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ABSTRACT 
Based on our own experience in developing software 
environments for plastic UIs, we argue for a new 
middleware software infrastructure that extends the 
functional capabilities of our current windowing systems 
and toolkits. 
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INTRODUCTION 
In HCI, methods and tools have been devised to increase 
the usability of interactive systems while reducing their 
development costs (see for example, the model-based 
approach to the development of user interfaces as well as 
rapid prototyping tools). Although supposed to be 
general, the current foundational tools, e.g., windowing 
systems and toolkits, make a number of implicit 
assumptions that simplify implementation issues and 
favour system performance. In the context of ubiquitous 
computing, however, the assumptions made in 
windowing systems turn out to be limiting factors to “get 
the UI out of the box” so that users can interact with the 
environment using a dynamic set of interaction 
resources1 that can be opportunistically composed, 
borrowed and lent [5]. 
The state of the art in ubiquitous computing shows early 
examples of interactive systems, motivated by human-
centered concerns, that are based on the dynamic 
composition of interaction resources: Distributed UI as in 
Rekimoto’s Pick and Drop [17], dynamic docking of 
multiple displays to enlarge real screen estate (e.g., the 
ConnecTable or Hinckley’s work), Migratable UI as in I-
land [19] and Seescoa [11], or the Personal Server 
approach that promotes the borrowing of near-by 
interaction resources [22], etc. As far as we know, all of 
these prototypes, except perhaps I-land, have been 
developed as concept demonstrators reusing and hacking 
the current foundational tools of the GUI technology.  
                                                           
1 By interaction resources, we mean any physical object that 

can serve as a surface to display information content (e.g., an 
augmented table), as an instrument to manipulate 
informational content (e.g., fingers, pens and phicons), or 
both at the same time (the surface of a finger can be used to 
project information on it). 

If the scientific community aims at supporting a sound 
approach to the development of distributed migratable 
UI, we need to revise our foundational tools, which, by 
definition, set the basis for the development of higher 
level of abstraction tools. In turn, experience shows that 
these high level tools increase the chance to develop 
usable user interfaces . 
For example, in our research group, we are currently 
concerned with the definition of models and tools that 
support the design and development of plastic UIs, e.g., 
UIs that can dynamically adapt when they migrate to 
different platforms, or when they are dynamically 
distributed across a dynamic set of interaction resources 
[4, 21]. We have been able to devise and develop 
ARTStudio [4], an environment that supports the 
specification and generation of Java-based plastic 
centralized UIs that can adapt to PDA, Cell phones and 
workstations (See the Cameleon project for additional 
results along with the Teresa [14] and Vaquita tools). 
These tools support well-established methods that ensure 
the usability of the resulting UI. But they do so for 
centralized UIs where a virtual machine like JVM or a 
web browser is sufficient for supporting the portability of 
the generated code. When it comes to address distributed 
plastic UI over a dynamic set of heterogeneous resources, 
our specification and generation tools are impeded by the 
existing underlying software. 
In the following section, we present our analysis of the 
limiting factors that we had to face when we started 
considering plasticity for distributed migratable UIs. We 
claim that these limitations need to be addressed by the 
software community in order to enable the development 
of HCI-centered development tools. We then outline our 
proposal for a middleware run-time infrastructure under 
implementation that addresses these new requirements. 

LIMITING FACTORS IN CURRENT 
FOUNDATIONAL TOOLS 
 
1. The window model is biased by the workstation 

screen. Instead, the concept of window must be 
replaced with that of a physical surface that 
explicitly models its physical attributes. Today, 
windowing systems model windows as rectangular 
drawables whose borders are constrained to be 
parallel to that of the display. This model is based on 
the (wrong) the assumption (for ubiquitous 



computing) that users keep facing a vertical screen 
and that the rendering surface is rectangular. With 
the proliferation of video projectors, it is 
increasingly popular to project window contents on 
horizontal surfaces such as circular tables. In this 
situation, users should be able to rotate the digital 
content so that everyone can share information 
without twisting their neck. Today, rotating 
windows and user interfaces must be implemented 
from scratch from low-level graphics primitives. 
Jazz/PAD++ is a toolkit that offers the basics for 
implementing rotating, zoomable user interfaces for 
centralized UIs [1].  Similarly, physical attributes of 
rendering surfaces, such as size, shape and colour, 
must be made available to the application program: 
one does not want to render information on a 
rectangular white surface in the same way as on a 
circular table covered with a red cloth. In turn, the 
capture of the physical attributes of a surface calls 
for new requirements on the sensing technology 
(precision, latency, robustness). 

2. Geometrical relationships between physical displays 
are poorly modelled. Instead, the (possibly 3D) 
spatial relationships between the interaction 
resources and the user should be explicitly 
modelled, dynamically acquired and maintained. 
Windowing systems are able to support a limited 
number of screens. In addition, the relative location 
of the display screens must be set up by the user 
through dedicated system forms. As a result, the user 
is in charge of additional articulatory tasks. Again, 
because they are screen-centric, windowing systems 
do not support topologies that include the 
surrounding environment (e.g., walls, tables, users’ 
location with respect to the display surfaces, etc.). 
However, for many novel interactive systems, the 
topology of the rendering surfaces matters: for 
example, 3D rendering on a vertical surface and 2D 
presentation on a horizontal surface [3, 15, 17]. 

3. Only single instances of input instruments are 
supported. Instead, the system should be able to 
support any number of instances of an instrument 
class. In current windowing systems, the reference 
workstation is supposed to have one single mouse 
and keyboard. On systems like MacOS, it is possible 
to plug two physical mice. Unfortunately, they are 
linked to the same interruption level and are 
modelled by the event manager as a device type, not 
as a device instance identifier. As a result, multi-user 
applications such as MMM [2] whose users share 
the same screen with multiple mice, require the 
underlying toolkit and event manager to be revisited 
as in MID [9]. 

4. Interaction is confined to the resources of a single 
workstation. Instead, we need to distribute UI’s 
across a set of interaction resources managed by a 
cluster of possibly heterogeneous machines. 
Applications like I-land [19] and Rekimoto’s 
augmented surfaces [17] require the aggregation of 
multiple computers. BEACH supports the 

distribution of user interfaces across a set of 
homogeneous resources both in term of hardware 
and operating systems [20]. Unfortunately, 
ubiquitous computing requires the capacity to handle 
heterogeneous sets of resources as well. For 
example, pocket-size computers can play the role of 
input devices to control information displayed on 
wall-mounted electronic boards as in Pebbles [12]. 
In addition, the distribution of the user interface may 
be static as in Rekimoto’s Pick and Drop [16], or 
distribution may be dynamic as for the Dynawall 
[19], which then requires additional functionalities 
such as mechanisms for state recovery. 

5. Absence of dynamic discovery of interaction 
resources. Instead, in ubiquitous computing, 
interaction resources appear and disappear 
opportunistically: users can upload situated 
information on their private PDA as they pass by a 
public active wall. Two users who meet 
serendipitously in the street, may want to start a 
collaborative activity by bringing together their 
PDA’s to form a larger interactional space. BEACH 
supports this possibility provided that the resources 
involved are homogeneous (Cf. the ConnecTables). 
GaiaOS and Aura [18] aim at supporting 
heterogeneity and dynamic migration. However, 
they do not address the problem of developing 
distributed user interfaces. 

In our research group, we are currently working on a 
number of these issues. The following section presents 
the flavor of our approach. 

THE CAMELEON RUN TIME INFRASTRUCTURE FOR 
DISTRIBUTED MIGRATABLE PLASTIC UI’S 
Figure 1 shows the global functional decomposition of a 
run-time infrastructure that supports distributed 
migratable plastic user interfaces on clusters composed of 
a dynamic set of heterogeneous resources. It can be seen 
as an extension of the Aura approach where migration, 
distribution and adaptation are performed through a mix 
of open and close-adaptiveness [13], not at the whole 
application as proposed in Aura, but at any level of 
granularity. The functional components are supposed to 
run on top of I-AM, an interaction Abstract Machine 
under development [10]. 
I-AM can be viewed as a generalization of the X-window 
paradigm to support: 
- The geometric relationships (topology) between 

physical surfaces, 
- The projection of digital content onto the physical 

topology, 
- The detection of arrival/departure of 

surfaces/instruments as well as of any change in the 
physical topology, 

- The coupling of instruments with surfaces and 
information content, 

- The elimination of hardware and O/S discrepancies. 



I-AM is structured into three levels of abstraction sitting 
on top of the hardware and Operating Systems that form 
the legacy basis of a cluster: The Platform layer, the 
Logical Level layer, and the Interactor layer. 
The platform layer provides the next level of I-AM, i.e., 
the Logical Level, with: (a) a normalized view of the set 
of physical interaction resources that are available on the 
elementary platforms of the cluster, and (b) networked 
communication means with those resources. More 
specifically, every processor that belongs to the cluster 
runs an IAMPlatformManager. An IAMPlatformManager 
is “elementary platform” centric: it manages the 
resources that are local to the platform it runs on. In order 
to support scalability and reconfigurability, it has no 
knowledge of the existence of the other platform 
managers of the cluster. Through contextors [6, 7], it 
discovers the interaction resources that are locally 
connected to the processor it runs on. It maintains a 
description of these resources (e.g., size, colour, shape, 
etc.), and it provides the world2 with the basic means for 
using the interaction resources3. This includes (a) the 
publication of the existence of the interaction resources 
that may interest future consumers (e.g., I-AM 
applications), (b) communication ports that allow remote 
consumers to send requests to use a particular interaction 
resource, and if successful, to obtain dedicated 
communication ports for using the requested  resource. 
The Logical Level provides applications with a 
customized view of the physical platform layer. 
Applications that use an I-AM cluster may each have its 
own way to exploit and interpret the physical 
configuration of the cluster. Therefore, the Logical Level 
of I-AM allows applications to build their own view on 
top of the physical platform level. To get and exploit 
such a view, an application must create an instance of 
IAMApp. An IAMApp discovers the interaction 
resources4 that are currently available in the cluster. To 
do so, an IAMApp expresses its interests through its 
ContextAdaptor. Expressions of interest include “give 
me a large surface”, “give me the list of surfaces 
available in the cluster”, “tell me when a new surface 
arrives or leaves” etc. A ContextAdaptor serves as a 
gateway between an application and the contextors that 
run in the environment to provide contextual information. 
Contextual information about the physical interaction 
resources is compiled from the information produced by 
the platform managers of the cluster. An IAMApp builds 
the communication channels with the interaction 
resources (surfaces) it is interested in. It maintains the 
geometric relationships between the physical surfaces 
that it is currently exploiting. It maps the physical 
topology onto the digital information content. To satisfy 

                                                           
2 « The world » denotes any software component that is not part 

of the IAMPlatformManager. I-AM applications are examples 
of such software components. 

3 Current limitation: only the existence of surfaces is published 
4 Current limitations: “interaction resources” should be 

understood as “surfaces” only. 

the customized view requirement, the Logical Level layer 
implements the mapping mechanism but uses the politics 
provided by the application. 
The Interactor level implements the basic graphic 
concepts such as windows and widgets that populate the 
logical spaces managed by the Logical Level. An 
IAMInteractor provides the programmer with the 
conventional programming paradigm. As a result, an 
IAMInteractor can be created, destroyed, moved, etc. in a 
logical space. It has a position in the LogicalSpace, it has 
a height and width expressed in terms of logical pixels, 
etc. It hides away the facts that the interactor can migrate 
between physical surfaces, and that its rendering may 
overlap multiple surfaces. To do so, an IAMInteractor is 
(a) self-descriptive: it can save its state and serialize itself 
as an XML description. This description can be sent to a 
distinct IAMPlatformManager which can then 
reconstruct it appropriately on the target surface it 
manages, and (b) it is mapped into an EffectiveInteractor 
or, if its logical rendering overlaps N surfaces, it is 
mapped into N effective interactors. An 
EffectiveInteractor is an interactor that is effectively 
rendered on a physical surface. It makes concrete an 
IAMInteractor I. It sends to I the events it receives from 
the instruments attached to I. Conversely, any change in I 
is notified to its associated EffectiveInteractors. 
I-AM is implemented in Java and supports a mix of PC’s 
and Mac’s. In its current implementation, I-AM is limited 
in the following ways: surfaces are screen displays, 
including video-projected displays.  They are rectangular 
and assembled (coupled) within a plan. From the 
application programmer’s perspective, windows, widgets 
and mouse pointers can migrate between screen displays 
as if they were connected to a single machine. In 
summary, I-AM provides the programmer with a uniform 
space of interaction resources managed by a cluster of 
heterogeneous elementary platforms. It extends the 
functional coverage of current windowing systems to 
distributed user interfaces across a dynamic set of 
interaction resources managed by a cluster of 
heterogeneous computers. 

CONCLUSION 
In this paper, we have presented new requirements that 
ubiquitous computing imposes on the software 
development of user interfaces so that they can be 
distributed dynamically across the resources of evolving 
computational clusters. In particular, we have stressed the 
necessity for abstracting away the heterogeneity of these 
resources into a normalized representation, and we have 
demonstrated the need for an explicit model of the 
geometrical relationships between these resources along 
with their physical properties.  We have not discussed the 
consequences that these functional requirements put on 
computational perception. In particular, machine 
perception is needed to detect the arrival and departure of 
interaction resources, for eliciting their intrinsic 
properties as well as their topology. In addition, software 
engineering requirements on the very nature of the 
software components need to be made explicit. From our 
early experience, we can cite reflexivity, introspection 



and reconfigurability as well as languages for system 
architecture description [8]. 
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Figure 1.  The CAMELEON overall middleware infrastructure that supports distributed, migratable and plastic UI’s. 

 

 


