
REQUIREMENTS FOR AN ABSTRACT INTERACTION MACHINE

Christophe Lachenal, Joëlle Coutaz
CLIPS-IMAG

385 rue de la Bibliothèque
F-38041 Grenoble cedex 9, France

{Christophe.Lachenal, Joelle.Coutaz}@imag.fr

ABSTRACT
In this position paper, we argue that current windowing
systems and toolkits, which set the foundations for the
development of interactive systems, do not satisfy the
software requirements for implementing state of the art user
interfaces. New styles of interaction require the dynamic
configuration of multiple processors and interaction resources
into a uniform computational and interactional space. We
propose the notion of Abstract Interaction Machine (AIM) as
an approach to address this problem. An AIM is a basic
software infrastructure that hides the complexity of the
underlying physical infrastructure on top of which distributed
UI’s can be easily developed.

KEYWORDS : Abstract machine, Human Computer
Interaction, ubiquitous computing.

1. INTRODUCTION
With the advent of digital cell phones, personal organizers,
and wall-size augmented surfaces, users expect to interact
with the same interactive system both in the small and in the
large using multiple modalities. In addition, wireless
connectivity offers new opportunities for using interactive
systems in different environments (e.g., at home, in the street,
at work) putting new demands on software functionalities
such as context-awareness and dynamic discovery of
interaction resources.

Meanwhile, design principles, methods and software
development tools have been devised to increase systems
usability while reducing development costs. But today’s tools
have just caught up with the static “gray box” connected to the
Ethernet. Although they have achieved a high level of
sophistication, current methods and tools make a number of
implicit assumptions. In general, implicit assumptions
simplify implementation issues and favors performance. On
the other hand, they are limiting factors for innovation.

Typical examples of limitations in foundational tools such as
windowing systems are discussed next. Based on the analysis
of state of the art User Interfaces, we observe that the notion
of platform as exemplified by the usual workstation, must be
revised and extended. We then propose a formal definition for
the notion of platform that fits the spirit of ubiquitous
computing. From there, we suggest a number of requirements
for the low-level software that would replace current
windowing systems and toolkits: an abstract interaction
machine that would support the dynamic reconfiguration of

underlying physical infrastructure, as well as the dynamic
distribution of user interfaces across multiple interaction
resources.

2. LIMITING FACTORS
The development of new types of user interfaces is limited by
the simplicity of the models that current windowing systems
maintain for both output and input devices. For output,
windows models are screen centric and screens topology is
simplistic. As for input, windowing systems handle a single
instance for each class of input devices. These issues are
discussed next in more detail.

2.1. Screen Centricity of Windows Models
Windowing systems model windows as rectangular drawables
whose borders are constrained to be parallel to that of the
display. This model is based on the assumption that users keep
facing the screen. With the proliferation of video beamers, it is
popular to project window contents on large surfaces such as
tables. In this situation, users should be able to rotate windows
so that everyone can share window contents without twisting
their neck. Today, rotating windows must be implemented
from scratch from low-level graphics primitives as in
Jazz/PAD++ [Bederson 00].

2.1. Limited topology for supporting multiple
display surfaces
Windowing systems are able to support multiple screens
provided that the display surfaces are kept vertical facing the
user. In addition, the relative location of the display screens
must be set up by the user.

Again, because they are screen-centric, windowing systems do
not support topologies that include the surrounding
environment (e.g., walls, tables, users’ location with respect to
interactive surfaces, etc.). However, for many interactive
systems, the topology of the rendering surfaces matters. For
example, in Built-IT [Rauterberg 98] and Rekimoto’s
augmented surfaces [Rekimoto 99], objects are represented as
3D graphics interactors on laptops, whereas 2D rendering is
used for objects placed on an horizontal surface.

2.3. A single instance for each class of input
devices
In current windowing systems, the reference workstation is
supposed to have a single mouse and keyboard. As a result,
multi-user applications such as MMM [Bier 92] and Kidpad

[Benford 00] whose users share the same screen with multiple
mice, require the underlying toolkit and event manager to be
revisited as in MID [Hourcade 99]. In Pebbles, multiple
PDA’s can be used as input devices to control information
displayed on a wall-mounted electronic board [Myers 98].

2.4. Synthesis
Our brief analysis shows that windowing systems, which set
the foundations for the UIMS technology, primarily address
the development of user interfaces confined to a single PC,
with limited models for display surfaces and input devices. At
the opposite, the state of the art shows that some user
interfaces are aimed at simple platforms such as laptops and
PDA’s, while others, such as I-land [Streitz 99] and
Rekimoto’s work, require the aggregation of multiple
computers. In addition, input and output devices can be
connected to, or disconnected from, a computer at any time.
We synthesize the variety of situations with the following
notion of platform.

2. THE PLATFORM REVISITED
We make a distinction between elementary platforms, which
are built from core resources and extension resources, and
clusters, which are built from elementary platforms.

3.1. Definitions
An elementary platform is a set of physical and software
resources that function together to form a working
computational unit whose state can be observed and/or
modified by a human user. None of these resources per se is
able to provide the user with observable and/or modifiable
computational function. A personal computer, a PDA, or a
mobile phone, are elementary platforms. On the other hand,
resources such as processors, central and secondary memories,
input and output interaction devices, sensors, and software
drivers, are unable, individually, to provide the user with
observable and/or modifiable computational function.

Some resources are packaged together as an immutable
configuration called a core configuration. For example, a
laptop, which is composed of a fixed configuration of
resources, is a core configuration. The resources that form a
core configuration are core resources. Other resources such as
external displays, sensors, keyboards and mice, can be bound
to (and unbound from) a core configuration at will. They are
extension resources.

A cluster is a composition of elementary platforms. The
cluster is homogeneous when it is composed of elementary
platforms of the same class. For example, DynaWall is an
homogenous cluster composed of three electronic white
boards [Streitz 99]. The cluster is heterogeneous when
different types of platforms are combined together as in
Rekimoto’s augmented surfaces.

3.2. Formal Definitions
More formally, let
− C be the set of core configurations
− E be the set of extension resources
− C', C" ≠ {}: C'

€

⊂ C and C" = C – C'

− E', E": E'

€

⊂ E and E" = E – E'
− c1, …, cn ∈ C , e1, …, em ∈ E for n ∈ N*, m ∈ N
− Operational be a predicate over a set of resources that

returns true when this set forms a working
computational artefact whose state can be observed
and/or modified by a human user.

A platform is composed of a set of core and extension
resources which, connected together, form a working
computational artefact whose state can be observed and/or
modified by a human user:

P = { c1, …, cn } ∪ { e1, …, em } and Operational (P)

P is an elementary platform if and only if:

€

¬∃ C', E', C", E": Operational (C' ∪ E') and Operational
(C" ∪ E").

In other words, P is an elementary platform if it not possible
to compose two platforms from the set of resources that
constitute P.

P is a cluster if it is possible to compose two platforms from
the set of resources that constitute P:

€

∃ C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪
E").

Note that:
− A core configuration is not necessarily Operational. For

example, the Intel Personal Server, a bluetooth-enabled
micro-drive with no interaction device, is a core
configuration but not an elementary platform: its state
cannot be observed nor modified until it wirelessly
connects to extension resources such as a display and/or a
keyboard [Want 01].

− A laptop is an elementary platform. When augmented with
extension resources such as a second mouse and sensors, it
is still an elementary platform. Similarly, Rekimoto’s data
tiles form an elementary platform that can be dynamically
extended by placing physical transparent tiles on a tray
composed of an LCD flat screen display [Rekimoto 01].

To our knowledge, design tools for user interfaces address
elementary platforms whose configuration is known at the
design stage. Clusters are not addressed. On the other hand, at
the implementation level, software infrastructures such as
BEACH, have been developed to support clusters built from
an homogeneous set of core resources (i.e., PC’s) connected to
a varying number of screens [Tandler 01]. Whereas BEACH
provides the programmer with a single logical output display
mapped onto multiple physical displays, MID addresses the
dynamic connection of multiple input devices to a single core
configuration. Similarly, Pebbles allows the dynamic
connection of multiple PDA’s to a single core configuration.

None of the current infrastructures addresses the dynamic
configuration of clusters, including the discovery of both input
and output interaction resources. The concept of Abstract
Interaction Machine (AIM), as well as the architecture
developed for iRoom [Winograd 01] and EasyLiving [Brumitt
01] are attempts to address these issues.

4. SERVICES PROVIDED BY AN AIM
Just like windowing systems and toolkits, AIM covers
multiple levels of abstraction.

4.1. The “Windowing Level” of AIM
At the lowest level of abstraction, AIM, just like windowing
systems, hides the functioning of the physical platform
whether it be elementary or a cluster. In other words, it
provides the developer (and/or the higher functional layer)
with a logical space of any number of input and output
interaction devices whose identity and topology are made
accessible on request. Because the number and nature of
resources may vary, AIM includes mechanisms for resource
discovery.

Interaction resources go wireless and can easily be moved
around. Therefore, proximity detection and orientation are two
basic spatial services that AIM should include. These services
are required for AIM to maintain an operational topology.

The topology of interaction resources includes the spatial
relationships between the output devices of the platform,
between the input devices, as well as between the input and
output devices. Moreover, the topology includes the spatial
relationships between the interaction resources and the users
currently using (or near by) the system. The knowledge of
users’ location allows higher software levels to render
information in the appropriate form and location. For
example, information projected on a round table could
automatically be oriented towards the user.

For output, the reference coordinates can be dynamically
modified. It can’t anymore be the static top left corner of a
graphics display!

Any change in the resources (and users) topology is reflected
to the upper layer, such as the toolkit level.

4.2 The “Toolkit Level” of AIM
At the toolkit level, the interactors that compose the user
interface of a particular application (whatever an application is
within the ubicomp world) can be distributed across the
resources of the platform. In addition, they may migrate
between the interaction resources at run time. The granularity
for distribution and migration may vary from application level
to pixel level:

. At the application level, the user interface is fully
replicated on the platforms of the cluster. If the cluster is
heterogeneous, then each platform runs a specific targeted
user interface initialized, for example, from a pre-
computed user interface. All of these user interfaces,
however, simultaneously cover the same functional core.

. At the workspace level, the user interface components
that can migrate between platforms are workspaces. A
workspace groups together a collection of interactors that
support the execution of a set of logically connected
tasks. In graphical user interfaces, a workspace is mapped

onto the notion of window. The painter metaphor
presented in Rekimoto’s pick and drop [Rekimoto 97], is
an example of distribution at the workspace level: tools
are presented on a PDA whereas the drawing area is
mapped onto a white board. Going one-step further with
AIM, the tools palette (possibly the drawing area) can
migrate at run time between the PDA and the electronic
board.

. At the domain concept level, the user interface
components that can be distributed between platforms are
interactors. Here, interactors render domain concepts. In
Rekimoto’s augmented surfaces, domain concepts can be
distributed between laptops and horizontal and vertical
surfaces.

. At the pixel level, any user interface component can be
partitioned across multiple platforms. For example, in I-
land, a window may lie over two contiguous white boards
simultaneously. When the cluster is heterogeneous,
designers need to consider multiple sources of disruption.
For example, how to represent a window whose content
lies across a white board and a PDA? From a user’s
perspective, is this desirable?

6. CONCLUSION
We are currently implementing an instance of AIM for an
augmented room that includes multiple interaction surfaces of
varying size: an augmented table where the mouse is replaced
by physical tokens tracked by a computer vision system, an
augmented wall whose pointing devices are laser beams, and
PDA’s. We are aware that our concepts are still preliminary,
but could serve as input to a discussion in a workshop.

7. REFERENCES
[Bederson 00] Bederson, B., Meyer, J. Good, L. Jazz: An

Extensible Zoomable User Interface Graphics Toolkit in
Java. In Proceedings of UIST 2000. May 2000. p171-180.

[Benford 00] Benford, S., Bederson, B., Akesson, K., Bayon,
V., Druin, A., Hansson, P., Hourcade, J., Ingram, R.,
Neale, H., O’Malley, C., Simsarian, K., Stanton, D.,
Sundblad, Y., Taxen, G. Designing Storytelling
Technologies to Encourage Collaboration Between Young
Children. In Proceedings of CHI’2000, The Hague,
Netherlands, April 1-6, ACM, New York, p556-563.

[Bier 92] Bier E., Freeman, S., Pier, K., The Multi-Device
Multi-User Multi-Editor. In Proc. of the ACM conf. On
Human Factors in Computer Human Interaction (CHI92),
(1992), pp. 645-646.

[Brumitt 01] Brumitt, B., Shafer, S. Better Living Through
Geometry. Personal and Ubiquitous Computing 2001. Vol
5.1 Springer.

[Hourcade 99] Hourcade, J., Bederson, B. Architecture and
Implementation of a Java Package for Multiple Input
Devices (MID). 1999. Disponible à l’adresse :
http://www.cs.umd.edu/hcil/mid/

[Myers 98] Myers, B., Stiel, H., Gargiulo, R. Collaboration
Using Multiple PDAs Connected to a PC. In Proceedings
CSCW'98: ACM Conference on Computer-Supported
Cooperative Work, 1998, Seattle, WA. pp. 285-294.

[Rauterberg 98] Rauterberg, M. et al. BUILT-IT: A Planning
Tool for Consruction and Design. In Proc. Of the ACM
Conf. In Human Factors in Computing Systems (CHI98)
Conference Companion, (1998), pp. 177-178

[Rekimoto 99] Rekimoto, J., Masanori, S. Augmented
Surfaces : A Spatially Continous Workspace for Hybrid
Computing Environments. Proceedings of CHI’99, 1999.

[Rekimoto 01] Rekimoto, Yun. Ullmer, Brygg. Oba, Haro.
DataTiles: A Modular Platform for Mixed Physical and
Graphical Interactions. In Proceedings of CHI2001, Seattle
2001.

[Rekimoto 97] Rekimoto, J. Pick-and-Drop: A Direct
Manipulation Technique for Multiple Computer
Environments. In Proceedings of UIST'97, pp. 31-39,
1997.

[Streitz 99] Streitz, et al. I-LAND: An interactive Landscape
for Creativity and Innovation. In Proceedings of CHI’99.

[Tandler 01] Tandler, P. Software Infrastructure for
Ubiquitous computing Environments : Supporting
synchronous Collaboration with Heterogenous devices. In
Proceedings of UbiComp 2001.

[Want 01] Want, et al. The Personnal Server : The Center of
Your Ubiquitous World. Intel Research White Paper May
2001.

[Winograd 01] Winograd, T. Architecture for Context, Human
Computer Interaction, Lawrence Erlbaum Publ., 16(2-4),
(2001), pp.401-419.

