

- Dynamicity, Flexibility
- Price

- Reality based interaction
 - Compromise with software when it brings benefit

http://dl.acm.org/citation.cfm?doid=1357054.1357089

- Interface design
 - build on 4 themes (= human capabilities) from the "real" world
 - compromise with 6 tradeoffs in order to reach design goal

Naïve Physics

Body Awareness & Skills

Environment Awareness & Skills

Social Awareness & Skills

Naïve Physics

E.g., gravity, friction, velocity

Example of interfaces using users' knowledge of naive physics?

Body Awareness & Skills

E.g., relative position of body parts, range of motion, skills to coordinate movements (to walk, kick a ball)

Example of interfaces using users' body awareness and skills?

Environment Awareness & Skills

E.g., horizon gives a sense of directional information, lighting and shadow provide depth cues

Example of interfaces using users' environment awareness and skills?

Social Awareness & Skills

E.g., verbal and non-verbal communication, exchange objects, ability for collaboration

Example of interfaces using users' social awareness and skills?

Reality Based Interaction: Six tradeoffs

Expressive power

ability to perform a variety of tasks within the application domain

Efficiency

ability to perform a task rapidly

Versatility

ability to perform many tasks from different application domains

Ergonomics

ability to perform a task without physical injury or fatigue

Accessibility

ability to perform a task when handicapped

Practicality

(designers) ability to produce the system

Case study: URP

What themes does URP use?

- Naive Physics
- Body
- Environment
- Social Awareness

What does URP sacrifice for which benefit?

- Expressive power
- Efficiency
- Versatility
- Ergonomics
- Accessibility
- Practicality

- Software mouse+touch GUI took over
- Tangible might be coming back
 E.g., induction hub
 with removable magnetic tangible knob

E.g., Microsoft Surface Studio (2016)

 New and Open research areas that bring tangibles closer to software

How can we benefit again from Tangibility?

Illuminating Clay

SandScape

A Reconfigurable Ferromagnetic Input Device

Dynamically changeable buttons: http://www.youtube.com/watch?v=Smai_Z_galE

Shutters with shape memory alloy

non-elastic airbag + plain paper

Dynamicity & Flexibility: Shape with nanoscopic cells

Bacillus Subtilis Natto is a bacteria that has been widely used to ferment food

Dynamicity & Flexibility: 2D location

Actuated workBench

Dynamicity & Flexibility: 3D location

(magnetic)

Dynamicity & Flexibility: 3D location

(ultrasonic)

https://www.youtube.com/watch?v=g_EM1y4MKSc

Dynamicity & Flexibility: Stiffness

Dynamicity & Flexibility: Stiffness

3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities

https://youtu.be/-4gFYvhkz0Y

Dynamicity & Flexibility: Weight

Mechanism: Mass Transfer with Liquid Metal

Many possibilities

- How to make sense of it?
 → Taxonomies and Design spaces
 - 1. Morphees
 - 2. Rasmussen
 - 3. Sturdee
 - 4. Emergeables

Morphees

Rasmussen

Rasmussen

Kinetic parameters			
Velocity	Path	Direction	Space
speed acceleration tempo twitter frequency	linear/curved continuous/intermittent smooth/jerky pattern/random	up/down right/left forward/backwards	scale form kinesphere
	Mussels Teacor O [31]		
Inflatable Mouse [26]	Muscle Tower 2 ^[31]	BMW museum ^[1]	Morphing Harddisk [20]

Rasmussen

Sturdee

http://www.shapeclip.com/video.html

Sturdee

Emergeables

https://www.youtube.com/watch?v=YeE9hSdUdRQ

Emergeables

Emergeables

Dynamicity & Flexibility: What is is good for?

Dynamicity & Flexibility: What is is good for?

- Balancing footprint and performance
- Notifications
- Switching between controls and flat screen
- etc.

For balancing footprint and performance

Prototype

Prototype

resolution: 2822 dpi

Benefit of Multiple Sizes: Experiment 1

How much more efficient are users with a large slider than a small slider?

Task: **pointing** with a tangible slider at a target displayed on a distant screen

Constant Control-Display gain

2/96 = 4/192 = 8/384

Index of Difficulty (easy to difficult)

Zoomed in is better

not possible when workspace is restricted

Drawback of resizing: Experiment 2

Impact of resizing on performance

Drawback of resizing: Experiment 2

Task 1: pursuing

cursor pursuit error moving target

Task 1: pursuing moving target when difficulty changes **Small slider Resizable slider** (2cm/96px)difficult resize so that ----- \$1 px size of target ====‡2 px is constant ‡4 px 4 px size of target changes

easy

Task 2: resizing

Task 2: resizing

Drawback of resizing: Experiment

Median error (% of slider's range)

Interval of difficulty change (s)

Resizing brings benefits If less often than every ~9 seconds

For balancing footprint and performance

For notifications

For notifications

Protrusion

Corner bending

Volume

Protrusion

- Height (10mm or 15mm)
 Type (static, slow pulse, or fast pulse)

Corner bending

- Number of corners (1–4)
- Height (8mm or **12mm**)
- Type (static, slow pulse, **fast pulse**)

Volume

- Mode (**full expansion** or tapering)
- Height (5mm or **10mm**)
- Type (static, slow pulse, **fast pulse**)

- Type
 - Static: Moves immediately to its final position (taking 200ms)
 - Slow pulse: repeats
 - Moves to the position (200ms),
 - Pause for 500ms,
 - Return to the rest position (200ms)
 - Pause for a further 500ms
 - Fast pulse: Continually move between positions

- Vibrotactile feedback
 - Samsung Galaxy S3
 - Default vibration mode (1.6s pulse/pause cycle)

- Measures
 - Recognition time
 - Missed notifications

- Task
 - Participants walk
 - with device in pocket, facing body
 - with headphones playing white noise
 - 5 notifications, lasting each 20s (~ phone call)
 - Participant presses a physical button held in their dominant hand when they feel the device move

• Limitations of this study?

Switching between tangible controls and touchscreen

Preference

Performance

Safety

During half-time and advertisements

Benefits of Emergeables vs. new interaction

Karrer et al., 2011 Serrano et al., 2014 Ramakers et al., 2014

known tangible controls

Benefits of Emergeables vs. additional controls

Jansen et al. 2012

Florian Born, 2013

no additional configuration

Benefits of Emergeables vs. discrete control

Harrison and Hudson, 2009

http://tactustechnology.com

continuous control

Benefits of Emergeables for eyes-free mobile tasks

+ known tangible controls

+ no additional configuration task

+ continuous control

Difficulty: technology

Technology: current approach

Manipulation: Translation

Manipulation: Rotation

Resolution

Is it worth the effort? How far are we today?

Prototype simulating high-resolution: tailored for experiment

High-resolution: Simulation prototype

High-resolution: Simulation prototype

Is it worth the effort?

Is it worth the effort? How far are we today?

Low-resolution prototype

Components

Components

Prototype

Controls

- Within-subjects design
- Three interfaces:
 - High-resolution prototype
 - Low-resolution prototype
 - Graphical comparison interfa

Resolution

Pursuit Tasks

Measures

- Pursuit accuracy
- Visual attention required
- Perceived usability
 - Ease of use (1 10)
 - Rank interfaces
 in order of perceived visual attention required

Results

Users' preferences

- Hi-res most preferred (8.8 / 10)
- Low-res promising (4.8 / 10)
- GUI least preferred (3.4 / 10)

Future work

- How to do higher resolution emergeable dials?
- How to improve interaction with emergeable sliders?

Design space is large (and largely unexplored)

- Balancing footprint and performance
- Notifications
- Switching between controls and flat screen
- etc.

Future of Tangible Interaction

Flexibility will not be software's monopoly and will reach Tangibles

Radical Atoms & Perfect Red <u>https://vimeo.com/61141209</u>

Claytronics http://www.cs.cmu.edu/~claytronics/movies/carDesign_12_vo_H264.mov

Future of Tangible Interaction (getting there)

- bitDrones https://www.youtube.com/watch?v=hHBYMWc3ux8
- SwarmUI <u>https://www.youtube.com/watch?v=ZVdAfDMP3m0</u>