
A Reference Framework for Multi-Surface Interaction

Christophe Lachenal Joëlle Coutaz

CLIPS-IMAG Laboratory, University of Grenoble
Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9, FRANCE

{Christophe.Lachenal, Joëlle;Coutaz}@imag.fr

Abstract

Physical surfaces are pervasive and serve many purposes. Digital computation is a powerful
source of functional support. However, it has been confined to the augmentation of single
objects only. In this article, we are interested in the combination of physicality with
computation in the context of multiple objects. We propose the notion of multi-surface
interaction as a unifying paradigm for reasoning about both emerging distributed UI’s and
known interaction techniques such as GUIs, tangible UIs, and manipulable UIs. Multi-surface
interaction is expressed within an ontology that shows how our concepts feed into the design
of sound foundational software for the development of multi-surface user interfaces.

1 Introduction

Surfaces play a predominant role in our daily activities: in civil architecture, they structure the
space into places. Any artefact has a shape that can be comprehended via the surface it offers.
In computing, display screens and electronic boards are surfaces used for rendering
information. Because digital computation is a powerful means for “crunching” information, it
is interesting to bring together physical surfaces with digital information. By doing so, we
obtain information surfaces. However, information surfaces are useful for humanity only if
humans can manipulate them. Manipulation coupled with observation form the essence of
interaction. By which we justify the term “multi-surface interaction”.
Recent advances in HCI show many examples of user interfaces based on the simultaneous
use of multiple surfaces: I-land (Streitz & al, 1999, p. 553), iRoom (Johanson & al, 2002), or
Rekimoto’s augmented surfaces (Rekimoto & Masanori, 1999, p. 378) and Data Tiles
(Rekimoto & al, 2001, p. 269) are typical examples of multi-surface interactive environments.
From centralized display on a single surface, user interfaces can now migrate freely and be
distributed across multiple surfaces. For example, proximal PDA’s could provide a
reconfigurable mosaic on which the user interface can expand and shrink dynamically.
Although development tools have made significant progress, they are still limited in a number
of ways to support the implementation of multi-surface user interfaces. For example, windows
are modelled as rectangular drawables whose borders are constrained to be parallel to that of
the display. This model is based on the (wrong) assumption (for ubiquitous computing) that
users keep facing a vertical screen and use a single pointing device at a time. This assumption
needs to be revised leading to new requirements.
In this article, we propose an ontology that clarifies the notion of multi-surface interaction. In
turn, the ontology calls for the development of new software foundational infrastructures such
as I-AM. I-AM is an Interaction Abstract Machine whose level of abstraction is similar, in
spirit, to that of windowing systems such as X-Window. In addition, it supports the dynamic
reconfiguration of the underlying physical infrastructure, as well as the dynamic distribution
of user interfaces across multiple interaction resources.

2 Ontology

Figure 1 shows a UML formal description of our ontology for multi-surface interaction. The
components of the ontology include: Interaction resources that serve as mediators between an
artificial actor (e.g., a ubicomp system) and a natural actor (e.g., a user). An interaction
resource may serve as an instrument or as a surface. As an instrument, an interaction resource
mediates the actions of an actor. As a surface, the outmost boundary of a physical artefact
serves as a recipient for making information observable to an actor. Actors have actuators to
modify the state of an interaction resource, and have sensors to observe the state of interaction
resources. Actors and Interaction resources are members of a topology (i.e., spatial
relationships). Interaction resources and their relationships have attributes (e.g., size, social
use) and properties (e.g., maniability) that can be used to characterize a particular multi-
surface interaction.

Figure 1 : UML description of the Multi-Surface interaction ontology.

For example, in the GLOSS multi-surface system shown in Figure 2, a laser pointer is, from
the user’s perspective, an instrument to select raw content displayed on two surfaces: a wall
and a table. The laser light is detected by the system using a camera sensor. The pucks of the
Senseboard, on the other hand, serve both as instruments and surfaces (Jacob et al, 2002, p
246). The Senseboard provides a tangible user interface for manipulating and organizing
pieces of information as in spreadsheets. Each puck is a small magnetized plastic tag that
denotes a piece of information. It can be placed into grid cells to move information. As such,
it is an instrument for the user. In addition, a video-projector displays specific information on
the top of the puck: it also serves as a surface that the user can observe.
The relations “acts on” and “observes” call for the definition of two classes of surfaces: action
surfaces and observation surfaces. An action surface is a subset of a physical surface on which
an actor can act directly with actuators and/or indirectly with instruments. Similarly, an
observation surface is a subset of a physical surface that an actor can observe with sensors.
For example, the top of a Senseboard puck is an action surface for the system and an
observation surface for the user. The adequacy of a surface for action and/or for observation
depends on its attributes (such as size, weight, and material) and properties (e.g., fluidity,
flexibility, opacity, transparency, etc.).

By composing surfaces in space, we build geometric configurations. In turn, the geometric
configuration sets the foundation for analyzing properties of the spatial relationships between
surfaces. Typically, an empty intersection between the action and the observation surfaces of a
human actor, predicts discontinuity (e.g., the user can’t see what he is doing). In addition, the
way surfaces are coupled to form a geometric space opens a rich line of reasoning. For
example, in modern classrooms, blackboards are comprised of several panes that can be
moved up and down as needed. Teachers frequently project prepared slides on the boards.
They augment the slides opportunistically by writing on the board with ink-pens. When they
scroll the board, the ink inscriptions are scrolled but the projected slide is not. In this setting,
the system, which has no sensing capacity, is unable to adjust its action surface to that of the
user.
Similarly, spatial relationships of the surface configuration with regard to the user’s position
matters. For example, in Rekimoto’s augmented surfaces, objects are represented as 3D
graphics interactors on laptops, whereas 2D rendering is used for objects placed on a
horizontal surface. In these examples, the orientation of the rendering surfaces relative to the
user (e.g., “horizontal” and “vertical”) determines the nature of the output modalities. So far,
we have illustrated the ontology with examples drawn from the user’s perspective. In the
following section, we describe the consequences from the system perspective.

3 A Foundational Software Platform: I-AM

The goal of I-AM is to provide developers with a uniform logical space composed of any
number of processors, and any number of interaction resources and classes of interaction
resources. Because interaction resources can be “plugged” and “unplugged” at will, I-AM
must include mechanisms for resource discovery. Interaction resources tend to go wireless and
can easily be moved around. Therefore, proximity detection and orientation are required to
maintain an operational topology (e.g., the orientation of interactive surfaces matters!). A first
version of I-AM is under development illustrated with the implementation of a multi-surface
user interface distributed across a wall, an augmented table, and a PDA.

3.1 An illustrating example: the GLOSS multi-surface setting

In order to understand the services that I-AM should provide, we have developed a multi-
surface prototype system. As shown in Figure 2, the user interface is distributed across a wall,
an augmented table, and a PDA.

Figure 2: The GLOSS multi-surface setting: a large
public surface (a wall), a semi-private surface (a

table), a private surface (a PDA).

Figure 3: The GLOSS clicker.

The prototype was developed with the idea that it could be placed in a bar with a high level of
integration in the environment. In the bar, many surfaces can be used: tables to put glasses,
walls to display menus, etc. Our idea is to exploit the physical surfaces of a bar and augment
them with computational facilities such as sending digital postcards or reading SMS. As

shown in Figure 2, the wall, which is large public surface, is used to display six stacks of
postcard. Each stack represents a theme (e.g., Paris by night, Monuments in Paris). Below the
stacks of postcards, the system shows a thumbnail of available physical tables. Users, sitting
at a table, can select a stack from the distance using a laser pointer. Dragging a stack with the
laser beam to the thumbnail table, brings the postcards of the stack on the table. Each circular
table is used as a semi-private surface on which the user can select a postcard, write on it and
send it. If the user has a PDA, he can also save postcards on it. To do that, the PDA and the
table have to discover each other.
Because the table is circular, the user interface can be conveniently rotated towards the user
using the wireless GLOSS clicker. A shown in Figure 3, the GLOSS clicker has been built
from a press button and a LED mounted on top of a 2x4cm foam box wrapped with paper.
The LED is tracked with computer vision. In addition, the user can receive SMS messages on
the wireless PDA. The display screen of a PDA is rather small for editing messages.
Therefore, the surface of the table can be used to read and write messages. As a result, the
table serves two types of activities: browsing and writing postcard, viewing and writing text
messages.
This prototype shows that building multi-surface user interface is not straightforward: the
programmer needs to know which surfaces are available in the space, what are their
characteristics, what are the spatial relationships between the interaction resources, and so on.
We have designed I-AM to alleviate programmers development effort.

3.2 I-AM

I-AM is a software infrastructure that extends the functional coverage of current windowing
systems to multi-surface interaction. As shown in Figure 4, it is comprised of four levels of
abstraction. At the lowest level of abstraction, the network layer is in charge of interaction
resource discovery as well as of their communication. As specified in our ontology,
interaction resources appear and disappear from the interaction space (ex: a guest sits at Table
3, a PDA is close to Table 5, a new table is available). Because multiple interaction resources
may be connected to a single computer, network protocols like UPnP or Zeroconf could be
used to discover them. Such protocols have been developed to allow devices with network
capabilities to discover each other without any network administration. Although these
protocols are adequate for medium scale networks, they do not support any information about
the network topology nor about the resources topology.

Figure 4: I-AM software architecture layers decomposition

As shown in previous Section, topology is central to multi-surface interaction. Topology
modelling relies on a service capable of localising and identifying resources. The cluster
Management layer provides the programmer with a logical view of interaction resources.
Whereas a windowing system manages windows (i.e., logical screens), a single pointing
device and typing device, the cluster level manages a dynamic set of surfaces and instruments,
along with their geometric configuration in space, and their coupling. For example, in the
GLOSS prototype, the wall, and the tables form a cluster of interaction resources. This cluster
evolves over time: the topology of the tables may change (two tables put side by side form a
larger surface to interact with. When a client sits at the table, the cluster may be enriched with

the PDA interaction resources. From the programmer’s perspective, this situation translates to
subscribing to events such as “new surface has arrived” and binding these events to specific
actions. On top of the Cluster Management, the Access Control layer supports the capabilities
for joining/leaving the cluster. For example, the “bar cluster” may not allow any PDA to join
the interaction space. At the top of the hierarchy, the toolkit layer corresponds to the levels of
abstraction of the current “graphical” machine and the widget toolkits. However, this layer
needs to address the dynamic adaptation of the rendering to physical surfaces and instruments.
For example, in the GLOSS setting, the graphical output must be mapped onto a circular
surface. As a result, the graphical user interface should fit perfectly the shape of the disk, and
should be rotative. In addition, if the table cloth were green instead of white, color rendering
should be changed accordingly to maintain readability. Sensing the color of the table (i.e., a
surface characteristics) is performed with the sensing contextors (Crowley & al, 2002, p. 117).

4 Conclusion

The emergence of ubiquitous computing calls for the definition of new conceptual
frameworks for reasoning from both the user and the system perspectives. Our notion of
multi-surface interaction is an attempt in this direction. Our ontology for multi-surface
interaction makes explicit the following important concepts: the dual view, surface-
instrument, that any interaction resource may support; the distinction between action surfaces
and observation surfaces; the symmetrical role between natural and artificial actors, both of
them being characterised by actuators, sensors and information content; the spatio-temporal
coupling with content; and the dynamic configuration of interaction resources and actors
within a topology. Topology along with a unifying software infrastructure that manages
dynamic heterogeneous clusters of interaction resources, actuators and sensors, are the next
software challenge to be addressed.

5 Acknowlegments

This work has been partly supported by the IST-FET GLOSS project (IST-2000-26070) and
IST FAME project (IST-2000-28323).

6 References

Crowley J. L., Coutaz J. , Rey G., Reignier P (2002). Perceptual Components for Context
Aware Computing. In Proc. of the ACM conf. Ubiquitous Computing (UBICOMP), 117-134,
Springer.
Jacob R., Ishii H., Pangaro G. Patten J (2002). A Tangible Interface for Organizing
Information using a Grid.. In Proc. of the ACM conf. On Human Factors in Computer Human
Interaction (CHI), 2002, 339-346. ACM Press.
Johanson B., Fox A., Winograd T (2002). The Interactive Workspace Project: Experiences
with Ubiquitous Computing Rooms. In IEEE Pervasive Computing Magazine, 1(2), April-
June 2002.
Rekimoto J., Masanori S (1999). Augmented Surfaces : A Spatially Continous Workspace for
Hybrid Computing Environments. In Proc. of the ACM conf. On Human Factors in Computer
Human Interaction (CHI), 378-385. ACM Press.
Rekimoto Y., Ullmer B., Oba H (2001). DataTiles: A Modular Platform for Mixed Physical
and Graphical Interactions. In Proc. of the ACM conf. On Human Factors in Computer
Human Interaction (CHI), Seattle, 269-276. ACM Press.
Streitz N., Tandler P., Müller-Tomfelde C. , Konomi S (2001). Roomware: Towards the Next
Generation of Human-Computer Interaction based on an Integrated Design of Real and
Virtual Worlds. In Human-Computer Interaction in the New Millenium, 553-578. Carroll J.
(Ed.), Addison-Wesley.

