Advanced Human-Computer Interaction: Tangible Interaction

Céline Coutrix http://iihm.imag.fr/coutrix/ Celine.Coutrix@imag.fr

Course objectives

- Answering basic questions, i.e.:
 - What are TUI?
 - What is their story?
 - What are they good for?
 - What are their limitations? + Research areas
- Building TUI

2

Tangible User Interfaces: What are they?

1

Tangible User Interfaces: What are they?

Interfaces involving physical objects that can be grasped

Example: Durell Bishop's **Answering Machine**

Tangible User Interfaces: What are they?

Graphical User Interfaces

interfaces usually limited to std screen+keyboard+mouse

5

Tangible User Interfaces: What are they?

Virtual Reality Interfaces

interfaces to immerse the user in a digitally generated world

6

Tangible User Interfaces: What are they?

Augmented Reality (AR) and Augmented Virtuality (AV)
Tangible Interfaces belong to AR+AV

7

Tangible User Interfaces: What are they?

Haptic Interaction Tangible Interfaces belong to Haptic: Both involve touch and manipulation, but haptic usually not passive

Tangible User Interfaces: What are they?

Internet of Things

TUI not necessarily connected to Internet If so, can be through a computer

Spread: GUI paradigm

10

9

Spread: Augmented Reality paradigm

11

Spread: visualisation tasks

Spread: Remote collaboration tasks Connected Tangible Tokens with Shape Output

What is their story?

... and is still here

14

Seminal papers

Early works on Tangible User Interfaces

- DataTiles: Tangible overlay mixing Tangible and Graphical Interaction
 - https://www.youtube.com/watch?v=cmD8EKWxD4M
- · Containers: mediaBlocks
 - http://vimeo.com/48827402
- · metaDesk:
 - http://vimeo.com/44545109
- 3D animation with tangible sliders (1996):
 - https://www.youtube.com/watch?v=SnDHjY5aD5c

Example of Tangible User Interfaces

17

http://dl.acm.org/citation.cfm? doid=1125451.1125582

Example of Tangible User Interfaces

18

https://www.youtube.com/watch?v=0h-RhyopUmc https://www.youtube.com/watch?v=MPG-LYoW27E

Example of Tangible User Interfaces

I/O Brush

21

Tangible User Interfaces What are they good for?

- Interaction embodied in the physical world of the user: Physical User & Physical Interface
- **Performance**: passive haptic feedback

Tangible User Interfaces What are they good for?

22

Embodied interaction

Object (prop) to interact at a distance with GUI

Embodied interaction

Tangible and overlaid projection

•

Example: URP

25

Embodied interaction

Rear-projection and optical fibers

Example: Ficon

26

Embodied interaction

Printed Optics

Fishkin's metaphors

Analogy between the system effect of a user action to the real-world effect of similar actions

- **None** = No analogy between action and result
 - E.g., command-line UI, clock in URP

Fishkin's metaphors

Analogy between the system effect of a user action to the real-world effect of similar actions

- Noun = shape-related: "an <X> in the system is like an <X> in the real world"
 - E.g., dictionary (http://dl.acm.org/citation.cfm? doid=302979.303111)

Fishkin's metaphors

Analogy between the system effect of a user action to the real-world effect of similar actions

- **Verb** = motion-related: "<X>-ing in our system is like <X>-ing in the real world"
 - E.g., NAVRNA

29

Fishkin's metaphors

Analogy between the system effect of a user action to the real-world effect of similar actions

• Noun & Verb = "<X>-ing an <A> in our system is like <X>-ing something <A>-ish in the real world"

31

• E.g., eraser in Digital Desk, building in URP

Fishkin's metaphors

30

Analogy between the system effect of a user action to the real-world effect of similar actions

- **Full** = In user's mind, there is no system
 - E.g., Illuminating Clay

Tangible User Interfaces What are they good for?

 Interaction embodied in the physical world of the user: Physical User & Physical Interface

НММ

• **Performance**: passive haptic feedback

Methodological break
User studies

Tangible User Interfaces: What are they good for?

33

Several experiments demonstrated their benefits

Tangible User Interfaces: Benefit over GUI

34

- Time-multiplexed vs. Space-multiplexed input: inter-device transaction phases
- · Specialized vs. Generic form-factor

Tangible User Interfaces: Benefit over GUI

• Time-multiplexed vs. Space-multiplexed input: inter-device transaction phases

GUI	TUI
Acquire physical device	Acquire physical device
Acquire logical device	
Manipulate logical device	 Manipulate logical device

62

Tangible User Interfaces: Benefit over GUI

Does the **physical switching** cost more than the **logical switching** between tools?

Tangible User Interfaces: Benefit over GUI

Task: continuously track four targets moving randomly on the screen (compound tasks)

- · Rotor: position and rotation
- · Brick: position and rotation
- · Strechable square: position, rotation and scale
- · Ruler: position, rotation and scale

Space-multiplexed Specialized

Space-multiplexed Generic

Time-multiplexed

63

Tangible User Interfaces: Benefit over GUI

Does the **physical switching** cost more than the **logical switching** between tools?

Is the **specialized** input useful?

Space-multiplexed Specialized

Space-multiplexed Generic

Time-multiplexed

Tangible User Interfaces: Benefit over GUI

Time-multiplexed

Specialized performs best

Generic performs better than Time-multiplexed but worst than Specialized

performs worst

- Consistent across the 4 devices
- (Score based on root mean square errors of all dimensions (position, orientation and scale if applicable) of all devices)

Tangible User Interfaces: Benefit over GUI

66

Users spend more time switching between tools with time-multiplexed UI rather than with space-multiplexed UI

Tangible User Interfaces: Benefit over GUI

67

Tangible User Interfaces: Benefit over GUI

- 1. Space-multiplexed > Time-multiplexed input:
 - Persistance of attachement between physical and logical (software, graphical) controllers
 - Parallel 2-handed vs. Sequential 1-handed interaction
- 2. Specialized vs. Generic form-factor
 - Visual and tactile reminder

Tangible User Interfaces: What are they good for?

Several experiments demonstrated their benefits

Tangible User Interfaces: Benefit over multitouch

What about multitouch input?

70

Tangible User Interfaces: Benefit over multitouch

What about multitouch input?

also space-multiplexed

Tangible User Interfaces: Benefit over multitouch

71

Two experiments

Acquisition

Manipulation

Manipulation

Assumes users already acquired the control widget

74

Tangible User Interfaces: Benefit over multitouch

Task: match position+orientation+cursor of blue object manipulating yellow object as quickly as possible

±5px

76

Tangible User Interfaces: Benefit over multitouch

Task: match position+orientation+cursor of blue object manipulating yellow object as quickly as possible

Mouse+Puck

Multitouch

Tangible

(all conditions sensed through multitouch table)

75

Tangible User Interfaces: Benefit over multitouch

Measures: Time to complete matching task
Subjective comfort
Subjective ease of use

Mouse+Puck

Multitouch

Tangible

Tangible User Interfaces: Benefit over multitouch

+ Little difference in comfort and ease of use

A participant:

« better degree of control
 with tangibles,
especially when rotating »

78

79

Tangible User Interfaces: Benefit over multitouch

Manipulation

Tangible User Interfaces: Benefit over multitouch

Two experiments

Acquisition

Acquisition

Tangible User Interfaces: Benefit over multitouch

Task: match position+orientation+cursor of blue objects manipulating yellow objects at all times

Mouse+Puck

Multitouch

Tangible

(all conditions sensed through multitouch table)

83

82

Tangible User Interfaces: Benefit over multitouch

Task: match position+orientation+cursor of blue objects manipulating yellow objects at all times

⇒ move between widgets ⇒ many (re)acquisitions

Tangible User Interfaces: Benefit over multitouch

Measures: root-mean-square errors
of all dimensions
(position, orientation and scale or cursor position if applicable)
of all devices

+ subjective preference, confort and ease of use

Tangible User Interfaces: Benefit over multitouch

+ Little difference in preference, comfort and ease of use

91

Tangible User Interfaces: Benefit over multitouch

90

Same pattern for multitouch and tangible

Tangible User Interfaces: Benefit over multitouch

multitouch

≠
tangible

number of contact points

multitouch: number of contact points

94

95

Tangible User Interfaces: Benefit over multitouch

multitouch:

number of contact points decrease ⇒ more accurate tangible:

number of contact points increase ⇒ more accurate

+ greater variability within and between participants

Tangible User Interfaces: What are they good for?

Several experiments demonstrated their benefits

Tangible User Interfaces: Benefit for distant interaction

- Techniques: Touch vs. Tangible slider
- Tasks: Tracking vs. Tracking + additional tapping

98

Tangible User Interfaces: What are they good for?

Several experiments demonstrated their benefits

Tangible User Interfaces: Benefit for distant interaction

· Comparing touch and tangible interaction

99

Tangible User Interfaces: Benefit over touch and overlay

Tasks: set horizontal position of cursor

Tangible User Interfaces: Benefit over touch and overlay

Tasks: set horizontal position of cursor

- Press green button;
 Acquisition of required tool;
 Move towards and stay in target for 1 second;
- 2. Move cursor back and forth 5 times between two targets

102

Tangible User Interfaces: Benefit over touch and overlay

• Task 1: acquisition and movement

	Touch	Overlay	Tangible
Slider		0	
Single-turn dial			

• Task 2: repetitive task

	Touch	Overlay	Tangible
Slider			
Single-turn dial		7	
Multi-turn dial (with CD gain 3x)		•	

Tangible User Interfaces: Benefit over touch and overlay

	Touch	Overlay	Tangible
Slider			
Single-turn dial			
Multi-turn dial (Task 2 only: with CD gain 3x)			

103

Tangible User Interfaces: Benefit over touch and overlay

Task 1: acquisition and movement

Tangible User Interfaces: Benefit over touch and overlay

Task 1: acquisition and movement

No difference found for sliders: because of manipulation problem with tangible sliders: "participants complained that they were wobbly and required some pressure"

Tangible User Interfaces: Benefit over touch and overlay

Task 2: Repetitive movement

106

Tangible User Interfaces: Benefit over touch and overlay

Task 2: Repetitive movement

Tangible User Interfaces: What are they good for?

Several experiments demonstrated their benefits

Tangible User Interfaces: What are they good for?

2D

Tasks

- Find and indicate a range of values
- Find and sort values
- Find and compare values

Measures

- Time
- · Error rate

110

Tangible User Interfaces: What are they good for?

3D Mono 3D Stereo

Users are:

- · Around 20% faster with Tangible than with 3D
- Around 40% faster with 2D than with Tangible
 - however, effect weaker if the task cannot be solved by one 2D cut

111

Tangible User Interfaces: What are they good for?

2D

3D Mono 3D Stereo

Among possible explanation: Touch & Proprioception

3D mono/stereo	Tangible
sequential: rotate; mark; rotate; etc.	parallel: rotate // mark*
occluded bars impossible to reach with the mouse cursor	occluded bars reachable with the fingers
mouse cursor does not occlude the bars	proprioception compensate for fingers that occlude the bars

Proprioception

Definition:

- Perception of our own body
- Sense of the relative position of our limbs through our skin, muscle, joints and inner ear

Among possible explanation: Direct rotation

3D mono/stereo	Tangible
"Indirect" rotation (mapped to x and y axis of mouse)	"Direct" rotation

114

115

Tangible User Interfaces: What are they good for?

2D 3D Mono 3D Stereo Tangible

Impact of all possible explanations?

- Touch & Proprioception?
- Direct rotation?
- Visual Realism?

Tangibles User Interfaces: What are they good for?

- Direct rotation: very little faster compared to indirect rotation
- Visual Realism: around 13% faster compared to onscreen
- Touch & Proprioception: around 15% faster than no touch
 - unload cognitive effort into a physical action

Tangible User Interfaces What are their limitations?

118

Graphical > Tangible?

