Replica Placement
 Mobility Prediction
 Evaluation
 Results

 0000000
 00000000
 00000000
 0000

Proactive Replica Placement Using Mobility Prediction

Julien Gossa¹, <u>Andreas G.K. Janecek</u>², Karin A. Hummel², Wilfried N. Gansterer², Jean-Marc Pierson³

¹ LSIIT, Universit de Strasbourg, France

² Faculty of Computer Science, University of Vienna, Austria

³ IRIT Lab., University of Toulouse, France

January 22, 2008

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- This work was supported by The AMADEUS Project
- PAI Asso Egide Partenariat Hubert Curien (PHC)
- Founded by OEAD Austrian Exchange Service

- Two teams:
 - Distributed and Multimedia Systems, Vienna
 - Ex Systemes d'Information Pervasifs, INSA Lyon

Replica Placement	Mobility Prediction	Evaluation	Results
Outline			

イロト イヨト イヨト イヨ

크

- Replica Placement Algorithm (FReDi)
 - Reactive FReDI
 - Adding Prediction to FReDI

2 Mobility Prediction

- 3 Evaluation
- 4 Results

Replica Placement ●○○○○○○	Mobility Prediction	Evaluation	Results
Reactive FReDI			
FReDi			

FReDi - Flexible Replica Displacer

Flexible management system for the dynamic placement of content replicas ¹ over a network of proxy-caches (PCs)

Distributed version of DC-Tree, an approximation algorithm for the *k*-center problem

Main goals: Optimize the replica placement in order to

- reduce the number of replicas and limit the load on servers and proxy caches (PCs)
- while keeping the best end-user QoS

¹ Note: we consider a *replica* a copy of a content managed by the proxy-caches network

Replica Placement ○●○○○○○	Mobility Prediction	Evaluation	Results
Reactive FReDI			
Constraints			

Network constraints

- PCs only know their direct neighbors (comparable to P2P environments)
- ⇒ lack of knowledge about network architecture

Proxy caches

- can store replicas
- can delete replicas
- can share replicas and messages with direct neighbors

< 同 > < ∃ >

Replica Placement oo●oooo	Mobility Prediction	Evaluation	Results
Reactive FReDI			
Attraction Vect	ors		

Decisions for moving, duplicating and deleting replicas are supported by *"attraction vectors"* (AVs)

Each PC maintains one AV for each replica it stores

- each AV is composed of certain values (*attractions*) for each of the direct neighbors of the PC
- attractions represents the directional popularity of the replica toward a corresponding neighbor
- example: $AV(PC_{2,2})^t = (.2, .8, 0, 0)$

Example: AV for a replica [0.1em]held by PC_{2.2}

イロト イヨト イヨト イヨト

Replica Placement ○○○●○○○	Mobility Prediction	Evaluation	Results
Popotivo EPoDI			

Attraction Vectors - Decisions

Three decisions:

- migration

if an AV shows one single high attraction then the replica is migrated to the corresponding PC

- duplication

if an AV shows several high attractions then the replica is duplicated to the corresponding PCs where the AVs exceed a given threshold

- deletion

if an AV is null then the replica is of no use and is deleted

Replica Placement ooooo●oo	Mobility Prediction	Evaluation	Results
Reactive FReDI			

Attraction Vectors - Mechanisms

Two mechanisms:

- AVUpdate

implements a distributed protocol designed to *adapt the attractions* of the relevant AV after each single request

(using information of direct neighbors)

- AVMaintenance

implements a local routine running on each PC designed to take into account the three decisions mentioned before

(using only local AV information)

⇒ completely distributed – no centralized decisions

Replica Pla 00000●0	acement		Mobility Pred	liction	Evaluation	Results	
Reactive F	ReDI						
		-					

Reactive Behavior

Problem:

Without considering future movement, replicas will basically follow *after* the clients have moved

<ロ> <同> <同> < 同> < 同> < 同> <

2

 PC_R indicates the PC holding the replica

Replica Placement	Mobility Prediction	Evaluation	Results
Adding Prediction to FReDI			
Proactive Behav	vior		

Idea:

Apply (mobility) prediction in order to make FReDi proactive

Update AVs *prior* to movement into the direction of the predicted future location of mobile client

Replica Placement	Mobility Prediction	Evaluation	Results
Outline			

Image: A math a math

크

-

- Replica Placement Algorithm (FReDi)
- 2 Mobility Prediction
 - Preprocessing
 - Prediction
- 3 Evaluation
- 4 Results

Replica Placement	Mobility Prediction	Evaluation	Results

Components

Preprocessing component

- convert raw history data traces into format used by the prediction component
- two levels of granularity (accuracy)
 - 1. granularity of time (gt)

determines the granularity of the time resolution underlying the location sequences

2. granularity of position (gp)

determines the granularity of the position (i.e., accuracy of latitude and longitude)

Prediction component

- actual prediction implemented as comparison strategy

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Replica Placement	Mobility Prediction ●○○○○○○	Evaluation	Results
Preprocessing			
Granularity of T	ime		

Discretize location sequences

- locations of raw GPS data are given in varying time intervals
- define basic time interval Δgt
- convert raw data traces into *discrete* location sequences containing the location of each mobile entity every Δgt seconds
- Δgt can be adjusted to the application

Filter out traces of non-moving mobile clients

- if mobile entity is not moving for a *minimal standing time* we start a new trace sequence for the given entity

(日)

- e.g., taxi stand, traffic jam, ...

Replica Placement	Mobility Prediction ○●○○○○○	Evaluation	Results
Preprocessing			

Granularity of Time

・ロト ・四ト ・ヨト ・ヨト

3

J. Gossa, A. Janecek, K. Hummel, W. Gansterer, J-M. Pierson DMCAC 2008

Replica Placement	Mobility Prediction	Evaluation	Results
Preprocessing			
Granularity of Po	sition		

Raw GPS data

given in degrees (lon/lat) followed by 10 decimals after comma

- example 16.4432840983; 48.2490966797
- ! too accurate to be used within most comparison-based prediction strategies

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Replica Placement	Mobility Prediction	Evaluation	Results
Preprocessing			
Granularity of Po	sition		

Raw GPS data

given in degrees (lon/lat) followed by 10 decimals after comma

- example 16.4432840983; 48.2490966797
- ! too accurate to be used within most comparison-based prediction strategies

Truncation

configure accuracy by truncating decimals after the comma

- example 16.443; 48.249
- ⇒ adapt to positioning systems with different accuracy (GPS, differential GPS, ...)
- \Rightarrow adapt to accuracy needed by the application (pedestrians, vehicle, etc.)

⇒ reduce storage requirements

Replica Placement	Mobility Prediction ०००●०००	Evaluation	Results
Preprocessing			

Granularity of Position

3

J. Gossa, A. Janecek, K. Hummel, W. Gansterer, J-M. Pierson DMCAC 2008

Replica Placement	Mobility Prediction	Evaluation	Results
Prediction			

Prediction

Basic comparison strategy

- compare actual and last *i* locations of a client under investigation with history traces
- adapt truncation level if search is not successful

Result

- relative frequencies of next f location sequences
- ⇒ chose location with highest relative frequency

recent sequence	history traces
6,375; 48,178	16,371; 48,183
6,379; 48,177	16,373; 48,181
6,381; 48,177	16,373; 48,181
6,386; 48,176	16,375; 48,179
?	16,375; 48,178
?	16,379; 48,177
	16,381; 48,177
	16,386; 48,176
	16,384; 48,177
	16,383; 48,178

イロト イヨト イヨト イヨト

Replica Placement	Mobility Prediction ○○○○○●○	Evaluation	Results
Prediction			
Prediction			

```
Input: pre-processed history set; recent sequence
              S_X = \{X_{c-i}, X_{c-i+1}, \dots, X_c\}
Output: prediction of next f location(s)
\mathcal{P}:=NULL
repeat
        \begin{array}{l} \text{foreach } S_H = \{H_{c-i}, H_{c-i+1}, ..., H_c, ..., H_{c+f}\} \text{ do} \\ & | \begin{array}{c} \text{if } S_X \text{ matches } S_{H(H_{c-i}, ..., H_c)} \text{ then} \\ & | \end{array} \\ & | \end{array} \\ \begin{array}{c} \text{add } S_H \text{ to } \mathcal{P} \end{array} \end{array} 
               end
       end
       if \mathcal{P} = = NULL then
         increase truncation level
        end
until \mathcal{P}'=NULL;
chose location with highest relative frequency
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Replica Placement	Mobility Prediction	Evaluation	Results
	000000		

Prediction

Prediction - Alternatives and Advantages

Potential alternative:

- linear extrapolation (based on estimations for the current speed and direction)
- Markov models
- LeZi-Update,...

Advantages of our approach:

- 1. not specific to any type of mobility trace or topology
 - $\Rightarrow\,$ can be applied to different mobility patterns (e.g., vehicles, pedestrians, mixed vehicle-pedestrians...)

< 日 > < 回 > < 回 > < 回 > < 回 > <

- $\Rightarrow\,$ the predictor only needs the observed mobility history described in sequences of locations
- 2. new traces can be easily added without changing predictor
 - ⇒ without rebuilding movement patterns (e.g.,like Markov models)

Replica Placement	Mobility Prediction	Evaluation	Results

・ロト ・ 日 ・ ・ 回 ・ ・

-

Outline

1 Replica Placement Algorithm (FReDi)

2 Mobility Prediction

3 Evaluation

- Objectives and Simulation Setup
- Evaluation Methodology

4 Results

5 Conclusion

Replica Placement	Mobility Prediction	Evaluation ●oooooooo	Results
Objectives and Simulation Setup			
Evaluation Object	ctives		

 can replica placement can be improved by adding prediction to the reactive behavior of the FReDi algorithm?

A (B) > A (B) > A (B) >

Replica Placement	Mobility Prediction	Evaluation ●00000000	Results
Objectives and Simulation Setup			
Evaluation Object	ctives		

 can replica placement can be improved by adding prediction to the reactive behavior of the FReDi algorithm?

Several simulations:

- four different placement strategies (re- and/or pro-active)

< □ > < □ > < □ > < □ >

- on pre-defined traces
 - fixed movement history traces
 - various fixed evaluation traces

Replica Placement	Mobility Prediction	Evaluation ●00000000	Results
Objectives and Simulation Setup			
Evaluation Object	ctives		

 can replica placement can be improved by adding prediction to the reactive behavior of the FReDi algorithm?

Several simulations:

- four different placement strategies (re- and/or pro-active)
- on pre-defined traces
 - fixed movement history traces
 - various fixed evaluation traces

Measurements:

- first comparison of introduced predictor (PR) with other prediction models
- accuracy and improvement of replica placement algorithm

Replica Placement	Mobility Prediction	Evaluation	Results
Objectives and Simulation Setup			
Simulation Setup	D		

Access point infrastructure modeled as a square grid $(N \times N)$

- mapped onto the city of Vienna
- assumption: one access point per proxy cache
- taxis (clients) access replicas held by PCs
- taxis are equipped with mobile devices and GPS receivers
- each taxi sends requests to its geographically nearest PC
- based on real-world GPS traces of taxi moving in the city of Vienna

City map of Vienna, Austria

Replica Placement	Mobility Prediction	Evaluation
Objectives and Simulation Setup		

Results

æ

Example: Vienna

J. Gossa, A. Janecek, K. Hummel, W. Gansterer, J-M. Pierson **DMCAC 2008**

Replica Placement	Mobility Prediction	Evaluation	Results
Objectives and Simulation Setup			
Simulation Setu	р		

About 18 500 different location traces (after preprocessing)

▲ロ▶ ▲郡▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- average length of 105 locations per trace
- ⇒ nearly 2 million different GPS locations overall
 - for evaluation: 400 traces (each with a length of 200 positions)
- \Rightarrow resulting in 80 000 locations for evaluation

Granularity of time (gt):

- $\Delta gt = 20$ sec.

Granularity of position (gp):

- truncation set to three decimals after comma
- \Rightarrow for Vienna (lat.: 75m accuracy, lon.: 111m accuracy)

Sequence length:

- use actual and last 3 locations for comparison

Replica Placement	Mobility Prediction	Evaluation	Results
Evaluation Methodology			
Investigation			

Evaluation process:

Manage the placement of one replica for each taxi independently

this allows to:

- evaluate whether the accuracy of placement can be improved by using prediction
- determine which taxi characteristics might influence this improvement
- \Rightarrow four different placement strategies

Replica Placement	Mobility Prediction	Evaluation	Results
Evaluation Methodology			
Placement Strat	egies		

Strategy A - Actual

- depends only on current taxi position
- represents standard behavior of FReDi
- ⇒ *reactive* replica placement

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Step 1: client determines its nearest proxy cache PC_N
- Step 2: update the attraction in the direction of PC_N

Replica Placement	Mobility Prediction	Evaluation ○○○○○●○○	Results
Evaluation Methodology			
Placement Strat	tegies		

Strategy PP - Perfect Prediction

Client 2 not really a prediction Prediction Increase of 3 attraction perfect knowledge about the next PCN Predicted user position movement \Rightarrow reference strategy Notification PC Proxy cache Strategy PP

イロト イヨト イヨト イヨト

- Step 1: client determines its nearest proxy cache PC_N
- Step 2: determine the clients next location
- Step 3: notify the predicted next nearest proxy cache PC_P
- Step 4: update the attraction in the direction of PC_P

Replica Placement	Mobility Prediction	Evaluation ○○○○○○●○	Results
Evaluation Methodology			
Placement Strate	egies		

Strategy P - Prediction

- uses only prediction to place replica
- resulting activities are similar as described for strategy PP

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Step 1: client determines its nearest proxy cache PC_N
- Step 2: determine the clients next location
- Step 3: notify the predicted next nearest proxy cache PCP
- Step 4: update the attraction in the direction of PCP

Replica Placement	Mobility Prediction	Evaluation ○○○○○○○●	Results	
Evaluation Methodology				
Placement Strate	Placement Strategies			

Strategy AP - Actual and Prediction

- Step 1: client determines its nearest proxy cache PC_N
- Step 2: determine the clients next location
- Step 3: notify the predicted next nearest proxy cache PC_P
- Step 4: update the attraction halfway towards PC_N and PC_P

Replica Placement	Mobility Prediction	Evaluation	Results
Outline			

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

크

-

- Replica Placement Algorithm (FReDi)
- 2 Mobility Prediction
- 3 Evaluation
- 4 Results
 - Prediction Accuracy
 - Replica Placement Accuracy

5 Conclusion

Replica Placement	Mobility Prediction	Evaluation	Results ●○○○
Prediction Accuracy			
Prediction Ac	curacy		

Error of prediction

- in terms of the (geo) distance between *predicted* and *actual* future position of evaluation traces

	Two decimals	Three decimals
PR ¹	172m	143m
LeZi-Update ²	405m	208m
Markov ³	411m	223m

Table: Predictor accuracy - average error

- ² LeZi-Update: based on dictionaries of individual user's path updates
- ³ Markov: forth order Markov predictor (implementing subsequent decrease of order in case no fitting history could be found for current order)

¹ PR: self developed predictor (PR)

Replica Placement	Mobility Prediction	Evaluation	Results ○●○○	
Replica Placement Accuracy				
Single Replica Placement Accuracy				

The accuracy of a **single** replica placement can be measured by the *distance* between...

- a client (taxi) requesting the data and
- a replica of the data of interest

Replica Placement	Mobility Prediction	Evaluation	Results ○●○○
Replica Placement Accuracy			

Single Replica Placement Accuracy

The accuracy of a **single** replica placement can be measured by the *distance* between...

- a client (taxi) requesting the data and
- a replica of the data of interest

More detailed:

Calculated as distance d_{PC} between...

- the taxis nearest PC and
- the nearest PC storing a replica of this data measured in multiples of PC hops

Replica Placement	Mobility Prediction	Evaluation	Results ○○●○
Deplice Discoment Accuracy			

Overall Replica Placement Accuracy

The overall placement accuracy is assessed by

- the mean distance *d* of all *d_{PC}* values
- for all taxis calculated for each time step of the simulation period

$$d = \frac{\sum_{t \in TS} \sum_{id \in T} (d_{PC}(I_{id,t}, r_{id,t}))}{|T||TS|},$$
(1)

イロト イヨト イヨト イヨト

where ...

- TS is the set of time steps
- T is the set of taxis
- $I_{id,t}$ is the location of the nearest PC to the taxi *id* at time step t
- r_{id,t} is the location of the nearest PC holding the replica of interest for taxi *id* at time step t

Replica Pla	cement		Mobility Predict	tion	Evaluation		Results ○○○●
Replica Placement Accuracy							
~			DI				

Overall Replica Placement Accuracy

Overall distance d of the different strategies for varying N

크

N is the size of square $(N \times N)$ grid

J. Gossa, A. Janecek, K. Hummel, W. Gansterer, J-M. Pierson DMCAC 2008

Replica Placement	Mobility Prediction	Evaluation	Results
Conclusion			

can performance of replica placement algorithms be improved by adding *proactive* strategies based on predictions of client movements?

Answer: Yes, ... but

strongly influenced by quality and accuracy of prediction

- strategy based on *perfect prediction* (PP) up to 100% improvement
- strategy based on prediction only (P) no real improvements
- combined strategy (actual and predicted position) (AP) about 80% improvement

(over reactive strategy A)

Replica Placement	Mobility Prediction	Evaluation	Results

Ongoing and Future Work

Improving and evaluating the prediction component in terms of accuracy in terms of computational cost

Various traces from different applications varying accuracy (pedestrians, vehicular, ...)

Client groups (communities) interested in the same content instead of individual clients

Apply proactive movement strategies in combination with *simpler* replica placement algorithms

This work was supported by:

The AMADEUS Project

Founded by OEAD – Austrian Exchange Service 9

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ