
Software Infrastructure
for Distributed Migratable User Interfaces

Joëlle Coutaz, Lionel Balme, Christophe Lachenal, Nicolas Barralon
CLIPS-IMAG, Univ. Joseph Fourier, BP 53

38041 Grenoble Cedex 9, France
+33 (0)4 76 51 48 54

{Joelle.Coutaz,Lionel.Balme,Christophe.Lachenal,Nicolas.Barralon}@imag.fr
http://www.iihm.fr

ABSTRACT
Based on our own experience in developing software
environments for plastic UIs, we argue for a new
middleware software infrastructure that extends the
functional capabilities of our current windowing systems
and toolkits.

Keywords
Distributed user interface, migratable user interface,
plastic user interface, software infrastructure, ubiquitous
computing.

INTRODUCTION
In HCI, methods and tools have been devised to increase
the usability of interactive systems while reducing their
development costs (see for example, the model-based
approach to the development of user interfaces as well as
rapid prototyping tools). Although supposed to be
general, the current foundational tools, e.g., windowing
systems and toolkits, make a number of implicit
assumptions that simplify implementation issues and
favour system performance. In the context of ubiquitous
computing, however, the assumptions made in
windowing systems turn out to be limiting factors to “get
the UI out of the box” so that users can interact with the
environment using a dynamic set of interaction
resources1 that can be opportunistically composed,
borrowed and lent [5].
The state of the art in ubiquitous computing shows early
examples of interactive systems, motivated by human-
centered concerns, that are based on the dynamic
composition of interaction resources: Distributed UI as in
Rekimoto’s Pick and Drop [17], dynamic docking of
multiple displays to enlarge real screen estate (e.g., the
ConnecTable or Hinckley’s work), Migratable UI as in I-
land [19] and Seescoa [11], or the Personal Server
approach that promotes the borrowing of near-by
interaction resources [22], etc. As far as we know, all of
these prototypes, except perhaps I-land, have been
developed as concept demonstrators reusing and hacking
the current foundational tools of the GUI technology.

1 By interaction resources, we mean any physical object that

can serve as a surface to display information content (e.g., an
augmented table), as an instrument to manipulate
informational content (e.g., fingers, pens and phicons), or
both at the same time (the surface of a finger can be used to
project information on it).

If the scientific community aims at supporting a sound
approach to the development of distributed migratable
UI, we need to revise our foundational tools, which, by
definition, set the basis for the development of higher
level of abstraction tools. In turn, experience shows that
these high level tools increase the chance to develop
usable user interfaces .
For example, in our research group, we are currently
concerned with the definition of models and tools that
support the design and development of plastic UIs, e.g.,
UIs that can dynamically adapt when they migrate to
different platforms, or when they are dynamically
distributed across a dynamic set of interaction resources
[4, 21]. We have been able to devise and develop
ARTStudio [4], an environment that supports the
specification and generation of Java-based plastic
centralized UIs that can adapt to PDA, Cell phones and
workstations (See the Cameleon project for additional
results along with the Teresa [14] and Vaquita tools).
These tools support well-established methods that ensure
the usability of the resulting UI. But they do so for
centralized UIs where a virtual machine like JVM or a
web browser is sufficient for supporting the portability of
the generated code. When it comes to address distributed
plastic UI over a dynamic set of heterogeneous resources,
our specification and generation tools are impeded by the
existing underlying software.
In the following section, we present our analysis of the
limiting factors that we had to face when we started
considering plasticity for distributed migratable UIs. We
claim that these limitations need to be addressed by the
software community in order to enable the development
of HCI-centered development tools. We then outline our
proposal for a middleware run-time infrastructure under
implementation that addresses these new requirements.

LIMITING FACTORS IN CURRENT
FOUNDATIONAL TOOLS

1. The window model is biased by the workstation

screen. Instead, the concept of window must be
replaced with that of a physical surface that
explicitly models its physical attributes. Today,
windowing systems model windows as rectangular
drawables whose borders are constrained to be
parallel to that of the display. This model is based on
the (wrong) the assumption (for ubiquitous

computing) that users keep facing a vertical screen
and that the rendering surface is rectangular. With
the proliferation of video projectors, it is
increasingly popular to project window contents on
horizontal surfaces such as circular tables. In this
situation, users should be able to rotate the digital
content so that everyone can share information
without twisting their neck. Today, rotating
windows and user interfaces must be implemented
from scratch from low-level graphics primitives.
Jazz/PAD++ is a toolkit that offers the basics for
implementing rotating, zoomable user interfaces for
centralized UIs [1]. Similarly, physical attributes of
rendering surfaces, such as size, shape and colour,
must be made available to the application program:
one does not want to render information on a
rectangular white surface in the same way as on a
circular table covered with a red cloth. In turn, the
capture of the physical attributes of a surface calls
for new requirements on the sensing technology
(precision, latency, robustness).

2. Geometrical relationships between physical displays
are poorly modelled. Instead, the (possibly 3D)
spatial relationships between the interaction
resources and the user should be explicitly
modelled, dynamically acquired and maintained.
Windowing systems are able to support a limited
number of screens. In addition, the relative location
of the display screens must be set up by the user
through dedicated system forms. As a result, the user
is in charge of additional articulatory tasks. Again,
because they are screen-centric, windowing systems
do not support topologies that include the
surrounding environment (e.g., walls, tables, users’
location with respect to the display surfaces, etc.).
However, for many novel interactive systems, the
topology of the rendering surfaces matters: for
example, 3D rendering on a vertical surface and 2D
presentation on a horizontal surface [3, 15, 17].

3. Only single instances of input instruments are
supported. Instead, the system should be able to
support any number of instances of an instrument
class. In current windowing systems, the reference
workstation is supposed to have one single mouse
and keyboard. On systems like MacOS, it is possible
to plug two physical mice. Unfortunately, they are
linked to the same interruption level and are
modelled by the event manager as a device type, not
as a device instance identifier. As a result, multi-user
applications such as MMM [2] whose users share
the same screen with multiple mice, require the
underlying toolkit and event manager to be revisited
as in MID [9].

4. Interaction is confined to the resources of a single
workstation. Instead, we need to distribute UI’s
across a set of interaction resources managed by a
cluster of possibly heterogeneous machines.
Applications like I-land [19] and Rekimoto’s
augmented surfaces [17] require the aggregation of
multiple computers. BEACH supports the

distribution of user interfaces across a set of
homogeneous resources both in term of hardware
and operating systems [20]. Unfortunately,
ubiquitous computing requires the capacity to handle
heterogeneous sets of resources as well. For
example, pocket-size computers can play the role of
input devices to control information displayed on
wall-mounted electronic boards as in Pebbles [12].
In addition, the distribution of the user interface may
be static as in Rekimoto’s Pick and Drop [16], or
distribution may be dynamic as for the Dynawall
[19], which then requires additional functionalities
such as mechanisms for state recovery.

5. Absence of dynamic discovery of interaction
resources. Instead, in ubiquitous computing,
interaction resources appear and disappear
opportunistically: users can upload situated
information on their private PDA as they pass by a
public active wall. Two users who meet
serendipitously in the street, may want to start a
collaborative activity by bringing together their
PDA’s to form a larger interactional space. BEACH
supports this possibility provided that the resources
involved are homogeneous (Cf. the ConnecTables).
GaiaOS and Aura [18] aim at supporting
heterogeneity and dynamic migration. However,
they do not address the problem of developing
distributed user interfaces.

In our research group, we are currently working on a
number of these issues. The following section presents
the flavor of our approach.

THE CAMELEON RUN TIME INFRASTRUCTURE FOR
DISTRIBUTED MIGRATABLE PLASTIC UI’S
Figure 1 shows the global functional decomposition of a
run-time infrastructure that supports distributed
migratable plastic user interfaces on clusters composed of
a dynamic set of heterogeneous resources. It can be seen
as an extension of the Aura approach where migration,
distribution and adaptation are performed through a mix
of open and close-adaptiveness [13], not at the whole
application as proposed in Aura, but at any level of
granularity. The functional components are supposed to
run on top of I-AM, an interaction Abstract Machine
under development [10].
I-AM can be viewed as a generalization of the X-window
paradigm to support:
- The geometric relationships (topology) between

physical surfaces,
- The projection of digital content onto the physical

topology,
- The detection of arrival/departure of

surfaces/instruments as well as of any change in the
physical topology,

- The coupling of instruments with surfaces and
information content,

- The elimination of hardware and O/S discrepancies.

I-AM is structured into three levels of abstraction sitting
on top of the hardware and Operating Systems that form
the legacy basis of a cluster: The Platform layer, the
Logical Level layer, and the Interactor layer.
The platform layer provides the next level of I-AM, i.e.,
the Logical Level, with: (a) a normalized view of the set
of physical interaction resources that are available on the
elementary platforms of the cluster, and (b) networked
communication means with those resources. More
specifically, every processor that belongs to the cluster
runs an IAMPlatformManager. An IAMPlatformManager
is “elementary platform” centric: it manages the
resources that are local to the platform it runs on. In order
to support scalability and reconfigurability, it has no
knowledge of the existence of the other platform
managers of the cluster. Through contextors [6, 7], it
discovers the interaction resources that are locally
connected to the processor it runs on. It maintains a
description of these resources (e.g., size, colour, shape,
etc.), and it provides the world2 with the basic means for
using the interaction resources3. This includes (a) the
publication of the existence of the interaction resources
that may interest future consumers (e.g., I-AM
applications), (b) communication ports that allow remote
consumers to send requests to use a particular interaction
resource, and if successful, to obtain dedicated
communication ports for using the requested resource.
The Logical Level provides applications with a
customized view of the physical platform layer.
Applications that use an I-AM cluster may each have its
own way to exploit and interpret the physical
configuration of the cluster. Therefore, the Logical Level
of I-AM allows applications to build their own view on
top of the physical platform level. To get and exploit
such a view, an application must create an instance of
IAMApp. An IAMApp discovers the interaction
resources4 that are currently available in the cluster. To
do so, an IAMApp expresses its interests through its
ContextAdaptor. Expressions of interest include “give
me a large surface”, “give me the list of surfaces
available in the cluster”, “tell me when a new surface
arrives or leaves” etc. A ContextAdaptor serves as a
gateway between an application and the contextors that
run in the environment to provide contextual information.
Contextual information about the physical interaction
resources is compiled from the information produced by
the platform managers of the cluster. An IAMApp builds
the communication channels with the interaction
resources (surfaces) it is interested in. It maintains the
geometric relationships between the physical surfaces
that it is currently exploiting. It maps the physical
topology onto the digital information content. To satisfy

2 « The world » denotes any software component that is not part

of the IAMPlatformManager. I-AM applications are examples
of such software components.

3 Current limitation: only the existence of surfaces is published
4 Current limitations: “interaction resources” should be

understood as “surfaces” only.

the customized view requirement, the Logical Level layer
implements the mapping mechanism but uses the politics
provided by the application.
The Interactor level implements the basic graphic
concepts such as windows and widgets that populate the
logical spaces managed by the Logical Level. An
IAMInteractor provides the programmer with the
conventional programming paradigm. As a result, an
IAMInteractor can be created, destroyed, moved, etc. in a
logical space. It has a position in the LogicalSpace, it has
a height and width expressed in terms of logical pixels,
etc. It hides away the facts that the interactor can migrate
between physical surfaces, and that its rendering may
overlap multiple surfaces. To do so, an IAMInteractor is
(a) self-descriptive: it can save its state and serialize itself
as an XML description. This description can be sent to a
distinct IAMPlatformManager which can then
reconstruct it appropriately on the target surface it
manages, and (b) it is mapped into an EffectiveInteractor
or, if its logical rendering overlaps N surfaces, it is
mapped into N effective interactors. An
EffectiveInteractor is an interactor that is effectively
rendered on a physical surface. It makes concrete an
IAMInteractor I. It sends to I the events it receives from
the instruments attached to I. Conversely, any change in I
is notified to its associated EffectiveInteractors.
I-AM is implemented in Java and supports a mix of PC’s
and Mac’s. In its current implementation, I-AM is limited
in the following ways: surfaces are screen displays,
including video-projected displays. They are rectangular
and assembled (coupled) within a plan. From the
application programmer’s perspective, windows, widgets
and mouse pointers can migrate between screen displays
as if they were connected to a single machine. In
summary, I-AM provides the programmer with a uniform
space of interaction resources managed by a cluster of
heterogeneous elementary platforms. It extends the
functional coverage of current windowing systems to
distributed user interfaces across a dynamic set of
interaction resources managed by a cluster of
heterogeneous computers.

CONCLUSION
In this paper, we have presented new requirements that
ubiquitous computing imposes on the software
development of user interfaces so that they can be
distributed dynamically across the resources of evolving
computational clusters. In particular, we have stressed the
necessity for abstracting away the heterogeneity of these
resources into a normalized representation, and we have
demonstrated the need for an explicit model of the
geometrical relationships between these resources along
with their physical properties. We have not discussed the
consequences that these functional requirements put on
computational perception. In particular, machine
perception is needed to detect the arrival and departure of
interaction resources, for eliciting their intrinsic
properties as well as their topology. In addition, software
engineering requirements on the very nature of the
software components need to be made explicit. From our
early experience, we can cite reflexivity, introspection

and reconfigurability as well as languages for system
architecture description [8].

ACKNOWLEDGMENTS
This work has been partly supported by the IST-FET
GLOSS project (IST-2000-26070) and IST CAMELEON
project (IST-2000-28323).

REFERENCES
1. Bederson, B., Meyer, J. Good, L. Jazz: An Extensible

Zoomable User Interface Graphics Toolkit in Java. In
Proceedings of UIST 2000. May 2000. p171-180.

2. Bier E., Freeman, S., Pier, K., The Multi-Device
Multi-User Multi-Editor. In Proc. of the ACM conf.
On Human Factors in Computer Human Interaction
(CHI92), (1992), pp. 645-646.

3. Brumitt, B., Shafer, S. Better Living Through
Geometry. Personal and Ubiquitous Computing 2001.
Vol 5.1 Springer.

4. Calvary, G., Coutaz, J. Thevenin. D. A Unifying
Reference Framework for the Development of Plastic
User Interfaces. IFIP WG2.7 (13.2) Working
Conference, EHCI01,Toronto, May 2001, Springer
Verlag Publ., LNCS 2254, M. Reed Little, L. Nigay
Eds, pp.173-192.

5. Coutaz, J., Lachenal, C., Dupuy-Chessa, S. Ontology
for Multi-Surface Interaction, Proc. Interact 2003,
Sept. 3-5, Zurich, IOS Press, 2003.

6. Coutaz, J. Rey, G. Foundations for a theory of
Contextors. Proc. Of Computer-Aided Design of User
Interfaces III, J. Vanderdonckt, C. Kolski Eds.,
Kluver Academic Publ., 2002, pp. 13-32.

7. Crowley, J., Coutaz, J., Rey, G., Reignier, P.
Perceptual Components for Context-Aware
Computing, UbiComp 2002:Ubiquitous Computing,
4th International Conference, Göteburg, Sweden,
Sept./Oct. 2002, G. Borriello, L.E. Holmquist Eds.,
LNCS, Springer Publ., pp. 117-134.

8. Garlan, D., Monroe, R., Wile, D. Acme :
Architectural Description of Component-Based
Systems. Foundations of Component-Based systems,
Gary T. Eds, Cambridge University Press, 2000, pp.
47-68

9. Hourcade, J., Bederson, B. Architecture and
Implementation of a Java Package for Multiple Input
Devices (MID). 1999. Disponible à l’adresse :
http://www.cs.umd.edu/hcil/mid/

10. Lachenal, C., Rey, G., Barralon, N. MUSICAE, an
infrastructure for MUlti-Surface Interaction in
Context Aware Environment. In Proc. HCI
International, Crète, June 2003,pp. 125-126

11. Luyten, K., Vandervelpen, K. Coninx, K. Migratable
user interfaces Descriptions in Component-Based
Development. DSV-IS 2002, Rostock, Springer
Verlag Publ., 2002

12. Myers, B., Stiel, H., Gargiulo, R. Collaboration Using
Multiple PDAs Connected to a PC. In Proceedings
CSCW'98: ACM Conference on Computer-Supported
Cooperative Work, 1998, Seattle, WA. pp. 285-294.

13. Oreizy, P., R. Tay lor, R. et al. An Architecture-Based
Approach to Self-Adaptive Software. In IEEE
Intelligent Systems. pp. 54-62, May-June, 1999.

14. Paternò, F., Santoro, C. One model, many interfaces,
in Proc. Computer-Aided Design of User Interfaces
III (CADUI), J. Vanderdonckt, C. Kolski Eds.,
Kluver Academic Publ., 2002.

15. Rauterberg, M. et al. BUILT-IT: A Planning Tool for
Consruction and Design. In Proc. Of the ACM Conf.
In Human Factors in Computing Systems (CHI98)
Conference Companion, (1998), pp. 177-178

16. Rekimoto, J. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments. In
Proceedings of UIST'97, ACM Publ., 1997, pp. 31-
39.

17. Rekimoto, J., Masanori, S. Augmented Surfaces: A
Spatially Continous Workspace for Hybrid
Computing Environments. Proceedings of CHI’99,
ACM publ., 1999.

18. Sousa, J., Garlan, D. Aura : an Architectural
Framework for User Mobility in Ubiquitous
Computing Environments. IEEE-IFIP Conf. on
Software Architecture, Montreal, 2002

19. Streitz, et al. I-LAND: An interactive Landscape for
Creativity and Innovation. In Proceedings of CHI’99,
ACM publ.

20. Tandler, P. Software Infrastructure for Ubiquitous
computing Environments : Supporting synchronous
Collaboration with Heterogenous devices. In
Proceedings of UbiComp 2001, Springer Publ..

21. Thevenin, D., Coutaz, J. Plasticity of User Interfaces:
Framework and Research Agenda. In Proc.
Interact99, Edinburgh, , A. Sasse & C. Johnson Eds,
IFIP IOS Press Publ. , 1999, pp.110-117.

22. Want, et al. The Personnal Server : The Center of
Your Ubiquitous World. Intel Research White Paper
May 2001.

Figure 1. The CAMELEON overall middleware infrastructure that supports distributed, migratable and plastic UI’s.

