Design by Example of Graphical User Interfaces
adapting to available screen size

Alexandre Demeure, Jan Meskens, Kris Luyten, armihK@oninx

Hasselt University — tUL — IBBT
Expertise Centre for Digital Media
Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{alexandre.demeure, jan.meskens, kris.luyten, kesiminx}@uhasselt.be

Abstract. Currently, it is difficult for a designer to creatiser interfaces that
are of high aesthetic quality for a continuouslpwing range of devices with

varied screen sizes. Most existing approacheshsteaations that only support
form based user interfaces. These user interfaegsbe usable but are of low
aesthetic quality. In this paper, we present artiegle to design adaptive

graphical user interfaces by example (i.e. usenrfates that can adapt to the
target platform, the user, etc.), which can produeer interfaces of high

aesthetic quality while reducing the developmenstcimherent to manual

approaches. Designing adaptive user interfacesamyle could lead to a new
generation of design tools that put adaptive ustarfiace development within

reach of designers as well as developers.

Keywords. design by example, adaptation, toolglass, desigoesp

1 Introduction

More and more computing devices have been appearinf)e market, each having
very different characteristics in terms of CPU powbsplay size, memory, etc. This
situation has led to a renewal in HCI research ahizer Interface (Ul) adaptation,
which is nowadays often referred to as plastidithasticity is defined by Calvary et
al. [1] as the capacity of a Ul to withstand vadas of contexts of use while
preserving predefined usability properties. Thetewhof use is defined in terms of
user (e.g. expert, novice...), platform (e.g. memagygen size...) and environment
(e.g. noise, luminosity...). Instead of trying to eowall, we target the creation of Uls
adapted to different screen sizes.

Most of the research that has been done up to rnied to achieve plasticity by
relying on automatic approaches [6]. This redutesdost to create and maintain a
user interface for each platform significantly. dwdldition, creating different user
interfaces for different screen sizes manually heayl to inconsistencies between the
designs. Unfortunately, most of the automatic Ulnegation approaches use
abstractions that lead to the “greatest commonsdiViinterfaces that work for all
targeted platforms [9]. In practice, the greatesnhmon divisor lead to form based
Uls.

In this paper we introduce the possibility to adepmanual approach to create
aesthetic Graphical User Interfaces (GUIs) at l@stcThis is achieved with design
by example that gives the designer full controlrothee adaptation process. In this
paper, we do not focus on preserving consistendwdsn GUIs neither how to
provide guidance to the designer.

There are two main advantages of design by exaraplppinted out by Frank [5].
First, the designer manipulates a concrete obgber than its abstractions. Second,
providing examples is less complex than programntiregcorresponding algorithm,
which puts the control back in the hand of the giesi instead of the developer.

In addition, we blur the distinction between rurgimnd design time by letting the
designer specify examples on the running Ul. Thhs, effect of an example is
immediately perceivable which highly facilitatetrial and error approach.

In the remainder of this paper, we first discuss piilosophy of our approach.
Next, we introduce the algorithms that we use. Wftgds, we discuss how our
approach addresses some issues that are ofterivperae example-based Ul design
tools. Finally, we discuss relevant related woiksw the conclusions and provide
ideas for future work.

2 Design by example

We define a design space as a set of user interfhe¢ have similar behavior and
goals and support the same set of interaction td&ksh Ul in this design space is
appropriate for a certain range of screen sizes.

Fig. 1 illustrates the design space of a Ul thaipsuits the user task of selecting a
slide number from a running presentation (e.g. PBwiat). Different Uls can be
defined to support this task and populate the desigice; The Uls of examples a and
b are adapted according to the available screethyichile they are not influenced
according to the height. Example c is adapted aacgrto primarily the increase in
screen height, while exampteis adapted to both an increase in width and height.
This example design space shows that the presemtfi the same task can differ
significantly: the structure, style and layout loé tuser interface are tailored according
the screen size when the functionality that isreffleremains unchanged.

A Screen height

!
First Prev | Next Last

Prex |Last Screen width

»

Fig. 1. lllustration of a design space of Uls that supptiie user task of selecting a slide.

In our approach, the designer can create these paadi designs for different
screen sizes. These Ul designs are interpolatedeatrdpolated to generate user
interfaces for all other sizes the designer did take into account explicitly.
Interpolation and extrapolation means that, givemes examples for certain screen
sizes, the system will propose Uls for all interimaéel window sizesifter pol ation)
and even smaller or bigger onestfapolation). In this sense, interpolation can be
considered as a specialization of the design spabie extrapolation extends the
coverage of the design space.

The cornerstone of the approach presented heteiddsign space which can be
changed at design time as well as at run time.dBségner can specify examples and
view the results of interpolation or extrapolatidinectly on the final running Ul [1],
and manipulate the design space this way. The mesian use the Ul the same way
the end-user will use it and edit the design spédbe behavior is not what is
expected. In order to be really effective and usaly designers, this approach
requires the underlying mechanism of interpolatiord extrapolation to be easily
understandable but yet remain powerful enoughgo allow end-users to change the
Ul according to their preferences. Artistic resizifd] demonstrates this for the
graphical aspect of a user interface.

We aim at maintaining a semantic equivalence duthmey adaptation process.
Therefore, each modification of the Ul needs tospree the semantics (i.e. the user
task). That is, tools should ensure that the swibisth of an interactor is only possible
with one that is compatible with respect to thgioal semantics.

3 Exampleinter- and extrapolation

The algorithm we use to interpolate examples igthas the orthogonal interpolation
technique used in Artistic resizing [4]. This algom is simple and easily

understandable even by non-programmers but yetvsllfor interesting results.

However, the algorithm focuses on the graphicatesgntation only, and does not
deal with semantical equivalence when resizing. §&aeralize artistic resizing by
providing a common infrastructure to express depeogs between any
combinations of Ul variables.

Fig. 2 shows a UML schema of the data structureiseesto compute interpolation
and extrapolation on the base of the given example®ne defines a subspace in the
screen size space, i.e. a set of points <windowhyigindow height> for which a set
of examples is defined. These examples will be usetbmpute other required user
interfaces through the interpolation and extrapmtatmechanism whenever the
window is resized within the zone boundaries. Ehg window stays larger than
(100,100) and is smaller than (200,200).

Each example is composed of two values: a refereakee (e.g. the width of the
window when the example was defined) and a relatdde (e.g. the button position
within the window when the example was defined)efizvexample is linked to one
related variable (e.g. the related variable cowedmg to the x-coordinate of the
button position). A related variable contains action for computing interpolation
and extrapolation from a set of examples (e.g.alineterpolation). Each related

variable is linked to one reference variable (&hg.reference variable corresponding
to the window width). Each reference variable igéid to one or more zones.

Zone Example

Subspace of screen size’s spafe Reference value
Related value

1“*

1
Related variable

*

Reference variable 1

Interpolation/extranolation functi

Fig. 2. UML class diagram representing the interpolatiatadnechanism.

The designer can define zones in which examplesraage not taken into account
to compute the inter- and extrapolation. As meméhefore, zones are subspaces in
the space of reference variables (usually width height). In order to correct the
behavior of the Ul, the designer may define twoemoas shown in Fig. 3. A subset of
the examples can be associated with each zone3)ig.and b for the lower zone, ¢
and d for the upper one.

A Screen height

|
First Prev] | Next Last

st [Prev INext|Last : Screen width

»

Fig. 3. Designer can define zones where only a subsetavhples applies.

Using this technique, the designer has the poggilbd construct fine grained Ul
behavior. This behavior is not only restrictedriteractors’ position, size or rotation,
but also to its type. The key point for succeshaw to give the designer the right
toolz1 to edit these zones and examples. We cuyremplore ways to realize such
tools..

L http:/fiihm.imag.fr/demeure

4 Related work

Artistic resizing [4] was a source of inspiratiar this work. It allows designers to
build visual variants of graphical objects by usthgir traditional tools (e.g. Adobe
lllustrator). These variants are used as exampléschware interpolated and
extrapolated afterwards. Given our objectives,tiin@ main restrictions of this work
are: (1) it is not possible to substitute a graphigbject by another; and (2) the
designer has to switch between tools such as Adibstrator and the Artistic
resizing runtime environment to verify the effects.

Collignon et al. [2] propose an intelligent edifor multi-presentation Uls. This
editor allows specifying several versions of the &dch adapted to a certain screen
size. To build each Ul version, another editorgedi(GraphiXML in this case). The
selection of the right version is done at runtidepending on the available screen
size. However, the designer cannot edit the behafithe Ul when it is already in
operation. Therefore, with respect to our obje&j\j@] only applies at design time.
Moreover, the different versions of the Ul are bséparately which makes it difficult
to keep them consistent. On the contrary, in opregech, all examples are related to
the others since they are just a different viewtt& same Ul. Therefore, every
example is semantically equivalent to the othersdmstruction.

Most of the works done in programming by exampleufo on inferring the
mappings between application data and its visyaleentation [8]. However, Li et
al. [7] propose a system to create Ul prototypesgtaphical demonstration. This
system does not aim to design plastic user intesféit instead provides interesting
insights on algorithms that could be used to cowstexamples. In particular, the
authors demonstrate how to detect pivot points ma#te use of movement paths.
This confirms that it is possible to specify mommplex behaviors using design by
example. We will explore this in the future.

Finally, Stuerzlinger [10] demonstrates the poditybio dynamically substitute
interactors of legacy Uls. The philosophy is clgatbse to the one that underlies our
work: giving the designer (or even end-user) thiéitalto fully control the adaptation
process by directly manipulating the Ul. Howevdfatades” are quite static; it is
currently not possible to resize them. Moreovels ihot possible to build different
versions of the Ul that will be dynamically chosehile resizing.

5 Conclusion

In this paper, we presented a design by exampleoapp to create adaptive graphical
user interfaces. Using this approach, the desigaerachieve plastic user interfaces
of high aesthetic quality while keeping full cortrmver the design process. This
design process consists of three main steps: prayekamples, editing the examples
in the design space and viewing the behavior of #daptive user interface

immediately and continuously. We provided some dobhsed on the toolglass
metaphor to support this approach directly on timning user interface. This blurs

the distinction between design time and runtimeictviencourages trial and error and
thus lowers the threshold for developing adaptiser interfaces by example.

In future work, we will explore the possibility thynamically switch — depending
on the available screen space — between complextaygorithms, such as treemaps,
flow layout, etc. This would only require small nitichtions to the toolglass. In
addition, we will explore ways to give the desigtiee possibility to generalize the
behavior of an element to a set of elements. We aldlo explore ways to trigger
graphical transitions when changing zone. Thosesitians should help the user to
understand how the Ul was reconfigured (e.g. bpagusnorphing). Finally, we will
conduct evaluations in cooperation with designers.

Videos of the system can be foundtdtp://iihm.imag.fr/demeure

Acknowledgments. Part of the research at EDM is funded by ERDF ¢Rean
Regional Development Fund). The AMASS++ (Advancedtivhedia Alignment and
Structured Summarization) project IWT 060051 isedcity funded by the IWT
(Flemish subsidy organization).

6 References

1. Calvary G., Coutaz J., Thevenin D., Limbourg Q.,uS8wn N., Bouillon L. and
Vanderdonckt J.: Plasticity of User Interfaces rekised reference framework. Tamodia
2002, Bucarest.

2. Collignon B., Vanderdonkt J., Calvary G.: An Intgéint Editor for Multi-Presentation User
Interfaces, In 23éme ACM Symposium on Applied Cotimgy SAC'2008.

3. Demeure A., Calvary G., Coutaz J., VanderdonckiTie COMETSs Inspector: Towards
Run Time Plasticity Control Based on a Semanticwéet. TAMODIA'2006. Hasselt,
Belgium, 23-24 october, 2006.

4. Dragicevic, P., Chatty, S., Thevenin, D., and Vinbt2005. Artistic resizing: a technique
for rich scale-sensitive vector graphics. Rroceedings of the 18th Annual ACM
Symposium on User interface Software and Technology (Seattle, WA, USA, October 23 -
26, 2005). UIST '05.

5. Frank M.. Model-based user interface design by destnation and by interview. PhD
thesis, Georgia Institute of Technology, CollegeGafmputing, Atlanta, Georgia 30332-
0280, 275 pages, December 1995.

6. Gajos, K. and Weld, D. S. 2004. SUPPLE: automdsicgénerating user interfaces. In
Proceedings of the 9th international Conference on intelligent User interfaces (Funchal,
Madeira, Portugal, January 13 - 16, 2004). IUl '04.

7. Li, Y. and Landay, J.: A. 2006. Informal prototypgiof continuous graphical interactions
by demonstration. IRCM SIGGRAPH 2006 Sketches (Boston, Massachusetts, July 30 -
August 03, 2006). SIGGRAPH '06. ACM, New York, N¥,,

8. Lieberman H.Your Wish is My Command, Morgan Kaufmann, 2001, ISBN 0262140535.

9. Nilsson E.: Combining Compound Conceptual Userrfate Components with Modelling
Patterns - A Promising Direction for Model-Basedo&¥-Platform User Interface
Development, DSVIS 2002.

10. Stuerzlinger, W., Chapuis, O., Phillips, D., anduBgel, N. 2006. User interface facades:
towards fully adaptable user interfaces. Bnoceedings of the 19th Annual ACM
Symposium on User interface Software and Technology (Montreux, Switzerland, October
15 - 18, 2006). UIST '06.

