Caractérisation géographique de l’environnement d’exécution pour la conception d’un système d’information mobile et distribué

Mathieu Petit, Cyril Ray, Christophe Claramunt

Naval Academy Research Institute, France
{mathieu.petit, cyril.ray, christophe.claramunt}@ecole-navale.fr

Journées Mobilité et Ubiquité
INSA Lyon, 23 janvier 2009
1 Adaptive GIS & case study
 - Adaptive GIS design
 - Case study

2 Geographic description of the execution context
 - Regions of interest
 - Mobility constraints
 - Context equivalence

3 Design process integration
 - Interactive system design
 - Integration of contexts groups
 - Prototyping the user interface

4 Conclusion, discussion
Overview

1. Adaptive GIS & case study
 - Adaptive GIS design
 - Case study

2. Geographic description of the execution context
 - Regions of interest
 - Mobility constraints
 - Context equivalence

3. Design process integration
 - Interactive system design
 - Integration of contexts groups
 - Prototyping the user interface

4. Conclusion, discussion
Adaptive GIS definition [PRC06]

GIS should integrate additional constraints such as:

- Mobility and distribution, wireless communications
- Multiple users and simultaneous usages, different data sources

These constraints:

- dynamically evolve over time
- are first defined at running time.

An Adaptive GIS:

Integrates such contextual constraints, and derives user-oriented views
Adaptive GIS definition [PRC06]

GIS should integrate additional constraints such as:

- Mobility and distribution, wireless communications
- Multiple users and simultaneous usages, different data sources

These constraints:

- dynamically evolve over time
- are first defined at running time.

An Adaptive GIS:

Integrates such contextual constraints, and derives user-oriented views
Adaptive GIS definition [PRC06]

GIS should integrate additional constraints such as:

- Mobility and distribution, wireless communications
- Multiple users and simultaneous usages, different data sources

These constraints:

- dynamically evolve over time
- are first defined at running time.

An Adaptive GIS:
Integrates such contextual constraints, and derives user-oriented views

How do those constraints fits within the design process?
Adaptive GIS definition [PRC06]

GIS should integrate additional constraints such as:

- Mobility and distribution, wireless communications
- Multiple users and simultaneous usages, different data sources

These constraints:

- dynamically evolve over time
- are first defined at running time.

An Adaptive GIS:

Integrates such contextual constraints, and derives user-oriented views

How do those constraints fit within a design process?

→ Example of a distributed GIS design
Case study: windship regatta system [CDF^{+}07]

- Windship race championship held once a year at French Naval Academy
- Innings occur offshore, often windships cannot be seen
- Need for a real-time tracking and documentation system
Case study: windship regatta system [CDF+07]

- Windship race championship held once a year at French Naval Academy
- Innings occur offshore, often windships cannot be seen
- Need for a real-time tracking and documentation system
Case study: windship regatta infrastructure

System design requirements

- Several mobile components, wireless communications
- Dynamic architecture, distributed platform

How to derive different execution contexts?
How to integrate these contexts within the design process?
Case study: windship regatta infrastructure

System design requirements

- Several mobile components, wireless communications
- Dynamic architecture, distributed platform

How to derive different execution contexts?
How to integrate these contexts within the design process?
Case study: windship regatta infrastructure

System design requirements

- Several mobile components, wireless communications
- Dynamic architecture, distributed platform

How to derive different execution contexts?
How to integrate these contexts within the design process?
Overview

1. Adaptive GIS & case study
 - Adaptive GIS design
 - Case study

2. Geographic description of the execution context
 - Regions of interest
 - Mobility constraints
 - Context equivalence

3. Design process integration
 - Interactive system design
 - Integration of contexts groups
 - Prototyping the user interface

4. Conclusion, discussion
Regions of significance

Several types of regions are derived from system components:

- U_x: User region, where the user interacts with the system
- D_x: Data region, where the data are available
- P_x: Processing region, where the data are processed
- S_x: Source region, where the data are coming from

These regions have specific properties:

- They are mobile, may intersect or not
- They rely on servers and wireless communications
- At the component level: intersection = communication

The execution context is given by the set of intersecting regions of interest.
Regions of significance

Several types of regions are derived from system components:

- U_x: User region, where the user interacts with the system
- D_x: Data region, where the data are available
- P_x: Processing region, where the data are processed
- S_x: Source region, where the data are coming from

These regions have specific properties:

- They are mobile, may intersect or not
- They rely on servers and wireless communications
- At the component level: intersection = communication

The execution context is given by the set of intersecting regions of interest.
Regions of significance

Several types of regions are derived from system components:

- U_x: User region, where the user interacts with the system
- D_x: Data region, where the data are available
- P_x: Processing region, where the data are processed
- S_x: Source region, where the data are coming from

These regions have specific properties:

- They are mobile, may intersect or not
- They rely on servers and wireless communications
- At the component level: intersection $=$ communication

The execution context is given by the set of intersecting regions of interest.
Regions of significance: case study

3 component regions: U_1, D_1 & P_1
1 origin region, around the tracked ships: S_1

Execution context at t_0: $\{P_1 \cap D_1 \neq \emptyset, S_1 \cap D_1 \neq \emptyset\}$
Execution Context

An execution context summarizes ...

\[
\{ \text{the system architecture} \}
\]\n
\[
\{ \text{the components communications} \}
\]

... By considering the set of intersecting regions of interest.

In an adaptive system, at the functional level:

- Each execution context encompasses specific system behaviours
- These behaviours must be integrated at design level
- These leads to \(2^N\) execution contexts
Execution Context

An execution context summarizes ...

\[
\left\{ \begin{array}{l}
\text{the system architecture} \\
\text{the components communications}
\end{array} \right\}
\]

... By considering the set of intersecting regions of interest.

In an adaptive system, at the functional level:

- Each execution context encompasses specific system behaviours
- These behaviours must be integrated at design level
- These leads to \(2^N\) execution contexts → **Complex problem**
Execution context : case study

Considering several contexts ...

... every context means a specific system behaviour :

- User + Data vs. User + Data & procedures vs. User alone, etc.
A well defined design of a system implies:

- to derive the regions of interest;
- to define the set of execution context.

However ...

- The Description of each per-context behaviour is complex
- But, several contexts might generate a similar behaviour at the user level

→ Mobility constraints reduces the set of contexts
→ Equivalency rules groups similar contexts according to behaviour
Regions of interest: summary

A well defined design of a system implies:

- to derive the regions of interest;
- to define the set of execution context.

However...

- The Description of each per-context behaviour is complex
- But, several contexts might generate a similar behaviour at the user level

→ Mobility constraints reduces the set of contexts
→ Equivalency rules groups similar contexts according to behaviour
A well defined design of a system implies:
- to derive the regions of interest;
- to define the set of execution context.

However ...
- The Description of each per-context behaviour is complex
- But, several contexts might generate a similar behaviour at the user level

→ Mobility constraints reduces the set of contexts
→ Equivalency rules groups similar contexts according to behaviour
Regions of interest: summary

A well defined design of a system implies:

- to derive the regions of interest;
- to define the set of execution context.

However ...

- The Description of each per-context behaviour is **complex**
- But, several contexts might generate a **similar behaviour** at the user level

→ **Mobility constraints** reduces the set of contexts
→ **Equivalency rules** groups similar contexts according to behaviour
Assumption: “It is usually possible to restrain a region of interest to a given area of mobility”

Given a region of interest R_x

- ζ_{R_x}: set of possible R_x locations during the system runtime.
 - When R_x is a part of ζ_{R_x}, R_x is *mobile*.
 - When R_x equals ζ_{R_x}, R_x is *stable*.

Several contexts are not physically plausible.

Then, the amount of plausible contexts ranges between:
 - 1 when all N regions are *stable*.
 - 2^N when all regions are *mobile*.
Assumption: “It is usually possible to restrain a region of interest to a given area of mobility”

Given a region of interest R_x

- ζ_{R_x}: set of possible R_x locations during the system runtime.
 - When R_x is a part of ζ_{R_x}, R_x is *mobile*.
 - When R_x equals ζ_{R_x}, R_x is *stable*.

Several contexts are not physically plausible

Then, the amount of plausible contexts ranges between:

- 1 when all N regions are *stable*,
- and 2^N when all regions are *mobile*.
mobility areas & constraints [PRC09]

Assumption: “It is usually possible to restrain a region of interest to a given area of mobility”

Given a region of interest R_x

ζ_{R_x} : set of possible R_x locations during the system runtime.

- When R_x is a part of ζ_{R_x}, R_x is *mobile*
- When R_x equals ζ_{R_x}, R_x is *stable*

Several contexts are not physically plausible

Then, the amount of plausible contexts ranges between:

- 1 when all N regions are *stable*,
- and 2^N when all regions are *mobile*.
Constraints: “Data shouldn’t reach the race area”, “ships are always in a given race area”, “visitors are restricted to the shoreline” etc.

Consequence at the contexts level:
- disjunction of D_1 and P_1 is not plausible
- intersection of U_1 with D_1 and S_1 is not plausible
- intersection of D_1 with S_1 is not plausible
Mobility areas & constraints: case study

Constraints: “Data shouldn’t reach the race area”, “ships are always in a given race area”, “visitors are restricted to the shoreline” etc.

Consequence at the contexts level:
- disjunction of D_1 and P_1 is not plausible
- intersection of U_1 with D_1 and S_1 is not plausible
- intersection of D_1 with S_1 is not plausible
Constraints: “Data shouldn’t reach the race area”, “ships are always in a given race area”, “visitors are restricted to the shoreline” etc.

Consequence at the contexts level:
- disjunction of D_1 and P_1 is not plausible
- intersection of U_1 with D_1 and S_1 is not plausible
- intersection of D_1 with S_1 is not plausible
Consequence at the contexts level:

From an initial set of 64 contexts:

- disjunction of D_1 and P_1 is not plausible
- intersection of U_1 with D_1 and S_1 is not plausible
- intersection of D_1 with S_1 is not plausible
Consequence at the contexts level:

From an initial set of 64 contexts:

- **disjunction of** D_1 and P_1 **is not plausible**
- intersection of U_1 with D_1 and S_1 is not plausible
- intersection of D_1 with S_1 is not plausible
Consequence at the contexts level:

From an initial set of 64 contexts:

- disjunction of D_1 and P_1 is not plausible
- **intersection of U_1 with D_1 and S_1 is not plausible**
- intersection of D_1 with S_1 is not plausible

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>S</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing the context representation.
Consequence at the contexts level:

From an initial set of 64 contexts:

- disjunction of D_1 and P_1 is not plausible
- intersection of U_1 with D_1 and S_1 is not plausible
- intersection of D_1 with S_1 is not plausible
Equivalency properties [PRC09]

Assumption: “same behaviour at the functional level = same context on a design point of view”

In an interactive system:

The adaptivity is oriented towards the user.
2 equivalent contexts derive the same set of functionality at the user level
A set of properties produces user-side equivalencies between contexts

This leads us to select the following properties
Equivalency properties [PRC09]

Assumption: “same behaviour at the functional level = same context on a design point of view”

In an interactive system:
The adaptivity is oriented towards the user.
2 equivalent contexts derive the same set of functionality at the user level
A set of properties produces user-side equivalencies between contexts

This leads us to select the following properties
Equivalency properties [PRC09]

Assumption: “same behaviour at the functional level = same context on a design point of view”

In an interactive system:

The adaptivity is oriented towards the user.
2 equivalent contexts derive the same set of functionality at the user level
A set of properties produces user-side equivalencies between contexts

This leads us to select the following properties

- User alone, Data unreached, Processing unreached, Source region undefined, Distant source region
Equivalency properties [PRC09]

Assumption: “same behaviour at the functional level = same context on a design point of view”

In an interactive system:

The adaptivity is oriented towards the user.
2 equivalent contexts derive the same set of functionality at the user level
A set of properties produces user-side equivalencies between contexts

This leads us to select the following properties

- **User alone**, Data unreached, Processing unreached, **Source region undefined**, Distant source region
Equivalency properties: case study

When the user is alone:

From the user point of view, in both contexts, the system is out of scope
Equivalency properties: case study

When the user is alone:

From the user point of view, in both contexts, the system is out of scope
Equivalency properties: case study

When the source region is not defined\(^1\):

From the user point of view, in both contexts, the source region \(S_1 \) is not intersecting.

\(^1\) \(S_1 \) spatial extension is undefined when data are unreachable to the user.
Equivalency properties: case study

When the source region is not defined\(^1\):

From the user point of view, in both contexts, the source region \(S_1\) is not intersecting.

\(^1\)\(S_1\) spatial extension is undefined when data are unreachable to the user.
Equivalency properties: case study

From the 11 remaining configurations ...

... to 5 groups of equivalent execution contexts
Equivalency properties: case study

From the 11 remaining configurations ...

... to 5 groups of equivalent execution contexts
Overview

1. Adaptive GIS & case study
 - Adaptive GIS design
 - Case study

2. Geographic description of the execution context
 - Regions of interest
 - Mobility constraints
 - Context equivalence

3. Design process integration
 - Interactive system design
 - Integration of contexts groups
 - Prototyping the user interface

4. Conclusion, discussion
User-centred design: from scenario to prototype

Scénarios nominal & alternatif

(c) Concepts diagramme de classes

(b) Tâches Arbre des tâches

(g) Arbre des tâches annoté

(d) Architecture des composants

(f) Déploiement des données & procedures

Tiers métier et données

Contexte d'usage

Utilisateur

Plateforme

Environnement

(g) Interface abstraite

(h) Interface concrète

(i) Interface finale

Tier client
User-centred design: example scenario

Table: Nominal scenario

“The race documentation system runs on a user’s PDA and allows her/him to follow the regatta in real-time. The PDA provides manipulation tools, and a map of the race area where the racing ships are regularly re-located. The user may be interested in several ships, or alternatively by other user interests, to set her/his own area of interest. If she/he is interested in a specific ship, information (year, name, crew and pictures) and real-time data (location, speed and heading) on this ship are provided. When being close enough to the race area, the user takes and shares ships pictures with other users.”

These scenarios reflect **user tasks** and the **data manipulated**.
User-centred design: example task-tree

- Follow Regatta
 - Set the user area of interest
 - UserInterestArea
 - Interest in several ships
 - Ship
 - **Select another user area of interest**
 - UserInterestArea
 - **Specifiy ship to focus on**
 - Ship
 - FocusShip
 - **Detail ship information**
 - FocusShip
 - Take and share a picture
 - Picture
 - Render real-time data
 - RealTimeData
 - Render information
 - Render static data

- Interaction Task
- Abstract Task
- System Task

- Output Concept
- Input Concept

"then" or"
User-centred design: bridging the gap

“The race documentation system runs on a user’s PDA and allows her/him to follow the regatta in real-time. The PDA provides manipulation tools, and a map of the race area where the racing ships are regularly re-located. The user may be interested in several ships, or alternatively by other user interests, to set her/his own area of interest. If she/he is interested in a specific ship, information (year, name, crew and pictures) and real-time data (location, speed and heading) on this ship are provided. When being close enough to the race area, the user takes and shares ships pictures with other users.”

→ Is the scenario situation dependent?
→ What is the system behaviour when situation changes?
User-centred design: bridging the gap

“The race documentation system runs on a user's PDA and allows her/him to follow the regatta in real-time. The PDA provides manipulation tools and a map of the race area. Users may be interested in several aspects and pictures of the area, and in the racing ships. The user may be interested in the situation of the racing ships and in the regatta in real-time. The system may share information with other users, if she/he is interested in this situation.”

→ Is the scenario situation dependent?
→ What is the system behaviour when situation changes?
User-centred design: bridging the gap
User-centred design: bridging the gap
UC Design: plug in the geography [PCRC08]

- **Environnement géographique**
 - Description des régions d'intérêt
 - Raisonnement spatial
 - Association & étiquetage
 - Arbre des tâches contraint

- **Scénario nominal**
 - Tâches d'arbres
 - Concepts diagramme de classes
 - Arbre des tâches annoté

- **Scénarios alternatifs**
 - Tâches alternatives

- **Architecture des composants**
 - Procedures SGBD
 - Déploiement des données & procédures

- **Tiers métier et données**

- **Tier client**
 - Utilisateur
 - Interface abstraite
 - Interface concrète
 - Interface finale

- **Contexte d'usage**
 - Plateforme
 - Environnement

- **An input towards personalization [PRC08, PRC07]**
UC Design: plug in the geography [PCRC08]

An input towards personalization [PRC08, PRC07]
UC Design: plug in the geography [PCRC08]

→ An input towards personalization [PRC08, PRC07]
One behaviour per group of context

Designers, along with users and staff, give each group of equivalency a proper behaviour.

"when accessing the system outside regions D_1 or P_1, the user is warned that he has to reach regions P_1 or D_1 for the system to be fully functional. The system provide guidance instructions towards these regions."
One behaviour per group of context

Designers, along with users and staff, give each group of equivalency a proper behaviour.

“When accessing the system outside regions \(D_1 \) or \(P_1 \), the user is warned that he has to reach regions \(P_1 \) or \(D_1 \) for the system to be fully functional. The system provide guidance instructions towards these regions.”

“When accessing the data of the system, the user may be interested in a specific ship. Informations (year, name, crew and pictures) are presented.”
One behaviour per group of context

Designers, along with users and staff, give each group of equivalency a proper behaviour.

“when accessing the system outside regions D_1 or P_1, the user is warned that he has to reach regions P_1 or D_1 for the system to be fully functional. The system provide guidance instructions towards these regions.”

“When accessing the data of the system, the user may be interested in a specific ship. Informations (year, name, crew and pictures) are presented”

“When being close enough to the race area, the user takes and shares ships pictures with other users.”
Design primitive: the task tree

Scenarios derives the task and data tree. The execution contexts annotate the possible actions.
Design primitive: the task tree

Scenarios derives the task and data tree. The execution contexts annotate the possible actions.

Interactive system design
Integration of contexts groups
Prototyping the user interface
Scenarios derives the task and data tree. The execution contexts annotate the possible actions.

From the task tree: **processing methods**, **data handling** code, and **user interaction** layer are implemented.
Sketching the interface: case study

“A user is walking along the shoreline and is accessing information via the regatta tracking system and his PDA. Tracked boats return from high sea to the harbour”

![Diagram of user interface and scenario]
Sketching the interface: case study

“A user is walking along the shoreline and is accessing information via the regatta tracking system and his PDA. Tracked boats return from high sea to the harbour”
Sketching the interface: case study

“A user is walking along the shoreline and is accessing information via the regatta tracking system and his PDA. Tracked boats return from high sea to the harbour”
Sketching the interface: case study

“A user is walking along the shoreline and is accessing information via the regatta tracking system and his PDA. Tracked boats return from high sea to the harbour”
Overview

1. Adaptive GIS & case study
 - Adaptive GIS design
 - Case study

2. Geographic description of the execution context
 - Regions of interest
 - Mobility constraints
 - Context equivalence

3. Design process integration
 - Interactive system design
 - Integration of contexts groups
 - Prototyping the user interface

4. Conclusion, discussion
Conclusion

From a description of a system environment:
- the execution context are derived and grouped;
- these groups are integrated within a design framework;
- the annotated task tree favors prototyping.

The designed interactive system is:
- **robust**: it runs in every “situation”
- **consistent**: the user level is derived from a single task tree
- **efficient**: it fits the data and the processes available

At the case study level: the system is available everywhere, and provides functional flexibility.
Conclusion

From a description of a system environment:
- the execution context are derived and grouped;
- these groups are integrated within a design framework;
- the annotated task tree favors prototyping.

The designed interactive system is:
- robust: it runs in every “situation”
- consistent: the user level is derived from a single task tree
- efficient: it fits the data and the processes available

At the case study level: the system is available everywhere, and provides functional flexibility.
Discussion

Perspectives:
- Context equivalence: properties generalization
- Levels of adaptivity: user context, appliance context.
- HCI & ergonomics: transition between different behaviours

Thank you for your attention
Time for questions...
Discussion

Perspectives:
- Context equivalence: properties generalization
- Levels of adaptivity: user context, appliance context.
- HCI & ergonomics: transition between different behaviours

Thank you for your attention
Time for questions...

http://www.aromate.org/research.html