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1 INTRODUCTION 
One of the central objectives for Gloss is to develop essential middleware 

infrastructures for hybrid mobile ad hoc, peer-to-peer and hierarchical systems. The 
work on proximity-based group communications (PBGC) described in this document is 
positioned in the mobile ad hoc part of such an infrastructure. PBGC facilitates reliable 
dissemination of information to a person on the move, and reliable and consistent 
sharing of information between groups of people who come together in an ad hoc 
fashion. For example, as illustrated in the Gloss Scenario [2], Bob receives a personal 
message as he wanders around Paris; Bob and Jane start to work together in a café in 
Paris; Bob receives messages from other mobile users around him indicating where 
there are crowds so he can mingle. Important properties relating to these parts of the 
scenario are mobility, information dissemination and ad hoc communication. 

The Group Communication paradigm [3, 4, 5, 6] has already proven to be a useful 
tool for building reliable distributed systems. In our work, we are augmenting 
traditional group communication systems with the notion of a group’s “proximity”. 
Proximity captures the intrinsic property of geographic location of mobile nodes, which 
can be exploited to build several location based services and applications for mobile ad-
hoc networks. PBGC can be employed in mobile ad-hoc networks to support consistent 
sharing of information between the nodes that are in proximity of each other. The 
asynchronous nature of the communication in such a scenario requires state replication 
amongst the relevant nodes, reliable message dissemination and mutual exclusion for 
shared state. PBGC is suitable for providing the appropriate building blocks to support 
such communication as it takes into consideration the dynamic nature of membership 
due to mobility, and provides message delivery guarantees within a geographic location.  

In Gloss, the network services that connect people and artefacts may be abstracted 
into the core network, which constitutes the backbone of the communication 
infrastructure handling traffic between remote locations (e.g. Paris-Brussels in the 
scenario) and the edge network, which provides the infrastructure for smaller-scale local 
interactions. This separation provides the best balance between scalability, cost and 
reliability. Communication in the edge network takes place primarily between mobile 
nodes connecting in an ad hoc fashion, enabling local interactions to be achieved with 
reduced cost and reduced power consumption, by using no fixed infrastructure that 
requires powerful transceivers or investment in infrastructure. At the same time 
performance characteristics such as latency are improved, since no intermediate entities 
are being used. However the multi-hop nature of the mobile ad hoc mode of operation 
decreases reliability due to frequent disconnections caused by mobility. PBGC provides 
guarantees to counteract this inherent unreliability within a geographic location.  

The main body of work described in this document is a formal specification for 
reliable and efficient connectivity for groups of devices in a mobile setting. Further, we 
describe an implementation of Hearsay (one of Gloss’s conceptual tools) that supports 
hearsay based on both location and time. The prototype system, called LATTE 
(Location and Time Triggered Email), has an internal events-based architecture that 
illustrates the need for a supporting middleware that provides reliable messaging within 
a location. This prototype provides an ideal platform on which to evaluate the 
development of PBGC. First, though, the next section discusses PBGC in the context of 
the Gloss Scenario [2]. 
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2 PBGC WITHIN CONTEXT OF GLOSS SCENARIO 
In this section we discuss the use of mobile group communications for Gloss by 

analysing occurrences in the Gloss scenario where we have identified a strong 
requirement for building blocks such as those provided by PBGC. These use-cases 
contribute to the requirements on which the specification for PBGC is based. 

2.1 SHARED DEVICES REQUIRING MUTUAL EXCLUSION 

As illustrated in Figure 1, there are situations when Bob is travelling from Brussels 
to Paris where potentially many users may wish to use the same resource. For example, 
in Figure 1(a), Bob is on his way to Paris, and he uses active walls situated inside the 
station. The same usage pattern re-appears in Figure 1(b) when Bob is sitting inside the 
café in Paris attempting to use the active wall situated inside. 

 

The red route is not busy this morning. As 
Bob is walking close to an active wall, he is 
presented a message relevant to his trip in 
Paris 

When Bob sits down in the café, the active 
surface on the table informs him of the local
history of the café. An active wall displays a 
selection of postcards for his perusal.

(a) Bob at the Train Station (b) Bob in a café in Paris  
Figure 1: Need for Mutual Exclusion 

Although the active wall is a shared device that can be used by any of the people in 
proximity, its actual functioning requires exclusive use by each client. This is then a 
problem of mutual exclusion to a shared resource, which has received particular 
attention in classic distributed systems literature [7], but which reappears here in the 
context of mobile ad hoc computing. Though any algorithms from the existing literature 
can be used for solving it, solutions for this problem require the underlying network to 
have the ability for reliable broadcast. The current specification for Proximity Groups 
offers exactly that in the form of broadcasting to the members of a proximity group that 
is defined in the vicinity of the active wall. 

2.2 RELIABLE MESSAGE DISSEMINATION 

Gloss explored the notion of location-specific notifications and captured it in a 
conceptual tool called Hearsay as a form of ambient communication. In Figure 2, we 
illustrate one Hearsay example from the Gloss scenario. While Bob is in Paris, he 
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receives a notification when he is in the proximity of a café that his friend in Denmark 
recommended.  

Now knowing the right direction, Bob starts
to move towards the Pompidou Centre. 
After Bob has walked a block, his personal
communications device vibrates.  

Figure 2: Need for Reliable Message Dissemination 

Implementing this concept in a peer-to-peer way over mobile ad hoc networks 
decreases latency and communication costs by keeping all communication in the 
locality of the relevant devices. A proximity groups framework can help establish an 
awareness zone in the vicinity of an area (i.e. the café in this case). Using this service, a 
trivial service discovery protocol can provide notification to interested parties, as well 
as help expand the awareness zone, by exploiting the multi-hop aspects of the network. 
As a result, a proximity group composed of devices inside a designated area containing 
that region in their list of preferences will receive a notification, while other devices 
remain unaffected. 

2.3 COLLABORATIVE WORK 

An occurrence of collaborative work between users that gather in an ad hoc fashion 
appears in the Gloss scenario, as illustrated in Figure 3. While in the restaurant in Paris, 
Bob and Jane interact with the table in the restaurant, and use shared objects to illustrate 
ideas. 

When Bob and Jane have eaten, they bring out 
the work that they had started earlier and
continue to work on it. They use shared objects to 
illustrate their ideas for the layout of the site they
are planning together.  

Figure 3: Need for Collaborative Work 
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This is an example of collaborative work enabled when mobile wireless devices 
come into communication range. The communication pattern in this instance is in a one-
to-many or many-to-many fashion, which is the pattern used in group communications. 
A proximity group service in this case can offer a substrate for reliable transmission and 
ordering of messages sent between group participants, while transparently adapting the 
membership when other interested devices enter the proximity of the active table. In 
general, collaborative work between mobile participants can greatly benefit from such a 
service as the necessary functions of broadcast and ordering are abstracted in the 
middleware, so applications can reuse them accordingly. 
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3 PBGC SPECIFICATION 

3.1 INTRODUCTION 

This section provides a formal specification for a proximity based group 
communication service. High-level concepts and requirements are initially described, 
followed by detail of the system model properties on which the service will reside. We 
then formally specify the service against these properties. 

Members in a group (each of which we refer to as a “node”) share information, and 
need a consistent view of that information. To achieve this, nodes need a consistent 
view of all the other nodes involved in the communication. All group communication 
services have a membership service part, and the service for the mobile, ad hoc scenario 
we are targeting is no different. In this case, geographical location of nodes determines 
if they can become members of a group. We define later how the proximity of a group 
and the location of nodes help in establishing the group’s membership. The membership 
service provides a dynamic view of the current membership to all nodes in the group.  

 

Figure 4 Disjoint Coverage Areas 

We define a group to have a predefined proximity associated with it. This proximity 
describes the geographical region in which the group can exist. Only the nodes that are 
present within the defined proximity can participate in the group’s communication. It is 
not necessary that all nodes in a region be group members. Nodes have to explicitly 
issue a request to join a proximity group’s communication. When nodes leave the 
proximity, they are removed from the group’s membership. 

The radio ranges of nodes in a group cover a certain geographical area, as shown in 
Figure 4. This geographical area is called a “coverage area”. A group’s  predefined 
proximity can be partitioned into a number of coverage areas, each of which would then 
correspond to a “partition” of a group. Partitions occur when a subset of members move 
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out of radio range of other members. It is possible due to the mobile nature of nodes, 
that not all of the group’s proximity area will be covered by the sum of the coverage 
areas.  

Information about coverage areas can help build a service that “anticipates” 
partitions and provides such information to applications. Prior knowledge of when a 
partition is likely to happen allows an application behave in an “orderly” manner – in 
other words, in a manner that is appropriate for the application’s semantics.  

In this document we rigorously specify a proximity based group communication 
service for mobile ad-hoc networks. We also formally specify the behaviour of the 
partition anticipator and elaborate how it helps in providing a mobile group 
communication with the guarantees specified.  

3.2 PBGC REQUIREMENTS 

The responsibilities of the PBGC service for mobile ad-hoc networks are listed 
below. Later we try and map these high level requirements to rigorous specifications.  

 
1. If a group exists, all member nodes have access to the view of the partition 

they are in.  
2. When a new node enters a ‘coverage area’ of a group, it is provided with 

information about the group and an opportunity to join. A new node can 
choose to join the group either immediately or later. The group’s information 
should be available as long as there is any member of a group present in the 
proximity.  

3. If nodes from a certain coverage area leave each other’s vicinity, that coverage 
area is then split into partitions. The group continues with disparate partitions. 

4. Partitions from the same group merge when their coverage areas 
overlap/intersect.  

5. When partitions merge, the application is given an opportunity to initiate state 
transfer.  

6. If, at start-up, a group has disjoint partitions within the same proximity, the 
partitions are unaware of each other.  

7. A node can be a member of more than one group.  
8. Messages are delivered, in an agreed order, to all members of a group that are 

in the same partition. If a group has partitioned, the members in different 
partitions continue to maintain the local total order for that partition.  

The nodes involved in the group communication service are mobile devices, 
requiring correct handling of frequent topology changes and of a dynamic (not 
predetermined) set of interacting processors. 

3.3 PBGC SYSTEM MODEL AND ASSUMPTIONS 

Previous work on Group Communication Services is primarily based on fixed 
infrastructure networks. However, the dynamic nature of mobile ad-hoc networks has a 
significant impact on a group communication service’s specification, affecting the 
system model and the assumptions for the system. This section describes the system 
model and assumptions for the PBGC service, which are an extension to those used by 
the Chockler survey [6]. The Chockler survey establishes a framework for specifying 
the properties of group communication systems and presents the properties of various 
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group communication systems using the framework. The survey is the latest such effort 
and provides a solid ground to develop, compare and contrast properties of different 
group communication systems. 

The assumptions that are different to the Chockler paper are marked with a (•), and 
the assumptions that have no counter-part in the Chockler system model are marked 
with (†). 

 
1. • The system consists of a dynamic set of processors1. This implies that 

processors can dynamically join and leave the system.  
2. Processors communicate using message passing.  
3. †• The underlying network provides unreliable node-to-neighbours datagram 

communication facility.  
4. † A multi-hop unreliable datagram based communication facility can be built on 

top of the node-to-neighbours communication facility.  
5. † A node’s neighbours can dynamically change. This can happen either because 

of node mobility or failures of nodes.  
6. † We assume all nodes will participate in the ad-hoc network, even if they are not 

part of a group.  
7. Nodes can crash and recover.  
8. Nodes have stable storage on them. 
9. Failures can partition the communication network into disjoint components, as 

described in Section 3.1. 
10. Disjoint components can merge. 
11. We assume the absence of Byzantine failures. 
12. †• We assume the lack of eventually perfect failure detector. This is because the 

dynamics of a mobile ad-hoc network make it unsuitable to implement an 
eventually perfect failure detector. This is further elaborated in section 3.3.2  

3.3.1 MATHEMATICAL MODEL 

We follow the guidelines presented in the framework developed in [6] and model the 
system as an untimed I/O automaton. We present the service specifications by defining 
its external signature in this section and its trace properties in section 3.4.  

3.3.1.1 ESSENTIAL TYPES 

The essential types used in the specification are listed below: 

P  — The dynamic set of processors that the system can have at a given instance. 
This set is never truly fully determined, and thus should not be used in implementation 
details. The set is used here only for elucidating various properties.  

M  — The set of messages sent by the application.  

VID  — The set of view identifiers.  

                                                 
1 A “processor” is equivalent to a “node” 
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V  — The set of views delivered to the application. The view is a pair containing of 
a view identifier and the set of members.  

3.3.1.2 EXTERNAL ACTIONS 

Our system utilises a reduced set of external actions (Events) as defined by the 
Chockler paper2. The reduced set that we use are listed below — 

send ( )p m,  |  p P∈ , m M∈  — Processor p  sends a message m .  

recv ( )p m,  |  p P∈ , m M∈  — Processor p  receives a message m .  

crash ( )p  |  p P∈  — Processor p  is reported to have crashed. crash encapsulates 
all types of crash and communication failures.  

recover ( )p m,  |  p P∈  — Processor p  is reported to have recovered from a crash. 
If a processor that has not been participating in a group enters the proximity of a group 
and wants to start participating a group, the same event occurs.  

view_chng ( )p id members, 〈 , 〉  |  2Pp P id VID members∈ , ∈ , ∈  — Processor p  
installs a new view with identity id  and members as in the set of processors members.  

The properties of the PBGC system use a collection of trace properties, where a 
trace is defined as a sequence of external actions the automaton accepts. For our 
purposes, we fix a trace 1 2t t …, , , and all properties are stated with respect to the trace.  

If an event it  occurs in the context of a view, we say the viewof ( )it  is last installed at 
that processor. 

3.3.1.3 PROXIMITY AND COVERAGE AREA 

To be able to define the proximity and coverage area of a group, we need to define 
the properties of location of a processor and proximity:  

 
1. Location of a node — the geographical point occupied by the centre of 

gravity of the node. This location is captured in terms of abstract 
coordinates. 

 
Now we can define the proximity of a group as — 
 
2. Proximity — the geographical area, ( )PXM G  associated with a group G , 

from which mobile nodes can participate in the group’s communication. 
Proximity of a group can take arbitrary shape. A node p  is defined to be 
inProximity of a group G  as follows —  

                                                 
2 We do not include the safe_prefix event defined in the survey as we choose the approach of delivering 
only those messages which have been determined to be stable. Such an approach allows a faster progress 
when the network is a dynamic one, as in the case for ad-hoc networks. We also do not include the 
Transition Set as part of the view_chng event as we do not use the notion of Extended Virtual Synchrony 
– see Section 3.5.1. for further discussion on Virtual Synchrony. 
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inProximity ( )p G,  if ( ) ( )location p PXM G∈   

The geographical area covered by the radio-ranges of the members of a partition is 
defined as the Coverage Area for that partition. If the group has only one partition at a 
certain instance, it will have one coverage area. The coverage area of a partition of a 
group is bounded by the proximity of the group. Any geographical point within the 
radio range of a node that lies outside the group’s proximity is not considered a part of 
the coverage area. Each partition of a group has its own coverage area, and thus the 
definition — 

3. Coverage Area — the geographical area CA  covered by the radio ranges of 
the processors in a partition and bounded by the proximity of the group. All 
the processors p CA∈  are reachable from each other. The following two 
events are used to signal when two processors have become reachable or 
unreachable from each other. 
reachable ( )p q,  if ip q CA, ∈ ∧  

( ) ( )inProximity p G inProximity q G, ∧ ,   

unreachable ( )p q,  if ip CA∈  ∧  jq CA∈  ∧  i jCA CA∩ = ∅ ∨  if  

( ) ( )inProximity p G false inProximity q G false, = ∨ , =  

The above definition allows us to use the events “reachability” and “unreachability” 
in our system specifications. We are targeting a system where an explicit failure 
detector does not generate these events. Each processor “reaches a consistent 
conclusion” based on the messages sent and received by it.  

3.3.2 STABLE COMPONENTS AND FAILURE DETECTORS 

In this section we first present stability conditions and failure detectors used in 
specifications developed by Chockler et al in [6] and Babaouglu et al in [10]. Both are 
useful, if not essential, to provide guarantees for message delivery within a group. We 
further describe how the models in [6, 10] relate to our system model. And finally, we 
present the stability conditions for our specification. 

3.3.2.1  STABLE COMPONENT 

In [10], stability conditions are provided using abstract properties for a failure 
detector. These properties are adapted for a partitionable system using the fundamental 
failure detector properties developed in [11].  

The framework developed in [6] provides for stability conditions using a “stable 
component” and the abstract failure detector properties developed by [10]. A stable 
component is achieved when there is a stable network. A network is considered stable 
from the point in time when no processes crash or recover, communication becomes 
symmetric and transitive and no changes occur in network connectivity. For systems 
that do not support the notion of a stable component, the Chockler et al framework 
provides for alternative properties, even though these alternative properties are quoted 
to be “not particularly useful” for applications.  

Our system needs to satisfy the requirements of a stable component. That is, if we 
look at a particular partition (or a coverage area) where no processes crash or recover, 
we can say that the partition satisfies the properties of the coverage area definition. But 
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if we take a closer look, when processors move from the neighbourhood of one 
processor p  to that of another processor q , the immediate reachability changes 
contradicting the “no changes in network connectivity” requirement. Similarly, p  and 
q  would have differing observations about processors that have failed and recovered; 
conflicting the “no processors crash and recover” requirement.  

3.3.2.2  FAILURE DETECTORS 

The mobile and multi-hop network environment introduces dependencies from 
communication failure on to mobility of the processors and crash failures. This section 
discusses how such dependencies affect our ability to provide a failure detector. We 
limit our discussion to abstract failure detectors and their completeness and accuracy 
properties as introduced in [11].  

The completeness property of a failure detector pertains to detecting a failure and 
informing the processors in the system about this failure. The accuracy property of a 
failure detector pertains to detecting a correct process that the processors in the system 
are not yet aware of. In [11] these properties are defined as — 

 
4. Completeness — there is a time after which every process that crashes is 

permanently suspected by some correct process.  
 

5. Accuracy — there is a time after which some correct process is never 
suspected by any correct process.  

 

[11] presents a classification of failure detectors along the axis of varying degree of 
completeness and accuracy properties supported. There are 2 completeness and 4 
accuracy properties described and thus 8 classifications of failure detectors provided. 
An algorithm D DT ′→  is presented which reduces the study of failure detectors to only 
consider 4 of the 8 classes of failure detectors. This is achieved by reducing one of the 
two completeness properties to the other, resulting in 1 completeness and 4 accuracy 
properties.  

We note here that unlike the system model in [11], the processors in our system are 
not “fully connected”. We also assume the set Π  ( P  in our case) of processors is not 
known. This limits the application of the algorithm D DT ′→ , as proposed in the 
aforementioned paper, to reduce Weak Completeness to Strong Completeness of failure 
detectors. The limitation is caused by the use of “ q∀ ∈ Π :  send m  to q ”. It is implicit 
in the algorithm that these sends require a connection to all the processors in Π , which 
we can only emulate using a “broadcast domain”[12]. We argue that if we use a 
broadcast domain to provide “strong completeness” guarantees, we can directly build a 
group communication service without requiring an explicit distributed failure detector 
running on each node.  

Traditional group communication services implement a failure detector using a 
pinging service. In Relacs [5], each processor pings each other processor it is aware of 
and determines failures based on time outs for responses to the pings. A direct port of 
such a service to mobile ad-hoc networks would require being able to ping the mobile 
processors in the network, requiring routing paths to exist between these nodes. 
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Maintaining routes between processors in a mobile ad-hoc network itself requires the 
routing service to somehow broadcast route requests and responses, over the multi-hop 
network. Ensuring all your processors are able to ping all other processors in the 
network would require all these routes to be maintained at all times, limiting the 
benefits of “on-demand” routing protocols and adding redundancy.  

We argue that we can replace such a ping service by a periodic beacon broadcasted 
to immediate neighbours only. For the system model under examination, an alternative 
to implementing a failure detector, is to have all processors periodically geocast an “I 
am Alive” beacon to the proximity of the groups it is participating in. This is different 
from the algorithms suggested by [11] and [10], as those algorithms require an explicit 
connection from each processor in P  to every other processor in P ; which requires an 
implicit knowledge of all processors in P  and routes to all of them, which cannot be 
assumed for our system model.  

The geocasting of “I am Alive” messages as suggested above can be used to provide 
completeness and accuracy conditions for detecting failed and new processes as 
discussed in section 3.3.3. We propose that such a geocast can help us implement a 
membership service without requiring an “explicit” failure detector module running on 
each of the processors. But it is important to remember that our service does provide the 
semantics and guarantees as required by a failure detector defined in section 3.4.  

If no regular communication messages are being exchanged, “null” messages can be 
exchanged to keep the protocol from making progress and adhere to the liveness 
properties; this is motivated by solutions proposed by [9, 13, 4].  

Another alternative to failure detectors for this system model is to provide a stateful 
local failure detector module at each node that keeps track of its neighbours. This can be 
done by simple neighbour discovery services that have been proposed in the literature 
[25]. Using a neighbour discovery service would help scale the system and would work 
without the need of the knowledge of the set Π  of all processors in the system. The 
problem faced with such a solution is that when a processor r  moves from p ’s 
neighbourhood to q ’s neighbourhood, p  would detect this as a failure and try to let the 
other processors in the system know of this failure. At the same time q  would detect a 
“new” processor and would try to make such information available to the rest of the 
processors.  

FAILURE DETECTORS AND PARTITIONS 

Another problem in using the neighbourhood service to implement a failure detector 
occurs in the case of partitions. Let us assume two disjoint subsets L  and M  of 
processors connected via a hop through processor p . Let us further look at the situation 
where processors r L∈  and q M∈  are in the neighbourhood of processor p . If p  fails, 
r  and q  would detect p  to have failed and inform the processors in their 
corresponding partitions, L  and M . The problem is that none of the local failure 
detector components running in L  and M  would be able to detect the failure of the rest 
of the processors in the other partition.  

Such a system is possible to implement as noted in [8]. After discussing and proving 
the impossibility of a group membership service for a primary component service, [8] 
argue that using failure detectors or probabilistic algorithms can help implement a 
primary component membership service. They also state that a partitionable group 
membership services bypasses the impossibility presented in the paper. We will focus 
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our future work on not using a failure detector for implementing the membership 
service, but instead depend on the fact that our service is partitionable.  

3.3.3 STABILITY CONDITIONS 

PBGC will provide a group communication service where a traditional view of a 
“stable component” is not present. The system model also limits the possibility of 
implementing a separate failure detector. We enforce our reachable and unreachable 
events to satisfy the accuracy and completeness properties of the failure detectors as 
developed in [10].  

In [10], properties are provided that allow applications meaningful means of reliable 
group communication even without explicit requirement of a stable component. Since 
our system cannot confirm with the requirements of a stable component as described 
above, we adapt some of the properties developed in [10] for our purposes.  

The adaptations made in [10] for Strong Completeness and Eventual strong Accuracy 
lead to a very different failure detector from the P◊  failure detector presented in [11]. 
Babaoglu et. al. [10] use the notion of their P◊  to argue about the correctness of their 
algorithms. 

We evaluate our failure detector to be W◊  as follows —  
• Accuracy — when a processor enters a coverage area of a partition, its 

immediate neighbours immediately detect the presence of a new processor. 
These immediate neighbours then facilitate sharing the information about 
this new correct process with all other processors. Since our system is not 
guaranteed to maintain a certain topology for a long enough period, we 
assume information about a new processor may not reach every processor in 
the coverage area before the constituents of the coverage area change. This 
was illustrated by the example in Section 3.3.3.2 where processors p  and q  
make conflicting observations about processor r . Thus we assume, that 
“some correct process is never suspected by any correct process” from [11] 
implying Eventual Weak Accuracy. 

• Completeness — again following the situation involving processors p q, and 
r  we can see that only the immediate neighbours of a failing processor are 
guaranteed to detect the failures. How this failure report is propagated and 
whether there are conflicting reports about the same processor allow us to 
only guarantee that “every process crash is permanently suspected by some 
correct process” from [11], implying Weak Completeness . 

With the known guarantees for reachable and unreachable events, we can provide 
arguments for correctness of our specifications, along the lines of arguments presented 
in [11]. It is important to observe we use the notion of a W◊  failure detector for the 
purposes of arguing about correctness, and we do not incorporate an explicit failure 
detector in our system. 

3.3.4 PARTITION ANTICIPATOR 

A partition anticipator (PA) is a “distributed oracle” similar to a distributed failure 
detector. This means that each processor runs an instance of the PA, and each instance 
contains no global knowledge. Each processor receives events from the instance of the 
PA running on the same processor. This section formalises the type of input that the 
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membership service expects from a partition anticipator and how the service reacts to 
incoming events from the partition anticipator service.  

The PA generates a anticipated_chng ( )V  event, which implies that the processors 
current view is anticipated to change to V . Formally —  

( ) ( ) ( )i ii t V viewof t V V V′ ′∃ = ∧ = ∧ ≠anticipated_chng   

We should mention here that the PA is being treated as a black box with its function 
and characteristics being orthogonal to those of the membership service. Here we 
assume that whenever the PA generates events, it guaranteesV V ′≠ . 

The group communication service’s response to the events generated by the PA is 
linked tightly with the property Optimistic Virtual Synchrony, described in Section 
3.5.1.  

3.4 SPECIFYING A PROXIMITY GROUP MEMBERSHIP SERVICE 

In the section we specify the group membership service for mobile ad-hoc networks. 
We do not explicitly differentiate between safety and liveness properties, but instead 
provide specifications to capture the higher level requirements listed in the section 3.2. 
The property names here are similar with those devised by Chockler et. al. in [6]. 

Before going into individual properties we repeat some shortcut predicates from [6] 
which will be used in presenting the properties that follow (see Table 1).  

Table 1: Shortcut predicates used by Chockler 

( )delivers q m,   ( )ii t q m∃ = ,recv    

( )delivers_in q m V, ,   ( ) ( )i ii t q m viewof t V∃ = , ∧ =recv    

( )installs p V,   ( )ii t p V∃ = ,view_chng   

( )installs_in p V V ′, ,   ( ) ( )i ii t p V viewof t V ′∃ = , ∧ =view_chng    

( )recv_before p m m′, ,   ( ( ) ( )i ji j t p m t p m i j′∃ ∃ = , ∧ = , ∧ <recv recv   

( )recv_before_in p m m V′, , ,  ( ( ) ( )

( ) ( )
i j

i j

i j t p m t p m

viewof t viewof t V i j

′∃ ∃ = , ∧ = , ∧

= = ∧ <

recv recv
  

 
Self Inclusion – If a process p  installs view V , then p  is a member of V . 
Formally — 

i∃  it =  view_chng ( )p V,   

 
Local Monotonicity – If a process p  installs view V  after installing view V ′  then 
the identifier of V  is greater than that of V ′ . Formally —  

it =  view_chng ( )p V, ∧   

jt =  view_chng ( )p V i j′, ∧ >   
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V id V id′⇒ . > .   

This property makes sure that a process does not install the same view twice and 
if two processes install the same views they install them in the same (partial) 
order.  

 
Initial View Event – Every send or receive event occurs within some view.  

it =  send ( )p m, ∨   

it =  recv ( )p m, ∨   

( )iviewof t⇒ ≠⊥   

 
Membership Accuracy – If there is a time after which processes p  and q  are alive 
and are within the same coverage area, then p  eventually installs a view that 
includes q , and every view that p  installs afterwards also includes q . Formally —  

( )li l i t p∃ ∀ > ≠ ∧crash   

( )ki k i t p q∃ < = , ∧reachable   

( )mi m i t p q∃ ∀ > ≠ , ∧unreachable   

j Vs t⇒ ∃ ∃ . .   

( )jt p V q V members= , ∧ ∈ .view_chng   

( )kk j V t p V q V members′ ′ ′∧ ∀ > ∀ = , ⇒ ∈ .view_chng   

This property eliminates solutions to the group membership where processors p  
and q  are reachable from each other (directly or indirectly) and neither of them 
install a view with both as members of the view.  

On the other hand, this property does not require processors that are connected to 
each other to install the same view, it only requires them to include each other in 
their view. This requires us to provide a property not considered in the framework 
[6]. The relevant property is later presented as View Coherency. 

 
Termination of Delivery – 3 If a process p  sends a message m  in a view V , then 
for each member q  of V , either q  delivers m , or p  installs a next view V ′  in V . 
Formally — 

( ) ( )l ll t p m viewof t V∃ = , ∧ = ∧send   

( )q members V∈   

                                                 
3This property also implies Self Delivery property. Which states that a correct process delivers messages 
sent by itself. 
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( )delivers q m⇒ , ∨   

( )V installs_in p V V′ ′∃ , ,   

This property captures the liveness of the membership service by requiring that if 
a message is not delivered at some member of a view (implying that the other 
member is no longer reachable), then the sender of the message installs a new 
view with the failed process eliminated from the view. Thus our service is forced 
to make progress one way or the other and hence eliminates use of algorithms that 
do not make progress. 

 
View Coherency – 4 The property can be presented as follows —  
1. If a correct process p  installs a view V , then either all members of V  install V  

or p  eventually installs an immediate successor to V . Formally — 

( ) ( )ii t installs p V q V members installs q V∃ = , ⇒ ∀ ∈ . , ∨   

1 ( )it installs p V+ ′= ,   

 

2. If two processors p  and q  initially install the same view V  and p  later installs 
an immediate successor to V , then eventually either q  also installs an 
immediate successor to V , or q  crashes. Formally — 

( )ii t installs p V ′∃ = , ∧   

( )jj i t installs p V∃ < = , ∧   

( )kk i t installs q V∃ < = ,   

( )ll i t installs q V ′⇒ ∃ > = , ∨   

( )lt q= crash   

It can be argued that the situation handled by this property is already handled by 
Membership Accuracy, but Membership Accuracy leaves the installation of the 
new view totally dependent on a failure detector5. On the other hand, this 
property forces all members of any new view to install the same view.  

In the face of frequent topology changes and disconnections, providing such a 
property would lead to a highly unstable membership service, but supporting 
this property will help in reflecting a true view of the system. If there is a need 
to hide the frequent changes, a higher layer can hide this instability for the 
application.  

A third and equally important aspect of view installation is presented as the 
property Agreement on Successors. That property enforces all processors going 
through the same succession of views to install all of those views.  

                                                 
4First presented by [10]. We do not include all three items presented there. 
5Which we do not include in our system model as elaborated earlier 
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To handle the dynamic nature of the processors that can be a part of our system, 
we propose a property Group Awareness as: 

Group Awareness – If a processor that is not a member of a group is present in 
any of the coverage area6 of a group, it can eventually obtain information about 
the group. 

3.5 SPECIFYING A PROXIMITY GROUP DELIVERY SERVICE 

In this section we provide a specification for a delivery service that accompanies the 
membership service in PBGC. The interaction between membership and delivery 
service is two-way. The delivery service provides the communication primitives for 
maintaining consistent membership views across every participant, while the 
membership service provides the list of participants to whom messages are propagated. 

Delivery Integrity – For every recv event, there is a corresponding send event. 
Formally —  

( ) ( ( ))i jt p m q j j i t q m= , ⇒ ∃ ∃ < ∧ = ,recv send   

 
No Duplication – Two different recv events with the same content cannot occur at 
the same process.  

( ) ( )i jt p m t p m i j= , ∧ = , ⇒ =recv recv   

The above two properties together eliminate spurious recv events. Limiting recv 
events to only those that have been originated by some processor and have not already 
been delivered. 

Self Delivery – Process p  delivers every message it sent in any view, unless it 
crashes after sending it. Formally — 

( ) ( ) ( )i jt p m j i t p receives p m= , ∧ > = ⇒ ,send crash   

3.5.1 VIRTUAL SYNCHRONY 

In a view-oriented group communication service, send and recv events occur in the 
context of some view. Some applications may require that a message be delivered in the 
same view as the view in which it was sent. Other applications may require a message 
be delivered in the same view for all the members. In this section we present our 
approach to providing guarantees that address such delivery issues. Our approach 
utilises the partition anticipator to help an application make meaningful progress 
without running into some of the problems posed by other traditional services, as we 
describe below.  

Some group communication service specifications require that all members deliver a 
message in the same view as the one in which it was sent. Such a requirement is called 
Sending View Delivery. A problem with such a requirement is that applications need to 
block while sending messages while a new view is being installed. In [14] it is proved 
that without requiring the applications to block the group communication service would 
violate properties of Virtual Synchrony and Self Delivery.  
                                                 
6That is to say this node is reachable from any of the present group members 
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A weaker alternative to Sending View Delivery is suggested as Same View Delivery. 
In Same View Delivery all members deliver a message in the same view, which may or 
may not be the view the message was sent in. The property suffices for applications that 
do not care which view the message was sent in, but are satisfied by the knowledge that 
all members receive the message in the same view.  

Using Same View Delivery, applications do not need to block while the view 
changes; the service guarantees messages sent during a change of view are delivered in 
either of the two views (the original or the changed view). All group communication 
services satisfy Same View Delivery for messages sent/received in the context of some 
view. Thus, this property is weaker than Sending View Delivery.  

As an alternative to the above two properties, [14] suggests Weak Virtual Synchrony, 
as a model stronger than Same View Delivery yet weaker than Sending View Delivery. It 
is weak enough for applications to not block while a view is changing, yet strong 
enough to provide some notion of support for “view-aware” applications.  

Weak Virtual Synchrony (WVS) requires each view change to be preceded by a 
“suggested view”, a view the system believes has the highest probability of being the 
next view. A further requirement placed on every message sent in the suggested view 
(which is a superset of the current view) is that they should be delivered in the next 
view installed by the members. Thus “view-aware” applications know each message 
they receive was either sent in the current view, or the preceding suggested view.  

Even though the WVS model does not require applications to block sending 
messages, it does not allow new processors to join the next regular group once a 
suggested view has been installed. If a new processor wanted to join the group after a 
suggested view has been installed, the service would initiate a new view install right 
after the next regular view has been installed. This causes the system to never stabilise 
in the face of frequent changes, as predicted in our system model. Another limitation of 
the model is that it implicitly works for applications that are satisfied to know of a 
superset of the existing view.  

Yet another model was recently proposed by [15] in 2000. The model, called 
Optimistic Virtual Synchrony requires each view installation to be preceded by an 
optimistic view event, which provides the application with a “guess” about what the 
next view would be.  

After this event, applications can optimistically send messages assuming they will be 
delivered in a view identical to the optimistic view. If the next view that is installed is 
not identical to the optimistic view, the application could either choose to use the 
messages received or roll back the optimistic message. 

 
Optimistic Virtual Synchrony — we propose using an enhanced version of the 
Optimistic Virtual Synchrony model in our system. The enhanced model takes 
an “educated guess” on the next view, based on input from the Partition 
Anticipator. This model retains the benefits of providing a non-blocking view-
based group communication service, but uses a mechanism to provide a 
meaningful prediction for the next view. 
  

When the partition anticipator generates an anticipated_chng ( )V  event, our service 
delivers an optimistic view ( )V  event to the application. The application may choose to 
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use this information and send messages in an optimistic view. If the application chooses 
to do so, it may or may not choose to “roll-back” if the next view installation is different 
from the optimistic view. Such support for delivering messages in the context of a view 
allows applications to have the flexibility on how to deal with changing views. We 
believe using such a model should also allow smooth handling of the frequent topology 
changes in a mobile ad-hoc network.  

The above properties do not yet allow applications to reason about when groups 
become partitioned. To elaborate, we repeat a classic example from [6, 10]. Consider 
the case where three nodes p , q  and r , are in a common view called 1v , and two 
events occur. In the first event r  crashes while subsequently p  and q  become 
temporarily disconnected.  

Let us consider the scenario where p  reacts to both the events and installs a view 2v  
with only itself as a member. Process q  on the other hand reacts only to r ’s failure and 
installs a view 3v  with p  and q  as members.  

Now assume p  and q  share the same state at 1v  but p  undergoes changes while 
disconnected from q . Following this q  and p  reconnect and then install a view 3v  
which has both p  and q  as members.  

In such a situation, due to p ’s state changes while it was disconnected from q , this 
would result in inconsistent behaviour on the part of q  (given only the above properties 
are being satisfied). Such situations require an additional property to handle merges of 
partitions, and thus ensure reasonable behaviour from our system. This scenario can be 
generalised to any trace where overlapping partitions views merge. The following 
properties eliminate traces that allow such inconsistencies.  

 
Agreement on Successors – 7 If a process p  installs view V  in view V ′ , and if 
some process q  also installs V  and q  is a member of V ′  then q  also installs V  
in V ′ .  

( ) ( )installs_in p V V installs q V q V members′ ′, , ∧ , ∧ ∈ .   

( )installs_in q V V ′⇒ , ,   

 

Agreement on Successors guarantees that all processors from p ’s current view and 
p ’s previous view are coming from the same view and thus the Virtual Synchrony 

hypothesis holds. The property also invalidates traces where two overlapping views are 
allowed to merge, as brought out above.  

                                                 
7 Extended Virtual Synchrony and Transitional Sets provide an alternative property that can help 
determine if the proposition of Virtual Synchrony holds or a state transfer is required. 
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3.5.2 ORDERING PROPERTIES 

 The next important issue to consider for completing the specifications for the group 
communication service is message ordering. In the first case we support the Weak Total 
Order property for messages exchanged within a single group.  

Before we define Weak Total Order, we repeat the notion of a Timestamp (TS) 
function as defined in [6]. A timestamp (TS) function is a one-to-one function from M  
to the set of natural numbers:  

( ) ( ) ( )TS_function f f M N f m f m m m′ ′⇒ : → ∧ = ⇒ =   

Weak Total Order – Can be stated in two parts  
1. For every pair of views V  and V ′  there is a timestamp function f  so that 

every process that installs V  in V ′  receives messages in V ′  in an order 
consistent with f .  

( ( )V V f TS_function f′∀ ∀ ∃ ∧   

( ( ) ( )
( ) ( ))
p m m installs_in p V V recv_before_in p m m V

f m f m

′ ′ ′ ′∀ ∀ ∀ , , ∧ , , , ⇒
′< .

  

2. For every view V  there is a timestamp function f  so that every process that 
has V  as its last view receives messages in V  in an order consistent with f . 
Formally — 

( ( ) ( ( )V f TS_function f p m m last_view p V′∀ ∃ ∧ ∀ ∀ ∀ , ∧   

( ) ( ) ( )))recv_before_in p m m V f m f m′ ′, , , ⇒ <   

By supporting the Weak Total Order property we imply that all messages will be 
Causally Ordered and the Reliable Causal property will apply.  

Reliable Causal – If message m  causally precedes a message m′ , and both are sent 
in the same view, then any process q  that receives m′  receives m  before m′ . 
Formally — 

( ) ( )i jt p m t p m′ ′= , ∧ = , ∧send send   

( )) ( )i j i jt t viewof t viewof t→ ∧ = ∧   

( ) ( )q m recv_before q m m′ ′, ⇒ , ,recv   

Weak Total Order allows processors to disagree on the order of messages in case 
they disconnect from each other. But at the same Weak Total Order requires processors 
that remain connected with each other to receive messages in the same order.  

When a number of processes belong to two or more of the same groups, we say that 
the groups overlap. In this case, there is a issue relating to the ordering of messages to 
be delivered at all processes that are members of more than one overlapping groups. 
Atomic Multicast specifies that all members of multiple groups deliver messages to all 
the groups in the same order. Implementing Atomic Multicast is expensive and is not 
directly crucial for the situations group communications for mobile ad-hoc networks 
will be used in. Thus we do not require our service to support Atomic Multicast; but at 
the same time depending on the implementation algorithms we might be able to support 
the same.  
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4 IMPLEMENTING HEARSAY WITH LATTE 
One of the core conceptual tools defined in Gloss is “Hearsay” [24]. Hearsay is a 

form of communication where a message is discovered in the environment. A hearsay 
tool matches the profile and context of the receiver with the profile and context of the 
message to be delivered. This section describes the design and implementation of a 
hearsay system that uses email as the base infrastructure. The system, called LATTE 
(Location And Time Triggered Email), adds location and time to the standard email 
model as the hearsay contextual elements for sending and receiving email. LATTE’s 
architecture provides a natural fit for demonstrating the work on proximity-based group 
communication. 

LATTE is based on the idea that for the current email user, especially the mobile 
one, a significant proportion of email received is not relevant for a variety of reasons. 
Conversely, mobile users often do not receive messages that may be of interest to them 
because these messages relate to the location the users are currently visiting. Adding a 
level of context awareness to messaging services is likely to ameliorate these problems, 
and significantly enhance the relevancy of a user’s email. Requirements for such a 
service include offering relevant information to recipients under specific spatio-
temporal constraints. It should be possible to augment messages with a variety of 
contexts (for example, any combination of location, time and identity) and deliver them 
when their contextual conditions are satisfied. LATTE is therefore based on the email 
paradigm, and extends it to include dynamic consideration of location and time to 
determine the appropriate recipients for a message. 

4.1  EMAIL-BASED HEARSAY SERVICE 

As an initial step, we generalised the hearsay usage scenarios from the Gloss’s “Bob 
goes to Paris”. These can generally be categorised as: 

 
1. Alerts: In this category, messages are attached to a location to indicate some 

warning. For example, well-wishing individuals or companies who undertake 
traffic monitoring as a commercial service may provide a traffic alert. Another 
example is a periodic form of alert message that is delivered to users in 
particular locations – for example, “this museum closes in fifteen minutes” is 
a message that should be delivered to people in the museum at the appropriate 
time every day the museum is open. 

2. Digital signposts: This category provides similar functionality as the “digital 
graffiti” model [17; 18; 19] where a message is sent to a specific location with 
any user in the proximity receiving it. There is likely to be no information of 
any secrecy in this kind of message. 

3. Intended Delivery: In this category, recipients are identified by some 
combination of identity, location and some timing constraints.  

 

In general, context aware messaging can help reduce the amount of irrelevant 
information delivered to email users by using different kinds of context as a filter. In 
addition, it can help ensure that email users receive information relevant to them 
because of a change to their context. From scenarios within the categories listed above, 
we identified three context attributes that should be used as such a filter: location, time 
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and identity. The goal of the context-aware email system is to deliver contextually valid 
messages to the right entities at the appropriate time. Where any combination of the 
three context attributes have been specified, validity is a function of testing the actual 
context of recipients against the one defined by the sender of the message. It is not 
necessary to specify values for all of the context attributes – as long as there is a 
recipient specified (either a named email user/group or a location), the other contextual 
attributes take sensible default values that try to emulate the familiar email behaviour as 
much as possible. We discuss each of the context attributes in the following sections. 

4.1.1 LOCATION 

Location is defined as the spatial region a recipient must occupy in order to receive a 
message. Location is modelled as a series of discrete hierarchical regions with defined 
boundaries. Each region may be subdivided into smaller ones, which are arranged in a 
hierarchical manner. This approach was adopted from the Intentional Naming System 
(INS) [26] for its expressiveness and simplicity. Each level of the hierarchical tree has a 
logical name. In essence, the whole tree represents a mapping between logical names 
and geographical coordinates. There are many approaches to determining geographical 
coordinates, both indoor and outdoor – for example GPS or RADAR [20]. Our context-
aware email service is designed in an open manner to support input relating to 
coordinates from any source. In the current version, we have implemented GPS and an 
indoor version using infrared transceivers is also being designed. 

Another important feature in LATTE is the ability to support overlapping regions by 
allowing child nodes in the location hierarchy to have multiple parents. Essentially, 
location in this model is represented more as graph rather than a tree as in Figure 5. This 
feature allows multiple administrative domains to share physical locations and makes 
possible a more decentralised delivery model where LATTE servers are responsible for 
different (possible overlapping) geographical areas. Sending a LATTE message then, 
requires the knowledge of the individual server that is responsible for the wider 
geographical area the message is destined for. Directory services can be built to aid 
individual users composing LATTE messages but this is outside the scope of the current 
work. The final LATTE component that enables this type of distribution is a basic 
service discovery protocol that was built to enable automatic registration when LATTE 
clients are found in the vicinity of LATTE servers. 

From the perspective of the email sender, location may be either explicitly specified, 
or left “anonymous”. Where the location is specified, emails (without any further 
filtering based on identity/time) are valid to all users in that location. Messages can 
therefore be left at a location without requiring the sender to physically be there to tag it 
with a message. Where the location is anonymous, location is not considered in the 
filtering process for the email message. 

As derived from the Intentional Naming System model, a location is named in an 
abstract, hierarchical plaintext format with the following syntax: 

[location=value [division=value [subdivision=value]]..] 

This gives a partial tree resembling Figure 5. For example, the front square in Trinity 
College might be described by 

[Country=ie [City=Dublin [Area=TrinityCollege [Place=FrontSquare]]]] 
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Figure 5: Location Representation in LATTE 

4.1.2 TIME 

Time is also an important property to consider when evaluating whether to deliver 
particular messages. In LATTE, time can be bounded or unbounded and periodic or 
non-periodic. If a message is time bounded, then delivery of that message is valid for a 
certain duration. For example, a sender might want to send a meeting notice reminder to 
relevant participants any time from one hour before to five minutes before the meeting 
starts. If a message is not time bounded, then time is not a factor that is considered when 
filtering email for delivery. Time-bounded messages may also be tagged as periodic or 
non-periodic. Periodic messages are delivered to appropriate recipients at the stated 
period – for example, every day at 16:45, send a “museum closes in 15 minutes” 
message. Time-bounded messages that are non-periodic are valid only within the 
explicitly specified time bounds. 

4.1.3 IDENTITY 

The main difference between the notion of identity from classical email systems and 
identity in the context-aware extensions relates to the issue of when it is decided that a 
message should be delivered to a particular recipient. In classical email, the identity of 
the recipient is known at composition. This can be considered early binding. Adding 
contextual properties to a message, however, means that the message may not have its 
destination identity explicitly specified before transmission. Instead, there is a set of 
contextual attributes that can be matched against potentially multiple recipients at 
delivery time. This can therefore be termed late binding. Late binding improves 
flexibility and makes it possible to realise the categories of scenarios based on alerts, 
digital signposts and intended delivery as described in Section 4.1. 

In addition, we further classify the contextual values of identity as individual, group 
and anonymous. An individual identity is defined when the recipient’s identity is known 
at composition and is therefore an early-binding mechanism similar to email. Groups 
consist of one or more identities that may not be known at email composition time. This 
group model is similar to the classical mailing-list model with one significant 
difference. In addition to membership being defined similarly to mailing lists, further 
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filtering occurs based on the location and time of the intended message. Therefore, 
group membership is dynamic based on context. Lastly, when the identity is 
anonymous, any potential recipients who conform to the remaining contextual attributes 
of location and time will receive the message. 

4.2 IMPLEMENTATION 

LATTE is implemented in Java on the client side for the GUI, and for the 
dissemination of context information to the context server. Java gives good portability 
especially when considering platforms such as PDAs and laptop computers. Still, the 
client side has no dependency on Java in particular and can support any language that 
provides an interface to the SMTP. On the server side a MySQL database was used to 
store messages and user profiles and interface with SMTP component. 

In this section we describe the overall architecture of LATTE, and also how LATTE 
messages flow from the sender, through the LATTE server to the delivery to 
recipient(s).  

4.2.1 OVERALL ARCHITECTURE 

The architecture to support the flow of a LATTE message is depicted in Figure 6. In 
the current implementation, every LATTE email is sent via SMTP to a special account 
(e.g. latte@domain.org) at some mail server (see section “4.2.2 Sender Model”). There, it is 
processed and stored in the message database for later retrieval (see section “4.2.3 
Context Engine”). After their initial registration with the Context Engine, receivers 
periodically transmit their dynamic context, (i.e., location and group membership) by 
using simple beacons. Recipients receive emails in the standard way by running a POP 
or an IMAP client. 

`   

Figure 6: LATTE Architecture 

4.2.2 SENDER MODEL 

Message transmission is achieved through the use of the SMTP protocol [16]. SMTP 
was chosen for a number of reasons. It provides a familiar interface to users and is 
interoperable with existing clients. Furthermore, SMTP allows the transmission of 
messages (emails) that can contain an extended set of headers [21]. These headers are 
marked as “X-headers”, and are designed for clients to transmit user-defined 
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information. LATTE uses these X-headers to capture the required contextual extensions 
to email, calling them X-LATTE-* headers. The following headers have been defined to 
encapsulate the required message context from the sender: 

• X-LATTE-Identity - Specifies the LATTE extensions to identity.  
• X-LATTE-Location – Specifies the logical location in the INS format 

explained in section 4.1.2.1 
• X-LATTE-Time – Specifies the time the system should deliver the 

message. 
• X-LATTE-Duration – Specifies the time for which the message is valid – 

new users moving into a valid contextual state in this duration may be 
considered as a recipient. 

• X-LATTE-Offset – Allows for a message to be repeated at regular 
intervals. 

LATTE clients may, of course, send LATTE emails using their usual desktop/laptop.  
However, given the significance of mobility for the LATTE system, we have also 
implemented a version for the client that uses a PDA. As illustrated in Figure 6, the 
interface is designed to look and feel like a standard email client, with the additional 
contextual information added in a similar manner to named recipients, etc. in standard 
email. 

4.2.3 CONTEXT ENGINE 

Context evaluation refers to the processing of recipient context against a set of 
evaluation rules. Resolving location is the most challenging task if it is to be done 
efficiently and not overload the server. The location model described in section 4.1.2.1 
is encoded in the server as a binary tree. Each node in the tree represents a rectangular 
area that has a set of four coordinate points. As a message arrives containing a logical 
description of a place, this textual description gets converted into GPS coordinates, 
which are matched against the nodes in the binary tree. The matching node will then 
hold a reference to the message’s sequence id. 

Part of the initial handshake procedure when clients register with a LATTE server, is 
the automatic transfer to the client of a location file that contains the area the server is 
responsible for. This file is essentially a mapping between the logical INS format and 
GPS coordinates. Thus, the processing of the location coordinates is partly done on the 
client device greatly enhancing flexibility and performance of the overall system by 
reducing the load on the server side. 

When recipients transmit their location, the tree is traversed and any messages found 
in the parent and child nodes get tagged as “location ready”. Then time and identity of 
the messages are evaluated and if they match those of the client, they are made available 
for displaying. 

4.2.4 EXTENDING LATTE WITH PBGC 

As was described above, LATTE requires a mechanism for announcing the presence 
of LATTE servers to clients inside their communication range and their geographical 
area of responsibility. Essentially, this can be translated to a requirement for an event 
service that subscribes LATTE clients to a LATTE server as soon as they appear inside 
the server’s area of responsibility. Currently this is implemented as a simple beaconing 
service that has no knowledge of location and only extends to immediate neighbours. A 
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proper event based service would notify only clients inside a designated area and would 
extend to multiple hops. Such an underlying framework would have the extra benefit of 
providing LATTE servers with a proper notification mechanism so LATTE could be 
extended to easily handle group notification as another mode of interaction alternative 
to email. 

The requirement for such an event service is a perfect candidate for having proximity 
groups as the underlying communication medium. In [22] it is being recognised that 
group communication provide a natural mean to support event-based communication 
models. Communication groups provide a one to many communication pattern that can 
be used by event producers to propagate events to consumers. Although other 
approaches exist, such as remote method invocation (CORBA, RMI), group 
communication has been identified as the most suitable approach [22, 23].  

Proximity Based Group Communication

Distributed Event Dissemination Layer

LATTE2

LATTE5

LATTE4
LATTE1 LATTE3

Clients
and/or 
servers

Nodes

 
Figure 7: Extended LATTE Architecture 

As illustrated in Figure 7, the next incarnation of LATTE will provide an underlying 
communication medium based on proximity groups with an event-based notification 
framework on top of that. As such, the range of LATTE servers is expanded due to the 
multi-hop nature of proximity groups while the notification framework opens up 
possibilities for other modes of interaction. The envisioned transport mechanism will 
then consist of the layered architecture illustrated. 
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5 CONCLUSION 
Proximity-based group communication (PBGC) supports reliable, consistent 

communication of information between nodes that are in proximity to each other, in a 
mobile, ad hoc environment. Within the Gloss middleware infrastructure, this service 
covers communications within what we consider to be the “edge” network – the 
network the supports local, mobile, interactions.  

This deliverable describes a formal specification for PBGC that takes advantage of 
existing formal specifications for group communications systems, but extends them to 
include dynamic membership due to mobility, membership based on geographic 
proximity, and partition anticipation. These additional properties have had a significant 
impact on both the group membership and the delivery specifications of a 
communication service. 

In addition, this deliverable describes an implementation of a Hearsay service called 
LATTE, that uses the email model to provide contextual message delivery based on 
location and time. As an initial proof of concept, this prototype was implemented on 
existing technologies. As an evaluator for the PBGC service, however, the architecture 
of LATTE will exploit reliable message delivery within the required proximity.  
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