
Magellan, an Evolutionary System to Foster User Interface
Design Creativity

Dimitri Masson, Alexandre Demeure
Laboratory of Informatics of Grenoble

655, Avenue de l'Europe
38330 Montbonnot-Saint-Martin, France

+33 (0)4 76 51 48 54
firstname.lastname@inrialpes.fr

Gaelle Calvary
Laboratory of Informatics of Grenoble

385, rue de la Bibliothèque - B.P. 53 - 38041
Grenoble Cedex 9, France

+33 (0)4 76 51 48 54
gaelle.calvary@imag.fr

ABSTRACT
Fostering creativity in User Interface (UI) design is
challenging for innovation. This paper explores the
combination of model-based approaches and interactive
genetic algorithms to foster the exploration of the design
space. A user task model is given in input. Magellan
produces sketches of UIs that aim at inspiring the designer.
Later on, appropriate tools may be used to tune the right
design into the design right. Magellan is a proof of concept
that deserves further exploration. Currently it is
implemented using COMETs but it is not dependent of this
technology.

Keywords
Model-based User Interface design, interactive genetic
algorithm, creativity, Magellan.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
interfaces – prototyping.
General Terms
Design

INTRODUCTION
“Getting the right design” and “getting the design right”
[16] are complementary challenges in Human Computer
Interaction (HCI). Whilst most of research focuses on how
“getting the design right”, this paper aims at “getting the
right design” by fostering creativity. The need of a support

for creativity is crucial in model-based approaches.
Transformations are complex to specify, as a result
discouraging designers from defining new ones. This limits
the exploration of the design space.
We explore how Interactive Genetic Algorithms (IGA) can
support the generation of transformations for a given task
model. Our goal is not to provide the final User Interface
(UI) but to generate “sketches” for inspiring the designer.
Appropriate tools have then to be used to “get the design
right”.
This paper presents related works first. It then describes the
core principles of our approach. These principles have been
implemented into Magellan, an early prototype.

RELATED WORKS
Model-based approaches support the generation of
Concrete UIs (CUI) from a given task model and for a
given context of use [2, 2, 6]. They ensure that the
generated CUIs are compliant with the task model and
make it possible to automatically maintain consistency
between the two models (task and CUI). Some tools
support the edition of CUIs by designers to explore
alternatives [7], but they do not foster creativity.
Genetic Algorithms (GA) is a search technique used to find
exact or approximate solutions. They were formalized in
1975 by Holland [8]. GA deal with a population of
candidate solutions for a given problem. Each solution is
encoded within a sequence of genes. GA are made of four
main steps. First, an initial population is generated. Then,
iteratively, each candidate solution gets a score that
evaluates its fitness with regard to the problem (step 2).
Then, some solutions are selected (step 3) and reused to
generate a new population (step 4). The generation consists

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

in applying operations on solutions (e.g., mutation,
inbreeding). Sims [14] applied GA to artistic creation and
replaced automatic evaluation with human evaluation. This
approach is referred to as Interactive GA (IGA) [15]. The
main drawback of IGA is the user fatigue induced by the
selection of the best individuals over generations. Usually,
users can't go beyond 20 generations of 16 individuals [15].
In 2008, IGA provided outstanding results for image creation
as demonstrated in Picbreeder [13]. The success of
Picbreeder relies on two mainstays: storage and
complexification. Keeping trace of generated individuals (i.e.
automata that produce images) is an efficient means to tackle
the user fatigue and to share individuals among a community.
Individuals can be complexified along the IGA process: it is
possible to obtain complex shapes (e.g., faces, car side
views) from individuals that barely generate circles. This
work motivates the exploration of IGA for UI generation.
In HCI, IGA have been explored by Monmarché to generate
HTML web pages. In these works, individuals represent
either Cascading Style Sheets (CSS) [10] or CSS plus
webpage layout [11]. The population is composed of 12
individuals. Each of them is used to generate a web page.
The set of web pages is scaled to fit on a single screen.
Individuals can be edited by designers for saving time (e.g.,
colors customization). At each IGA iteration, designers select
best candidates among the 12 web pages. These works suffer
from three main limits. First the selectors that identify HTML
elements on which to apply CSS transformations are
predefined (e.g., titles of level 1, paragraphs, images). It is
impossible to generate new groupings along the IGA process
(e.g., even paragraphs and images). In addition, there is no
high level description (e.g., no task model) which the IGA
could rely on to generate more complex transformations
(e.g., replace an entry text with a calendar). Last, individuals
can not be complexified along the IGA process. Only
parameters can be tuned, but no new parameter can be added
(e.g., no insertion of texts or images to enhance existing
elements).
Quiroz explores IGA to generate XUL UIs [12]. He uses
wider populations (hundreds of individuals) but only
presents a subset of the population to designers. The
designers have to select the best and the worst individuals.
Then, an interpolation/extrapolation algorithm is applied to
the rest of the population to automatically evaluate
individuals. Although at a first glance this approach seems to
be promising with regard to the user fatigue, it raises a
fundamental question that is not answered by the author so
far: can a UI be automatically compared with “bad” and
“good” samples? In [12], the evaluation is based on a basic
criteria only: the UI blueness. As automatic evaluation is not
solved so far, we prefer not to base our proposition on a so
strong hypothesis. In addition, the layout is simplistic in [12]
and it is not possible to replace interactors. Last, there is no
complexification of individuals along the IGA process.

In conclusion, IGA seem to be powerful for improving
designer creativity. We believe that IGA coupled with
model-based approaches can be of a great interest in HCI for
facilitating the design space exploration. Model-based
approaches may also make it possible to support
complexification (e.g., adding an image to improve an input
field guidance).

CORE PRINCIPLES
The architecture of Magellan is roughly presented in Figure
1. Magellan takes a task model in input. It then processes it
using a customizable flowchart of GA operations to create
and make evolve a population of transformations.
Transformations are applied to the task model to generate
CUIs. We assume that the task model improves
transformations. For instance, if the system knows that an
input field corresponds to a “select date” task, it will be able
to replace it with a calendar along a mutation. To support the
process, we rely on an external database (Figure 1) that
explicits the interactors that can be used to represent a task.

Figure 1: Overview of the Magellan architecture.

The individuals used in the IGA are tailored
transformations that overcome the limitations identified in
the state of the art. First, the selectors are not predefined.
They can evolve. Second, thanks to the external database, it
is possible to render a task using different interactors. Last,
transformations can be complexified, resulting in more
sophisticated UIs.
For flexibility, Magellan is based on a modular, fully
customizable, flowchart architecture. We make it possible
for designers to build their own IGA. We propose a
toolbox of five flowchart component types: the four
classical operations in GA (i.e., initialization of a
population, genetic operation, evaluation of individuals and
selection of individuals) plus the flowchart control. Control
components support the creation of branches (e.g., if then
else), union, merging, etc. Such a workflow architecture
enables designers to program different evolution processes
such as convergent/divergent thinking [9].

EARLY PROTOTYPE
This section describes the implementation choices we made
in Magellan. A simplified instant messenger interactive
system serves as illustration.

Technological choices
Magellan is based on the COMET toolkit [4]. COMETs are
polymorphic task level interactors that cover both tasks and
task operators. COMETs are multi-rendering multi-

technological interactors (WIMP and post-WIMP, Web
and non Web as well as vocal). The COMET architecture
ensures that the renderings are consistent. Figure 2 presents
the graph of COMETs of the case study. A top level
interleaving (Instant messenger) gives access to three
COMETs. The first one (Chat Gaelle-Bob) is an instance of
a “Chat” COMET. Its “Logs” child contains the messages
Gaelle and Bob exchanged. The “Send new message” child
contains two COMETs: a text entry and a “Send”
command. The “Manage contacts” COMET gives access to
Gaelle’s contacts (Bob, Momo, etc.) and makes it possible
to add or delete contacts. Last, the “Manage profile”
COMET enables the management of Gaelle’s photo, name
and status.

Figure 2: The graph of COMETs of the case study.

As presented in [5], we use a semantic network to
implement the database that stores the possible
presentations of a given task. The semantic network
enables queries such as “Find a presentation for task T that
is close to the P presentation”. Such queries are useful in
case of transformations mutations. For instance, the
semantic network can inform Magellan that “Choice of a
date tasks are represented with text entries” can be mutated
into “Choice of a date” tasks are represented with a
calendar. The transformation is updated accordingly.
The COMET toolkit comes with CSS++ as transformation
language. A CSS++ transformation sheet is composed of a
set of rules. Each rule is composed of two elements: a
selector and a translator. The selector identifies the
COMETs to be translated (e.g., all the top level
interleavings). The translator specifies the way the selected
COMETs are translated (e.g., set the background to white,
display interactors as tabbed panes). The interactors choice
for representing a given task can rely on the semantic
network.

Magellan user interface
The UI of Magellan is divided into two pieces: a workflow
editor (Figure 3) dedicated to users who need to tune the
IGA, and a web based UI (Figure 4) for exploring the
design space based on the current IGA. The workflow
editor is composed of three parts: at the center, a canvas is
dedicated to build the workflow. Components can be

placed, removed and connected. The active components are
highlighted. On the left, a list makes it possible to drag and
drop evolution components onto the canvas. The three top
buttons (Reset, Play/Pause and Step) control the flow.

Figure 3: The Magellan workflow editor.

Figure 4 shows the web based UI of the user evaluator
component. The three top left buttons (Reset, Play/Pause
and Step) control the flow. The “Validate scores and
continue” button enables to validate user choices and to go
to the next step. The table of images represents the UIs
produced by evaluated individuals (i.e., transformations).
By clicking on images, the user selects the ones he/she
prefers.

Figure 4: The web based UI of Magellan.

Magellan IGA
We first describe the representation we chose for
individuals. Then we describe the Magellan components:
initialization of the population, genetic operations,
evaluation, selection and flow control.

Individuals
Individuals encode a set of transformations. Each
transformation specifies a part of the UI. Transformations
are encoded in a tree. Nodes (respectively edges) represent
translators (respectively selectors). By default, the root
node of each individual is associated with the root of the
COMETs graph. To ensure visual consistency, we decorate
individuals with a global color theme (i.e., a palette of five
colors C1 to C5). For instance, in Figure 5, the background
of the root is colored with C1 (the first color of the palette).
The selector of each edge applies to the set of elements
selected in its source node. For instance, the edge between
the root and the node A selects the containers that are
children of the root COMET. With respect to Figure 2 the
COMET associated to the node A are “Manage contacts”

and “Manage profile”. They are translated into accordion
containers.

Figure 5: Example of an individual and the resulting

UI.
Initialization has to deal with two concerns: the size of the
population, and the generation mechanism. The size of the
population is crucial: if too small, there is a risk to
converge towards “bad” or undesired solutions; if too
large, evaluation of solution becomes time consuming.
Picbreeder [13] shows that it is possible to obtain good
results with 16 elements. In Magellan, the size of the
population is one parameter.
We envision several initialization mechanisms. We briefly
describe them below and indicate whether they have been
implemented or not.
• Random generation (implemented): Individuals are

randomly generated by successive mutations of a default
tree.

• Manual specification (implemented): Transformation
trees can either be manually produced or imported from
previous uses of Magellan. This is useful for supporting
scenarios such as importing external transformations
from other tools as well as collaborative work [1].

• Guidance based on existing UIs (planned): Designers
could guide the system by providing UIs or UI sketches.
This is useful to explore design options that are close to
the given one in terms of mutations.

Genetic operations
Genetic operations are means to modify individuals. We
describe the ones we implemented or planned to implement
in Magellan.
• Mutation (implemented): Mutations can be applied at

three levels: nodes, edges and the tree structure. The
mutations are parameterized with the former value to
control the evolution degree. Nodes mutations modify the
COMET presentations. They can be applied to attributes
(e.g., background color, layout, width, height, etc.). In the
case of a color mutation, Magellan ensures that the
contrast between the foreground and background colors
remains high enough. Colors mutations can modify the
color theme as well as a color of the theme by lightening
or darkening it. Nodes mutations can also change the
presentation of the COMET. For instance, in Figure 5,
the “Type: Accordion” in node A can be mutated into a
“Type: Frame”. Mutations can also compose
presentations to enhance the UI. In Figure 6 the sentences
sent by Gaelle are composed of her photo and a label
displaying the sentence. Composition of COMETs
presentations is a powerful means to add complexity to
individuals (Figure 6).
Edges mutations modify the related selectors. The
modification can lead to a broader selection (e.g., select
children is generalized into select all descendants), a
more narrow one (e.g., select all descendants is restricted
to select children) or a completely different one (e.g.,
select children becomes select descendant containers). By
doing so, we avoid the predefinition of selectors, unlike
Monmarché [10] and Quiroz [12].
Tree structure mutations add or remove nodes and related
edges. By doing so, it is possible to complexify the
individuals and thus the transformations to be applied to
the COMETs graph.

Figure 6: Example of mutation: the photo stored in the

user profile is added to each sentence.
• Inbreeding (implemented): There are several ways to

achieve inbreeding between two (or even more)
individuals. So far we have implemented a mechanism
which randomly selects branches of each parent to create
a new individual. Another option for the future would be

a guidance-based inbreeding. The idea is to promote
interesting branches from each parent. The selection can
be based on several criteria. For instance, the designer
elicits the interesting parts of the resulting UI during the
evaluation. The corresponding transformations are
marked as interesting.

• Edition (planned): We plan to make it possible for the
designer to directly edit transformations. This could be
done in different ways: by editing transformations trees
directly, or the resulting CUIs and then inferring the
corresponding transformations. Being able to edit
transformations would favor a quicker convergence. For
instance, along the evolution process, the designer could
discover which background color is the most suitable and
fix it directly.

• Local optimization (planned): We plan to add some
local optimization components to Magellan. At some
point, it can be interesting to apply algorithms such as
layout optimization [6]. The risk is to skip solutions that
are locally not optimal but would be later on. In
Magellan, the modular architecture puts the decision
under the control of the designer.

Evaluation of individuals
In Magellan, the evaluation relies on the designer. The
designer scores the UIs that are specified by the
individuals. There are several ways to score candidates.
The simplest scale is a binary notation, as done in
Picbreeder [13]. An extension of this notation is to attribute
scores on a wider range (e.g., 1 to 10, or a real between 0
and 1). These two solutions are modeled with evaluation
components in Magellan. It is also possible to mark some
parts of the UI as interesting. We plan to explore other
evaluation approaches such as tournament evaluations.
Tournaments consist in comparing series of two candidates,
and building a partial order between solutions.
In addition to human evaluation, we believe it is useful to
provide designers with some automatically computed
scores. Computation can be based on ergonomic and
performance criteria like it is done in SUPPLE [6].

Selection of individuals
Several selection methods exist in the literature. One can
cite rank selection (best candidates are selected) or roulette
wheel selection (selection probability proportional to the
score). Elitist strategies may be applied. They consist in
keeping the best individuals unchanged through
generations in order to avoid regression. Resurrection
enables the designer to recover an ancestor candidate and
re-inject it into the current generation.

Control of the workflow
The workflow editor (Figure 3) makes it possible for
designers to add and link components. Populations of
individuals are conveyed along the links. We propose
several components to control the workflow: conditional
components such as filters and loop structures for building

sophisticated IGA; shufflers and population controllers
components to respectively randomize the order of
individuals and to increase or decrease the population size;
merge components to concatenate individuals from
different populations into a single one. Shufflers and
population controllers are particularly useful before
inbreeding sources that are either identical or of a different
size.

We propose two execution modes of an IGA: 1) a step-by-
step mode for a precise control over the workflow ; 2) a run
mode for going through all non interactive components,
and stop only when user evaluation is needed.

We plan to support the control of the evolution process at a
finer granularity. Parts of the UIs can be close to the
designer expectations. As a result the designer may
appreciate to stop or decrease the evolution process for
these parts whilst increasing it in other parts. For instance,
he/she would like to let a menu bar evolve whilst keeping
the rest of the UI unchanged. In other words, the evolution
process may be locally tuned. So far Magellan makes it
possible to mark some parts of the UI as interesting. The
corresponding branches of the individual are promoted
during the inbreeding and are less subject to mutations.

CONCLUSION AND FUTURE WORK
This paper addresses the need of a support for stimulating
creativity. Model-based approaches provide a powerful
support for saving development and maintenance costs but
they somehow kill creativity. Magellan explores the
combination of model-based approaches and interactive
genetic algorithms to tackle the problem while keeping
benefit of models. Figure 7 and Figure 8 show UIs evolved
from a task model describing an instant messenger. Figure
7 highlights the potential of the selector evolution whilst
Figure 8 illustrates the interactors replacement. We believe
that such mutations are key for future works.

Figure 7: Example of UI where chat sentences are
differentiated by color depending on the speaker.

Figure 8: Example of UI where the top level

interleaving has been represented using a tabbed panel.
The modular architecture of Magellan enables the designer
to define his own IGA process. Up to now, additional
components such as the manual edition and the local
optimization are to be implemented. Magellan is an early
prototype that serves as a technical proof of concept. We
are yet setting up an evaluation study to validate the
approach. In the future, we plan to use the approach to
facilitate comparative evaluation [6] by generating mutants
from existing designs.

REFERENCES
1. Banerjee, A., Quiroz, J., and Sushil, J.L. A Model of

Creative Design Using Collaborative Interactive Genetic
Algorithms. In Design Computing and Cognition'08, pp
397–416.

2. Berti, S., Correani, F., Mori, G., Paterno, F., and Santoro, C.
Teresa: a transformation-based environment for designing
and developing multi-device interfaces. In CHI’04 (New
York, NY, USA, 2004), ACM, pp. 793–794.

3. Calvary, G., Coutaz J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. In Interacting
With Computers, Vol. 15/3, pp 289-308, 2003.

4. Demeure, A., Calvary, G., and Coninx, K. COMET(s), A
Software Architecture Style and an Interactors Toolkit for
Plastic User Interfaces. In Interactive Systems. Design,
Specification, and Verification, 15th International Workshop,
DSV-IS 2008, T.C.N. Graham & P. Palanque (Eds), Lecture
Notes in Computer Science 5136, Springer Berlin /
Heidelberg, Kingston, Canada, July 16-18, 2008, pp 225-
237.

5. Demeure, A., Calvary, G., Coutaz, J., and Vanderdonckt, J.
The Comets Inspector: Towards Run Time Plasticity Control
based on a Semantic Network. In Fifth International
Workshop on Task Models and Diagrams for UI design
(TAMODIA’06), Hasselt, Belgium, October 23-24, 2006, pp
324-338.

6. Gajos, K., and Weld, D.S. Supple: automatically generating
user interfaces. In IUI ’04: Proceedings of the 9th
international conference on Intelligent user interface (New
York, NY, USA, 2004), ACM Press, pp. 93–100.

7. Gajos, K., and Weld, D.S. Preference elicitation for interface
optimization. In Proceedings of UIST 2005, ACM Press, pp.
173–182.

8. Holland, J.H. Adaptation in natural and artificial systems,
Ann Arbor, MI: University of Michigan Press, 1975.

9. Kelly, J., Papalambros, P.Y., and Seifert, C.M. Interactive
genetic algorithms for use as creativity enhancement tools,
AAAI Spring Symposium on Creativity, Palo Alto, CA, 2008.

10. Monmarché, N., Nocent, G., Slimane, M., Venturini, G., and
Santini, P. Imagine: a tool for generating html style sheets
with an interactive genetic algorithm based on genes
frequencies. In Proc. of IEEE Intl. Conf. on Systems, Man
and Cybernetics (1999), pp. 640–645.

11. Oliver, A., Monmarché, N., and Venturini, G. Interactive
design of web sites with a genetic algorithm. In Proceedings
of the IADIS International Conference WWW/Internet
(Lisbon, Portugal, november 13-15 2002), pp. 355–362.

12. Quiroz, J.C., Dascalu, S.M., and Louis, S.J. Human guided
evolution of xul user interfaces. In CHI ’07 extended
abstracts on Human factors in computing systems (New
York, NY, USA, 2007), ACM, pp. 2621–2626.

13. Secretan, J., Beato, N., Ambrosio, D.B., Rodriguez, A.,
Cambell, A., and Stanley, K.O. Picbreeder: evolving pictures
collaboratively online. In CHI ’08: Proceeding of the twenty-
sixth annual SIGCHI conference on Human factors in
computing systems (New York, NY, USA, 2008), ACM, pp.
1759–1768.

14. Sims, K. Artificial evolution for computer graphics. In
SIGGRAPH’91: Proceedings of the 18th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 1991), ACM, pp. 319–328.

15. Takagi, H. Interactive evolutionary computation as
humanized computational intelligence technology. In Fuzzy
Days (2001), p. 1.

16. Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. Getting
the right design and the design right. In CHI’06: Proceedings
of the SIGCHI conference on Human Factors in computing
systems (New York, NY, USA, 2006), ACM, pp. 1243–
1252.

