
1

Proceedings CHI'95, Denver, May 1995

 A Generic Platform
 for Addressing the Multimodal Challenge

Laurence Nigay, Joëlle Coutaz
Laboratoire de Génie Informatique (LGI-IMAG)

BP 53, 38041 Grenoble Cedex 9, France
Tel: +33 76-51-44-40 +33 76-51-48-54

E-mail: Laurence.Nigay@imag.fr Joelle.Coutaz@imag.fr

ABSTRACT
Multimodal interactive systems support multiple
interaction techniques such as the synergistic use of speech
and direct manipulation. The flexibility they offer results in
an increased complexity that current software tools do not
address appropriately. One of the emerging technical
problems in multimodal interaction is concerned with the
fusion of information produced through distinct interaction
techniques. In this article, we present a generic fusion
engine that can be embedded in a multi-agent architecture
modelling technique. We demonstrate the fruitful symbiosis
of our fusion mechanism with PAC-Amodeus, our agent-
based conceptual model, and illustrate the applicability of
the approach with the implementation of an effective
interactive system: MATIS, a Multimodal Airline Travel
Information System.

KEYWORDS: Multimodal interactive systems, software
design, software architecture, I/O devices, interaction
languages, data fusion.

INTRODUCTION
One new challenge for Human Computer Interaction (HCI)
is to extend the sensory-motor capabilities of computer
systems to better match the natural communication means
of human beings. Towards this goal, multimodal interfaces
are being developed to support multiple interaction
techniques such as the synergistic use of speech and gesture.
The power and versatility of multimodal interfaces result in
an increased complexity that current design methods and
tools do not address appropriately. As observed by B.
Myers, "user interface design and implementation are
inherently difficult tasks"[11]. Myers’s assertion is even
more relevant when considering the constraints imposed by
the recent technological push. In particular, multimodal
interaction requires [3]:

• the fusion of different types of data originating from
distinct interaction techniques as exemplified by the
“put that there” paradigm,

• the management of multiple processes including
support for synchronization and race conditions
between distinct interaction techniques.

Thus, multimodal interfaces make necessary the
development of software tools that satisfy new
requirements. Such tools are currently few and limited in
scope. Either they address a very specific technical problem
such as media synchronization [9], or they are dedicated to
very specific modalities. For example, the Artkit toolkit is
designed to support direct manipulation augmented with
gesture only [7].

In this article, we propose a software architecture model,
PAC-Amodeus, together with a generic fusion mechanism
for designing and implementing multimodal interaction.
The PAC-Amodeus model along with the fusion engine
form a reusable global platform applicable to the software
design and implementation of multimodal interactive
systems.

The structure of the paper is as follow: first, we clarify the
notion of interaction technique using the concepts of
interaction language and physical device. We then present
the principles of our software architecture model, PAC-
Amodeus, and show how interaction languages and devices
operate within the components of the architecture. Going
one step further in the implementation process, we populate
PAC-Amodeus with the presentation of our generic fusion
mechanism. We conclude with an example that illustrates
how PAC-Amodeus and the fusion engine function
together. This example is based on MATIS whose main
features are presented in the next section.

AN ILLUSTRATIVE EXAMPLE: MATIS
MATIS (Multimodal Airline Travel Information System)
allows a user to retrieve information about flight schedules
using speech, direct manipulation, keyboard and mouse, or
a combination of these techniques [13]. Speech input is
processed by Sphinx, a continuous speaker independent
recognition engine developed at Carnegie Mellon University
[10]. As a unique feature, MATIS supports both individual
and synergistic use of multiple input modalities [13]. For
example, using one single modality, the user can say “show
me the USAir flights from Boston to Denver” or can fill in
a form using the keyboard. When exploiting synergy, the
user can also combine speech and gesture as in “show me
the USAir flights from Boston to this city” along with the
selection of "Denver" with the mouse. MATIS does not
impose any dominant modality: all of the modalities have
the same power of expression for specifying a request and
the user can freely switch between them. The system is also
able to support multithreading: a MATIS user can

2

Proceedings CHI'95, Denver, May 1995

disengage from a partially formulated request, start a new
one, and later in the interaction process, return to the
pending request.

PHYSICAL DEVICES AND INTERACTION
LANGUAGES
A physical device is an artefact of the system that acquires
(input device) or delivers (output device) information.
Examples of devices in MATIS include the keyboard,
mouse, microphone and screen.

An interaction language defines a set of well-formed
expressions (i.e., a conventional assembly of symbols) that
convey meaning. The generation of a symbol, or a set of
symbols, results from actions on physical devices. In
MATIS, examples of interaction languages include pseudo-
natural language and direct manipulation.

We define an interaction technique as the coupling of a
physical device d with an interaction language L: <d, L>.

Interaction techniques supported by MATIS include speech,
written natural language, graphic input and output:

• speech input is described as the couple <microphone,
pseudo natural language NL>, where NL is defined by a
specific grammar,

• written natural language input is defined as <keyboard,
pseudo natural language NL> (a MATIS user can also
type in NL sentences in a dedicated windows),

• graphic input is described in terms of <mouse, direct
manipulation>, and

• graphic output corresponds to the couple <screen,
tables>. (Flight schedules returned by MATIS are
always presented in a tabular format.)

Physical devices and interaction languages are resources and
knowledge that the system and the user must share to
accomplish a task successfully. They cover "the articulatory
and semantic distances" expressed in Norman’s theory [16].

Adopting Hemjslev’s terminology [6], the physical device
determines the substance (i.e., the non analyzed raw
material) of an expression whereas the interaction language
denotes the form or structure of the expression.

In [15], we demonstrate the adequation of the notions of
physical device and interaction language for classifying and
deriving usability properties for multimodal interaction. In
this article, we adopt a complementary perspective and
examine the relevance of these notions for software design.

SOFTWARE DESIGN
One important issue in software design is the definition of
software architectures that support specific quality factors
such as portability and modifiability. PAC-Amodeus is a
conceptual model useful for devising architectures driven by
user-centered properties including multithreading and
multimodality. PAC-Amodeus blends together the
principles of both Arch [18] and PAC [1]. Arch and its
companion, the “slinky” metamodel, provide the
appropriate hooks for performing engineering tradeoffs such
as identifying the appropriate level of abstraction for
portability, making semantic repair or distributing
semantics across the components of the architecture [4]. In
particular, the five component structure of Arch includes
two adapters, the Interface with the Functional Core and the
Presentation Techniques Component, that allow the
software designer to insulate the key element of the user
interface (i.e., the Dialogue Controller) from the variations
of the functional core and of the implementation tools (e.g.,
the X window environment). The Arch model however,
does not provide any guidance about the decomposition of
the Dialogue Controller nor does it indicate how salient
features in new interaction techniques (such as parallelism,
fusion and fission of information [3]) can be supported
within the architecture. PAC, on the other hand, stresses
the recursive decomposition of the user interface in terms of
agents, but does not pay attention to engineering issues.
PAC-Amodeus gathers the best of the two worlds. Figure
1a shows the resulting model.

Set of melting pots

Fusion

.

Interface with the
Functional Core

Functional Core

Presentation Techniques

Low Level

Device dependentDomain dependent

Dialogue Controller

A

Domain Objects Interaction Objects

Language dependent Low Level
Interaction

Speech Input

Recognition

 Presentation
Techniques

Parser

Interface Builder
Graphic input and output

Recognized

Speech Input

Mapper

Interface with the
Functional Core

Requests

S.Q.L. Requests
Translation

Functional
Core

Database

requests
S.Q.L.

(Interface formalism)

Results

Dialogue Controller
Cement

Tools RequestsEditor ...

MATIS
dictionary

Component

InteractionComponent

Presentation
Objects

Conceptual
Objects

utterances

C P

Figure 1: (a) The PAC-Amodeus software components. (b) PAC-Amodeus applied to the software design of MATIS.

3

Proceedings CHI'95, Denver, May 1995

A more detailed description of PAC-Amodeus can be found
in [14]. Succinctly, the five components of the arch defines
the levels of abstraction appropriate for performing
engineering tradeoffs such as setting the boundaries between
the levels of abstraction. We offer the notions of physical
device and interaction language as criteria for setting these
boundaries. For example, the designer may decide that the
Low Level Interaction Component is device dependent. At a
higher level of abstraction, the Presentation Techniques
Component is device independent but language dependent.
At the top of the Arch, the Dialogue Controller is both
language and device independent.

PAC-Amodeus refines the Dialogue Controller into a set of
cooperative agents that capture parallelism and information
processing (e.g., data fusion) at multiple levels of
abstraction. In turn, an agent is modelled as a three facet
structure:

• the Presentation facet is in direct contact with the
Presentation Techniques Component of the arch. It can
be used to implement extensions on top of the
Presentation Techniques Component;

• the Abstraction facet is in direct contact with the
Interface with the Functional Core;

• the Control facet manages the links and constraints
between its two surrounding facets (i.e., the
Presentation and the Abstraction facets) as well as its
relationships with other agents. As in ALV [8], the
Control facet provides the hook for expressing
constraints between different perspectives of the same
concept.

In combining the Arch principles with PAC, one obtains
an “engineerable” model that supports properties inherited
from the agent paradigm. Figure 1b illustrates the
application of PAC-Amodeus to the software design of
MATIS. The Functional Core hosts the database of
American cities, airline companies, flight numbers,
departure and arrival times, etc. SQL requests are required to
access information stored in the database. The Interface with
the Functional Core (IFC) operates as a translator between
the SQL formalism and the data structures used in the
Dialogue Controller. In MATIS, the IFC serves as a
communication bridge. As discussed in [2], it can also be
used to restructure conceptual objects in a form suitable for
the purpose of the interaction.

The Dialogue controller (DC) is organized as a two-level
hierarchy of agents. This hierarchy has been devised using
the heuristic rules presented in [15]. For example, because
requests can be elaborated in an interleaved way, there is one
agent per pending request.

At the other end of the spectrum, the Low Level Interaction
Component (LLIC) is instantiated as two components
inherited from the underlying platform: (1) The NeXTSTEP
event handler and graphics machine, and (2) the Sphinx
speech recognizer which produces character strings for
recognized spoken utterances. Mouse-key events, graphics
primitives, and Sphinx character strings are the interaction

objects exchanged with the Presentation Techniques
Component (PTC).

In turn, the Presentation Techniques Component (PTC) is
split into two main parts: the graphics objects (used for
both input and output) and the NL parser (used for input
only). Graphics objects result from the code generation
performed by Interface Builder. The Sphinx parser analyzes
strings received from the LLIC using a grammar that
defines the NL interaction language. As discussed above,
the PTC is no longer dependent on devices, but processes
information using knowledge about interaction languages.

Having presented the overall structure of PAC-Amodeus,
we need now to address the problem of data fusion. As
discussed in [14], fusion occurs at every level of the arch
components. For example, within the LLIC, typing the
option key along with another key is combined into one
single event. In this article, we are concerned with data
fusion that occurs within the Dialogue Controller.

THE FUSION MECHANISM
Within the Dialogue Controller, data fusion is performed at
a high level of abstraction (i.e., at the command or task
level) by PAC agents. As shown in Figure 1b, every PAC
agent has access to a fusion engine through its Control
facet. This shared service can be viewed either as a reusable
technical solution (i.e., a skeleton) or as a third dimension
of the architectural model.

Fusion is performed on the presentation objects received
from the PTC. These objects obey to a uniform format: the
melting pot. As shown in Figures 1b and 2, a melting pot
is a 2-D structure. On the vertical axis, the "structural
parts" model the composition of the task objects that the
Dialogue Controller is able to handle. For example, request
slots such as destination and time departure, are the
structural parts of the task objects that the Dialogue
Controller handles for MATIS. Events generated by user's
actions are abstracted through the LLIC and PTC and
mapped onto the structural parts of the melting pots. In
addition, LLIC events are time-stamped. An event mapped
with the structural parts of a melting pot defines a new
column along the temporal axis.

The structural decomposition of a melting pot is described
in a declarative way outside the engine. By so doing, the
fusion mechanism is domain independent: structures that
rely on the domain are not “code-wired”. They are used as
parameters for the fusion engine. Figure 2 illustrates the
effect of a fusion on two melting pots: at time ti, a MATIS
user has uttered the sentence “Flights from Boston to this
city” while selecting “Denver” with the mouse at ti+1. The
melting pot on the bottom left of Figure 2 is generated by
the mouse selection action. The speech act triggers the
creation of the bottom right melting pot: the slot “from” is
filled in with the value “Boston”. The fusion engine
combines the two melting pots into a new one where the
departure and destination locations are both specified.

4

Proceedings CHI'95, Denver, May 1995

The criteria for triggering fusion are threefold: the
complementarity of melting pots, time, and context. When
triggered, the engine attempts three types of fusion in the
following order: microtemporal fusion, macrotemporal
fusion, and contextual fusion.

Time

Structural parts

t it i+1

From
To

From
To

From
To

Bos
Den

Bos
Den

1rst received 2nd received

Figure 2: Fusion of two melting pots.

• Microtemporal fusion is used to combine related
informational units produced in parallel or in a pseudo-
parallel manner. It is performed when the structural
parts of input melting pots are complementary and
when these melting pots are close in time: their time
interval overlaps. Figure 3 shows one possible
configuration of temporal relationships between two
melting pots mi and mi’ candidates for microtemporal
fusion.

Time

mi mi'

Figure 3: Two melting pots candidates for
microtemporal fusion due to the intersection of their
time intervals.

• Macrotemporal fusion is used to combine related
informational units produced sequentially or possibly
in parallel by the user but processed sequentially by the
system, or even delayed by the system due to the lack
of processing resources (e.g., processing speech input
requires more computing resources than interpreting
mouse clicks). Macrotemporal fusion is performed
when the structural parts of input melting pots are
complementary and when the time intervals of these
melting pots do not overlap but belong to the same
temporal window. Figure 4 illustrates the temporal
constraints between two melting pots candidates for
macrotemporal fusion.

Time

mi mi'∆t

Figure 4: Two melting pots candidates for
macrotemporal fusion.

• Contextual fusion is used to combine related
informational units produced without attention for
temporal constraints. For example, a MATIS user may

specify the destination, then give a call, and resume the
task a couple of minutes later. Contextual fusion is
driven by the current active context. In MATIS, the
current context corresponds to the current active
request. Contextual fusion combines a new input
melting pot m with the melting pots M of the current
context if the content of m is complementary with one
of the melting pots M. (Melting pots in M are ordered
according to their recency.)

Having presented the driving principles of the fusion
mechanism, we now focus on the technical details.

INSIDE THE FUSION MECHANISM
Our fusion algorithm has been implemented in C and
embedded in a PAC-Amodeus architecture. We first
introduce the metrics associated with each melting pot, then
describe the three types of fusion in detail. Finally, we
present the management of the set of melting pots and their
transfer within the hierarchy of PAC agents.

Metrics for a Melting Pot
Figure 5 portrays the metrics that describe a melting pot
mi:

mi=(p1, p2,... , pj,..., pn): mi is comprised of n
 structures p1, p2, ...pn.

infoij: piece of information stored in the structural part pj
 of mi.
Tinfoij: time-stamp of infoij.
Tmaxi: time-stamp of the most recent piece of
 information stored in mi.
Tmini: time-stamp of the oldest piece of information
 stored in mi.
Temp_wini: duration of the temporal window for mi.
∆t: Remaining life span for mi.

A melting pot encapsulates a set of structural parts p1,
p2,...pn. The content of a structural part is a piece of
information that is time-stamped. Time stamps are defined
by the LLIC when processing user's events. The engine
computes the temporal boundaries (Tmax and Tmin) of a
melting pot from the time stamps of its pieces of
information.

Info

Info

p4

p2

p3

p1

Structural parts

Time
t=
Tmin

t+1 t+3 t+4

Temp_win : Temporal window

Exp : Life span

Info

t+5=
Tmax

∆t

i

i
i

i

Info

∆t

i2

i3

i4

i1
t+2

Figure 5: Metrics used to define a melting pot mi.

5

Proceedings CHI'95, Denver, May 1995

So for mi=(p1, p2,...pn), Tmaxi=Max(Tinfoij) and
Tmini=Min(Tinfoij).

The temporal window of a melting pot defines the temporal
proximity (+/- ∆ t) of two adjacent melting pots: for
mi=(p1, p2,...pn), Temp_wini=[Tmini-∆t, Tmaxi+∆t].
Temporal windows are used to trigger macrotemporal
fusion.

The last metrics used to manage a melting pot is the notion
of life span, Expi: Expi=Tmaxi+∆t=Max(Tinfoij)+∆t. This
notion is useful for removing a melting pot from the set of
candidates for fusion.

The Mechanism
The fusion mechanism is driven by a set of rules.

Rule 1 deals with microtemporal fusion. Because priority is
given to parallelism at the user’s level, microtemporal
fusion is first attempted on the arrival of a new melting pot
from the Presentation Techniques Component. Since it
models a user’s action at instant t', this melting pot is
composed of one column only. Rule 1 makes explicit the
occurrence of microtemporal fusion: if the content of the
new melting pot is complementary with a column (colit) of
an existing melting pot (mi) and if the time-stamp of this
column is close enough to t' (i.e., within ∆microt), then
microtemporal fusion is performed. Microtemporal fusion
may involve undoing a previous fusion. This exception
case will be discussed later.

Rule 1 Microtemporal fusion (overlap of time intervals)

Given:
• colit = (p1, p2,... , pj,..., pn):
 one column at time t of an existing melting pot mi.
• coli't’ = (p'1, p'2, ..., p'j, ..., p'n)
 a one column melting pot mi' produced at time t'
• i ≠ i'

colit and coli't’ are combined if:
• they are complementary:
 Complementary (colit , coli't’) is satisfied if:
 ∀ k ∈ [1..n] : ∃ infoik Λ ¬ (∃ infoi'k)
• their time-stamps are temporally close:
 Close (colit,coli't') is satisfied if:
 t' ∈ [t-∆microt, t+∆microt] (Intersection of time intervals)

Figure 6 illustrates the principles of microtemporal fusion
with the example discussed earlier in Figure 2: The user
utters the sentence “flights from Boston” at time ti while
selecting “Denver” with the mouse at time ti+1. The
melting pot mi is produced as a result of the selection with
its "ti+1" column filled in. Later on, a new melting pot mi’
arrives at the Dialogue controller resulting from the speech
act. Column ti of mi’ is filled in with the information
abstracted from the speech act. mi a n d m i’ are
complementary (their content correspond to distinct

structural parts). In addition, the time stamps of the two
columns concerned in mi and mi’ are within ∆microt (we
suppose that ∆microt is equal to 1 temporal unit). Thus
microtemporal fusion can be performed.

Info
i'3

 mi'

Info
i2

 mi

∆microt ∆microt

t

Info
i'3

t

Info
i2

i i+1

t i+1 t i

ti+2t i

Figure 6: An example of microtemporal fusion.

One particular phenomenon in parallelism is redundancy
[15]. As shown by the example of Figure 7, a MATIS user
may utter the sentence "Flights from Boston" (Infoi’1 =
[Boston]) while selecting "Boston" with the mouse (Infoi1
= [Boston]). One of the two user’s actions must be ignored.
i.e., the newly arrived melting pot must be discarded.
Redundancy checking is performed before microtemporal
fusion is attempted. Rule 2 makes this verification process
explicit.

Rule 2 Redundancy

Given:
• colit = (p1, p2,... , pj,..., pn):
 one column at time t of an existing melting mi
• coli't’ = (p'1, p'2, ..., p'j, ..., p'n)
 one column at time t' of a new melting pot mi'
• i ≠ i'

colit and coli't’ are redundant if:
• they contain the same information in the same slots:
 Redundant (colit, coli't') is satisfied if:
 ∀ k∈ [1..n] : ∃ infoik Λ ∃ infoi'k Λ infoik = infoi'k
 Λ ∀ k’∈ [1..n] : ¬ (∃ infoik’) Λ ¬ (∃ infoi'k’)
• their time-stamps are temporally close:
 Close (colit, coli't') is satisfied if:
 t' ∈ [t-∆microt, t+∆microt]

Macrotemporal fusion is driven by rules similar to those
used for microtemporal fusion where ∆microt is replaced by
temporal windows. Whereas time has a primary role in
micro- and macro- temporal fusions, it is not involved in
contextual fusion.

6

Proceedings CHI'95, Denver, May 1995

Info

 p2

 p3

 p1

t t+1 t+8

Info

...

...

...

...

t+1t-1

∆microt ∆microt

 mi

i1

i3

t+1

 mi'

Info
i'1

Figure 7: Redundancy: a new melting pot mi’ contains
information Infoi’1 equal to Infoi1 of melting pot mi
produced nearly at the same time as mi’.

As described in the above section, contextual fusion is the
last step in the fusion process. The driving element for
contextual fusion is the notion of context. In MATIS,
contexts are in a one-to-one correspondence with requests.
There is one context per request under specification and the
current request denotes the current context. (The user may
elaborate multiple requests in an interleaved way.) When a
melting pot is complete (all of its structural parts have a
value), and its life span expectancy Expi expires, it is
removed from the set of candidates for fusion. Rule 3
expresses these conditions formally. Expi is used for
making sure that incorrect fusions have not been performed:
when a melting pot is complete, the engine keeps it for a
while in the pool of candidates in case the next new melting
pots trigger "undo" fusions.

Rule 3 Conditions for removing a melting pot from the list
of candidates for fusion:

Melting pot mi = (p1, p2, ..., pj, ..., pn) is removed if:
• mi is complete: ∀ pj ∈ mi, ∃ infoij
• and its span life is over: current date = Expi

Undoing erroneous fusions. Because our algorithm favors
parallelism, it adopts an “eager” strategy: it does not wait
for further information and therefore continuously attempts
to combine input data. This approach has the advantage of
providing the user with immediate feedback before the
functional core is accessed. The drawback is the possible
occurrence of incorrect fusions. Incorrect fusion may occur
due to the different time scales required to process data
specified through distinct languages and devices. As a
result, the sequence of melting pots is not necessarily
identical to that of the user's actions sequence. For example,
in MATIS melting pots that correspond to direct
manipulation expressions are built faster than those from
voiced utterances. This situation will be illustrated with
MATIS in the next section.

A melting pot removed from the fusion pool by the fusion
engine is returned to the calling PAC agent for further
processing. In the next paragraph we describe how melting
pots relate to PAC agents.

The Fusion Engine and the PAC Agents
The PAC agents of the Dialogue Controller are in charge of
task sequencing as well as processing the content of the
melting pots. This activity is part of the abstraction and
concretization processes as described in [3][14]. Abstracting
involves multiple processing activities including the use of
the fusion engine. When calling the engine, a PAC agent
provides a melting pot as an input and receives a list of
melting pots as output parameter. Depending on the current
candidates in the fusion pool, the content of the input
melting pot may or may not be modified by the fusion
engine.

Data fusion is one aspect of abstraction. The enrichment of
information is also performed by exchanging melting pots
across the hierarchy of agents. There is one such hierarchy
per task. The set of melting pots are partitioned according
to the set of tasks. As a result, an agent hierarchy handles
the melting pots that are related to the task it models. In
addition the root agent of each hierarchy maintains a
mapping function between the melting pots and the PAC
agents interested by these melting pots. The benefit of this
partitioning is that the fusion engine will not try to
combine melting pots that belong to different task
partitions. For example in MATIS, if the user utters
"Flights from Pittsburgh to this city" while resizing a
window, the two melting pots that model the users physical
actions does not belong to the same set. As a result, the
fusion mechanism does not attempt to combine them.

FROM MODEL TO REALITY:
INTERACTING WITH MATIS
In this section we use MATIS to illustrate how PAC
agents within the Dialogue Controller operate in
conjunction with the fusion mechanism. Figures 8 and 9
show the message passing through the hierarchy of agents
and the fusions performed in the context of the following
example: the user has already specified the destination slot
(i.e., Denver) as well as the departure slot (i.e., Boston) of
the current request α . The result of this specification is
modelled in Figure 8 as the melting pot m1 as well as the
existence of the Request α agent in charge of maintaining a
local interaction with the user about this request. The user
then utters the sentence "Flights from Pittsburgh" while
selecting "TWA" using the mouse.

Because mouse clicks are processed faster than speech input,
the mouse selection is first received by the Dialogue
Controller through the Presentation facet of the Tools agent
(<1> in Figure 8). The mouse click is modelled as the
melting pot m2 which contains [TWA]. The Presentation
of the Tools agent performs a partial immediate feedback by
highlighting the selection. Its Control facet calls the fusion
mechanism (<2>): the new coming melting pot m2 is
combined with m1 by contextual fusion. m1, which now
contains [BOS, DEN, TWA], is returned to the Tools agent
(<3>). In turn, the Tools agent, which cannot perform any
more processing on m1, sends m1 to its parent agent
(<4>). As shown in Figure 8, the Cement agent which
maintains the mapping between melting pots and the agents

7

Proceedings CHI'95, Denver, May 1995

interested in these melting pots, transfers m1 to the
Request α agent (<5>). Request α agent is then able to
update its abstraction facet and its presentation facet (<6>):
the request form on the screen (<7>) is updated accordingly
with (Boston, Denver and TWA).

Tools

Twa

Twa
Den

Bos

Den
Bos

Twa

Set of melting pots

m1 m2

m1

m2

<1>
<2>m2

<3>m1

m1 α
... ...

<2>

(Highlight
selection)

m1(Bos
Den
Twa)

<6>
Request α

(update
the form)

Editor<4>m1
<5>

<7>

Cement

Figure 8: Interacting with MATIS: contextual fusion.

Meanwhile, melting pot m3 which corresponds to the
sentence "Flights from Pittsburgh", is received by the
Editor agent (<1> in Figure 9). The Editor agent provides
the user with a partial feedback by displaying the recognized
sentence while calling the fusion mechanism (<2>). The
current set of candidates for fusion is now {m1, m2, m3}
(according to rule 3, m1 and m2, which have not reached
their life span expectancy, have not been eliminated from
the pool). Because the time intervals of m2 [TWA] and m3
[PIT] overlap, they are combined by microtemporal fusion
and m2 becomes [PIT, TWA] (rule 1 applies). The previous
contextual fusion [BOS, DEN, TWA] is undone: m1 [BOS,
DEN] and m2 [PIT, TWA] are returned to the Editor agent

(<3>) and reflected back to the Cement agent (<4>). The
Cement agent dynamically creates a new agent Request β
(<5>)because the new melting pot, m2, [TWA, PIT] has no
agent associated with itself (mapping table in the
abstraction part of the Cement agent). The Presentation
facet of the Request β agent displays a form containing the
state of the new current request (<7>). From now on, the
user has elaborated two requests. When completed, the
content maintained in the abstract facet of a Request agent
is transmitted to the Interface with the Functional Core for
translation into the SQL format and submitted to the data
base maintained in the Functional Core.

SUMMARY AND DISCUSSION
We have presented a software architecture model, PAC-
Amodeus, augmented with a fusion mechanism to support
the software design of multimodal systems. The platform
defined by PAC-Amodeus along with the fusion mechanism
fulfills specific requirements of multimodal systems such as
data fusion and parallel processing. The fusion mechanism
is responsible for combining data specified by the user
through different modalities (i.e., a combination of devices
and interaction languages). In particular, we have shown the
benefits of the symbiosis between the hierarchy of agents of
the architectural model and the fusion mechanism. Based on
criteria such as time and structural complementarity, the
mechanism is generic and reusable. Each melting pot
processed may have any number of structural parts (e.g.,
lines) that can be filled independently. Consequently, the
PAC-Amodeus model along with the fusion mechanism
define a reusable platform for implementing multimodal
systems. This property is a distinct advantage over most
current tools which are limited in scope.

In a future work, we plan to enrich our fusion mechanism
with a confidence factor attached to every slot of a melting
pot. The notion of confidence factor provides a simple
mechanism for modelling uncertainty and can be usefully
exploited for solving ambiguities in deictic expressions.
Figure 10 shows the relevance of confidence factors using
the example of Figure 2.

<5>

Tools

<2>m3

<3>
m1
m2

<5>
(Bos
Den) <6>

Request α
(update the form)

<7>

Pit

m3

<1>

<2>
(Present
[From Pit])

Twa
Den

Bos

Den
Bos

Twa

Set of melting pots

m1 m2

m1
Twa

Pit

Pit

m3

m2

<4>m1 m2(Pit
Twa)

<6>
Request β

(present
the form)

<7>

Cement

m1 α
m2 β

create m2

Editor

m1

Figure 9: Interacting within MATIS: undoing fusion due to microtemporal fusion.

8

Proceedings CHI'95, Denver, May 1995

From

To Den CF=0

Den CF=0 From

To

Bos CF=10

Null CF=10

From

To

Bos CF=10

Den CF=5

"Denver" "Flights from Boston to this city"

Figure 10: Confidence factor (CF ∈ [1,10]): Example of
a deictic expression (see figure 2).

Moreover ∆t and ∆micro have been tuned experimentally.
One can improve the setting of those parameters by letting
the system compute the appropriate values depending on
performance of the platform as well as on the behavior of
the user. In addition, we will also examine systems that
support multiple output modalities. This may lead to the
development of a "fission" mechanism as introduced in
MSM [3] and suggested in [17].

ACKNOWLEDGEMENTS
This work has been partly supported by project ESPRIT
BR 7040 Amodeus II. Many thanks to G. Serghiou for
reviewing the paper.

REFERENCES
1. Coutaz, J. PAC, an Object Oriented Model for Dialog

Design, in Proc. Interact'87 (Stuttgart, 1-4 Sept.
1987), North Holland, pp. 431-436.

2. Coutaz, J., Balbo, S. Applications: A Dimension
Space for User Interface Management Systems, in
Proc. CHI’91 Human Factors in Computing Systems
(New Orleans, April 27-May 2, 1991), ACM Press,
pp. 27-32.

3. Coutaz, J., Nigay, L., Salber, D. The MSM
framework: A Design Space for Multi-Sensori-Motor
Systems, in Proc. EWHCI’93 (Moscow, Aug. 3-7,
1993), Springer Verlag (Lecture notes in Computer
Science, Vol. 753, 1993, pp. 231-241).

4. Coutaz, J. Architectural design for user interfaces,
Encyclopedia of Software Engineering, Volume 1 A-N,
Wiley-Interscience, 1994, pp. 38-49.

5. Garfinkel, S., Mahoney, M. NeXTSTEP
Programming, Springer-Verlag, 1993, 631 pages.

6. Hemjslev, L., Structural Analysis of language, Studia
Phonetica, Vol. 1, pp. 69-78.

7. Henry, T.R., Hudson, S.E., Newell, G.L. Integrating
Gesture and Snapping into a User Interface Toolkit, in
Proc. Symposium on User Interface Software and
Technology (Oct. 1990), ACM Press, pp. 112-121.

8. Hill, R.D. The Abstraction-Link-View Paradigm:
Using Constraints to Connect User Interfaces to
Applications, in Proc. CHI'92 Human Factors in
Computing Systems (Monterey, May 3-7, 1992),
ACM Press, pp. 335-342.

9. Little, T.D.C, Ghafoor, A., Chen, C.Y.R., Chang,
C.S., Berra, P.B. Multimedia Synchronization, IEEE
Data Engineering Bulletin, Vol. 14, 3 (Sept. 1991),
pp. 26-35.

10. Lunati, J-M and Rudnicky, A. Spoken Language
interfaces: The OM system, in Proc. CHI'91 Human
Factors in Computing Systems (New Orleans, April
27-May 2, 1991), ACM Press, pp. 453-454.

11. Myers, B. Challenges of HCI Design and
Implementation, Interactions, Vol. 1 No. 1 (Jan.
1994), pp. 73-83.

12. Nigay, L. A Case Study of Software Architecture for
Multimodal Interactive System: a voice-enabled graphic
notebook, TR LGI-IMAG (Oct. 1991), 31 pages.

13. Nigay, L., Coutaz, J., Salber, D. MATIS: A
multimodal airline travel information system,
SM/WP10, ESPRIT BRA 7040 Amodeus, (Feb.
1993).

14. Nigay, L., Coutaz, J. A design space for multimodal
interfaces: concurrent processing and data fusion, in
Proc. INTERCHI’93 Human Factors in Computing
Systems (Amsterdam, April 24-29, 1993), ACM
Press, pp. 172-178.

15. Nigay, L. Conception et modélisation logicielles des
systèmes interactifs : application aux interfaces
multimodales, PhD dissertation, University of
Grenoble, France (Jan. 1994), 315 pages.

16. Norman, D.A. Cognitive Engineering, In User Centered
System Design, New Perspectives on Computer
Interaction, Hillsdale: Lawrence Erlbaum Associates,
1986, pp. 31-61.

17. Sutcliffe, A., Faraday, P. Designing Presentation in
Multimedia Interfaces, in Proc. CHI'94 Human Factors
in Computing Systems (Boston, April 24-28, 1994),
ACM Press, pp. 92-98.

18. The UIMS Tool Developers Workshop, A Metamodel
for the Runtime Architecture of an Interactive System,
SIGCHI Bulletin, 24, 1 (Jan. 1992), pp. 32-37.

9

Proceedings CHI'95, Denver, May 1995

