
167

Chapter 13

The Comets Inspector
Manipulating Multiple User Interface Representations Simultane-
ously

Alexandre Demeure, Gaëlle Calvary, Joëlle Coutaz, and Jean Vanderdonckt
CLIPS-IMAG, BP 53, F-38041 Grenoble Cedex 9 (France)
E-mail: {Alexandre.Demeure, Gaelle.Calvary, Joelle.Coutaz, jeanvdd}@imag.fr
URL: http://www-clips.imag.fr/iihm
Tel.: +33 4 76 51 48 54 – Fax: +33 4 76 44 66 75

Abstract Three types of representation are typically produced during the User Interface
(UI) development life cycle: a conceptual representation holding the models
used for elaborating a UI, an internal representation concerning the code of the
UI, and an external representation expressing the look and feel of the UI.
While the end user typically manipulates the external representation only, the
designer and the developer respectively focus on the conceptual and internal
representations. The Comets Inspector gathers all three representations into a
single environment, thus providing the user (actually, the designer and the de-
veloper; in the future, the end-user) with multiple views of a same UI simulta-
neously. Each representation is made observable and modifiable through one
or many “mini-UIs”. Consistency is ensured through mappings between these
representations. From a methodological point of view, the benefit is the inte-
gration of three stakeholders’ perspectives in a consensual and consistent way,
enabling the exploration and manipulation of design alternatives at run time. In
particular, when the context of use will be changing, the end-user will be able
to inspect the UI capabilities and control its adaptation, thus sustaining explicit
plasticity.

Keywords: Abstract user interface model, Comet, Conceptual representation, External rep-
resentation, Internal representation, Model-based design, Plasticity of user in-
terfaces.

1. INTRODUCTION

Ubiquitous computing has led to new requirements in Human-Computer
Interaction (HCI), in particular the need for interactive systems to adapt or

168 Demeure, Calvary, Coutaz, and Vanderdonckt

be adapted to their contexts of use while preserving usability. This plasticity
property [5] has been studied for many years, mostly focusing on design
time. In reality, neither the context of use nor the adaptation can always be
envisioned at design time. As a result, part of plasticity has to be computed
at run time. This paper presents an early prototype called the Comets Inspec-
tor that overcomes the plasticity issue. It favours the exploration of design
alternatives both at design time and run time by embedding the all develop-
ment life cycle of a User Interface (UI) in a single tool. It integrates three
representations that traditionally need difficult conciliations between their
stakeholders: the designer, developer and end-user. Fig. 1 elicits the three
representations (inspired from [3,13]):

1. The Conceptual Representation models a UI using a given syntax and
semantics according to consistent stylistics, which can be textual, graphi-
cal or both. This representation includes multiple models depending on
the design method: typically task, domain, user, platform, environment,
abstract and concrete UIs, etc. This representation is intended for the de-
signer to capture UI requirements and information that will be turned into
design options later on.

2. The Internal Representation consists of pieces of code programmed in an
appropriate language (e.g., C, Tcl/Tk, Flash) for implementing a particu-
lar UI. This representation is typically the developer’s one, where the UI
code should reflect the design options decided by the designer.

3. The External Representation refers to the UI rendering which is visible
and manipulable by the end-user. This rendering could be achieved
through interpreters and/or code generators. This representation is the
common view that is made visible to the end-user. The other representa-
tions are not usually.

: Generation of the UI code from its appearance (see UIMSs, toolkits, interface builders).
: Elaboration of the rendering from parts of the application/UI code.

: Generation of the UI appearance/code from the application’s syntax and semantics (see MB-IDE).
: Recovering of design time models from the UI appearance/code (see reverse engineering).

Conceptual
representation

External
representation

Internal
representation

End-user

Designer

Developer

3

1

4

2

5
6

3
1

2

64
5

/
/

: Generation of the UI code from its appearance (see UIMSs, toolkits, interface builders).
: Elaboration of the rendering from parts of the application/UI code.

: Generation of the UI appearance/code from the application’s syntax and semantics (see MB-IDE).
: Recovering of design time models from the UI appearance/code (see reverse engineering).

Conceptual
representation

External
representation

Internal
representation

End-user

Designer

Developer

33

11

44

22

55
66

3
1

2

64
5

/
/

Figure 1. The three representations of a UI making explicit six possible development paths.

The Comets Inspector: Manipulating Multiple User Interface
Representations Simultaneously

169

Fig. 1 makes explicit six possible development paths (1 to 6). Actually,

these paths mainly suffer from five major shortcomings: 1) only one repre-
sentation is available at a time; 2) most representations are limited to design
time; 3) the mappings between all representations are not always ensured; 4)
the manipulation of each representation is somewhat tedious; and 5) this ma-
nipulation is usually built-in. These five shortcomings are discussed in Sec-
tion 2 with regard to the state of the art. They are turned into requirements
that motivate both the Comet concept and the Comets Inspector described in
Section 3. Section 4 discusses perspectives to the work.

2. RELATED WORK

FormsVBT [1] is probably the first manifestation of an environment
combining more than one of the aforementioned representations at least: at
design-time, the designer is able to manipulate TeX specifications describing
the look and feel of a graphical dialog box. This conceptual representation is
directly mapped onto an external representation, a genuine UI which can be
tested by the user for acceptance. The system also works the other way:
when the external representation is affected, the conceptual representation is
updated accordingly, thus maintaining a bijective mapping.

Teallach [2] supports the more general problem of maintaining mappings
between representations [8] in a more sophisticated way: a conceptual repre-
sentation is established based on a task and a domain models from which an
external representation could be produced. The task or the domain models
could be used separately or together. If an external representation is built
manually, it is then possible to link it to the task and domain afterwards.

In [6], a methodology is developed that systematically produces a UI
through a sequence of steps: task modelling, derivation of a dialog graph
from the task model, and production of a final UI. Again, an external and an
internal representation could be produced from a conceptual representation.
The system does not work the other way: if the final UI is modified, these
modifications are lost for the next re-generation. This problem is often re-
ferred to as the round-trip engineering. The situation is similar in [9].

An interesting idea introduced in [10] is to simultaneously provide the
user with both the conceptual and external representations to the user so as to
establish a more direct correspondence between the two views. This combi-
nation of views is maintained even at run-time. In [12], a forward engineer-
ing method is adopted to derive the internal and external representations
from a conceptual representation that progressively goes from the task model
to abstract presentations.

170 Demeure, Calvary, Coutaz, and Vanderdonckt

By examining these representative cases of the related work and other
similar cases, we define five requirements to overcome the shortcomings
elicited in Section 2:

• Requirement n°1: all representations should be available simultane-
ously, as opposed to one representation at a time or moving from one rep-
resentation to another one as in FormsVBT [1] and Teallach [2].

• Requirement n°2: all representations should be manipulated at run-
time, as opposed to design-time only. This is very relevant for propagat-
ing changes at run-time such as adaptations in case of plastic UIs. For in-
stance, a UsiXML (http://www.usixml.org) specification could be con-
veyed and interpreted at run-time, including its adaptation rules that are
embedded in the conceptual representation. But this is so far not sup-
ported in tools such as InterpiXML, the Java interpreter for UsiXML.

• Requirement n°3: all representations should be coordinated in a con-
sistent way, as opposed to ensuring partial mapping or no mapping at all.
Therefore in theory, six sets of mappings should be maintained (see Sec-
tion 1). In practice, the requirement could be alleviated to be compliant
with requirement number 2 that calls for an acceptable latency.

• Requirement n°4: each representation should be manipulable via a
dedicated ‘mini-UI’, as opposed to other related works where the opera-
tions attached to each representation were not always salient. Various in-
teraction styles could be relevant to take into account the different syntac-
tic and semantic skills [7] of the stakeholders.

• Requirement n°5: each ‘mini-UI’ should be autonomous, as opposed
to tied up with the rest of the application and the environment.
The following section shows how the Comets inspector fully or partially

addresses the five above requirements.

3. THE COMETS INSPECTOR

The notion of Comet has been fashioned from a software engineering
perspective as plastic interactors, i.e. interactors capable of adapting or be-
ing adapted to the context of use while preserving usability [4,5]. A comet is
“a self descriptive interactor that publishes the quality in use it guarantees
for a set of contexts of use. It is able to either self-adapt to the current con-
text of use, or be adapted by a tier-component. It can be dynamically dis-
carded, respectively recruited, when it is unable, respectively able, to cover
the current context of use” [5]. As opposed to Abstract Interaction Objects
[14] and plastic widgets [11], a Comet is more powerful in that it embeds the
alternate presentations depending on the context of use, the mechanisms to
switch between them, and an underlying software architecture for controlling
its behavior. A Comet comes with three facets [4,5]: Presentation, Abstrac-

The Comets Inspector: Manipulating Multiple User Interface
Representations Simultaneously

171

tion, and Control). Presentation and Abstraction are logical facets in charge
of selecting the physical presentation/abstraction appropriate in the current
context of use (Fig. 2).

Control

Logical
Presentation

Logical
Abstraction

Physical
Presentations

Physical
Abstractions

Figure 2. A comet, a software architecture construct made of a control, a logical abstraction

and a logical presentation in charge of dealing with their potentially multiple physical abstrac-
tions and/or presentations. This ‘polymorphism’ may be useful for adapting to the context of

use.

To address the five requirements introduced in Section 2, a Comets in-
spector has been designed and fully developed on top of the Tcl/Tk envi-
ronment. Fig. 3 reproduces a screen shot of the inspector opened with a
comet-based running example: the Home Heating Control System (HHCS).

Figure 3. The three representations of a UI in the Comets Inspector. The selected comet in the

conceptual representation is ‘Select a month’.
HHCS (see the external representation on the right window in Fig. 3) is

intended to help the user in managing the temperature at home. The user se-
lects the month, browses the rooms and, if necessary, sets the thermostats of
the rooms. The inspector makes observable the conceptual, internal, and ex-
ternal representations of HHCS. The conceptual representation (middle part
of the left window in Fig. 3) depicts HHCS in terms of comets: both the con-
trol and the current/available logical and physical presentations are displayed
(the abstractions have not been considered in this early version). The facets
of the comets are depicted as circles according to Fig. 2. The internal repre-

Internal representation

Conceptual representation

External
represen-
tation

Operations

172 Demeure, Calvary, Coutaz, and Vanderdonckt

sentation (left part of the left window in Fig. 3) materializes the hierarchy of
Abstract Containers and Abstract Individual Components of the UI. The ex-
ternal representation consists of the direct rendering of the UI as perceived
by the end-user. Thanks to a set of operations (right part of the left window
in Fig. 3), the user can customize the UI. Let us suppose that when browsing
the comet ‘Select a month’ on the conceptual representation (see Fig. 3), the
user perceives the existence of a round presentation. He/she simply selects
both the ‘Substitute’ operation and the round presentation. The external rep-
resentation is immediately updated accordingly (Fig. 4). The Comets inspec-
tor addresses the requirements as follows:

• Requirement n°1: the three representations are available at any time as
explained above.

• Requirements n°2 & 3: all three representations are manipulable at any
time, whether it is at design- or at run-time. Consistency is ensured as il-
lustrated on the ‘Substitute’ operation (Fig. 3, 4).

Figure 4. Choosing an alternate presentation (the round one for the ‘Select a month’ comet) in
the conceptual representation. The external representation is updated accordingly.

Substitution can be performed between panels and windows. This is an easy
way to implement detachable/(re)attachable UIs. For instance, in Fig. 5, a
window-based presentation has been preferred for the comet ‘Set tempera-
ture of the living room’. The UI has been detached accordingly in the exter-
nal representation.

• Requirements n°4 & 5: As depicted in Fig. 3, each representation has its
graphical autonomous mini-UI. However, they need further work to be
usable by an end-user. It is also possible to manipulate each representa-
tion with Tcl/Tk commands, for instance for adding a comet to the hierar-
chy.

The Comets Inspector: Manipulating Multiple User Interface
Representations Simultaneously

173

Figure 5. The Comets Inspector supports detachable UIs.

4. CONCLUSION

Until now, the effort has been set on software architecture for both inte-
grating the three stakeholders’ perspectives, and supporting the polymor-
phism of comets. In the near future, the effort will be set on the conceptual
representation so that comets could tell their tasks, concepts, structures and
requirements in terms of context of use. After that, the focus will be set on
UI in order to surpass the rapid prototyping tool and provide the end-user
with a powerful tool for customizing his/her UI. Then, some evaluation will
be conducted before providing a library of comets.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the SIMILAR network of ex-
cellence (http://www.similar.cc), the European research task force creating
human-machine interfaces SIMILAR to human-human communication
(FP6-2002-IST1-507609). Jean Vanderdonckt would like to thank Univer-
sity Joseph Fourier which supported his position as invited professor for two
months from May 2006.

REFERENCES

[1] Avrahami, G., Brooks, K.P., and Brown, M.H., A Two-view Approach to Constructing
User Interfaces, in Proceedings of the 16th Annual Conference on Computer graphics

The panel ‘Set the
temperature of the
living room’ has
been detached

174 Demeure, Calvary, Coutaz, and Vanderdonckt

and interactive techniques SIGGRAPH’89 (Boston, 31 July-4 August 1989), Computer
Graphics, Vol. 23, No. 3, July 1989, pp. 137-146.

[2] Barclay, P.J., Griffiths, T., McKirdy, J., Paton, N.W., Cooper, R., and Kennedy, J., The
Teallach Tool: Using Models for Flexible User Interface Design, in A. Puerta, J. Van-
derdonckt (eds.), Proceedings of 3rd Int. Conf. on CADUI’99 (Louvain-la-Neuve, 21-23
October 1999), Kluwer Academics Pub., Dordrecht, 1999, pp. 139-157.

[3] Barthet, M.-F., The DIANE Method and its Connection with MERISE Method, in Proc. of
World Confererence “Ergonomic design, interfaces, products, Information” IEA’95 (Rio
de Janeiro, 16-20 October 1995), pp. 106-110.

[4] Calvary, G., Dâassi, O., Coutaz, J., and Demeure, A., Des Widgets aux Comets pour la
Plasticité des Systèmes Interactifs, Revue d’Interaction Homme-Machine, Europia, Vol.
6, No. 1, 2005, pp. 33-53.

[5] Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure, A., Towards a new Genera-
tion of Widgets for Supporting Software Plasticity: the “Comet”, Proc. of 9th IFIP
Working Conference on EHCI jointly with 11th Int. DSVIS Workshop, EHCI-
DSVIS’2004 (Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol.
3425, Springer-Verlag, Berlin, 2005, pp. 306-324.

[6] Dittmar, A. and Forbrig, P., Methodological and Tool Support for a Task-Oriented De-
velopment of Interactive Systems, in A. Puerta, J. Vanderdonckt (eds.), Proceedings of 3rd
Int. Conf. on Computer-Aided Design of User Interfaces CADUI’99 (Louvain-la-Neuve,
21-23 October 1999), Kluwer Academics Pub., Dordrecht, 1999, pp. 271-274.

[7] Jarke, M. and Vassiliou, Y., A Framework for Choosing a Database Query Language,
ACM Computing Surveys, Vol. 17, No. 3, September 1985, pp. 313-370.

[8] Limbourg, Q., Vanderdonckt, J., and Souchon, N., The Task-Dialog and Task-Presen-
tation Mapping Problem: Some Preliminary Results, in F. Paternò, Ph. Palanque (eds.),
Proc. of 7th Int. Workshop on Design, Specification, Verification of Interactive Systems
DSV-IS’2000 (Limerick, 5-6 June 2000), Lecture Notes in Computer Science, Vol.
1946, Springer-Verlag, Berlin, 2000, pp. 227-246.

[9] Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J., Derivation of a Dialog Model
from a Task Model by Activity Chain Extraction, in J. Jorge, N.J. Nunes, J. Falcão e
Cunha, J. (eds.), Proc. of 10th Int. Workshop on Design, Specification, and Verification
of Interactive Systems DSV-IS’2003 (Madeira, 4-6 June 2003), Lecture Notes in Com-
puter Science, Vol. 2844, Springer-Verlag, Berlin, 2003, pp. 203-217.

[10] Navarre, D., Palanque, P., Paternò, F., Santoro, C., and Bastide, R., A Tool Suite for In-
tegrating Task and System Models through Scenarios, in C. Johnson (ed.), Proc. of 8th
Int. Workshop on DSV-IS’2001 (Glasgow, 13-15 June 2001), Lecture Notes in Com-
puter Science, Vol 2220, Springer-Vrlag, Berlin, pp. 88-113.

[11] Nylander, S., Bylund, M., and Waern, A., The Ubiquitous Interactor – Device Independ-
ent Access to Mobile Services, in R. Jacob, Q. Limbourg, J. Vanderdonckt (eds.), Proc.
of 5th Int. Conf. of Computer-Aided Design of User Interfaces CADUI’2004 (Funchal,
13-16 January 2004), Kluwer Academics, Dordrecht, 2005, pp. 269-280.

[12] Paternò, F., and Santoro, C., One Model, Many Interfaces, in Ch. Kolski, J. Vander-
donckt (eds.), Proc. of 4th Int. Conf. on Computer-Aided Design of User Interfaces (Va-
lenciennes, 15-17 May 2002), Kluwer Academics Pub., Dordrecht, 2002, pp. 143-154.

[13] Tarby, J.-C., Gestion Automatique du Dialogue Homme-Machine à partir de Spécifica-
tions Conceptuelles, Ph.D. thesis, Univ. of Toulouse I, Toulouse, 20 September 1993.

[14] Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection, in Proc. of the ACM Conf. on Human Factors in Computing
Systems INTERCHI'93 (Amsterdam, 24-29 April 1993), ACM Press, New York, 1993,
pp. 424-429.

