
K. Coninx, K. Luyten, and K.A. Schneider (Eds.): TAMODIA 2006, LNCS 4385, pp. 324–338, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The COMETs Inspector:
Towards Run Time Plasticity Control

Based on a Semantic Network

Alexandre Demeure1, Gaëlle Calvary1, Joëlle Coutaz1, and Jean Vanderdonckt1,2

1 Université Joseph-Fourier
CLIPS-IMAG, BP 53

F-38041 Grenoble Cedex 9, France
{Alexandre.Demeure, Gaelle.Calvary, Joelle.Coutaz}@imag.fr

2 Louvain School of Management,
Université catholique de Louvain

Place des Doyens, 1
B-1348 Louvain-la-Neuve, Belgium

jean.vanderdonckt@uclouvain.be

Abstract. In this paper, we describe the COMETs Inspector, a software tool
providing user interface designers and developers with a semantic network in
order to control the plasticity of their User Interfaces (UI) at run-time. Thanks
to a set of predefined relationships, the semantic network links together various
concepts ranging from the final UI (i.e., the UI described in terms of technolo-
gical spaces) to the concrete and abstract UIs (i.e., the UI respectively described
in terms of concrete interaction objects independently of any technological
space, and abstract individual components and containers independently of any
interaction modality) up to the tasks and concepts of the interactive system. In
this way, plasticity can be addressed at four levels of abstraction (task and
concepts, abstract, concrete, and final user interface) for forward, reverse, and
lateral engineering. The end user exploits the semantic network at run time to
adapt his/her UI to another context of use by identifying, selecting, and
applying plasticity suitable operations.

Keywords: Abstract user interface, Active model, Ambient intelligence,
COMET, Concrete user interface, Model-based approach, Plasticity, Semantic
network, Task modeling, User interface eXtensible Markup Language.

1 Introduction

In an ever-changing world, end users of interactive systems are constantly demanding
a higher level of adaptation of their User Interfaces (UI) to fit their purpose and better
address their needs and wishes. The wide availability of different computing
platforms makes this desire even stronger as the aspiration for executing the same
interactive system on these different platforms is expressed, while minimizing the
changes in the UI across these platforms. In these circumstances, the notion of
plasticity plays a fundamental role as it denotes the “capacity of a UI to withstand

 The COMETs Inspector: Towards Run Time Plasticity Control 325

variations of context of use while preserving predefined usability properties” [2].
Supporting plasticity is more sophisticated than merely ensuring UI adaptation. Any
kind of UI adaptation always induces some disruption from the end user’s point of
view as parts or whole of the UI may change during adaptation. Simple adaptation
does not necessarily guarantee any level of quality. In contrast, plasticity aims at
maintaining a certain level of usability by explicitly addressing the evolving context
of use in which the user is carrying out his/her interactive task. By context of use [2],
we hereby refer to the combination C of a user U working with a platform P in a
given physical environment E: C = <U,P,E>. Although the adaptation in general and
the plasticity in particular both consider the three aspects of this context definition, it
is noteworthy to observe that the P aspect is the most frequently and extensively
researched area (among them are [3], [4], [6], [8], [9], [11], [14-18], [20]): the
platform is probably the facet which affects the UI the most immediately and
concretely. This is challenging since a UI which was designed for a given platform in
mind may no longer fit another one with extended or reduced interaction capabilities
if they were not considered before.

The premises for supporting any form of plasticity are twofold: first, the
availability of any valuable information on the context of use that may influence the
UI adaptation, and secondly, the relationships between this contextual information
and the reshuffled UI (remolded and/or redistributed) for that context. The Model-
Based UI Development (MB-UIDE) community typically addresses the former aspect
by context modeling [2], [4], [14], [17], [20] enriching task and system modeling [6],
[15], whereas for the latter, the problem is often characterized as a mapping problem
between the models [3], [10], [12], [19]. Thanks to the combination of context
modeling and a technique for solving the mapping problem, it is possible to adapt the
UI presentation, dialog and/or deployment after a context of use variation [13].

The literature identifies three significant instants when this combination occurs
depending on the time when the models and their relationships are used: at design
time to foresee future plastic UI, at installation time to take into account the current
context of use (especially the platform that is foreseen at that time), and at run time to
take into account contextual information which is known only at that time. Most
recent works are devoted to design and installation time. The few works dedicated to
run time are mostly addressing plasticity at the concrete UI level where only the UI
look and feel is changed.

In this paper, we present a software tool which goes beyond this situation by
supporting plasticity at run time at any level of abstraction (ranging from the final UI
to the task and the domain) thanks to a semantic network that solves the mapping
problem in a more elaborated way than existing techniques. To prove this, Section 2
summarizes the current trends in design- and installation-time plasticity, and identifies
the most recent advances in run-time plasticity so as to locate this work as a next step
in the progress. Section 3 provides a general definition of the semantic network that is
used throughout this paper and illustrates it with an excerpt centered on the task type
of choice. It exemplifies the case study along with a series of plasticity questions
which can be addressed thanks to this network, and that cannot be addressed by
existing systems. Section 4 presents the COMETs Inspector, a software that exploits
this network at run time. Section 5 concludes the paper by highlighting the strengths

326 A. Demeure et al.

and the shortcomings of the current version of the system and introduces new families
of UIs with even a higher level of plasticity to be researched in the future.

2 Related Work

FormsVBT [1] pioneered the field of plasticity at design time by providing the UI
designer with three views: a view on TeX-based UI specifications, a view on the UI
presentation and dialog, and a view on the final UI. These three views are
coordinated: any change brought in one view is automatically reflected in the others,
thus providing the end user with a mean to directly validate or invalidate a UI crafted
for a specific platform. The Graceful Degradation plug-in [8] for GrafiXML editor
(www.usixml.org) provides UI designers with a series of transformations to be
manually applied on a UI tailored for an initial platform. The resulting UI should be
adapted to a computing platform exhibiting reduced interaction capabilities, especial-
ly a smaller resolution or reduced widgets set. The Context Toolkit [4] embeds
multiple widgets compositions in one single widget with plasticity capabilities. This
system is still design time: although the appropriate UI composition is selected at run
time, the available compositions are pre-computed at design time. The system only
switches from one composition to another depending on the changes of the context of
use. This observation is similar for the Ubiquitous Interactor [16], the vocabulary of
Generic Widgets found in [18], and the ADUS system [14].

For plasticity at installation time, in AUI [20], the UI is also shipped with different
compositions which are selected when the interactive application is installed on a
particular platform. In the same vein, TERESA [17] automatically generates multiple
UIs for multiple platforms, but one UI is used at a time for each considered platform.
TERESA also supports some plasticity by achieving transmodality, i.e. a change of
modality after a platform change.

For plasticity at run time, Keränen and Plomp [11] present an algorithm for
repurposing a UI layout depending on its container dimensions. An interesting feature
consists in its animation of the adaptation process. ARNAULD [9] is relying on games
theory for eliciting the most preferred UI at run time. It is based on SUPPLE, a system
which automatically generates a UI layout based on weights of its contents. ARNAULD
shows very interesting plasticity questions such as widget substitution, layout
reshuffling and re-portraiting. In this paper, we will show that the COMETs Inspector
supports more sophisticated forms of what we will define as plasticity questions.

Puerta & Eisenstein [19] defined a computational framework for managing
relationships within and across the various models (e.g., the task, the domain, the
abstract UI, the concrete UI, the system, the context) to solve the mapping problem.
Teallach [10] is probably the first implementation of this framework, although it is
not targeted at plasticity, but merely UI development. Since then, several attempts
have been made to expand this form of plasticity, as in [3] for ambient intelligence
and in [12] for multi-platform UIs. The predefined usability involved in the plasticity
in [3] is the consistency, while it is the UI guidance in [12].

All the aforementioned efforts to support plasticity involve some form of
information on the context of use (usually in a context model) and some ways to infer
a UI from this context (typically as a system of inference rules, as a knowledge base,

 The COMETs Inspector: Towards Run Time Plasticity Control 327

as a set of transformations). Next section introduces our semantic network, our new
approach to condensate UI design knowledge captured at design-time, but to be
exploited at run time.

3 A Semantic Network for Run Time Plasticity

This section provides a general definition of a semantic network (3.1). It is then
applied to plasticity (3.4) based on concepts and relationships (3.3) defined in the
CAMELEON reference framework (3.2). The section concludes with plasticity
questions that are covered by the approach (3.5).

3.1 General Definition

Sowa [21] defines a semantic network as “a graphic notation for representing
knowledge in patterns of interconnected nodes and arcs. Computer implementations
of semantic networks were first developed for artificial intelligence and machine
translation, but earlier versions have long been used in philosophy, psychology, and
linguistics”. Each semantic network may exhibit one or many of the following
dimensions [21]:

• Definitional networks emphasize the subtype or "is-a" relation between a concept
type and a newly defined subtype. The resulting network, also called a
generalization or subsumption hierarchy, supports the rule of inheritance for
copying properties defined for a supertype to all of its subtypes.

• Assertional networks are designed to assert propositions. Unlike definitional
networks, the information in an assertional network is assumed to be contingently
true, unless it is explicitly marked with a modal operator.

• Implicational networks use implication as the primary relation for connecting
nodes.

• Executable networks include some mechanisms, such as marker passing or
attached procedures, which can perform inferences, pass messages, or search for
patterns.

• Learning networks build or extend their representations by acquiring knowledge
from examples.

By defining the concepts and relationships appropriate for UI plasticity (3.3), we
argue that our semantic network combines the five above dimensions. Concepts and
relationships for plasticity are based on the CAMELEON reference framework.

3.2 CAMELEON Reference Framework

The CAMELEON Reference Framework (www.plasticity.org) structures the develop-
ment life cycle of multi-target UIs according to four levels: (1) the Final UI (FUI) is
the operational UI, i.e. any UI running on a particular platform either by interpretation
(e.g. through a Web browser) or by execution (e.g., after the compilation of code in an
interactive development environment); (2) the Concrete UI (CUI) expresses any FUI
independently of any term related to a peculiar rendering engine, that is independently

328 A. Demeure et al.

of any markup or programming language; (3) the Abstract UI (AUI) expresses any
CUI independently of any interaction modality (e.g., graphical, vocal, tactile) via the
mechanisms of Abstract Interaction Objects (AIO) [22] as opposed to Concrete
Interaction Objects (CIO) for the CUI; and (4) the Task & Concept level, which
describes the various interactive tasks to be carried out by the end user and the
domain objects that are manipulated by these tasks. We refer to [11] and to
www.usixml.org for its translation into models uniformly expressed in the same User
Interface Description Language (UIDL), selected to be UsiXML (which stands for
User Interface eXtensible Markup Language). In Figure 1, two contexts of use are
represented with the possibility of moving from one context to another one through
three relationships: abstraction, reification and translation for respectively reverse,
forward and lateral engineering.

Environment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

Reification

Abstraction

Reflexion

Translation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform S Environment S Platform TUser T Environment TEnvironment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

ReificationReification

AbstractionAbstraction

ReflexionReflexion

TranslationTranslation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform SPlatform S Environment SEnvironment S Platform TPlatform TUser T

Fig. 1. The four levels of the CAMELEON framework

3.3 Concepts and Relationships for Plasticity

The concepts are those that are involved at each level of the CAMELEON reference
framework (Fig. 1), which can be found in UsiXML (www.usixml.org): the “task &
domain” level manipulates a task model (which consists of a recursive decomposition
of a task into sub-tasks ordered with temporal relationships) and a domain model
(which consists of a UML class diagram). In UsiXML, each task is associated with a
task type: acquire, convey, select, navigate, compute, print, publish, etc. The task type
is associated to an attribute, a group of attributes, or a class in the domain model.
Therefore, the data type and the definition of the domain and co-domains are inferred
from the domain model.

 The COMETs Inspector: Towards Run Time Plasticity Control 329

At the AUI level, any AUI consists of a decomposition of Abstract Containers into
Abstract Individual Components (AIC). Each AIC exhibits one or many facets among
input, output, control, etc. For instance, a task “select the value of an attribute” could
be mapped onto an AIC “input an element from a collection”.

At the CUI level, the AUI is reified into Concrete Containers and Concrete
Interaction Objects satisfying the constraints imposed by the AUI. In our example
(“input an element from a collection”), any CIO matching the AIC could work, such
as a list box, a combo box, a radio box.

The concepts of the network are structured with multiple types of relationships
such as inheritance, aggregation, composition, etc. The relationships themselves are
arranged in an inheritance hierarchy, as presented in Fig. 2. Therefore, the semantic
network is represented as a graph (i.e. a set of nodes and edges between the nodes),
whose nodes represent fragments of models appearing at any level of abstraction and
edges consist of transformation between nodes. The transformations represent a key
aspect of exploiting UI design knowledge [19].

Fig. 2. Inheritance hierarchy between the relationships

The transformations are the following ones:

• Inheritance. y inherits from x if y refines x. The relation can be total versus
partial, exclusive versus non exclusive. Total means that x cannot be
instantiated as is: only y can exist. Exclusive means that there can be no t
inheriting from both y and z if y and z refine x in an exclusive way.

• Restriction. Restriction refers to cuts that make of y a sub-case of x. As a result,
y and x are no more substitutable. One example is the type restriction.

• Specialization. Specialization refers to inheritance that preserves properties. If
y specializes x then y satisfies all the properties of x. As a result, y can be seen
as an x making it substitutable to x.

• Extension. y extends x if y adds new descriptions to x, but x is still an X. This
kind of inheritance is always partial.

330 A. Demeure et al.

• Concretisation. Concretisation refers to reification (Fig. 1). y concretises x if y
adds concrete descriptions to x but x is not changed.

• Implementation. Whatever x is except an FUI, y is an FUI corresponding to x.
• Composition. y is part of x if y is included as is in x. y can be seen as a

subsystem of x. Mappings between x and y are weaved.
• Encapsulation. Encapsulation means that y is embedded in x. y is consumed. It

does no more exist as is.
• Use. Conversely to encapsulation, if y is used in x, then y still exists.
• Abstraction and reification are two other kinds of transformations. They are

defined accordingly to Fig. 1.

Based on these concepts and relationships, next section presents a semantic
network for plasticity.

Eff Poss

Spec

|||

Marks *

Cont *

Choice in a known set
 Type: a TYPE
 S_poss: set of Type
 S_eff: set of Type
 min, max : Integer
Constraints:
 S_eff ⊆ S_poss
 #S_eff ∈ [min; max]
User Task:
 Specify S_eff

Choice in a partially known set
 If Specifyer.TaskDone() then
 Choice.S_eff U= {Specifyer.elmt}
Constraints:
 Spec().Type = Choice().Type

Specifyer
 Type: a TYPE
 elmt: Type
Task:
 Specify elmt

Is composed of
Simple choice
 Constraints:
 min = max = 1

Restriction of
partial/non exclusive

Choice a month
 Constraints:
 Type = MONTH

Accumulator
 Constraints:
 Eff().Type = Poss().Type
 Eff().S_poss = S_eff
 Poss().S_poss = S_poss\S_eff
 If Poss().TaskDone() then
 L_eff U= Poss().L_eff
 If Eff().TaskDone() then
 L_eff() \= Eff().L_eff

Specializes
partial/exclusive Encapsulates

Choice by ||| and marks
 Constraints:
 ∀m:Marks() • m.Type = Bool
 #Marks() = #L_poss
 U{m:Marks() |
 m.Value = true
 • m.Obj} = L_eff
 U{m:Marks() |
 m.Value = false
 • m.Obj} = L_poss \ L_eff
 |||().S_IS = Marks()

|||
 S_IS: set of OBJECT

Extends

Encapsulates

Marker
 Type: a TYPE
 Value: TYPE
 Obj: OBJECT

Concretizes
partial/non exclusive

||| without navigation

||| Dialog level

Constraints:
 DS = {c:Cont() • c.DS}
 ∀is:S_IS • (∃c:Cont() | c.S_IS = {is})
 ∀c:Cont() • (∃is:S_IS | c.S_IS = {is})

|||

 DS0 DSi

 DS0 DSi

|||

||| with navigation

 DS0 DSi

|||

Cond

||| monospace
Constraints:
 Cond� #{i:Integer|DSi.active}=1

Specializes
total / exclusive

Specializes
partial / non

exclusive

||| sequence

Constraints:
 Cond� ¬∃i1,i2,i3:Integer | i1<i2<i3
 • DSi1.active ∧ ¬DSi2.active ∧ DSi3.active

||| sequential access
Constraints:
 Cond� ¬∃i:Integer | DSi.active at t

• ¬DSi.active at t-1
∧ ¬DSi-1.active at t-1
∧ ¬DSi+1.active at t-1

Container
S_IS : set of OBJECT

Container Dialog level

Constraints:
 Represents(DS, S_IS))

DS

Concretizes
total/exclusive

Encapsulates

TC

AUI

TK torus month
chooser

Scrollable
monospace

Implements
partial / non

exclusive

TK Scrollable listbox

TK Scrollable listbox

Scattering |||

Scrollable listbox

Constraints
 Typeof(|||) = ScrollList
 ∀m : Marks() •
 typeof(m) = Hignlighter

Linear |||

Matricial |||

A SPACE name

A SPACE

A SPACE name

A SPACE

ScrollList

Pie |||

Implements
partial / non
exclusive

CUI

FUI

Concretizes
partial / non
exclusive

Concretizes
partial / non
exclusive

Concretizes
partial / non
exclusive

Concretizes
partial / non
exclusive

Concretizes
partial / non
exclusive

Concretizes
partial / non
exclusive

Fig. 3. Excerpt of the semantic network for the “Choice” case study

 The COMETs Inspector: Towards Run Time Plasticity Control 331

3.4 The Semantic Network for Plasticity

For legibility, this subsection focuses on an excerpt of the entire semantic network:
the portion related to the “Choice” task type (Fig. 3). We have selected this portion
because many interactive systems involve some form of choice among items, objects,
menus, actions, etc. In addition, the available widget set for implementing a choice is
wide: list box, drop-down list, combination box, drop-down combination box, radio
button, check box, etc. In addition to these typical widgets, specialized widgets exist
too: fast scrolling list box, accumulator, pie menu, season selector, calendar, etc.
Usually, usability guidelines convey information to the designer on how to choose,
format, and implement a choice widget in a UI. But this knowledge remains always
subject to human interpretation and is never provided in an explicit, exploitable way.
Our semantic network tackles this problem.

As illustrated in Fig. 3, the semantic network collects descriptions of a same entity
(here the “Choice”) in a same schema and makes explicit the relationships between
them. The concepts and relationships are those that have been elicited in subsection
3.3. For legibility, the level of abstraction to which the descriptions belong is
indicated by colors and labels: TC for Task & Concepts, AUI, CUI, FUI.

A description is provided for each node. For instance, at the TC level, the task
“Choice in a known set” (of elements) makes explicit that:

• It manipulates elements of a given type TYPE.
• Elements can be chosen in a set of possible elements (S_poss).
• The selected elements are stored in a set of effective elements (S_eff).
• The number of selected elements can vary between a minimum (min) and a

maximum (max).
• And of course (constraints part), S_eff is a subset of S_poss, and the number of

effective elements is comprised between the min and max values.

The task “Choice a month” is a restriction of “Choice in a known set” as the type
of the elements is constrained to be a month (see the constraint “Type=MONTH” in
Fig. 3). A round FUI is provided as an example of implementation (“TK torus month
chooser”). It is interesting to note that this FUI is an implementation of both “Choice
a month” and “Simple choice” tasks. They are both restrictions of “Choice in a known
set” (of elements). “Choice a month” is a restriction along the type of elements,
whereas “Simple choice” restricts the number of selectable elements (see the
constraint min=max=1).

“Choice in a known set” of elements can be specialized in many ways: for instance
accumulators (“Accumulator”), and interleaving and markers (“Choice by ||| and
marks”). For legibility, accumulators are not described in Fig. 3. They are typically
concretized as two lists exchanging elements according to the user’s selection. Fig. 3
elaborates further on the interleaving and markers specialization. A marker is a
Boolean that indicates whether the corresponding element is selected (true) or not
(false). Markers are managed by interleaving. Scrollable list boxes are typical
concretizations (Fig. 3): the scrollbar corresponds to the interleaving, whereas the
highlighting color corresponds to the marker (true). Two TK implementations are
provided in Fig. 3. Check boxes are another option, whereas radio buttons would
concretize both “Choice by ||| and marks” and “Simple choice”.

332 A. Demeure et al.

At the AUI level, interleaving (“|||”) is concretized as a dialog space (“||| dialog
level”) managing the elements that are interleaved. One dialog space is associated per
element. They are nested in the interleaving dialog space. Two specializations are
mentioned whether there is or not a navigation between the interleaved dialog spaces
(“||| with navigation”, “||| without navigation”). By navigation, we mean articulatory
user’s actions that do not directly contribute to the user’s task but that are necessarily
to access to the dialog spaces in which the user will perform his/her task. For instance,
opening a menu is an articulatory task. One CUI with navigation is provided (Fig. 3):
the user has to deploy the menu before achieving his/her task. This CUI contrasts with
a linear, grid, scattering or pie interleaving that directly makes observable all the
dialog spaces: no navigation is required (Fig. 3).

As pointed out in Fig. 3, interleaving with navigation (“||| with navigation”) can be
specialized in many ways. Three variants are mentioned:

• Sequence (“||| sequence”): the possible elements are browsed in a sequential
way. The scroll list is a typical CUI example;

• Sequential access (“||| sequential access”): the possible elements are browsed in
sequential way, parcel by parcel, whatever the size of the parcel is (i.e., the
number of elements that are browsed step by step). Roughly speaking, it is not
possible to switch from X to X+2 without first displaying X+1. The scroll list is
another implementation;

• Monospace (“||| monospace”): only one dialog space is observable at a time. An
example of FUI is provided in Fig. 3.

Besides this organized capitalization of knowledge, the semantic network promotes
creation through composition. Composition is supported as a Cartesian product. It is
for instance possible to combine any specialization of interleaving with any
specialization of marker to create new interactors that had never been seen in the past.
This is powerful for exploring new possibilities at design and/or run time: for
instance, what about a monospace multiple choice with highlighters?

Now that the principles of the semantic network have been roughly introduced, let
us examine how it can help in designing or plastifying UIs. Exploitation may be
driven by strategies, such as:

• “Select the existing FUI that is the most compliant with the functional
requirements”. That means that producing FUIs manually or automatically is
not an option. An existing FUI has to be selected. In that case, only three FUIs
are available: the TK torus month chooser and the two TK scrollable list boxes.
Again, for legibility, all the existing widgets supporting the “Choice” task have
not been mentioned on Fig. 3.

• “Identify the element that map the best with all the functional and non
functional requirements and if necessary generate an FUI from that point”. Of
course, the new FUI will be inserted in the network at the right place to enrich
the knowledge for further designs and/or adaptations.

• “Prefer general purpose widgets” such as list box, combo box, pie menu that
serve the simple choice with no restriction. As they are less exotic, they will
probably be more familiar to the user.

 The COMETs Inspector: Towards Run Time Plasticity Control 333

Next section elaborates on the relevance of the semantic network for solving
plasticity questions.

3.5 Covered Plasticity Questions

Since plasticity is a particular form of adaptation, it is equally submitted to the
problems to be solved by adaptation. The main goal of performing some adaptation
consists in defining an adaptation goal, identifying and executing adaptation rules in
order to reach the adaptation goal. The literature abounds in providing adaptation
rules, but seems more silent in defining properly adaptation goals by linking them to
adaptation rules which could be executed for this purpose. Similarly, it is expected
here to uncouple the adaptation goals from the adaptation rules. Therefore, we define
a plasticity question Q as a couple Q = (G, S) where G denotes a plasticity goal to
reach when performing plasticity and S denotes a set of plasticity solutions which are
potential actions to be executed to reach the plasticity goal. Let us assume that a
plasticity goal G would be “migrate a graphical UI from a desktop to a PDA”. The
reduced screen real estate of the PDA stems for trying to reduce the surface of the UI
widgets, a possible solution among others. For instance, “a list box could be turned
into a drop-down list”, “a radio box of radio items could be transformed into a drop-
down list” are two possible plasticity solutions. The main shortcoming observed in the
state of the art is that the set S is usually defined in extension by hard-coding
opportunistic plasticity solutions in the adaptation engine, thus leaving little or no
room for flexibility and modifiability. In this paper, the definition of S is given in
comprehension so that the definition of plasticity questions remains unchanged: any
extension of the semantic network will be automatically incorporated in the related
plasticity questions.

A plasticity question is said to be simple, respectively composite, if and only if its
goal G involves concepts and relationships of at most, respectively at least, one level
of the CAMELEON reference framework (Fig. 1).

Since a FUI plasticity question only refers to elements of technological spaces, a
restriction of the questions to be addressed is imposed. For instance, the plasticity
goal “transcode a form from HTML to Java” is decomposed into similar sub-goals for
all constituents of the form, such as “transcode a SELECT element from HTML into
its counterpart in Java”. If XUL is the target language, the goal becomes “transcode a
SELECT element from HTML into its counterpart in XUL”. To solve this question,
the mappings between counterpart elements in various technological spaces are
required. In terms of the semantic network, the plasticity solution consists of an
abstraction of the SELECT element followed by a reification in the target platform,
which is expressed as:

S = { reic-f (absf-c (SELECT, HTML), Java) }

where reic-f denotes the reification from CUI to FUI, absf-c denotes the abstraction
from FUI to CUI. If the previous plasticity goal is extended up to the CUI level, it
would give “abstract a SELECT element from HTML into a CUI”, a platform
agnostic goal which is expressed as:

S = { absf-c (SELECT, HTML) }

334 A. Demeure et al.

If the previous plasticity goal is extended up to the AUI level, it would give
“abstract a SELECT element from HTML into a AUI”, a modality agnostic goal
which is expressed as:

S = { absc-a (absf-c (SELECT, HTML)) }

where absc-a denotes the abstraction from CUI to AUI. If the previous plasticity goal
is extended up to the TC level, it gives “abstract a SELECT element from HTML into
a task and domain”, a computing independent goal which is expressed as:

S = { absa-tc (absc-a (absf-c (SELECT, HTML))) }

where absa-tc denotes the abstraction from AUI to TC.
The original plasticity question in natural language could be generalized as “Give

me all the widgets that are equivalent to this HTML widget” (S = {reic-f (absf-c
(SELECT, HTML), X)}) where X denotes any technological space. If this widget is
itself composed of other sub-widgets, the plasticity solution is recursively addressed.
For instance, if a group box is composed of a group and a series of radio items, the
plasticity solution is queried on the semantic network on the sub-nodes.

Other typical plasticity questions involve: “Give me all the possible reifications of
this CIO for any technological space”, or “for the X technological space”, “Give me
the abstraction of this CIO”, “Give me the possible reifications of this AIO satisfying
this property”, “Give me the behaviorally-equivalent widgets in the same
technological space corresponding to a given widget”, “Give me a modality-
equivalent CIO of this CIO”, “Give me any equivalent CIO of this CIO independently
of any modality”, “Give me a browsable version of this observable interaction
component”, “Give me all the possibilities for implementing a simple choice”.

Next section introduces a small case study that takes benefit from the semantic
network at run time to solve few of these questions under the control of the end user.

4 A Case Study: The COMETs Inspector

The Home Heating Control System (HHCS) allows the user to manage the
temperature at home depending on the month. In an interleaving way, the user selects
the month and controls the temperature of the different rooms. They are here limited
to the living room and the wine cellar (Fig. 4). HHCS has been implemented in
COMETs (COntext Mouldable widgETs). COMETs are interactors specially fashioned
for plasticity [2]. A COMET is “a self descriptive interactor that publishes the quality in
use it guarantees for a set of contexts of use. It is able to either self-adapt to the
current context of use, or be adapted by a tier-component. It can be dynamically
discarded, respectively recruited, when it is unable, respectively able, to cover the
current context of use” [2].

HHCS is made of four major COMETS:

• One for each user’s task (“choose a month”, “control living-room” and
“control wine cellar”). Each COMET recursively embeds (encapsulates) other
COMETs for both guiding the task (e.g., the label “Select a month”) and
sustaining interaction (e.g., the list boxes and sliders on Fig. 4a).

 The COMETs Inspector: Towards Run Time Plasticity Control 335

a)

b)

(c)

Fig. 4. A set of FUIs obtained by tuning the interleaving comet. Detachable windows are easily
implemented thanks to COMETs.

• One for the interleaving. This comet is in charge of managing the three
previous ones (they are nested in this COMET). Depending on the layout (Fig. 4
a and b) and whether the embedded containers are displayed as frames (Fig. 4
a and b) or windows (Fig. 4c), the rendering is updated, possibly implementing
detachable/(re-)attachable windows (Fig. 4c).

In our approach, adaptation is placed under the control of the end user (yet the
designer only, because of a too poor quality of the tool’s UI). A COMETS inspector [5]
supports the inspection of the UI and its modification thanks to the support of the
semantic network. The TK torus month chooser has been selected in Fig. 5.

Only basic operations (i.e., Add, Remove and Substitute) are supported yet, for
instance enabling the end-user to substitute one FUI with another one. Fig. 6 shows
the inspector (the left window). It displays the hierarchy of comets (left part). A zoom
in the selected one is provided (central part). The performable operations are listed in
the right part according to the freedoms leveraged by the semantic network. On Fig. 6,
the user is being to switch from a window-based to a frame-based presentation for the
“control living room” COMET. This will have the effect of re-attaching the living-room
window to the main HHCS window. Actually, the semantic network is outside the
COMETs. We envision embedding local semantic networks in the COMETs to support a
mix of open and close adaptations.

336 A. Demeure et al.

Fig. 5. The torus presentation for selecting a month

Fig. 6. Based on the semantic network, the comets inspector (left window) provides the user
(yet, the designer; in the future, the end-user) with a set of operations (right part of the left
window) that can be applied to the interactive system (the two right windows) for its design
and/or adaptation. Here, the substitute operation will replace the living room window (the small
middle window) with a frame that will be attached to the main window (right window).

5 Conclusion

First of all, it is important to emphasize that the semantic network defined in this
paper is independent from its exploitation through the COMETs Inspector: whether you
are using a COMET-compliant system [2] or not, it does not matter and it does not
change the structure of concepts. The network structures the concepts throughout the
four levels of the CAMELEON Reference Framework, thus enabling us to address
plasticity questions at run time with an unprecedented level of flexibility and
exploitation. Plasticity can now be based on the task and the concepts models. Since
the network is exploited at run time to address the plasticity questions requested by

 The COMETs Inspector: Towards Run Time Plasticity Control 337

the end user, genuine run time plasticity could be achieved. The COMETs Inspector is
just one implementation of a software which accesses this network and performs the
desired operations. In the provided example, the task type was predefined (here, a
choice). We could even imagine that this task type is provided at run time by the end
user by asking “what task do you want to carry out on this object?”. The user could then
be presented by a series of options like “Insert an object, delete an object, list existing
objects, select an object among several (our example)”. This is compliant with the
CRUD pattern (Create-Read-Update-Delete) design pattern usually found in the UML
method and notation. Therefore, the design knowledge that is contained in the semantic
network remains stable over time since the plasticity questions do not change. If, for
instance, another widget should be added, it could be added only where it is required
and the rest is re-composed straightforwardly. Changing the network is a matter of
adapting the internal representation (a graph) of the network and exploiting it therefore
becomes a problem of graph exploration according to predefined semantic relationships.
Of course, the quality of the results heavily depends on the network quality.

Acknowledgments. We gratefully acknowledge the support of the SIMILAR network
of excellence (http://www.similar.cc), the European research task force creating
human-machine interfaces similar to human-human communication of the European
Sixth Framework Programme (FP6-2002-IST1-507609). Jean Vanderdonckt would
like to thank Université Joseph Fourier for supporting his position as invited professor
for two months since May 2006.

References

1. Avrahami, G., Brooks, K.P., Brown, M.H. A Two-view Approach to Constructing User
Interfaces. In Proc. of SIGGRAPH’89 (Boston, July 31-August 4, 1989), Computer
Graphics, 23, 3 (July 1989), 137-146

2. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A. Towards a new Generation of
Widgets for Supporting Software Plasticity: the “Comet”. In Proc. of 9th IFIP Working
Conf. on Engineering for Human-Computer Interaction EHCI-DSVIS’2004 (Hamburg,
July 11-13, 2004). Lecture Notes in Computer Science, Vol. 3425. Springer-Verlag,
Berlin, (2005), 306-324

3. Clerckx, T., Luyten, K., Coninx, K. The Mapping Problem Back and Forth: Customizing
Dynamic Models while Preserving Consistency. In Proc. of the 3rd Int. Workshop on Task
Models and Diagrams for User Interface Design TAMODIA’2004 (Prague, November 15-
16, 2004). ACM Press, New York, (2004), 33-42

4. Crease, M., Gray, P.D., Brewster, S.A. A Toolkit of Mechanism and Context Independent
Widgets. In Proc. Of Int. Workshop on Design, Specification, and Verification of
Interactive Systems DSVIS’2000 (Limerick, June 5-6, 2000). Lecture Notes in Computer
Science, Vol. 1946. Springer-Verlag, Berlin, (2000), 121-133

5. Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J. The Comets Inspector,
Manipulating Multiple Interface Representations Simultaneously, In Proc. of 6th Int. Conf.
on Computer-Aided Design of User Interfaces CADUI’06 (Bucarest, June 3-5, 2006).
Springer-Verlag, Berlin, (2006), 167-174

6. Dittmar, A., Forbrig, P. Methodological and Tool Support for a Task-Oriented
Development of Interactive Systems. In Proc. of 3rd Int. Conf. on Computer-Aided Design
of User Interfaces CADUI’99 (Louvain-la-Neuve, Oct. 21-23, 1999). Kluwer Academics
Pub., Dordrecht, (1999), 271-274

338 A. Demeure et al.

7. Fensel, D., Benjamins, V., Motta, E., Wielinga, B. UPML: A Framework for Knowledge
System Reuse. In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence IJCAI’99
(Stockholm, July 31-August 6, 1999). Morgan Kaufmann, San Francisco, (1999), 16-23

8. Florins, M., Montero, F., Vanderdonckt, J., Michotte, B. User Interface Graceful
Degradation for Small Platforms. In Proc. of 8th Int. Working Conference on Advanced
Visual Interfaces AVI’2006 (Venezia, May 23-26, 2006). ACM Press, New York, (2006)

9. Gajos, K., Weld, D.S. Preference Elicitation for Interface Optimization. In Proc. of the 18th
Annual ACM Symp. on User Interface Software and Technology UIST’2005 (Seattle, Oct.
23-26, 2005). ACM Press, New York, (2005), 173-182

10. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J.B., Gray, P.D., Cooper,
R., Goble, C.A., da Silva, P. Teallach: a Model-Based User Interface Development
Environment for Object Databases. Interacting with Computers 14, 1 (2001), 31-68

11. Keränen, H., Plomp, J. Adaptive Runtime Layout of Hierarchical UI Components. In Proc.
of the 2nd Nordic Conf. on Human-Computer Interaction NordiCHI’02 (Aarhus, October
19-23, 2002). ACM Press New York, (2002), 251-254

12. Limbourg, Q., Vanderdonckt, J. Addressing the Mapping Problem in User Interface
Design with UsiXML. In Proc. of the 3rd Int. Workshop on Task Models and Diagrams
for User Interface Design TAMODIA’2004 (Prague, November 15-16, 2004). ACM Press,
New York, (2004), 155-163

13. McKinley, P.K., Sadjadi, S.M., Kasten, K.P., Cheng, B.H.C. Composing Adaptive
Software. IEEE Computer 37, 7 (July 2004), 56-64

14. Mitrovi , N., Royo, J.A., Mena, E. ADUS: Indirect Generation of User Interfaces on
Wireless Devices. In Proc. of 7th Int. Workshop Mobility in Databases and Distributed
Systems MDDS’2004 (Zaragoza, August 30-September 3, 2004). IEEE Computer Society,
Los Alamitos, (2004), 662-666

15. Navarre, D., Palanque, P., Paternò, F., Santoro, C., Bastide, R. A Tool Suite for Integrating
Task and System Models through Scenarios. In Proc. of 8th Int. Workshop on Design,
Specification, and Verification of Interactive Systems DSV-IS’2001 (Glasgow, June 13-15,
2001). Lecture Notes in Comp. Science, Vol 2220. Springer-Verlag, Berlin, 88-113

16. Nylander, S., Bylund, M., Waern, A. The Ubiquitous Interactor – Device Independent
Access to Mobile Services. In Proc. of 5th Int. Conf. of Computer-Aided Design of User
Interfaces CADUI’2004 (Funchal, January 13-16, 2004). Kluwer Academics, Dordrecht,
(2005), 271-282

17. Paternò, F., Santoro, C. One Model, Many Interfaces. In Proc. of 4th Int. Conf. on
Computer-Aided Design of User Interfaces CADUI’2002 (Valenciennes, May 15-17,
2002). Kluwer Academics Pub., Dordrecht, (2002), 143-154

18. Plomp, C.J., Mayora-Ibarra, O. A Generic Widget Vocabulary for the Generation of
Graphical and Speech-Driven UIs. Int. J. of Speech Technology 5 (2002), 39-47

19. Puerta, A.R., Eisenstein, J. Towards a General Computational Framework for Model-
based Interface Development Systems. Knowledge-Based Systems 12, 8 (1999), 433-442

20. Schneider, K.A., Cordy, J.R. Abstract User Interfaces: A Model and Notation to Support
Plasticity in Interactive Systems. In Proc. of 8th Int. Workshop on Design, Specification,
and Verification of Interactive Systems DSV-IS’2001 (Glasgow, June 13-15, 2001).
Lecture Notes in Comp. Science, Vol. 2220. Springer-Verlag, Berlin, (2001), 28-48

21. Sowa, J.F. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Publishing Co., Pacific Grove, (2000)

22. Vanderdonckt, J., Bodart, F. Encapsulating Knowledge for Intelligent Automatic
Interaction Objects Selection. In Proc. of ACM Conf. on Human Aspects in Computing
Systems INTERCHI'93 (Amsterdam, April 24-29, 1993). ACM Press, New York, (1993),
424-429

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

