
Context Sensitive Flying Interface

Colin Ware* and Daniel Fleet*

Faculty of Computer Science
University of New Brunswick

Abstract

The requirement to change scale frequently is common to
many 2D and 3D applications. Users must “zoom in” to
examine details and “zoom out” to appreciate the context.
This presents a problem in the context of “fly by” interfaces
that use a flying metaphor to enable the user to change the
point of view and explore a data space. The problem is that
radical changes in velocity sensitivity may needed when
working at different scales. A method is described that uses
continous depth sampling to modulate the flying speed. The
distribution of depths in the current frame of animation i s
used to set the Device to Control ratio so that it is always
comfortable when operating over a range of scales. This i s
called Depth Modulated Flying (DMF). A family of related
methods are evaluated in a task that requires subjects to search
for small targets in a scene. The results show that scaling the
velocity control by the near point in the scene and by the
average point in the scene are equally effective.

CR Categories and Subject Descriptors: H.5.2[User
Interfaces]: Input devices and strategies; I.3.6 [Computer
Graphics]: Methodology and Techniques - Interaction
Techniques.
Additional Keywords: Camera control, Viewpoint
control, 3D Interaction.

1 INTRODUCTION

In interacting with geographical spatial data it is not
uncommon to work at multiple scales. In many cases the
scale problem is dealt with by using multiple windows - a
large working window and a small overview window to
provide context [12, 6]. An alternative is to make zooming
in and out so easy that when contextual information i s
desired, the user can rapidly move out for an overview and
back in to continue work. This is the approach taken Pad++
[2] and in other 2D display systems such as [1].

*Faculty of Computer Science, University of New
Brunswick, P.O. Box 4400, Fredericton, NB.
Canada, E3B 5A3
cware@UNB.ca | dfleet@UNB.ca

 In a notable study of the uses of scaling in 3D environments,
Robinett and Holloway suggest that an efficient navigation
technique is to “shrink the world down until the destination i s
within arm’s reach and then expand the world, continuously
steering the center of expansion so as to arrive at the
correctly scaled destination” [7]. Once the world is shrunk,
the hand can be placed at a center of interest in the 3D space
and the world scaled up around that point. In this way the
center of interest appears at arms length. We wished to
achieve the same functionality without an explicit scale
operation.

1.1 Application Requirements

We are engaged in building a highly interactive system to
visualize 3D geographic data. This is being done with
special attention to the needs of oceanographers. Our data
includes Digital Elevation Maps (DEMs) of the ocean floor,
sometimes draped with information about bottom type - for
example its softness. We also include seismic data that
provides a cross section of the strata beneath the seabed when
this is available. Artifacts such as pipelines, ships and buoys
may be placed on or above the sea floor. Some of our data
must be viewed and interacted with at multiple scales. In one
example we have a DEM representing the entire North-
Western Atlantic; embedded in this is a DEM representing a
few hundred kilometers offshore from Halifax, Canada, and
embedded in this is a DEM representing a few hundred meters
of sea floor around a wreck. The resolutions of these data sets
vary by four orders of magnitude.

Our challenge is to create a viewpoint manipulation interface
that works effectively over these large scale ranges and
allows us comfortably navigate and interact with the data
without having to manually adjust a speed control. We have
found that a flying interface is effective in this application
domain but as we encountered more examples that required
large scale changes the fixed velocity control became a
problem. A stop-gap measure was the addition of a user
interface for rescaling the scene, but this seemed to require
too much user intervention. We needed an automatic
solution. Before we describe our solution we introduce some
of the prior work on flying interfaces and some of the other
features of our system.

1.2 Flying Interfaces

Flying interfaces are common to many virtual environments.
As Chuck Blanchard said “Nobody walks in VR, they all fly”
[4]. Ware and Slipp [9] found that by using a non-linear
mapping between hand movement and velocity, subjects in a
controlled experiment could navigate through a tunnel that

changed in width over the course of its length by four orders
of magnitude. However, this stretched the limits of their
ability to control their motion. At the extremes (both small
and large scale navigation) this was not an easy interface to
use. An interesting result of the Ware and Slipp study was
that subjects tended to maintain a constant velocity relative
to the local scale of their environment. This suggests that an
interface that adapts the motion sensitivity to the local
environment should be desirable.

Point of view (POV) navigation is a method for moving the
viewpoint based on selected points in the scene (MacKinlay
et al. [5]). In this technique, the time to reach a target i s
proportional to the logarithm of the distance to the surface.
A simple way of implementing this is to make the velocity
towards the point of interest directly proportional to the
distance to that point. V = Kd.

POV navigation is an excellent method for zooming in and
out of scenes and working at a variety of scales. A great
benefit of POI navigation is that it is scale independent. It
takes the same time to halve the distance to a target if we are
working at astronomical scales, microscopic scales, or
anything in between. This is unlike most flying interfaces
that have an implicit default velocity built in. What POV
navigation lacks is a method for setting an arbitrary view. In
addition, it is not designed to be used for creating smooth
camera paths through a scene such as might be made for an
illustrative movie.

POV navigation is not the only way objects have been used in
controlling viewpoint navigation. Drucker and Zeltzer
generated a kind of potential space, using simple functions of
nearby surfaces to guide camera paths [3]. This allowed, for
example, the camera to move when the view of a subject was
blocked by another object.

In the DMF interface, we combine a flying interface with the
idea of making velocity proportional to distance. The idea i s
to sample the Z buffer in order to obtain information about
the depth distribution in the environment and modulate flying
speed accordingly. In one variation we also use a
differentially weighted sum of the depths in the scene in a way
that varies with the direction and rate of turn.

1.3 The Cylopean Scale

There is a particular geometric manipulation that is at the
heart of our visualization environment. We call this the
“cyclopean scale” and although it has been described
previously [10], we describe some of its salient features here
because they bear directly on our depth modulated flying
interface.

We initially developed the cyclopean scaling method to help
solve some of the problem associated with stereo displays.
The manipulation is easy to describe in geometric terms. The
scale consists of re-sizing the virtual environment about a
point midway between the two eyes of the observer as shown
in Figure 1.

This manipulation achieves a number of things:

• It brings the virtual environment to a position just
behind the screen where the focus information presented
to the eye is consistent with the degree that the eyes
have to converge. (A lack of convergence focus
consistency is thought to be a cause of eye strain.)

• The stereo depth for a distant scene is enhanced. Note
that the two stereo images of distant objects are identical
except for a translation equal to the eye separation.
However if cyclopean scale is applied, then stereo depth
appears.

• Since the scene is scaled to appear just behind the screen,
it is usually in a natural position for direct manipulation
operations.

The widgets that make up the flying interface are shown in
Color Plate 1. This interface consists of a set of three widgets
that control forward and backward motion, rotation about
horizontal and vertical axes, and lateral translation in the
plane of the screen (= virtual windshield) respectively. In
order to move forward, for example, the user depresses the
mouse button over the “forward” widget and drags the mouse
in a forward direction. The greater the movement, the greater
the increase in velocity. The widget retains motion
information and so if the movement is repeated the forward
velocity can be increased indefinitely [10].

Screen

Original Object

Scaled Object

The Cyclopean Scale

Scale
PointE

ye
ba

lls

Figure 1 The Cyclopean scale is a re-scaling of the scene
about the midpoint between the two eyes.

2 DEPTH MODULATED VELOCITY

In order to modulate velocity based on depth information, we
sample the Z buffer continuously so that the depth
information from a given frame is used to modify the velocity
for the next frame. We sample the Z buffer with 15 equally
spaced horizontal lines. The reason for limiting the number
of samples is the overhead of reading the Z buffer. Also, line
sampling is more efficient than point sampling for our
graphics hardware.

We have implemented five different methods for modulating
flight velocity based on the depth samples. In all of these
methods the speed can be controlled via the set of widgets
shown in Color Plate 1.

1) No velocity scaling: This interface does not use the
depth buffer information. Velocity is varied with the user
interface widgets only.

ViewpointVelocity = K*WidgetVel

The constant K is set to make it possible to navigate near to
the smallest targets in the scene, and still have reasonable
speed in macro scale.

2) Near point scaling: In this mode, the near point of
the scene is determined by sampling the Z buffer. This is then
used to modify the forward and sideways motion obtained
from the widgets.

ViewpointVelocity= K*WidgetVel/(nearPoint)

3) Far point scaling: In this mode, the far point of the
scene is determined by sampling the Z buffer. This is then
used to modify the forward and sideways motion obtained
from the widgets.

ViewpointVelocity = K*WidgetVel/(farPoint)

4) Average depth sca l ing: In this mode, a geometric
average depth in the scene is determined by sampling the Z
buffer. This is then used to modify the forward and sideways
motion. Any points that sample the far clipping plane
(because the scene does not fill the entire screen) are not
counted in the average.
ViewpointVelocity = K*WidgetVel/(averageDepth)

5) Average depth scaling with hot spot : In this
mode, the velocity is modulated using a weighted average of
the depth samples. The points inside a rectangular region
(hot spot) are weighted five times as heavily as surrounding
points. This region comprises one quarter of the screen.
When moving forward the hot spot is in the center of the
screen. When turning the hot spot is moved in the direction
of turn. Thus, for example, when turning to the right the hot
spot moves toward the right hand edge of the screen by an
amount that depends on the rate of turn. The idea behind this
is that objects coming into view are likely to be more
important to the viewer and they should therefore be weighted
more heavily.
ViewpointVelocity=K*WidgetVel/(weightedAverageDepth)

2.1 Evaluation: Searching for Small
Targets
We used an exploration task to evaluate the DMF interface.
The goal was to find a number of letters placed on or in
specially marked boxes scattered throughout the scene. The
landscape on which these boxes were scattered consisted of a
section of the floor of Passamoquoddy Bay, between Maine
and New Brunswick. The task was designed to require
viewpoint navigation at a variety of scales. Because the
letters were very small and some of the boxes were small, this
task required that users frequently change scale. In the
extreme case, the smallest letter was 1/30,000 of the size of
the scene. The scale change required from perceiving the
entire scene to being able to read the smallest character was
approximately 500:1.

In some cases, the target letter was placed on the front of a
target box. In other cases, one of the faces of the box was
open and the subject was required to fly into the box in order
to find the target that was placed on the inside far wall. This

usually required the subject to orbit around the target box
looking for the open face before moving in towards the
target. Some of the target boxes were very small and placed
on the top of other boxes to help the user locate them from a
distance.

2.2 Procedure
Fourteen subjects, all undergraduate or graduate students, were
trained. They were first shown the interface, and then guided
them through a navigation task. They were required to use
each of the different velocity modulation schemes during
training.

Each experimental trial involved the subjects finding three
target digits on three different boxes that were randomly
placed in the scene. When the subject had flown in close
enough to actually read a digit, they entered it on the
keyboard and proceeded to the next box. When they entered
the digit, the target box on which the letter was placed
changed color to black, so that the subject would not
accidentally look at the same box again.

A trial block consisted of a subject finding three targets in a
scene in arbitrary sequence, using one of the five velocity
scaling methods. Each subject was tested in each of the five
conditions in a random order. Following this the whole test
sequence was repeated so that each condition was tested twice.

There were two dependent variables. On each trial the time to
find the target was recorded. After each condition, subjects
were asked to rate the interface on general ease of use using a
seven point scale with 0 representing “hopeless” and 6
representing “excellent”. Subjects were also encouraged to
comment on the interface as they performed the task.

3 RESULTS AND DISCUSSION
The results are summarized in Figure 2. They show that the
near point and the two average distance DMF methods are
clearly superior both on user ratings and on objective time to
perform the task. In the top graph, the time data has been
normalized by dividing by the mean for each subject to
remove effects of individual differences. The typical time to
perform a single search was approximately 90 seconds. The
interface that used average depth with a hot spot was also
effective but no better than the uniformly weighted average
depth method. The subjective user rating results (shown in
the lower graph) are more consistent than the objective
results. All subjects rated the far point and constant
interfaces as inferior by a large margin.

The DMF interface is intended as an alternative to another
flying interface that we developed a number of years ago.
This previous interface is based on a 6 degree-of-freedom
input device we called the Bat [8,9]. Both flying interfaces
are used for data exploration and as a virtual camera controls
for making “fly-by” movies of scientific data. In our system,
making a movie typically involves flying a path through the
scene at low resolution and then playing the flight back one
frame at a time in high resolution to create a single frame
animation. Our experience with making these kinds of
videos suggests that the new DMF interface will be superior
to the previous one that was based on the Bat.

0

0.5

1

1.5

Condition

N
or

m
al

iz
ed

 M
ea

n
T

im
e

N
ea

r

Fa
r

A
ve

ra
ge

W
ei

gh
te

d

C
on

st
an

t

0

1

2

3

4

5

6

A
ve

ra
ge

 Q
ua

lit
y

R
at

in
g

N
ea

r

Fa
r

A
ve

ra
ge

W
ei

gh
te

d

C
on

st
an

t

Figure 2. The top graph shows the averge of the normalized
times take to perform the search task. The lower graph shows
the mean ratings of the quality of the interface. Vertical bars
represent two standard errors above and below the mean.

For data exploration, our DMF mouse-based flight interface
has the practical advantage that it is easier to learn initially
than the Bat flying interface. However, it lacks overall
flexibility because it is only possible to manipulate at most
two degrees-of-freedom at any time. For the experienced user,
the Bat velocity control interface allows the user to rapidly
adopt any arbitrary view of the data. However, DMF features
can easily be incorporated into any flying interface, and we
plan to experiment with such additions to the Bat interface.
The DMF interface could also be combined with a POV
navigation technique [5], allowing the user to either use the
POV method, by selecting a point on the surface, or use the
3D widgets to create free-form flight paths. The only
difficulty with this is likely to be the problem of overloading
mouse buttons.

 Overall, our impression is that modulating velocity based on
depth sampling creates a markedly improved exploration
interface, especially where large changes of scale are
involved. However, people attempting to implement this
technique should be warned that there can be technical
problems. Z-buffer sampling is slow on certain machines
although it is part of the OpenGL standard. Using GL tends to
be much faster on older SGI machines. The way in which
depth information is encoded in the Z-buffer may also vary
from machine to machine. There is a problem sampling
scenes that contain fine point or line features that are isolated
in space. If the scene contains such features, they will only
be sampled occasionally, leading to rapid changes in the
depth scaling factor unless full-scene depth sampling can be
achieved.

5 REFERENCES
1. Bartram, L., Ho, A., Dill, J and Henigman, F. (1995)

The Continuous Zoom: A Constrained Fisheye
Technique for Viewing and Navigating Large Information
Spaces. ACM UIST’95 Proceedings 207-216.

2. Bederson, B.B. and Hollan, J.D., 1994 PAD++:
zooming graphical interface for exploring alternate
interface physics.UIST’94 Proceedings (Marina Del
Ray, CA) ACM Press 17-26.

3. Drucker, S.M. and Zeltzer, D. (1994) Intelligent Camera
Control in a Virtual Environment. Graphics Interface,
Proceedings, 190-199.

4. Hayes, N. (1993) Nobody Walks in VR-They all Fly,
IEEE Computer Graphics and Applications. 13(3) May. p
85.

5. Mackinlay, J.D., Card, S.K., and Robertson, GG. "Rapid
Controlled Movement Through a Virtual 3D Workspace.
Proceedings of SIGGRAPH'90 (Dallas, Texas, August
1990). In Computer Graphics, 24, 3, 171-176.

6. Masui, T, Minakuchi, Borden, G.R. and Kashiwagi, K,
1995 Multi-View Approach for Smooth Information
Retreival. V. ACM UIST’95 Proceedings199-206

7. Robinett, W and Holloway, R. (1992) Implementation
of Flying, Scaling and Grabbing in Virtual Worlds,
1992 Symposium on Interactive 3D Graphics. Special
Issue of Computer Graphics, ACM Press.

8. Ware, C., and Osborne, S., (1990) Exploration and
virtual camera control in virtual three dimensional
environemnts. Proceedings of the 1990 Symposium on
Interactive 3D Graphics (Snowbird, Utah, March 1990).
In Computer Graphics 24, 2, 175-183.

9. Ware, C., and Slipp, L. (1991) Using Velocity Control
to Navigate 3D Graphical Environments: A comparison
of Three Interfaces, Proceedings of Human Factors
Society Meeting San-Francisco, September.
Proceedings, 300-304.

10. Ware, C. (1996) Moving Motion Metaphors, ACM
CHI'96 Conference Companion. 225-226.

11. Ware, C. (1995) Dynamic Stereo Displays. ACM CHI'96
Conference Proceedings, Denver, 310-316.

12. Ware. C. (1995) The DragMag Image Magnifier, ACM
CHI'95 Conference Companion. 407-409. + CHI’95
Video Program.

Plate 1. The widgets on the lower left are used in the flying interface. The Blocks scattered over the terrain each
contain a very small hidden letter. The task was to find these letters.

