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ABSTRACT
Multimodal interaction enables the user to employ
different modalities such as voice, gesture and typing for
communicating with a computer. This paper presents an
analysis of the integration of multiple communication
modalities within an interactive system. To do so, a
software engineering perspective is adopted. First, the
notion of “multimodal system” is clarified. We aim at
proving that two main features of a multimodal system
are the concurrency of processing and the fusion of
input/output data. On the basis of these two features, we
then propose a design space and a method for classifying
multimodal systems. In the last section, we present a
software architecture model of multimodal systems
which supports these two salient properties: concurrency
of processing and data fusion. Two multimodal systems
developed in our team, VoicePaint and NoteBook, are
used to illustrate the discussion.

KEYWORDS: Modality, multimodal interaction,
taxonomy, design space, software architecture, data
fusion, concurrency.

INTRODUCTION
In parallel with the development of graphical user
interfaces (GUI), significant progress has been made in
natural language processing, computer vision and gesture
analysis. Systems integrating these techniques as
multiple modalities open a complete new world of
experience [1]. But as pointed out in [2], differences of
opinion still exist as to the meaning of the term
“multimodal”.

This paper presents our analysis of the integration of
multiple communication modalities between a user and
an interactive system. To do so, a software engineering
perspective is adopted. First, the notion of “multimodal
system” is clarified. Based on a precise definition of
multimodality, we then propose a design space and a
method for classifying multimodal systems. In the last

section, we present a software architecture model that
supports the most salient properties of such systems:
concurrent processing and data fusion.

MULTIMODAL SYSTEM: A DEFINITION
In the general sense, a multimodal system supports
communication with the user through different
modalities such as voice, gesture, and typing [3].
Literally, "multi" refers to “more than one” and the term
“modal” may cover the notion of “modality” as well as
that of “mode”.

• Modality refers to the type of communication
channel used to convey or acquire information. It
also covers the way an idea is expressed or
perceived, or the manner an action is performed [4].

• Mode refers to a state that determines the way
information is interpreted to extract or convey
meaning.

In a communication act, whether it be between humans
or between a computer system and a user, both the
modality and the mode come into play. The modality
defines the type of data exchanged whereas the mode
determines the context in which the data is interpreted.
Thus, if we take a system-centered view, multimodality
is the capacity of the system to communicate with a user
along different types of communication channels and to
extract and convey meaning automatically. We observe
that both multimedia and multimodal systems use
multiple communication channels. But in addition, a
multimodal system is able to automatically model the
content of the information at a high level of abstraction.
A multimodal system strives for meaning.

Our definition of multimodality is system-oriented. A
user-centered perspective may lead to a different
definition. For instance, according to our system-centered
view, the NeXT voice electronic mail [5] is not
multimodal. It is multimedia only. Indeed, it allows the
user to send mail that may contain graphics, text and
voice messages. It does not however extract meaning
from the information it carries. In particular, voice
messages are recorded but not interpreted. On the other
hand, from the user's point of view, this system is
perceived as being multimodal: the user employs



different modalities (referring to the human senses) to
interpret mail messages.
Our system-centered definition of multimodality conveys
two salient features that are relevant to the software
design of multimodal systems:

• the fusion of different types of data from/to different
I/O devices, and

• the temporal constraints imposed on information
processing from/to I/O devices.

Data fusion and temporal constraints provide the basis
for the design space presented in the next section.

MULTIFEATURE SYSTEMS: A DESIGN SPACE
Previous attempts to systematize the description of
interfaces have already been made. However, these
approaches focused primarily on input devices. In this
paper, we are concerned with both the input and output
attributes of an interface. At the lower level of
abstraction, classifications of input devices such as those
proposed by Buxton [7] and by Card et al. [8], are based
on physical properties (such as motion and pressure), the
data that a device returns (discrete or continuous) and the
dimensions of input a device provides.
At a higher level of abstraction, Foley et al. focus on
graphics sub-tasks and propose a taxonomy according to
the sub-tasks a device is capable of performing [9]. Our
design space is located at this higher level of abstraction;
it deals with tasks at the granularity of commands. We
address the issues of how a command is specified using
the different available modalities and how a command is
built from raw data.
Recently, D. Frohlich proposed a framework for
describing the design space of interfaces. This framework
includes both input and output design spaces [6]. It
embeds the different types of modalities and takes into
account the human senses. Our design space also
includes both input and output attributes of an interface,
but our goal is different. Our design space is intended for
classifying systems within a framework, and for helping
software designers to identify the software implications
and constraints for the development of a system.

Our design space is defined along three dimensions:
Levels of Abstraction, Use of modalities and Fusion.
Figure 1 illustrates some possible values along each
dimension and the corresponding classes of systems.
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 Figure 1: The multi-feature system design space.

Levels of Abstraction
As far as inputs are concerned, data received from a
particular device may be processed at multiple levels of
abstraction.  For example, speech input may be recorded
as a signal, or described as a sequence of phonemes, or
interpreted as a meaningful parsed sentence. Each
represention corresponds to a particular level of
abstraction. For outputs, the process is similar: data may
be produced from symbolic abstract data or from a lower
level of abstraction without any computational detection
of meaning. For example, a vocal message may be
synthesized from an abstract representation of meaning,
from pre-stored text or may simply be replayed from a
previous recording.

The important point is that data is represented and
processed at multiple levels of abstraction. This
transformation process makes possible the extraction of
meaning from raw data and conversely the production of
data from symbolic abstract representations. To simplify
the presentation, we consider only two values along the
axis “Levels of Abstraction”: “Meaning” and “No
Meaning”. As discussed in the previous section, a
multimodal system falls in the “Meaning” category of
Figure 1.

Use of Modalities
“Use of modalities” expresses the temporal availability
of multiple modalities. This dimension primarily covers
the absence or presence of parallelism at the user
interface. The granularity for concurrency ranges from the
physical actions at the I/O device level to the task-
command level. Absence of parallelism is referred to as
"Sequential use" whereas presence is called "Parallel
use".

A system that supports “Parallel use” allows the user to
employ multiple modalities simultaneously. Conversely,
a system characterized by the sequential use of
modalities, forces the user to use the modalities one after
another.

Fusion
Fusion covers the possible combination of different
types of data. As discussed above, a data type is
associated with a particular modality. The absence of
fusion is called "Independent" whereas the presence is
referred to as "Combined".

According to the design space, fusion may be performed
with or without knowledge about the meaning of the data
exchanged. For example, synchronization of audio and
video data as supported in the ACME platform [10], is a
temporal fusion which does not involve any knowledge
of meaning. The ACME platform (Abstractions for
Continuous MEdia) is based on the concepts of strands
which correspond to streams of audio or video data, of
ropes which are combinations of strands, and a logical
time system that allows several strands and ropes to be
played synchronously. This example of fusion is distinct
from the fusion that involves meaning as in the “put that
there” paradigm.  Fusion based on meaning mixes



modalities to build an input or output expression which
results in an interpretation at a high level of abstraction
in the task domain.

The design space as a whole
The three orthogonal dimensions of our design space
(Levels of abstraction, Use of modalities, and Fusion)
define eight distinct classes for multi-feature systems.
According to our definition, a multimodal system takes
the value “Meaning” along the “Level of abstraction”
axis.

Having selected the value “Meaning” for “Levels of
abstraction”, let us considerer the four classes of systems
resulting from the combination of the axis “Fusion” and
“Use of modalities”. We get the following categories:
“Exclusive”, “Alternate”, “Concurrent”, and
“Synergistic”. These classes are discussed in a following
section and illustrated with our own multimodal
systems: VoicePaint and NoteBook [11].

VOICEPAINT AND NOTEBOOK
VoicePaint is a graphics editor implemented on the
Macintosh using Voice Navigator, a word-based speech
recognizer board. As a picture is drawn with the mouse,
the user can talk and ask the system to change the
attributes of the graphics context (e.g., the foreground or
background colors, the thickness of the pen, the
brightness, the filling pattern, etc.). This system is
similar in spirit to the graphics editor used by Ralph Hill
to demonstrate how Sassafras is able to support
concurrency for direct manipulation user interfaces [19].

NoteBook is a personnal electronic book implemented on
the NeXT machine using Sphinx, a continuous multi-
locutor speech recognition system [21]. It allows a user
to create, edit, browse, and delete textual notes. In
particular, to insert a note between two notes, the user
can say “Insert a note” while simultaneously selecting
the location of insertion with the mouse. To edit the
content of a note, one modality only is available: typing.
Browsing through the set of notes is performed by
clicking dedicated buttons such as “Next” and “Previous”
or by using spoken commands such as “Next note”. To
empty the note book, a “Clear notebook” command may
be specified using voice or clicking the mouse on the
“Clear” button.

Next section shows how the design space can be used to
classify a particular multimodal system.

CLASSIFYING MULTIMODAL SYSTEMS
Any classification is based on a set of relevant features
fi. In our case, an interesting set of features is the
commands that the system supports. Each feature fi is
weighted according to an estimated importance and has a
position pi within the design space shown in figure 2.
For example, the weight wi can be defined as the
frequency of use. As shown in Figure 3, four weighting
values have been defined but other rules may be applied.
Position pi can take one of the four discrete values:

Exclusive, Alternate, Concurrent and Synergistic. Thus a
feature, fi is formally defined as the couple:

pi wifi = ( ),
The position, C, of a system corresponds to the center of
gravity of its features as expressed by the following
equation:

1
Σw

pi wi×
i

∑×= Σw wi
i

∑=C

 (1)
To illustrate the method, we consider the NoteBook
commands presented above.
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Figure 2: A method to classify multimodal systems: the
NoteBook example.

“Insert a note”, denoted as Feature <1> in Figure 2, is a
synergistic command: it is specified using speech and
mouse clicks simultaneously and it requires the fusion of
data from multiple input devices. In addition, it is used
frequently. Thus <1> is defined as the couple
(synergistic, frequent use). The second command “edit the
content of a note”, denoted as Feature <2> in Figure 2,
is characterized by the couple (exclusive, very frequent
use): while editing the content of a note only one
modality is available (typing) and no other command can
be invoked in parallel. For example, it is not possible to
turn the pages of the note book while writing the content
of a note. Although exclusive, this task is performed
very often. Similarly, commands about browsing,
denoted as Feature <4>, are used very frequently but are
exclusive: the user has the choice between multiple
modalities to express the command (speech or mouse
clicks) but only one modality is used to specify the
command. In addition, no other command can be issued
in parallel. The last command to be considered, “clear the
note book”, is exclusive for the same reason as <3> but
is rarely used. Location C of NoteBook in the design
space is obtained by applying the formula (1) (see Figure
2). We observe that NoteBook is close to the exclusive
class of multimodal systems.
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Figure 3: For example four weights which can be
associated with a command according to its frequency of
use.

A similar process has been applied to VoicePaint and
showed that this system is mostly synergistic. Indeed, all
of the very frequent commands, which are concerned with
drawing, allow the combined and parallel use of speech
and mouse gesture.

NoteBook and VoicePaint provide examples for exclusive
and synergistic commands only. As an example of
concurrency at the command level, one may consider
VoiceFinder, a system that adds voice input to the
Macintosh Finder. Within VoiceFinder, the user can
issue a voice command like “empty the trash” while
simultaneously invoking another command such as
opening a document with the mouse. “Alternate” requires
the fusion of data from/to multiple devices to build up a
command but these devices must be used in a sequential
manner. For example, the MMI2 [20] system is
primarily alternate. In this system, the interaction is
driven by natural written language. Deictic references that
may occur in a sentence such as “this”, are solved by
looking for mouse selections in the next following act of
interaction: modalities are combined but acquired in a
sequential manner.

In summary, the contribution of our design space and
classification scheme is three-fold:

• the design space makes it explicit the way different
modalities are supported by a particular system,

• the classification scheme makes it precise the
location of a system within the design space,

• the design space can be used in conjunction with
the classification scheme to study the effect of
shifting commands within the design space with
regard to the user’s expertise or to the task to be
performed [12]. Using this methodology, the
usability of an interface can be measured.

Usability is the extent to which a user can exploit the
potential utility of a system [13]. Usability can be
evaluated from the command language itself as illustrated
in [13]. Given that the command language barrier is
surpassed, usability can be further tested by establishing
whether particular modalities are adequate for expressing
a given command. For instance, if a command has a
small weight in the synergistic position and a large
weight in the exclusive position, the choice of
modalities for the synergistic command may be
inadequate and/or the chosen modalities may be
incompatible.

Having identified two salient features for multimodal
systems, concurrency and data fusion, we need now to

address their implications on software design. Next
section describes a model that describes the software
organization of synergistic multimodal systems.

S O F T W A R E  A R C H I T E C T U R E  F O R
SYNERGISTIC SYSTEMS
Technically, synergistic systems subsume the other
three classes of multimodal systems. Although
synergistic systems provide a powerful style of
interaction [14], they are functionaly more demanding
and therefore more complex to build than, for example,
exclusive systems. The following architectural model,
based on PAC-Amodeus [16], is concerned with the
most sophisticated case.

PAC-Amodeus
As shown in Figure 4, the PAC-Amodeus model reuses
the components of Arch [15] but refines the dialogue
controller in terms of PAC agents [22]. This refinement
has multiple advantages including an explicit support
for concurrency.

Dialogue Controller

Interface 
with the Functional Core

Functional Core

Presentation Techniques 
Component

Low Level Interaction 
Component

Presentation
Objects

Domain Objects Interaction Objects

Conceptual 
Objects

Figure 4: The software components of the PAC-
Amodeus model and the interfaces between them.

The Functional Core (FC) implements domain specific
concepts in a presentation independent way. The
Interface with the Functional Core (IFC) maps Domain
objects from the Functional Core onto Conceptual
objects from the Dialogue Controller and vice versa.

The Dialogue Controller (DC) is the keystone of the
model. It has the responsibility for task-level
sequencing. Each task of the user corresponds to a
dialogue thread. This observation suggests a multi-agent
decomposition where an agent, or a collection of agents,
can be associated with each thread. A set of rules that



identify the agents necessary for a particular system is
presented in [16].

The Presentation Techniques Component (PTC) defines
two multi-valued mapping functions that link
Presentation and Interaction objects. The PTC describes
the presentation (i.e., input and output interfaces). It
implements the perceivable behavior of the application
for output and input commands.  It is only at this level
of abstraction that the modality of interaction is taken
into account.

The Low Level Interaction Component (LLIC) denotes
the underlying software and hardware platform. It
supports the physical interaction with the user. It
manages user's events from different media (time-stamps
and queues) and has the responsibility for their lexical
analysis. Some of the low-level events are not
transmitted to the Presentation Technique Component.
Indeed, lexical tasks such as window resize, are locally
performed by the Low Level Interaction Component. In
addition, in the case of spoken-utterances, this
component can include mechanisms for confirmation
allowing the user to intercept a wrong recognition.
The roles of the PAC-Amodeus components can be
compared to a similar architecture devised for virtual
worlds. In [17], dialogue is structured by a set of three
level rules. The Specific Level rule set is linked to
specific hardware. It corresponds to the LLIC component
of the PAC-Amodeus model. The Generic Level rule set
transforms events into more general interaction. It can
be mapped onto the PTC. Finally, the Executive Level
rule set manages tasks and thus corresponds to the DC.

We need now to show how concurrent processing and
data fusion are performed within our architectural
framework.

Concurrent processing of data
Concurrent processing of data is achieved at different
levels of abstraction. Raw data is captured in the LLIC
component by event handlers. There is one event handler
per input device. Event handlers correspond to the
strands in the ACME system [10]. They process in
parallel.

Concurrency is also supported in the PTC which
receives low level events (Interaction objects) from the
LLIC and transforms them into more abstract interaction
techniques. For example, a mouse click is transformed
into the Select interaction technique. There is one
abstracting process per supported modality. A modality,
for instance a gestural language, may be supported by
different physical devices (and so different events
handlers), such as a mouse and a data glove combined
with computer vision.

Finally, the multi-agent architecture of the Dialogue
Controller offers an interesting conceptual framework to
support concurrency. Agents can process data (i.e.,
Presentation objects) received from the PTC in parallel.

Data fusion
Non-multimodal systems transform data from
Interaction objects to Presentation objects, then from
Presentation objects to Conceptual objects, up to
Domain objects and vice versa. These transformations
must also be performed in a synergistic system, but in
this case, the task may be more complex. The
synergistic use of modalities implies fusion of data from
different modeling techniques. Each technique is
associated with a modality.

We have identified three levels of fusion: lexical,
syntactic and semantic that can be mapped to the three
conceptual levels defined by Foley et al. [18]. Lexical
fusion corresponds to the Binding level which
establishes the interface with the hardware primitives.
Therefore lexical fusion is performed in the LLIC
component. The syntactic and semantic fusions
correspond respectively to the Sequencing and
Functional levels. These fusions are thus handled by the
component responsible for task-level sequencing: the
dialogue controller.

Lexical fusion. Lexical fusion is performed in the LLIC.
A typical example of lexical fusion may be found in the
Macintosh where the shift key combined with a mouse
click allows multiple selections. Lexical fusion
involves only temporal issues such as data
synchronization.

Syntactic and semantic fusion. The Dialogue Controller
is responsible for syntactic and semantic fusions.
Syntactic fusion involves the combination of data to
obtain a complete command such as the “Insert a note”
in the NoteBook system. Semantic fusion combines
results of commands to derive new results. For instance,
in VoicePaint, the combination of the command “Draw
line” with the command “Modify color” results in a two
color line. (These two commands can be specified
simultaneously.)

Syntactic and semantic fusion requires a uniform
representation: the melting pot object. As shown in
Figure 5, a melting pot object is a 2-D structure. The
structural parts correspond to the structure of the
commands that the Dialogue Controller is able to
interpret. Events generated by user's actions are
abstracted within the PTC and mapped onto the
structural parts inside the Dialogue Controller. These
events may have different time-stamps. A command is
complete when all of its structural parts are filled up by
at least one piece of data. Multiple data for the same
structural part may denote redundancy or reveal
inconsistencies.
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Figure 5: The melting pot object as a common
representation for data fusion within the DC.



The non-sequential, hierarchical and distributed features
of the multi-agent architecture adopted for the Dialogue
Controller make it particularly well suited to perform
fusion. Data is combined in parallel and incrementally
along the levels of the hierarchy. The fusion mechanism
is composed of a set of micro-fusions performed within
each agent. The fusion process is based on two criteria:
the time (e.g., data belonging to the same temporal
window) and the structure of the objects to be combined.
Furthermore, an agent may add new data from its own
state, to the fusion process.

An example of fusion. Figure 6 illustrates a two-level
fusion process for a graphics editor that supports speech
and mouse gesture. In this example, the user says "put
that there" and at the same time, uses the mouse to
select the object to be moved and to indicate the
destination in a distinct workspace. A workspace is a
drawing area. As in most graphics editors, each
workspace has a companion window, a palette that
displays the graphics tools. By applying the heuristics
rules described in [16], one obtains the architecture
shown in Figure 6.
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Figure 6: An example of different levels of fusion inside
the hierarchy of PAC agents.

At the bottom of the hierarchy, agents Workspace1 and
Workspace2 interpret the events that occurred in the
drawing areas. Similarly, ToolPalette agent is in charge
of the events issued in the palette. Editor agents, such as
Editor1 and Editor2, combine information from lower

levels into higher abstractions. For the particular
example, the three agents Workspace1, ToolPalette, and
Workspace2 each receive a melting pot object from the
PTC. Each melting pot object corresponds to a user's
actions. The agent Workspace1 translates the Select
action into the selected graphical object Obj while in
parallel, the agent Workspace2 translates the Select
action into a position Pos. The cement agent, Editor1,
then performs a first level of fusion by combining the
"put that there" with the selected object. A second level
of fusion is then performed by the Root agent to obtain
the complete command to be sent to the functional core.

Abiding with the requirements for building synergistic
systems, our model supports concurrent processing of
data and offers a framework to perform data fusion.
Furthermore our model supports immediate feedback and
satisfies the flexibility criterion. Immediate feedback can
be performed by each agent, even before full fusion is
accomplished. Specific feedback can be generated at each
level of fusion. A high degree of flexibility is achieved
by this model for the following reasons:

• a physical hardware device may be changed by
modifying the Low Level Interaction Component,

• a modality may be changed by modifying the
Presentation Techniques Component,

• the Dialogue Controller is modality-independent. It
depends only on the structural composition of the
commands that the system supports.

SUMMARY AND CONCLUSIONS
We have presented a classification space that describes
the properties of both input and output interfaces of
multimodal systems. From the software perspective,
this classification space highlights two main
characteristics of such systems:

• concurrency of data processing, and
• data fusion.

The contribution of our classification space is two-fold:
• four salient classes of systems can be used as the

extrema of a reference space,
• the reference space provides a way to characterize

and reason about the I/O properties of interactive
systems. In particular, it may be useful to compare
the location of a command or the whole system
devised at the design stage with the effective
location measured through usability testing.

As a complement to the classification space, a software
architecture model that supports concurency and data
fusion is proposed. Three levels of fusion have been
identified with the appropriate method to implement
them. In addition, the model satisfies three crucial
quality criteria: code re-usability, support for immediate
feedback and flexibility. In the near future, we will
continue to test and verify our results through the design
of systems supporting multiple output modalities. We
will also need to study how to enhance the robustness of
the interaction with pragmatics and with an embedded
user model.
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