
Chapter 1

GENERATING CONTEXT-SENSITIVE
MULTIPLE DEVICE INTERFACES FROM
DESIGN

Tim Clerckx, Kris Luyten, Karin Coninx
{tim.clerckx,kris.luyten,karin.coninx}@luc.ac.be

Limburgs Universitair Centrum
Expertise Centre for Digital Media
Universitaire Campus, B-3590 Diepenbeek, Belgium
http://www.edm.luc.ac.be

Abstract This paper shows a technique that allows adaptive user interfaces, span-
ning multiple devices, to be rendered from the task specification at
runtime taking into account the context of use. The designer can spec-
ify a task model using the ConcurTaskTrees Notation and its context-
dependent parts, and deploy the user interface immediately from the
specification. By defining a set of context-rules in the design stage, the
appropriate context-dependent parts of the task specification will be se-
lected before the concrete interfaces will be rendered. The context will
be resolved by the runtime environment and does not require any man-
ual intervention. This way the same task specification can be deployed
for several different contexts of use. Traditionally, a context-sensitive
task specification only took into account a variable single deployment
device. This paper extends this approach as it takes into account task
specifications that can be executed by multiple co-operating devices.

Keywords: Model-Based user interface Design, Task Modeling, ConcurTaskTrees
Notation, Context Sensitive, Multi Device

1. Introduction
Recent advances in mobile computing devices and mobile commu-

nication support more complex interaction between different devices.
This allows users to migrate from their single “computer on the desk”
setup to a heterogeneous environment where he/she uses several devices



2

to accomplish his/her tasks. Although the provided hardware and soft-
ware becomes more powerful, it makes designing the interface more com-
plex. Different contexts (device constraints, environment of the mobile
user,. . . ) have to be taken into account. The nomadic nature of future
applications also demands a way to design interaction using multiple
devices.

Combining our previous work [9, 6] with context-sensitive task speci-
fications [15, 16] we realize a supporting framework for the design and
creation of context-sensitive multiple- and multi-device interaction. By
multiple-device interaction we mean the user interface (UI) is distributed
over different devices. The implementation has been tested as a compo-
nent of the Dygimes framework [6].

The remainder of this paper is structured as follows: section 1.2 dis-
cusses the related work, introducing the state of the art in context-
sensitive task modelling. To illustrate the context and testbed of this
work, our framework Dygimes is introduced in section 1.3. This is fol-
lowed by an overview of the design process needed to create a context-
sensitive UI in section 1.4. Three stages are described: the creation of
the task model, the extraction of the dialog model and the generated
presentation model. This is followed by a case study to show how things
work in practice. Finally, the obtained results and their applicability are
discussed in the conclusion.

2. Related Work
Pribeanu et al. [15] proposed several possible approaches to adapt the

ConcurTaskTrees notation [13] for context-sensitive task modeling. As
pointed out in [15] and [16], the context of use of the application influ-
ences which parts of the task model are executed. A context-sensitive
(or dependent) and a context-insensitive (or independent) part of the
task model can be identified and processed accordingly. The context-
sensitive part can be related to the context-insensitive part in multiple
ways [15]:

Both parts are specified in one task model: the monolithic ap-
proach

The context-insensitive parts are connected to the context-sensitive
parts with general arcs: graph-oriented approach

The context-insensitive parts are connected to the context-sensitive
parts with special arcs that can constitute a decision tree: separa-
tion approach



Generating Context-Sensitive Multiple Device Interfaces from Design 3

The last approach in particular is interesting: although it allows different
parts for different contexts of use to be integrated in one model, there
is a decision tree that provides a nice separation. We choose to insert
decision nodes in the task specification instead of decision trees. Of
course, decision nodes can have other decision nodes as descendants.
The children of a decision node are possible subtrees where one of them
will be chosen in a preprocessing step. Section 1.4 explains in detail
how a concrete task specification can be obtained by preprocessing the
decision nodes.

Paternò and Santoro [14] present a method to generate multiple in-
terfaces for different contexts of use starting from one task model. The
TERESA tool for supporting this approach is discussed in [11]. In con-
trast with their approach, we do not focus on the design aspect as much
as they do, but emphasize the runtime framework necessary for accom-
plishing this. To our knowledge, the TERESA tool supports the creation
of one task model for multiple devices, but currently does not take into
account multiple devices interacting at once or the interface migrating
from one device to another.

Calvary et al. [3, 4] describe a process where a Platform and Envi-
ronmental Model are used to represent context information. The pro-
cess allows to create UIs for two running systems in different contexts.
Although at several stages in the UI design process (Task Specification,
Abstract UI, Concrete UI, Runtime Environment) a translation can take
place between the two systems, the designer will have to change the task
specification manually in the process if the context has an influence on
the tasks that can be performed.

Nichols et al. [12] defined a specification language and communi-
cation protocol to automatically generate UIs for remotely controlled
appliances. The language describes the functionalities of the target ap-
pliance and contains enough information to render the UI. In this case,
the context is secured by the target appliance represented by its defini-
tion.

Ali and Pérez-Quiñones [2] also use a task model, together with UIML
[1], to generate UIs for multiple platforms. The task model has to in-
crease the abstraction level of the UIML specification, which is necessary
to guide the UI onto different devices.

3. Dygimes
Most of the presented work is integrated in our framework Dygimes

[6]. Besides supporting the ConcurTaskTree task specification, it uses
high level user interface Descriptions (specified in XML) to define the



4

set of abstract interactors necessary for completing the tasks specified in
the task specification. One of the aims of this framework is to support
design through selected models from Model-Based User Interface Design,
and add support for transforming the design into multi/multiple-device
UIs at runtime.

The Dygimes framework supports roughly the following steps for cre-
ating UIs (a more detailed description can be found in [6]):

1 Create a context-sensitive task specification with the ConcurTask-
Trees notation

2 Create UI building blocks for the separate tasks

3 Relate the UI building blocks with the tasks in the task specifica-
tion

4 Define the layout using constraints

5 Define custom properties for the UI appearance (e.g. preferred
colors, concrete interactors,. . . )

6 Generate a prototype and evaluate it (the dialog model and pre-
sentation model are calculated automatically)

7 Change the task specification and customizations until satisfied

On the one hand it supports a clear separation between the creation of
the UIs and the implementation of the application logic that underlies
the UI. On the other hand there is built-in support to connect the UIs
with the application logic without manual intervention [18].

The next section will describe how the design process for the context-
sensitive UI and the generation of the UI works.

4. Design Process
The proposed approach extends the process for automatically genera-

ting prototype UIs from annotated task models introduced in [9]. Figure
1.1 shows the extended process where a context-sensitive task model is
considered to generate UIs depending on the context at the time the
UI is rendered. First, a context-sensitive task model is constructed and
high-level UI building blocks are attached to the leaves as described
in the previous section. Next, the context is captured and the proper
context-specific ConcurTaskTree will be generated automatically. Sub-
sequently the Enabled Task Sets (ETSs) are calculated. These are sets
of tasks that can be enabled at the same time [13] and therefore contain
the proper information to be rendered together in the resulting UI.



Generating Context-Sensitive Multiple Device Interfaces from Design 5

After this step, the appropriate dialog model is extracted automati-
cally from the task model using the temporal operators [9]. Each dialog
still is related to the set of tasks it presents, thus also to the appropriate
UI building blocks it can use to present itself. The context-sensitive in-
formation in the task specification is taken care of in a “preprocessing”
step, which we will explain now into further detail.

Figure 1.1. Context-Sensitive user interface Design Process

4.1 The Context-Sensitive Task Model
As pointed out in section 1.2, there are three proposed approaches to

model context-sensitive task models. Instead of collecting decision trees,
we propose another way where the context-insensitive part points di-
rectly to context-sensitive subtrees through decision nodes. These nodes
are marked by the D in the example in figure 1.4. Although this resem-
bles the graph-oriented approach, the context-sensitive subtrees are the
direct children of the decision node. When the context-sensitive parts



6

are resolved, the decision node will be removed and replaced by the root
of the selected subtrees of that decision node.

The decision nodes are executed in the first stage of the UI genera-
tion process. This results in a normal ConcurTaskTree specification, but
also one that is suitable according to the rules defined in the decision
nodes. The normal ConcurTaskTree specification enables the provided
algorithm to extract the dialog model automatically adapted to the cur-
rent context.

In order to link the context detection and the task model, some infor-
mation about which subtree has to be performed in which case is added
to the decision node. Figure 1.2 shows a simple scheme (as a Docu-
ment Type Definition) defining how rules can be specified for selecting
a particular subtree according to a given context. Conditions can be
defined recursively and numerical and logical operators are provided
(=, <, >,∨,∧) to cope with several context parameters. In figure 1.3
an example is presented where the current context will be decided on
the basis of comparing X and Y coordinates provided by a GPS module.
The XML specification provides a way to exchange context information.
Tool support is required encapsulate the use of XML from the designer.

Note the approaches described in [15, 16] focus on the design of the
interface at the task level. This work shows how the task model is used
at runtime to generate context-dependent UIs. This will be done by
providing a framework (Dygimes, section 1.3) that can interpret a task
specification and generate a presentation for the given task specification.
The framework resolves the context dependencies beforehand, resulting
in a presentation that is adapted to the context of use. The next section
explains how we proceed from the task specification to the presentation
of the UI by using a dialog model.

4.2 The Dialog Model
Before applying further processing of the task model, it has to be

transformed into a concrete one (resolve all the decision nodes) in order
to extract a dialog model. The context-specific task model is a normal
ConcurTaskTree, suited for the current context of use and can be pro-
cessed as any other ConcurTaskTree. The transformation can be done
by replacing the decision node with the appropriate subtree representing
a subtask suitable for the current context of use.

In [9] we proved it is possible to generate simple UIs directly from
the task specification. This was done through the automatic generation
of a dialog specification from the task specification. In our approach,
the dialog model is expressed as a State Transition Network (STN) and



Generating Context-Sensitive Multiple Device Interfaces from Design 7

<?xml version="1.0"?>

<!ELEMENT decision ((cond,true,false)

|(value,case+))>

<!ELEMENT cond (value,value)>

<!ATTLIST cond type CDATA #IMPLIED>

<!ELEMENT value ( cond | #PCDATA )>

<!ATTLIST value type CDATA #IMPLIED>

<!ELEMENT true (#PCDATA)>

<!ATTLIST true platform #IMPLIED>

<!ELEMENT false (#PCDATA)>

<!ATTLIST false platform CDATA #IMPLIED>

<!ELEMENT case (value|cond)>

<!ATTLIST case platform CDATA #IMPLIED>

Figure 1.2. Decision DTD

<decision>

<cond type="and">

<value type="cond">

<cond type="lt">

<value type="context">

GPS:Xcoord

</value>

<value type="int">

1

</value>

</cond>

</value>

<value type="gt">

<cond type="equals">

<value type="context">

GPS:Ycoord

</value>

<value type="int">

54

</value>

</cond>

</value>

</cond>

<true platform="context">left</true>

<false platform="context">right</false>

</decision>

Figure 1.3. Decision XML example

each state in the STN equals an ETS. In the UI, the information about
the tasks in an ETS have to appear together in the resulting UI. The
transitions between dialogs are represented in the STN by transitions
between states, marked with the tasks that can trigger the change. The
transitions between the different ETSs (“dialogs”) are identified by the
different temporal operators connecting selected tasks located in the
different ETSs. An extensive description of the algorithm can be found
in [9]. An open source tool is provided that implements this algorithm
and calculates a dialog model from the task specification at: http:
//www.edm.luc.ac.be/software/TaskLib/.

4.3 The Presentation Model
The last step has to render the dialog model on the available output

devices. This is the presentation of (the different parts of) the concrete
UI.

The nodes in the dialog model are ETSs. One such node represents all
UI building blocks that have to be presented to complete the current ETS
(section 1.3 showed that UI building blocks were attached to individual



8

tasks). The tasks in an ETS are also marked with their target device,
so two different situations are possible:

1 All tasks in an ETS are targeted to the same device

2 Not all tasks in an ETS are targeted to the same device

Situation (1) allows the UI to be rendered completely on one device.
(2) demands that the UI to be distributed over different devices. For
this purpose the device-independence of the abstract UI description has
to be extended towards the use of multiple devices. On the level of
the presentation model, the Abstract UI descriptions of a dialog are
rendered as concrete dialogs, this can be accomplished by using two
important techniques:

Customized mappings from Abstract Interaction Objects (AIOs)
to Concrete Interaction Objects (CIOs) [17]. The rendering engine
for each device can choose for itself the concrete widget selected to
present an AIO. This can be customized afterwards by the designer
[7].

Positioning of the widgets is done through constraints which are
defined in a language-independent manner. The renderer can use
the information about the hierarchical widget containment to split
up the UI in different parts. Details of this approach can be found
in [10].

Customized mapping rules and device-independent layout management
are two important techniques for realizing device-independent distributed
UIs.

It is possible several concurrent tasks located in the same ETS have to
be rendered on different devices. Since the presentation building blocks
are attached to the tasks as XML documents, the presentation for an
individual device can be calculated for each device separately. Notice
when concurrent tasks are rendered on separate devices, some kind of
middleware will be necessary to support data-exchange between both
tasks in a heterogeneous environment. In contrast with e.g. WebSplitter
[8] the focus is not on distribution of content, but distributed support
of task execution.

5. A Case Study: Manage Stock
Figure 1.4 shows the manage stock example. The following situation

occurs: the storekeeper of a warehouse keeps track of the stock using two
devices. First a desktop PC is used to manage the purchase and sales



Generating Context-Sensitive Multiple Device Interfaces from Design 9

of articles. Second an employee checks and updates the stock amounts
using his PDA to note the changes immediately. When the amount of
a certain article is updated by the desktop PC, for example when new
goods are purchased, the employee receives a message on his PDA. When
he/she stands in the vicinity of a printer supporting Radio Frequency
Identifier (RFID) tags, this can be detected and the information of the
product can be viewed and printed. As a result, the example contains

Figure 1.4. Context-Sensitive Task Model of the Manage Stock example

two types of context denoted by the decision tasks: platform (Update
and Request Overview) and location (Overview PDA). To link the con-
text handler to the appropriate decision node, decision rules need to be
attached to these nodes. Figure 1.6 shows an example for the Overview
PDA task. In this case there will be a call for the canPrint function in
the RFID Reader.

The first step to automatically generate the UI is to convert the
context-sensitive task model into a context-specific task model. This
is why the condition in the decision XML has to be evaluated for each
decision node and the decision node is replaced by its subtree which
matches the current context. In the Overview PDA task example, there
will be an evaluation of the canPrint function. If the return value equals
true the Properties (Printing) subtree will replace the decision node, else
the Show Properties (No Printing) will. Figure 1.8 shows the context-
specific task model in case of using the PC to change the stock amounts



10

Figure 1.5. Overview PDA subtree

<decision>

<cond type="equals">

<value type="context">

RFID:Reader:canPrint

</value>

<value type="boolean">

true

</value>

</cond>

<true platform="context">

Show Properties (No Printing)</true>

<false platform="context">

Properties (Printing)</false>

</decision>

Figure 1.6. Decision rules for the
Overview PDA task

Figure 1.7. Update PC subtree

and the PDA to notify the employee within the reach of an RFID sup-
porting printer.

The next step uses a custom algorithm (described in [5]) to calculate
the enabled task sets (ETSs):

ETS1 = {LogIn} ⇒ Pall

ETS2 = {SelectPurchase(Ppc), SelectSell(Ppc), ShutDown} ⇒ Ppc

ETS3 = {EnterProduct(Ppc), EnterAmount(Ppc), EnterPrice(Ppc), ShutDown}
⇒ Ppc

ETS4 = {EnterProduct(Ppc), EnterAmount(Ppc), EnterPrice(Ppc), ShutDown}
⇒ Ppc

ETS5 = {UpdateAmount(Ppc), ShutDown} ⇒ Ppc

ETS6 = {UpdateAmount(Ppc), ShutDown} ⇒ Ppc

ETS7 = {ShowProperties(Ppda), ShutDown} ⇒ Ppda

ETS8 = {SelectPrint(Ppda), ShutDown} ⇒ Ppda

ETS9 = {Print(Ppda), ShutDown} ⇒ Ppda

(1.1)
Px indicates on which platform the tasks can be executed. x = all

means the platform does not matter, and the task can be executed both
on a PC or on a PDA. This example only contains tasks restricted to
either a PC or a PDA because no ETS contains tasks marked Ppc and
Ppda. Remark that the only difference between ETS3 and ETS4, and



Generating Context-Sensitive Multiple Device Interfaces from Design 11

ETS5 and ETS6 is they are children from another task. Afterwards, the

Figure 1.8. Context-Specific Task Model

Figure 1.9. Dialog Model (The accept state

caused by the Shut Down task is omitted to

avoid cluttering the picture.)

dialog model (figure 1.9) is automatically extracted. Finally the actual
UI is rendered by the runtime environment. Figure 1.10 shows the dialog
model with the rendered UIs.

Figure 1.10. Dialog Model with the concrete dialogs



12

6. Conclusions and Future Work
This paper shows how context information can be integrated in in-

terface design to generate multi- and multiple-device user interfaces at
runtime. The ConcurTaskTrees formalism is combined with decision
nodes and rules to allow the user interface to adapt to the context while
still being consistent w.r.t. the design. An important case is where the
context can indicate the change in interaction device while executing a
task. Our model allows this change by providing an appropriate dialog
model including the transitions between dialogs on the same device and
transitions between dialogs on different devices. The presentation model
also supports dialogs that are distributed over several devices. The pre-
condition to make this work is the context must be frozen from the start
until the end of the main task.

Future work involves finding a way to switch the context-concrete task
model on a context change in order to recalculate the dialog and presen-
tation model. This approach however comes with a lot of complications.
First of all, the new dialog model may not be compatible to the old one
and disrupts the continuity of the user interface. This is because the
current state might not occur in the new dialog model. Also it is dan-
gerous to adjust the user interface every time the context changes. In
some cases the user can become confused about a sudden changed user
interface.

Finally we believe the presented process is a first practical step to-
wards involving context in design.

7. Acknowledgments
Our research is partly funded by the Flemish government and Euro-

pean Fund for Regional Development. The SEESCOA (Software Engi-
neering for Embedded Systems using a Component-Oriented Approach)
project IWT 980374 and CoDAMoS (Context-Driven Adaptation of Mo-
bile Services) project IWT 030320 are directly funded by the IWT (Flem-
ish subsidy organization). The authors would like to thank Bert Creemers
for his contribution.

References

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UIML: An
appliance-independent XML user interface language. WWW8 /
Computer Networks, 31(11-16):1695–1708, 1999.



Generating Context-Sensitive Multiple Device Interfaces from Design 13

[2] Mir Farooq Ali and Manuel A. Pérez-Quiñones. Using Task Models
to Generate Multi-Platform User Interfaces while Ensuring Usabil-
ity. In Proceedings of CHI’2002 (Short Paper), Minnesota, USA,
2002.

[3] Gaelle Calvary, Joelle Coutaz, and David Thevenin. Embedding
plasticity in the development process of interactive systems. In 6th
ERCIM Workshop ”User Interfaces for All”. Also in HUC (Hand-
held and Ubiquitous Computing) First workshop on Resource Sen-
sitive Mobile HCI, Conference on Handheld and Ubiquitous Com-
puting, HU2K, Bristol, 2000.

[4] Gaelle Calvary, Joelle Coutaz, and David Thevenin. Supporting
Context Changes for Plastic User Interfaces: A Process and a Mech-
anism. In Proceedings of IHM-HCI, 10-14 september 2001, Lille,
France, 2001.

[5] Tim Clerckx and Karin Coninx. Integrating Task Models in Auto-
matic User Interface Design. Technical Report TR-LUC-EDM-0302,
EDM/LUC, 2003.

[6] Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den
Bergh, and Bert Creemers. Dygimes: Dynamically Generating In-
terfaces for Mobile Computing Devices and Embedded Systems. In
Human-Computer Interaction with Mobile Devices and Services, 5th
International Symposium, Mobile HCI 2003, pages 256–270, Udine,
Italy, September 8–11 2003. Springer.

[7] Jan Van den Bergh, Kris Luyten, and Karin Coninx. A Run-time
System for Context-Aware Multi-Device User Interfaces. In HCI In-
ternational 2003, Volume 2, Crete, Greece, pages 308–312. Lawrence
Erlbaum Associates, June 2003.

[8] Richard Han, Veronique Perret, and Mahmoud Naghshineh. Web-
Splitter: a Unified XML Framework for Multi-device Collaborative
Web Browsing. In Proceedings of the 2000 ACM conference on
Computer Supported Cooperative Work, pages 221–230. ACM Press,
2000.

[9] Kris Luyten, Tim Clerckx, Karin Coninx, and Jean Vanderdonckt.
Derivation of a Dialog Model from a Task Model by Activity Chain
Extraction. In Interactive Systems: Design, Specification, and Ver-
ification, 10th International Workshop DSV-IS, Funchal, Madeira
Island, Portugal, June, 2003. Springer LNCS, 2003.

[10] Kris Luyten, Bert Creemers, and Karin Coninx. Multi-device layout
management for mobile computing devices. Technical Report TR-
LUC-EDM-0301, EDM/LUC, 2003.



14

[11] Giullio Mori, Fabio Paternò, and Carmen Santoro. Tool Support
for Designing Nomadic Applications. In Proceedings of the 2001
International Conference on Intelligent User Interfaces, January
12-15, 2003, Miami, FL, USA, pages 141–148. ACM, 2003.

[12] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes,
Thomas K. Harris, Roni Rosenfeld, and Mathilde Pignol. Genera-
ting remote control interfaces for complex appliances. In Proceedings
of the 15th annual ACM symposium on User interface software and
technology, pages 161–170. ACM Press, 2002.

[13] Fabio Paternò. Model-Based Design and Evaluation of Interactive
Applications. Springer Verlag, ISBN: 1-85233-155-0, 1999.

[14] Fabio Paternò and Carmen Santoro. One model, many interfaces. In
Christophe Kolski and Jean Vanderdonckt, editors, CADUI 2002,
volume 3, pages 143–154. Kluwer Academic, 2002.

[15] Costin Pribeanu, Quentin Limbourg, and Jean Vanderdonckt. Task
Modelling for Context-Sensitive User Interfaces. In Chris Johnson,
editor, Interactive Systems: Design, Specification, and Verification,
volume 2220 of Lecture Notes in Computer Science, pages 60–76.
Springer, 2001.

[16] Nathalie Souchon, Quentin Limbourg, and Jean Vanderdonckt.
Task Modelling in Multiple contexts of Use. In Peter Forbrig,
Quentin Limbourg, Bodo Urban, and Jean Vanderdonckt, editors,
Interactive Systems: Design, Specification, and Verification, volume
2545 of Lecture Notes in Computer Science, pages 60–76. Springer,
2002.

[17] Jean Vanderdonckt and François Bodart. Encapsulating knowl-
edge for intelligent automatic interaction objects selection. In ACM
Conference on Human Aspects in Computing Systems InterCHI’93,
pages 424–429. Addison Wesley, 1993.

[18] Chris Vandervelpen, Kris Luyten, and Karin Coninx. Location
Transparant User Interaction for Heterogeneous Environments . In
HCI International 2003, Volume 2, Crete, Greece, pages 313–317.
Lawrence Erlbaum Associates, June 2003.


