

Augmenting the Scope of Interactions with
Implicit and Explicit Graphical Structures

Raphaël Hoarau

Université de Toulouse, ENAC, IRIT

7 av. Edouard Belin, Toulouse, France

raphael.hoarau@enac.fr

Stéphane Conversy

Université de Toulouse, ENAC, IRIT

7 av. Edouard Belin, Toulouse, France

stephane.conversy@enac.fr

ABSTRACT

When using interactive graphical tools, users often have to

manage a structure, i.e. the arrangement of and relations

between the parts or elements of the content. However,

interaction with structures may be complex and not well

integrated with interaction with the content. Based on

contextual inquiries and past work, we have identified a

number of requirements for the interaction with graphical

structures. We have designed and explored two interactive

tools that rely on implicit and explicit structures:

ManySpector, an inspector for multiple objects that help

visualize and interact with used values; and links that users

can draw between object properties to provide a

dependency. The interactions with the tools augment the

scope of interactions to multiple objects. A study showed

that users understood the interactions and could use them to

perform complex graphical tasks.

Author Keywords

Graphical Interaction Design, Instrumental interaction,

Exploratory Design.

ACM Classification Keywords

H5.2 [Information interfaces and presentation]: User

Interfaces: Graphical user interfaces - Interaction Styles.

General Terms

Design, Human Factors.

INTRODUCTION

When using computerized tools such as real-time editors,

presentation software, GUI builders, etc. users create and

manipulate graphical objects on the screen. They can edit

them individually, e.g. change their color or their stroke

width. Users can also consider and interact with sets of

objects as opposed to individual objects. To do so, they may

be required to structure the scene, by relying on concepts

such as groups, styles, or masters. According to the Oxford

dictionary, a structure is “the arrangement of and relations

between the parts or elements of something complex”.

Using a structure may have multiple assets, such as helping

users conceptualize the scene they are creating (“the back-

ground of the slide includes this drawing and this text”,

“this set of slides is a subpart of the presentation” etc.), and

think better about the problem at hand. Here, we are

interested in structures as means to interact with the

content: since structuring involves sets of objects, the

actions done on an element of the structure may have an

effect on several objects at once.

In current interactive systems, the use and the management

of structures may be complex. Users have to create and

maintain them. Depending on the kind of structure, some

operations may be cumbersome or impossible to do, which

prevents users to explore the design space of their particular

problem. Furthermore, systems that provide structuring do

not leverage off the structures fully to provide users with

new ways of interacting with the content.

Interactions with structure and with multiple objects

through a structure have not been studied extensively in the

past. Of course, a number of past works have identified the

problem [6], but few concepts or properties targeted it

explicitly [2,12]. For example, what are the interactions that

enable users to define sets of objects? What are the

available means to augment the scope of interaction i.e.

apply an interaction to several targets? What are the

concepts that may guide the design of such interactions?

The work presented in this paper aims at improving the

management of structures as means to augment the scope of

interactions. Based on contextual inquires and related work,

we present a number of requirements pertaining to the

interactions with structures. We then present two interactive

tools that aim at fulfilling those requirements. The first one

is ManySpector, an inspector for multiple objects.

ManySpector displays all used values for a property given a

set of differing objects, whereas a traditional inspector

displays no value. This reveals an implicit structure of

graphics (the sets of objects that share a graphical property)

and offers new interaction means. The second one is based

on links that users can draw between object properties to

provide a dependency. The resulting property delegation

graph is a means for users to provide an explicit structure.

We then report on a user study involving those tools.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1937

CONTEXTUAL INQUIRIES AND SCENARIO

We have based our work on concrete and realistic case

studies. We have conducted five contextual inquiries with

“designers”, the design activity being taken in its broadest

sense: edition of graphics (Illustrator and OmniGraffle),

courses schedule (iCal), architecture (Auto-CAD), or

lecture presentation (PowerPoint). We have written a dozen

scenarios that describe accurately the activities.

In order to introduce the problem, we present one of the

scenarios. This scenario illustrates a number of

requirements pertaining to interactions on several objects,

with or without a structure. The scenario is real but adapted

slightly for illustration purpose: some interactions that are

deemed as impossible (e.g. with Inkscape) might be

possible with other tools (e.g. with Illustrator and vice-

versa). The steps are annotated in italic to characterize

them. We detail the annotations later in this section.

Elodie is a designer tasked with creating the graphics of a

custom software keyboard for a tablet computer. Using a

graphical editor, she creates a first key. She draws a

rounded rectangle with a solid white fill and a surrounding

stroke. She adds a rectangle inside the previous one, with a

blue gradient fill (no stroke). She selects both rectangles

with a selection lasso (designation) and groups them with a

command in a menu (structuring). She then adds a soft

shadow effect on the group. She overlays a label with a text

„A‟ on the group of rectangles and centers the label and the

group by invoking a „center‟ command on a toolbox. She

then forms another group with the label and the groups of

rectangles, and names it “key” in the tree view of the

graphical scene provided by the application (structuring).

This first key serves as a model to create other keys: she

duplicates the key, and applies a horizontal translation to

the copy. She proceeds with this action several times in

order to get a row of keys (Figure 1). She then modifies the

text of each key one by one (Figure 2).

Figure 1. The user creates a key, and duplicates it.

Figure 2. The text of the „I‟ key is not centered.

When she changes the letter „A‟ for „I‟, she realizes that the

„I‟ text is not centered with regards to the rectangles (Figure

2). The first object was specified incorrectly: if the three

objects (label, gradient rectangle, rectangle) are correctly

aligned, the text of the label is not centered. The problem

was not noticeable with the first letters (AZERTYU) since

their widths are similar. Each label being in a

heterogeneous group (containing object types other than

label), the system does not provide a text center command

that can be applied to a selection of objects. She has to click

multiple times on an object to reach the label and apply the

„text centered‟ command. Therefore, she estimates that it is

more efficient to start over: she deletes all copies, ungroups

the first key, centers the text, groups the objects again,

copies and moves the copies, and modifies each letter one

by one.

Figure 3. The entire keyboard with the double keys.

Elodie has finished the entire keyboard. Some of the keys

are double keys that contain two smaller labels at the top

and the bottom of the key (Figure 3). She wonders whether

the double key labels are too small and she wants to explore

new sizes (exploratory design). First she has to find each

double key in her design (searching). To do so, she zooms

out to make the keyboard entirely visible. This allows her to

identify each double key. Again, she has to change the size

of the labels one by one.

The scenario illustrates several requirements.

Structuring Elodie relied on the ability of the system to

allow creation, modification, and management of sets. For

example, she created a single group with two rectangles,

then another group with the previous one and the label.

Designation Elodie designated objects, properties and

actions. For example, she changed the “alignment” property

of the label to “centered”.

Scope of actions Elodie acted on multiple objects at once.

For example, she grouped objects because she wanted to

consider them as a single entity that keeps the relative

positions between subparts, but also because she wanted to

apply a single translation on three objects at once.

Conversely, she was not able to apply the command „set

alignment‟ to several objects at once.

Seeking Elodie needed to retrieve objects: she had to search

objects whose content is similar to other ones. The search

action requires visually scanning the graphical objects and

seeking candidate objects, at the risk of forgetting some of

them. The more the objects, the more difficult it is to find

out particular ones, especially if the features to search for

are not pre-attentive [4]. As the number of keys increases,

each modification gets more costly, not only because of the

number of actions to repeat, but also because of the

required visual search effort.

Exploratory Design Elodie explored parts of possible

solutions, and modified existing parts of solutions. By

combining action, visualization of intermediate results and

thinking, she co-discovered the problem and the solution. In

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1938

doing so, she was pursuing an exploratory design activity.

This phenomenon is important for activities in which the

expected result is not known in advance: graphics edition

activities, slides design, or class hierarchy design [8][24].

RELATED WORK

Past works have tackled the problems of managing

structures, and interacting with multiple objects, either

explicitly or implicitly. We present them along three axes:

interactions for structuring the content provided by

interactive systems, design and evaluation of interactions

for structuring, and structuring in programming.

Structuring for users

Groups Traditional graphical editors allow users to create

groups from a set of objects previously selected by the user,

and to act on those groups. The only operation available for

a group is „ungroup‟, which removes the group entity and

selects all objects that were part of the groups (no

modification, addition, or subtraction). Selection can be

seen as a transient group, with „add‟ and ‟remove‟

operations by holding the shift key and selecting several

elements, or holding the ctrl key and clicking on individual

elements. Some tools support heterogeneous settings, but

with specific properties only e.g. translation, scale and

rotation: all elements in the group are transformed

accordingly. Conversely, some operations (e.g. „set color‟)

cannot be applied to groups, supposedly because some

elements inside the group do not “understand” them. This

forces the user to ungroup and apply the command on each

object. In this case, interaction with the structure is not well

integrated with interaction with the content.

Trees Groups can be part of a surrounding group, turning

them into trees or hierarchies. Support for management of

such hierarchy ranges from no support at all, to navigation

in the hierarchy of parents [18], and tree views in structured

graphics editors (e.g. Inkscape or Illustrator). A tree view

enables users to reparent elements with a drag and drop.

However, there is no support for other operations, such as

applying a color to a node in order to change all children.

Masters A Master is an element used as a “model” for other

elements. For example, PowerPoint enables users to define

in a master slide the appearance that other slides would

inherit. Sketchpad introduced masters as shareable objects

that could be used in multiple locations in the scene [22].

Changing a property of the master would modify all objects

that depend on this master. This was a way to reduce the

number of actions required from the user when something

must be changed.

Properties Presto is a document management system that

enables users to tag documents with properties, e.g.

year=2012 [5]. Properties provide a uniform mechanism for

managing, coding, searching, retrieving and interacting

with documents. For example, users can define directories

(i.e. a set) of documents using properties: either by

extension (by putting elements into the directory), or by

intension (with a query such as size >500k). Conversely to

purely hierarchical structures, properties enable objects to

be part of several overlapping sets.

Graphical search Graphical Search & Replace [13] allows

users to search for elements based on their graphical

properties (designation) and change at once a particular

property for all found objects (multiple scopes).

Applications like Illustrator provide such a tool but through

a dialog box, not by direct manipulation.

Surrogates Surrogates are specialized interactors that allow

users to interact with the surrogate instead of the domain

object [12]. Similarly to classical inspectors, surrogates

expose attributes that are common to objects, by

automatically narrowing the surrogate to the lowest

common ancestor. This enables users to interact with those

values and modify several objects at once.

User-defined macros and Programming by example User-

defined macros allow for automation of repetitive tasks

[15]. The user proceeds with an example of the task to re-

peat, and an algorithm abstracts the actions, so as to enable

application on other objects.

Structuring for exploratory design Some structuring

techniques have been designed to support exploratory

design. The list of reversible actions is an implicit

mechanism to help users not to fear possible damages [23].

Side Views display previews of interactive commands [25].

Parallel Paths support alternative exploration by relying on

an arborescence of creations instead of a linear history, and

on the simultaneous views of parallel results (comparison)

[26]. Acting on a node of the creation path enables users to

manipulate the subsequent designs at once (scope).

Structuring for designers

Interaction designers have already identified the need for

many modifications with a low number of actions.

Cognitive dimensions In the cognitive dimensions of

notation framework [8], the problem described in the

software keyboard scenario is identified as “viscosity”. It

exhibits when the structure of the information contains a lot

of dependencies between parts, which implies that a small

change leads to numerous adjustments from the user.

Viscosity is a hurdle to modification and exploratory design

[9]. Since it may be costly to apply the changes, the user

refrains from exploring alternatives. A solution to viscosity

consists in creating an “abstraction”, a “power command”

that would act on several objects [9]. An abstraction is a

class of entities, or a grouping of elements that users will

handle as a single unit e.g. styles in a text document.

Abstraction can be costly. Learning, creating and modifying

them require time and effort that should be balanced with

investment in repeating a small sequence of actions to solve

a small problem. Besides, abstractions can be a hurdle to

exploratory design if they are required before any other

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1939

simple actions. Finally, abstraction may introduce hidden

dependencies: some parts of the scene may depend on

others in an invisible way, which makes it hard for the user

to predict the effect of a change.

Instrumental interaction and design principles Direct [23]

and instrumental [2] interaction techniques are efficient

with a single object: they lower the number of required

actions compared to other techniques, such as command

lines, conversational dialogue, or modal interactions.

Design principles related to instrumental interaction, such

as reification (turning an object into a thing), polymorphism

(applying the same change to different class of objects) and

reuse (of past selection and interactions result) extend the

scope of actions to multiple objects [2].

Cost of interaction techniques A particular technique is only

better than another with respect to the task to accomplish:

copy, modification, or problem solving (equivalent to

exploratory design) [16]. CIS is a model that helps describe

an interaction technique, analyze it, and predict its

efficiency in the context of use [1]. CIS defines four

properties for interaction techniques. Among them, Fusion

is the ability of a technique to modify several work objects

by defining multiple manipulations at once (scope), and

Development corresponds to the ability offered to the user

to create copies of tools with different attribute values.

Structuring for programmers

The problems raised so far can also occur during

development activities. For example, refactoring tools in

IDEs is an answer to the need for multiple scopes of action:

if the user changes the name of a method, the system

applies this change on each call of the method, possibly in

many classes or files. Styles can be implemented in a style

language (e.g. CSS), with a hierarchical structuring.

Changing a parameter in an intermediate node has an effect

on its children. Tags in the Tk toolkit allow the programmer

to structure objects in overlapping sets [21]. Changes can be

applied to graphical shapes or to a tag, and thus to the set of

objects that hold this tag (scope). Tags can be defined by

extension (with designated objects) or by intension (with a

predicate e.g. all blue objects) [21].

Prototype-based languages offer an alternative to class-

based languages for object-oriented programming [14][20].

They offer a flexible creation model that allows sharing of

properties and behaviors. Such mechanisms allow users to

structure a hierarchy of prototypes and to act on several

clones by manipulating a prototype in the delegation

hierarchy. Morphic reifies prototypes and clones into

graphic objects (called Morphs), and allows for their

construction and edition with direct manipulation [18].

Tools have been designed to help structure a prototype

hierarchy. For example, Guru is an algorithm that

automatically creates a well-organized graph of prototypes,

by factoring shared properties into new prototypes [19].

REQUIREMENTS

In this section, we synthesize the requirements for the

manipulation of objects through structures (Table 1). The

synthesis is derived from the contextual inquiries we ran,

and our analysis of the related work. Notably, the

requirements are related to the set of tasks identified in [6]

that are known to be difficult to perform with direct

manipulation techniques. We have expanded and refined

them in this section. We present 3 subsets of requirements:

managing sets of objects (R1), managing actions (R2),

fostering exploratory design (R3).

Manage sets of

objects (R1)

Search (R1.1)

Designate (R1.2)

Modify (R1.3)

Identify sets (R1.4)

Manage actions (R2)

Specify their nature (R2.1)

Specify their parameters (R2.2)

Specify the scope (R2.3)

Perceive consequences (R2.4)

Foster exploratory

design (R3)

Try (R3.1)

Evaluate (R3.2)

Short-term exploration (R3.3)

Compare versions (R3.4)

A posteriori structuring (R3.5)

Table 1: Requirements

Managing sets consists in searching (R1.1), and

designating (R1.2) the objects that are part of a set. It is also

necessary to modify (R1.3) the sets (add, remove elements).

Finally, users must be able to identify (R1.4) the objects that

belong to a particular set, or determine the sets a particular

object belongs to.

Managing actions consists in specifying their nature (e.g.

by clicking on an „alignment” icon, or a menu) (R2.1), their

parameters (“vertical” or “horizontal”) (R2.2) and their

scope (R2.3). Perceiving their consequences (R2.4) with

appropriate feedback enables the user to realize the effects

of its action after, and even before it is triggered [23].

In order to support exploratory design, it is important to

provide users with tools that enable them to try (R3.1) and

evaluate (R3.2) solutions during short-term exploration

(R3.3), and compare different versions during middle-term

exploration (R3.4) [24]. When satisfied with the results,

users must be able to extend the modifications to other

objects. If the system does not support this task efficiently,

users will have to repeat the same actions to propagate

changes (viscosity). Finally, if structuring is a solution to

the viscosity problem, it is a hurdle to exploration if

required a priori. Therefore, structuring should be made a

posteriori (R3.5) i.e. when actions have already been done.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1940

INTERACTIVE TOOLS

We have explored a number of interaction techniques to

offer new ways of interacting with multiple objects through

structures. To design them, we involved the users we

interviewed in a participatory design process, with 2

brainstorming and sketching sessions, and 5 evaluation

sessions, as demonstrated in [17]. In the following, we cite

the requirements that each feature is supposed to address.

Requirements serve both as rationale to explain the design,

and to help readers determine whether they are satisfied by

our claims that the design fulfills the requirements.

Figure 4. Overview of the application. Center: workspace, top-

right: samples; bottom right: inspector.

Overview

To illustrate the interactive tools, we have designed a

graphical drawing application. There are four parts: a tool

palette on the left side, a workspace in the middle, a sample

panel on the top right corner, and an inspector on the

bottom right corner (see Figure 4). The workspace is the

main view, where users can create a new object by clicking

and resizing. Selection is performed by clicking on an

object or by drawing a rubber rectangle to encompass

several items, as implemented in usual graphics editors. A

bounding box with handles surrounds selected items.

The samples panel contains a set of values for shape

(square, oval, T for text), fill color (represented by a

colored square), stroke color (stroked-only colored square)

and stroke thickness (stroked-only circle). In order to

modify a property of an object in the main view, users can

drag a sample and drop it onto the object. Feedback is

shown as soon as the sample hovers over the object, in

order for the user to understand the action and to assess the

change before effectively applying it by releasing the

mouse button. This enables the user to cancel the action, by

releasing the button outside of any object (R3.1 try, R3.2

evaluate, R3.3 short term, R3.4 compare, R2.4 perceiving

consequences). Drag and drop of samples also applies to a

selection of objects. The interactions described so far are

not entirely novel. The next sections present two tools with

novel interactions.

Figure 5. The user‟s selection contains objects with varying

shapes, fill colors, width, and height. A classical inspector (left)

displays a blank fill for those properties, whereas

ManySpector (at right) displays all different values.

Implicit structure: ManySpector, an enhanced inspector

An inspector (or property sheet [11]) is a window

containing a vertical list of pairs of property name and

value (e.g. shape: rectangle, color: green, thickness: 3). An

inspector offers two services to the user: visualizing values

with progressive disclosure and modifying them [11]. If

multiple objects are selected, a classical inspector only

displays values shared by all selected objects (e.g. stroke

color in Figure 5, left). Users can change such a value, and

the system reflects the change to all selected objects. The

inspector does not display any value for properties for

which there are multiples values (e.g. fill color in Figure 5,

left). Users are thus not informed about those values, and

sometimes cannot modify them through the inspector.

We have designed ManySpector, an inspector that displays

all used values for a property given a set of differing

objects. For example, in Figure 5-right, the Fill property

displays all colors used by objects in the selection. Used

values reveal an implicit structure of graphics, the sets of

objects that share a value for a given property. Though not

explicitly defined by the user, we think that such sets may

be useful, since users sometimes think about objects with a

graphical predicate (“all red objects”). We relied on the

display of used values to design a set of interactions that

offer new services for exploratory design and structure-

based interaction: query and selection of objects with

graphic examples, selection refinement, and properties

modification on multiple objects.

The representation of a shared value in ManySpector

actually reifies [3] both the value per se, and the set of

selected objects that exhibits this property value. As a value

per se, and similarly to the interaction with the sample

panel, users can drag the shared value (considered as a

value) from ManySpector onto (a selection of) objects in

the main view to modify a property. If the shared value is

numerical, users can hover over it and rotate the mouse

wheel to increment or decrement it (scope and specify

actions). Together with immediate feedback, this enables

both exploration and precise adjustment of properties, thus

reducing temporal offset [2] between action and feedback.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1941

ManySpector limits the number of used values to half a

dozen. If the number of used values is larger, a scrollbar

enables the user to browse through all values. When the

cursor hovers over a property placeholder, an animation

enlarges it smoothly to reveal other used values.

Figure 6. The cursor is over the blue shared value of the fill

property. Because they don‟t have this shared value, the green

rectangle, the pink circle and the two yellow shapes are dim.

Figure 7. Starting from Figure 5, a) the user drags a “stroke

thickness: 6pt” sample over the “fill: yellow” shared value.

Immediate feedback turns the stroke thickness of all yellow

items to 6pt. b) the user has dropped the sample, the

modification is applied.

Since a shared value also reifies a set of objects, hovering

over a shared value highlights the relevant objects while

blurring others with a short animation (Figure 6). This

makes it easy to figure out which set is made of what

(identify sets R1.4), and to detect outliers and fix them.

Users can drag a sample (a value) from the sample panel

onto a shared value (considered as a set of objects) to

modify at once a property for multiple objects (R2.3 scope)

(Figure 7). Users can also drag a shared value (value) onto

another shared value (set) (Figure 8).

To select objects, users can click on them in the workspace,

or draw a selection rectangle. In order to refine the

selection, users can use three meta-instruments (i.e.

instruments that control instruments, here the selection):

Remover, Keeper and Extender. The interaction consists in

a drag and drop of the representation of the instrument onto

a shared value. Remover throws out of the selection all

objects that have this shared value (Figure 9). Keeper keeps

in the selection the objects that have this shared value, and

throws away the others. Extender adds to the selection all

objects that are not selected but that possess this shared

value. The instruments can also be dropped onto an object

of the scene to add or remove it from the selection. These

interactions extend the set of example-based queries

introduced above (R1.3 modify sets).

Figure 8. The user drags the “width: 280” shared value and

drops it on the “shape: circle” shared value. All circles in the

selection now have a width set to 280.

Figure 9. The user drags the Remove tool onto the “fill: blue”

shared value. Blue objects are removed from the selection.

Explicit structure: the property delegation graph

Besides ManySpector, we have explored an interactive tool

that enables users to structure the content explicitly. Users

can specify that a property of an object (the clone) depend

on the property of another object (the prototype). A

prototype is similar to a master in Sketchpad: when users

change a property of a prototype by dropping a sample from

ManySpector onto the prototype, all dependent clones are

changed accordingly (R1.3 modify sets, R2.3 scope).

The interaction to specify a dependency is as follows

(Figure 10): by clicking on an object, users can toggle the

display of the properties around it. They can press on a

property, draw an elastic link, and drop it onto another

object as if they were dropping a sample. The clone object

appearance reflects immediately the appearance of the

clone for that property. Users can remove a link by pressing

the mouse button in the blank space, drawing across the

links to be deleted, and release the button.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1942

The system proposes two ways of creating new objects

from existing ones: either by copying it or by cloning it

(R1.3 modify sets). Copying is the regular copy operation:

properties from the copy are independent from the

properties of the source. Cloning enables users to get a

clone, whose properties are entirely delegated to the copied

object (the prototype) (Figure 11). By creating a clone,

users minimize the number of actions required to specify a

single difference with the prototype: if they copied instead

of cloned, they would have to link all shared properties.

Explicit structuring is supposed to bring more action power,

at the expense of increasing viscosity and hindering

exploratory design since users have to manage a structure.

We have lowered these drawbacks with a posteriori

structuring and by leveraging off ManySpector. For

example, choosing to clone or to copy may be premature at

the moment of the creation of a new object from an existing

one. To solve this problem, users can decide to change them

to a copy or a clone after the creation of the object (R1.3

modify sets, R3.5 a posteriori structuring). This is made

possible by tracing the history of objects, and how they

were created. Toggling between copy and clone only affects

the properties that were not set explicitly by the user.

Another problem is to interact with similar objects in order

to make them depend on a prototype. A viscous solution

would be to interact with each object and making it a clone

of the prototype. A more efficient solution consists in

selecting the objects that are to be clones, and in dropping

the property of the prototype onto an object of the selection

(R1.3 modify sets, R3.5 a posteriori structuring). Users can

also drop the property onto a shared value in ManySpector

(Figure 12), which links all objects sharing that value to the

prototype.

The property delegation graph is an extension of the

delegation tree found in prototype-based languages [14].

However, with a tree, objects cannot have multiple parents.

For example, the scene tree available in illustrator may be

helpful to conceptualize the scene, but is unable to help

specify cross-branches relationships. Conversely to a tree, a

node in our graph of properties can have multiple parents.

This enables users to be more specific about the parent that

holds a particular property: a node can delegate „fill‟ to a

prototype A, and „stroke-width‟ to a prototype B.

Discussion about the design

The interactions are consistent: they all use modeless

interaction based on drag and drop, be it from or on an

object on the scene, a shared value, or a prototype. With

immediate feedback and a posteriori structuring, they also

support exploratory design. The properties are immediately

visible (no need to devise a query): users can try and test by

hovering over and off the used values, and assess the results

thanks to immediate feedback without applying the change

(button still pressed).

The interactions we devised can be considered as a kind of

surrogates [12]. We have expanded them by explicitly

taking into account the interaction to manage the selection

and explicit structuring. Furthermore, our version exposes

not only common properties but also all used values, which

makes direct the access to more subsets and expands

notably the scope of interactions. Of course, existing

systems enable users to obtain the same final results, and

even by relying on similar concepts (flash, sketchpad).

Those systems actually provide the same functionalities, but

not the same interactions. For example, existing tools do

enable users to perform a graphical search, but with an

indirect manipulation (through a menu and a dialog box).

This prevents users from quickly trying and testing changes

and hinders exploratory design. In addition, interactions are

not well integrated e.g. in Illustrator, there is a tree view,

but users can use it only to select a branch then apply a

limited set of changes on the selection.

As such, the prototypes have issues. For example, more

work needs to be done with respect to scalability:

ManySpector is not able to handle very large sets of used

values. The solution with a scrollbar and progressive

disclosure may not be sufficient. The prototype/clone view

also needs more work: if the links are numerous, the scene

may result in a mess of tangled links. Again, progressive

disclosure is a possible solution but we are also exploring

other representations and interactions [10]. Furthermore, the

system does not check for cycle when the user tries to link

two properties. Appropriate feedback is necessary to

prevent it, such as displaying the links to show a potential

cycle when hovering over a property.

Figure 10. The user draws a link between the fill property

of the green object (the prototype) into the blue object (the

clone) to specify a dependency. The fill color of the clone

turns to the color of the prototype (green).

Figure 11. The user has

selected the clone to see the

dependency.

Figure 12. The fill property is

dragged onto a used value to

specify that the fill property of a set

of objects depend on the prototype.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1943

USER STUDY

We have argued in the previous sections that our tools are

novel, consistent and effective for performing structure-

based interaction. Assessing those claims is not a

straightforward task. We were especially concerned with

the understandability of the used values concept, and the

fact that they refer either to a value or the set of objects that

share this value. Would it be too difficult for users to grasp

the shared value concept and linked properties? Even if

users understand them, how would they struggle when

trying to use them to interact with multiple objects? Finally,

can users translate high-level problems into graphical

interactions with used values and linked properties?

Figure 13. The scene containing many objects.

Tasks

The evaluation session was divided into three parts, each

dedicated to one of the three questions above. The first part

was devoted to a tutorial that teaches users about used

values and links, and how to interact with them in the

graphical editor. The two other parts are scenarios that were

designed so that they implement the requirements.

In the tutorial, we instructed users to create a few objects,

link them, change their color or stroke thickness, with a

single object or a set of objects. The tutorial lasted 10min

and included 15 simple tasks. Users were actually

manipulating the mouse and performed interactions while

they were listening to our instructions. The goal of this

tutorial was not only to instruct users, but also to see if they

understood the design. We assessed their understanding by

observing them perform small tasks with no instructions

and by asking them if they were confident in their

understanding. We did not assess discoverability since we

began with a tutorial. This aspect is left for future work.

The second part of the session was an actual test. The test

was still using the graphical editor, but this time with a

scene containing multiple (50) differing objects (see Figure

13). We asked users to perform more complex tasks such as

„change the thickness of all yellow circles to the maximum

of all thicknesses‟. We did not give any instructions, and

left users perform the tasks by themselves. One of the

expected benefits of used values is to help users select a set

of objects with minimal interactions. Hence, we designed

the tasks to make traditional selection (i.e. a selection

rectangle, or adding shapes to the selection by shift-clicking

on them) more and more difficult either because they

involve multiple objects (scope R2.3), or because they

involve graphical properties that are not perceptually pre-

attentive (search R1.1, identify sets R1.4). For examples,

the task “change all circles‟ color” is difficult because users

need to find all circles in a scene, a visual task known to be

non pre-attentive and that requires a cumbersome one-by-

one scan of graphical objects (try on Figure 13). Users were

free to carry out the tasks the way they want, either by

selecting shapes with the traditional way or using

ManySpector (designate R1.2). The goal of this second part

was to assess the extent to which users would rely

voluntarily on used values and links, whether they would be

able to perform non-trivial graphical tasks (specify action

R2.1 and parameters) R2.2), and how well they could

interact with used values and links.

Figure 14. The calendar view.

The third part involved a calendar application. Users were

manipulating events on a week view (see Figure 14). Events

are represented with rectangles with a title text and a start

hour text. They are placed horizontally according to day of

occurrence in the week and vertically according to the time

in the day. The screen is filled with seven columns, one per

day in the week. Instead of graphical properties, the

ManySpector window contained calendar-related properties

such as start, duration, title etc. as in the iCal inspector.

Conversely to iCal, ManySpector displays used values. This

allows for modification of unrelated events, while iCal

allows for modification of multiple repeated (i.e. recurring)

events only. We provided a partially filled schedule and we

asked users to act as if they were teachers trying to schedule

lecture sessions during the week with a schedule “manager”

(the role we played). For example, we asked them to place a

2-hour long lecture Wednesday afternoon. Then we told

them that when we said “place a lecture at 10am”, we

actually meant “10:15am”, so they had to change all

“10am” lecture events to “10:15am” (a posteriori

structuring R3.5). The goal of this third part was to assess

whether users could translate higher-level tasks to graphical

interactions with our tools. The tasks were high-level, and

required users to try R3.1, perceive the consequences R2.4,

evaluate R3.2 and perform short-term exploration R3.3.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1944

Since the calendar scene contained few elements only

(~15), we were expecting that users would rely on

traditional selection. Hence we asked them to use

ManySpector instead of the traditional selection.

Subject profiles

We performed the tests with five subjects. Three of them

use calendar application in a day-to-day basis, one of them

was a graphical designer used to applications such as

Illustrator, and one was a casual user of graphical tools such

as presentation software. They were all aware about the

viscosity problem that might occur when using such tools.

Only the graphical designer was involved in the

participatory design process, hence four users discovered

the interactions for the first time.

Procedure

We asked subjects to think aloud [7] while they were

acting. We observed them and logged what they tried,

whether they struggled, made errors or succeeded. At the

end of the second and third part, we made them fill a

questionnaire to rate the difficulty and cumbersomeness of

the tasks, and the usefulness of the design with a Likert

scale from 1 (negative) to 5 (positive). Results are given in

the following, with the mean and the standard deviation.

Results

We did not notice serious understandability problems.

Users were able to manipulate shared properties and links,

and succeeded in performing simple tasks at the end of the

tutorial. When asked about their confidence, some of them

felt that they needed some learning “to do it well”. We

showed them many interactions, but even if the interactions

are well integrated, users felt that they could not get

familiar with them within such a short time. In addition,

because there were several possibilities to accomplish tasks,

users were always eager to find the best way of

accomplishing it, which adds to their feelings. Our

confidence into users‟ understandability got stronger when

we witnessed that they got more capable as they were

performing the second and third part. We even observed

users trying interactions that we did not designed but that

were perfectly meaningful, such as using selection

instruments (keep, remove) directly on samples to avoid the

necessity to perform a selection of the entire scene,

dropping a value onto a property name to apply it to all

objects, or dragging a sample next to existing used values to

extend the selection. This suggests that the design was

consistent and predictable.

We did notice some difficulties when users performed more

complex graphical tasks in the second part (ease of

translation in graphic scenario: mean: 3.6, stddev: 0.5).

This can be explained by the fact that users were still

learning the interaction. They also told us that the tasks

were rather abstract. In fact, since the tasks were purposely

complex, they lacked significance (none performed „change

the thickness of all yellow circles to the maximum of all

thicknesses‟ in real-life). They struggled to understand and

memorize them, which hindered their ability to devise a

solution. The four non-graphical designers found the

requests much less difficult in the last part with the calendar

application and meaningful tasks. Still, all subjects were

able to accomplish every tasks of the second part by

themselves. (mean of the easiness of the 9 subtasks of the

graphic scenario: 4.6; 0.5).

We were wondering about voluntary use. We observed

what we expected: with tasks that involve pre-attentive

properties (such as color-oriented one: „turn yellow objects

into red‟), subjects were sometimes still using a traditional

selection. However, they turned by themselves to used

values with non-pre-attentive tasks, or when the number of

objects was too important. They also used links when we

asked them to repeat an interaction on the same set of

objects: after a number of repetitions, some subjects turned

a specific object into a master. This enabled them to be

more efficient than devising a selection again with the

ManySpector. All kinds of interaction were performed

(with samples, used values, links), and all combinations of

source and destination for drag and drop were witnessed.

We did not notice difficulties when users had to translate

higher-level tasks into interactions in the calendar test (ease

of translation in calendar scenario: 4.2; 0.8). We witnessed

a tendency to use traditional selection for very simple tasks.

When we forced users to employ our interactions instead,

they did not have difficulties to do so (mean of the easiness

of the 7 subtasks of the calendar scenario: 4.7; 0.5). This

suggests that the interactions can be applied to other

contexts than graphical edition.

Even if we did not plan to evaluate usability, the tests

revealed some issues such as the difficulty of interacting

with the text boxes. Users also found limits to the

interactions we proposed: in some cases, users would have

liked to keep objects based on a combination of values

instead of a single one. As expected, links lacked visibility

and legibility when numerous.

All in all, the study allowed us to answer positively to our

concerns: the tools fulfill the requirements since users were

able to understand the interactions, could perform complex

graphical tasks with them and could translate higher-level

tasks into them. Users judged ManySpector very useful

(ManySpector usefulness: 4.8; 0.4). They liked explicit

structuring with links though not as much as used values

(links usefulness: 4.4; 0.9). They also praised the fact that

there was no imposed strategy and that they could perform

tasks their way.

CONCLUSION

We have tackled the problem of interaction with structures,

and interaction with content through structures. We have

defined a set of requirements and have explored a set of

consistent interactions that provide partial answers to the

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1945

requirements: ManySpector, an inspector for multiple

objects, and explicit delegation links. A study showed that

users are able to perform complex graphical tasks with

them. The examples involved a drawing editor and a

calendar but the requirements and interactions are not

specific to these applications, and can be applied to others.

Our interactions suffer from some problems such as

scalability (though this may not be a problem for e.g. the

calendar) and legibility. Other designs are possible: we are

currently investigating other forms of explicit structuring

with no links. We also plan to assess how well those

interactions support exploratory design.

ACKNOWLEDGMENTS

We thank all participants of the workshops, and our

colleagues for early and late feedback on the paper.

REFERENCES

1. Appert, C, Beaudoin-Lafon, M, Mackay, W. E. Context

matters: Evaluating Interaction Techniques with the CIS

Model. Proc. HCI'04, 279-295. Springer Verlag, 2004.

2. Beaudouin-Lafon, M. Instrumental Interaction: An

Interaction Model for Designing Post-WIMP User

Interfaces. In Proc. CHI 2000, ACM, 446-453.

3. Beaudouin-Lafon, M. and Mackay,AW. E. Reification,

polymorphism and reuse: three principles for designing

visual interfaces. In Proc. of ACM AVI 2000, 102-109.

4. Conversy, S., Chatty, S. and Hurter, C. Visual scanning

as a reference framework for interactive representation

design. In Information Visualization, Sage, 2011.

5. Dourish, P., Edwards W.K., LaMarca, A. and Salisbury,

M. 1999. Presto: an experimental architecture for fluid

interactive document spaces. ACM Trans. Comput.-

Hum. Interact. 6, 2 (June 1999), 133-161.

6. D. M. Frohlich. The history and future of direct

manipulation. Behaviour & Information Technology,

12(6): 315–329, 1993.

7. Ericsson, K., & Simon, H. (May 1980). Verbal reports

as data. Psychological Review, 87 (3): 215–251.

8. Green, T.R.G., Cognitive dimensions of notations,

People & Computers V, 1989, Cambridge Univ. Press,

443-460.

9. Green, T.R.G, and Blackwell, A. Cognitive dimensions

of information artifacts: a tutorial. (Version 1.2), 1998.

10. Holten, D., Isenberg, P., van Wijk, J. J., Fekete, J.-D.

2011, An extended evaluation of the readability of

tapered, animated, and textured directed-edge

representations in node-link graphs, IEEE PacificVis,

195–202.

11. Johnson J.A., Roberts T.L., Verplank W., Smith D.C.,

Irby C.H., Beard M., and Mackey K. The Xerox Star: A

retrospective. IEEE Computer, 22(9): 11–29, 1989.

12. Kwon, B., Javed, W., Elmqvist, N., and Yi, J.-S. Direct

Manipulation Through Surrogate Objects. In Proc. of

ACM CHI 2011, 627-636.

13. Kurlander, D, Bier, E.A. Graphical Search and Replace.

In Proc. of ACM SIGGRAPH '88, 113-120.

14. Lieberman, H. 1986. Using prototypical objects to

implement shared behavior in object-oriented systems.

In Proc. of OOPLSA '86. ACM, 214-223.

15. Lieberman, H. Your Wish is my command:

Programming by example. Morgan Kaufmann, 2001.

16. Mackay, W.E. Which interaction technique works

when?: floating palettes, marking menus and tool-

glasses support different task strategies. In Proc. of AVI

'02. ACM, 203-208.

17. Mackay, W.E. Using Video to Support Interaction

Design. DVD Tutorial, CHI'02, ACM.

18. Maloney, J.H. and Smith, R.B. 1995. Directness and

liveness in the morphic user interface construction

environment. In Proc. UIST '95. ACM, 21-28.

19. Moore, I. 1996. Automatic inheritance hierarchy re-

structuring and method refactoring. In Proc. of

OOPSLA'96. ACM, 235-250.

20. Myers, B. A., Giuse, D. A. and Zanden, B V.

Declarative programming in a prototype-instance sys-

tem: object-oriented programming without writing

methods. SIGPLAN Notice 27, 10 (1992), 184-200.

21. Ousterhout, J. K. Tcl & Tk Toolkit. Addison-Wesley,

1994.

22. Sutherland I.E. 1963. Sketchpad: a man-machine

graphical communication system. In Proc. of AFIPS'63.

ACM, 329-346.

23. Shneiderman, B. Direct manipulation: a step beyond

programming languages. IEEE Computer 16(8), 57–69,

1983.

24. Terry, M. and Mynatt E.D. Recognizing creative needs

in user interface design. Proc. of Creativity &

Cognition. ACM, 38-44, 2002.

25. Terry, M. and Mynatt, E. D. Side views: persistent, on-

demand previews for open-ended tasks. In Proc. of

UIST 2002.ACM, pp. 71-80.

26. Terry M, Mynatt E.D, Nakakoji K, and Yamamoto Y.

2004. Variation in element and action: supporting

simultaneous development of alternative solutions. In

Proc. of CHI '04. ACM, 711-718.

27. Ungar, D, Smith R, B. SELF: The Power of Simplicity.

In Proc. of OOPSLA '87. ACM, 227-242.

Session: Old Mouse, New Tricks: Desktop Interfaces CHI 2012, May 5–10, 2012, Austin, Texas, USA

1946

