3.8.14).

The functions

void DrawTex{sifx}OES(T Xs, T Ys, T Zs, T Ws, T Hs);
void DrawTex{sifx}vOES(T *coords);

draw a texture rectangle to the screen. Xs, Ys, and Zs
specify the position of the affected screen rectangle.

OES Extension Specifications 119

Xs and Ys are given directly in window (viewport)
coordinates. Zs is mapped to window depth Zw as follows:

{ n, if z <= 0
Zw = { f, if z >= 1

{ n + z * (f - n), otherwise

where <n> and <f> are the near and far values of
DEPTH_RANGE. Ws and Hs specify the width and height of
the affected screen rectangle in pixels. These values
may be positive or negative; however, if either (Ws <=
0) or (Hs <= 0), the INVALID_VALUE error is generated.

Calling one of the DrawTex functions generates a
fragment for each pixel that overlaps the screen
rectangle bounded by (Xs, Ys) and (Xs + Ws), (Ys + Hs).
For each generated fragment, the depth is given by Zw
as defined above, and the color by the current color.

If EXT_fog_coord is supported, and FOG_COORDINATE_SOURCE_EXT
is set to FOG_COORINATE_EXT, then the fragment distance for
fog purposes is set to CURRENT_FOG_COORDINATE. Otherwise,
the fragment distance for fog purposes is set to 0.

Texture coordinates for each texture unit are computed
as follows:

Let X and Y be the screen x and y coordinates of each
sample point associated with the fragment. Let Wt and
Ht be the width and height in texels of the texture
currently bound to the texture unit. (If the texture is
a mipmap, let Wt and Ht be the dimensions of the level
specified by TEXTURE_BASE_LEVEL.) Let Ucr, Vcr, Wcr and
Hcr be (respectively) the four integers that make up the
texture crop rectangle parameter for the currently bound
texture. The fragment texture coordinates (s, t, r, q)
are given by

s = (Ucr + (X - Xs)*(Wcr/Ws)) / Wt
t = (Vcr + (Y - Ys)*(Hcr/Hs)) / Ht
r = 0
q = 1

In the specific case where X, Y, Xs and Ys are all
integers, Wcr/Ws and Hcr/Hs are both equal to one, the
base level is used for the texture read, and fragments
are sampled at pixel centers, implementations are
required to ensure that the resulting u, v texture
indices are also integers. This results in a one-to-one
mapping of texels to fragments.

Note that Wcr and/or Hcr can be negative. The formulas

120 OES Extension Specifications

given above for s and t still apply in this case. The
result is that if Wcr is negative, the source rectangle
for DrawTex operations lies to the left of the reference
point (Ucr, Vcr) rather than to the right of it, and
appears right-to-left reversed on the screen after a
call to DrawTex. Similarly, if Hcr is negative, the
source rectangle lies below the reference point (Ucr,
Vcr) rather than above it, and appears upside-down on
the screen.

Note also that s, t, r, and q are computed for each
fragment as part of DrawTex rendering. This implies
that the texture matrix is ignored and has no effect on
the rendered result.

Additions to Chapter 6 of the OpenGL 1.3 Specification
(State and State Requests):

None

Additions to Appendix A of the OpenGL 1.3 Specification
(Invariance):

None

Additions to the AGL/GLX/WGL Specifications:

None

Additions to Chapter 2 of the OpenGL ES 1.0 Specification
(OpenGL Operation):

None

Additions to Chapter 3 of the OpenGL ES 1.0 Specification
(Rasterization):

After the fourth paragraph of section 3.8, Texturing,
p. 17, insert a new paragraph:

DrawTexOES is supported.

In the (unnamed) table of supported texture functions,
p. 19, delete the entry for TexParameter{i[v] fv}(), and
replace the entry for TexParameterf() with the following:

OpenGL 1.3 Common Common-Lite

OES Extension Specifications 121

-- ------ -----------
TexParameter{if}[v](enum target, enum param, T param)

target = TEXTURE_2D, pname = TEXTURE_CROP_RECT_OES (check) (check)
target = TEXTURE_1D, TEXTURE_3D, TEXTURE_CUBE_MAP - -
pname = TEXTURE_MIN_FILTER, TEXTURE_MAG_FILTER (check) (check)
pname = TEXTURE_WRAP_S, TEXTURE_WRAP_T (check) (check)
pname = TEXTURE_BORDER_COLOR - -
pname = TEXTURE_MIN_LOD, TEXTURE_MAX_LOD - -
pname = TEXTURE_BASE_LEVEL, TEXTURE_MAX_LEVEL - -
pname = TEXTURE_WRAP_R - -
pname = TEXTURE_PRIORITY - -

In the same table, modify the entry for
GetTexParameter{if}v() to read as follows:

OpenGL 1.3 Common Common-Lite
--- ------ -----------
GetTexParameter{if}v(enum target, enum param, T *params) (check) (dagger)

Additions to Chapter 4 of the OpenGL ES 1.0 Specification
(Per-Fragment Operations and the Frame Buffer):

None

Additions to Chapter 5 of the OpenGL ES 1.0 Specification
(Special Functions):

None

Additions to Chapter 6 of the OpenGL ES 1.0 Specification
(State and State Requests):

At the end of table 6.15, Texture Objects (cont.), p. 36,
insert a new entry:

State Exposed Queriable
--- ------- ---------
TEXTURE_CROP_RECT_OES (check) (check)

Replace the fourth paragraph of Chapter 7, Core Additions and
Extensions, p. 46, with the following:

The Common and Common-Lite profiles add subsets of the
OES_byte_coordinates, OES_fixed_point, and
OES_single_precision ES-specific extensions as core
additions; OES_readFormat and
OES_compressed_paletted_texture as required profile
extensions; and OES_query_matrix and OES_draw_texture as

122 OES Extension Specifications

optional profile extensions.

Additions to Chapter 7 of the OpenGL ES 1.0 Specification
(Core Additions and Extensions):

At the end of Table 7.1: OES Extension Disposition, add a
new entry:

Extension Name Common Common-Lite
------------------------ ------------------ ------------------
OES_draw_texture optional extension optional extension

After section 7.6, Query Matrix, insert

7.7 Draw Texture

The optional OES_draw_texture extension allows rectangular
subregions of a texture to be written to the screen using
the fragment pipeline. Texture coordinates are generated
for each fragment in the destination rectangle, such that
texels in the source texture are mapped linearly to pixels
on the screen.

GLX Protocol

None

Errors

None

Dependencies on OES_fixed_point

The DrawTex{sifx}[v]() function makes use of the ’x’
suffix and (in that form) accepts parameters of type fixed,
as defined in OES_fixed_point.

Dependencies on EXT_fog_coord

EXT_fog_coord affects the distance that is used in the fog
equations for fragments generated by DrawTex{sifx}[v]().
If EXT_fog_coord is not supported, the fog distance for
each fragment is set to zero. If EXT_fog_coord is
supported, the fog distance depends on the value of
FOG_COORDINATE_SOURCE_EXT. If the latter is set to

OES Extension Specifications 123

FRAGMENT_DEPTH_EXT, the fog distance is again set to zero.
If FOG_COORDINATE_SOURCE_EXT is set to FOG_COORDINATE_EXT,
the distance is set to CURRENT_FOG_COORDINATE.

New State

(table 6.16, Texture Objects (cont.), p. 224):

Initial
Get Value Type Get Command Value Description Sec Attribute
--------- ---- ----------- --------- ----------- --- ---------
TEXTURE_CROP_RECT 4xZ GetTexParameteriv 0,0,0,0 texture crop 5.7 texture

rectangle

New Implementation Dependent State

None.

Revision History

July 21, 2004 (v0.96)
- Modified to say that if Ws or Hs < 0 then an

INVALID_VALUE error is generated

July 16, 2004 (v0.95)
- Corrected a bug in the text description of DrawTex

with negative crop rectangle width or height. Thanks
to Petri Kero for the catch.

July 14, 2004 (v0.9)
- added a Zs parameter to the destination rectangle

location specification. This allows applications
to control the depth coordinate of fragments generated
by DrawTex().

- Removed DOS-mode carriage returns.

June 29, 2004 (v0.8)
- Corrected dependencies to comply with ARB recommended

practice for extensions.
- Restructured the "Additions to the OpenGL ES 1.0 Spec"

sections to separate changes by chapter, following
ARB recommended practice for OpenGL and
GLX specifications.

- Modified TexParameter usage to be consistent with
OpenGL ES 1.1.

- Added a dependency on EXT_fog_coord.
- Inserted enumerant value.

June 16, 2004 (v0.7)
- Modified to make texture crop rectangle part of

124 OES Extension Specifications

texture state (set by TexParameter) rather than by
an ad hoc function (TexCropRectOES).

- Modified to provide stretch-blit functionality.

May 28, 2004 (v0.6)
- Formalized changes to 1.3 and ES 1.0 specs.

Modified to take screen coordinate arguments
rather than using the current raster position.

May 19, 2004 (v0.5)
- Simplified to support only one-to-one source

blit. Sprite functionality was moved to a
separate proposal.

May 4, 2004 (v0.4)
- Rewrote to use explicit source and destination

rectangles instead of overloading PixelZoom.
Made current raster rectangle explicit and
provided both screen space and object space
ways to define it.

April 13, 2004
- Initial version (v0.3)

	Overview
	Conventions

	OpenGL Operation
	OpenGL Fundamentals
	Fixed-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Rectangles
	Coordinate Transformations
	Clipping
	Current Raster Position
	Colors and Coloring

	Rasterization
	Invariance
	Antialiasing
	Points
	Line Segments
	Polygons
	Pixel Rectangles
	Bitmaps
	Texturing
	Copy Texture
	Compressed Textures
	Texture Addressing Modes
	Texture Completeness
	Texture State
	Texture Environments and Texture Functions

	Fog

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Blending

	Whole Framebuffer Operations
	Drawing, Reading, and Copying Pixels

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	State Tables

	Core Additions and Extensions
	Byte Coordinates
	Fixed Point
	Single-precision Commands
	Compressed Paletted Texture
	Read Format
	Matrix Palette
	Point Sprites
	Point Size Array
	Matrix Get
	Draw Texture

	Packaging
	Acknowledgements
	OES Extension Specifications
	OES_byte_coordinates
	OES_fixed_point
	OES_single_precision
	OES_read_format
	OES_query_matrix
	OES_compressed_paletted_texture
	OES_matrix_palette
	OES_point_sprite
	OES_point_size_array
	OES_matrix_get
	OES_draw_texture

