
 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 1/25

© 2001/2002/2003 GLOSS CONSORTIUM

13/11/03
VERSION 1

IST BASIC RESEARCH PROJECT
SHARED COST RTD PROJECT
THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO
PROJECT OFFICER: THOMAS SKORDAS

Global Smart Spaces

An Information Flow Architecture
for Global Smart Spaces

D15

13 Nov 2003/USTAN/WP6/V1

Alan Dearle
Graham Kirby

Andrew McCarthy
Juan Carlos Dias y Carballo

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 2/25

© 2001/2002/2003 GLOSS CONSORTIUM

13/11/03
VERSION 1

IST Project Number IST-2000-26070 Acronym GLOSS

Full title Global Smart Spaces

EU Project officer Thomas Skordas

Deliverable Number D15 Name An Information Flow Architecture for Global Smart Spaces

Task Number T Name n/a

Work Package Number WP6 Name Theories of Mobility

Date of delivery Contractual PM Actual November 2003

Code name <codename> Version 1.0 draft final

Nature Prototype Report Specification Tool Other:

Distribution Type Public Restricted to: <partners>

Authors (Partner) Prof A. Dearle, Dr. G. Kirby, A McCarthy, J Dias y Carballo

Prof. A. Dearle Contact Person

Email al@dcs.st-and.ac.uk Phone +44 1334 463250 Fax +44 1334 463278

Abstract
(for dissemination)

In this paper we describe an architecture which:
Permits the deployment and execution of components in appropriate geographical
locations.
Provides security mechanisms that prevent misuse of the architecture.
Supports a programming model that is familiar to application programmers.
Permits installed components to share data.
Permits the deployed components to communicate via communication channels.
Provides evolution mechanisms permitting the dynamic rearrangement of inter-connection
topologies the components that they connect.
Supports the specification and deployment of distributed component deployments.

Keywords Information Flow Architecture

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 3/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

An Information Flow architecture for Global Smart Spaces

Introduction
The Global Smart Spaces project is aimed at supporting the needs of mobile users on
a global scale. This requires a large and diverse range of services to be deployed at
geographically appropriate locations. Each service is connected to its peers via
channels, each carrying some appropriate information. Constantly changing
requirements and usage patterns necessitate the ability to introduce new components
and change – at runtime – the topology and composition of this environment. That is,
both the services running at nodes and the channels by which they are connected must
change dynamically.
In order to illustrate the requirements of the information flow architecture, consider
Figure 1, which shows a collection of components running on the PDA of a mobile
user sending position events via SMS to an SMS server which in turn sends events to
a Street Server responsible for some geographical area. The Street Server sends events
to a Hearsay service which returns information to the user about items of local interest
such as cafes or shops.

Figure 1: Deployed Components

Architectural Requirements
The first requirement is for some kind of architectural description of the components,
the hosts which are going to execute the components and the interconnections
between the components. In this example, the three hosts hosting computation must
be specified: the client, the SMS Server and the Street Server. Next, the set of
components running on each host needs to be specified – for example, we need to
specify that the Street Server is to run an instance of the P2P Device, The Hearsay
Service and the User Proxy. Finally the channels connecting each of the components
need to be specified. For example we must specify that the output of the P2P Device
component running on the SMS Server needs to be connected to the input of the P2P
Device component running on the Street Server.
The second requirement is the ability to enact the architectural description in order to
obtain a running deployment consisting of the set of components specified in the
architectural description. This requires a number of mechanisms including the ability

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 4/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

to both execute and install code on remote servers. The ability to execute and install
code on remote machines necessitates a security mechanism to ensure malicious
parties cannot execute harmful agents.
To be generally accepted by application programmers, it must be possible to program
the architectural components using standard programming languages and appropriate
programming models. It should also be possible for architectural components to
interface with common off-the-shelf (COTS) components that are already deployed.
In order to permit distributed components to be assembled into appropriate topologies
and communicate with each other, the components must exhibit some degree of
interface standardisation. In the architecture described here, communication is via
asynchronous channels that may be dynamically rebound arbitrary components either
by the components themselves or by suitably privileged external parties.
All software architectures are subject to evolutionary pressure – however, we
anticipate that architectures supporting mobile users on a global scale will be subject
to extreme evolutionary pressures in order to accommodate changes in users’ location,
activities and interests. This will require the architecture to adapt its topology, caching
behaviour, process placement and machine usage.
In order to address these requirements, in this paper we describe an architecture
which:

1. Permits the deployment and execution of components in appropriate
geographical locations.

2. Provides security mechanisms that prevent misuse of the architecture.
3. Supports a programming model that is familiar to application programmers.
4. Permits installed components to share data.
5. Permits the deployed components to communicate via communication

channels.
6. Provides evolution mechanisms permitting the dynamic rearrangement of

inter-connection topologies and the components that they connect.
7. Supports the specification and deployment of distributed component

deployments.
The system described in this paper is hosted by an enabling infrastructure called
CINGAL that supports Computation IN Geographically Appropriate Locations. We
describe this system first before describing the GLOSS information flow architecture.

CINGAL Computational Model
The CINGAL Computational model is conceptually simple, CINGAL enabled nodes
provide: an entry point permitting bundles to be fired, a content addressable store, a
name binder, an extensible collection of symbolically named machines each
executing bundles, channel based asynchronous inter-machine communication and a
capability system controlling the permissions entities have over stored data, machines
and bindings.
A bundle is the only entity that may be executed in CINGAL. Bundles are passive and
consist of code, data and a set of bindings naming the data. Each Bundle is uniquely
identified by a globally unique identifier (guid) which is implemented via an MD5
key. In practice, Bundles are encoded as XML as shown in Figure 2 below. In the
current implementation the code may be written in either Java or Javascript with Java
classes being MIME encoded. The code entry point is designated via the entry
attribute of the CODE tag. The data section of a bundle comprises a number of
datums each of which has an id attribute representing the datum’s name within the

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 5/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

bundle which must be unique. The collection of id names forms a local set of data
bindings for the bundle. It is common for Bundles to carry other Bundles as payload.
In Figure 2, the Bundle carries another Bundle as a datum called PAYLOAD.

<BUNDLE>
<CODE entry="uk.ac.stand.dcs.gloss.cingal.Installer" type="java">

<Class name="uk.ac.stand.dcs.gloss.cingal.Installer">
DQrK/rq+AAMALQA8CgA
... code elided ..
ACQAAgABACUAAAACACY</Class>

</CODE>
<DATA>

<DATUM id="PAYLOAD">
<BUNDLE>

<CODE entry="deployment.deployA.A" type="java">
<Class name="deployment.deployA.A">
DQrK/rq+AAMALQAuCgAI

... code elided ..
DwAQAAAAAAACAB0AHgAB</Class>

</CODE>
<DATA>
<DATUM id="LOCAL_Name">Bobs Comp</DATUM>
</DATA>

</BUNDLE>
</DATUM>
<DATUM id="INSTALL_NAME">ApplicationA</DATUM>

</DATA>
</BUNDLE>

Figure 2: An Example Bundle

Bundles are executed on a remote node by firing them. From a remote node this is
achieved by sending a bundle to a standard port. Each CINGAL enabled host has a
listener that expects clients to communicate with it using the Thin Server Simple
Communication Protocol (TSSCP). TSSCP supports a number of operations including
the firing of a bundle.

Machines
When a bundle is received by the host, provided that the bundle has passed a number
of checks described below, the bundle is fired, that is, it is executed in a new machine
as shown in Figure 3. Computation within the fired bundle begins at the entry point
specified in the bundle. Bundles may carry out any arbitrary computation that they are
encoded to perform including the provision of network services.
Each machine is an isolated protection domain implemented as a separate operating
system process. Unlike processes running on traditional operating systems, bundles
have a limited interface to their local environment. The repertoire of interactions with
the host environment is limited to: interactions with the local store, the manipulation
of bindings, the firing of other bundles, and interactions with other machines. Each of
these operations is restricted via a capability protection scheme described later.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 6/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Figure 3: Firing a Bundle

The Store
Conceptually the store is a collection of passive data. The store component supports
the storage of arbitrary bundles. So that a bundle may be retrieved, a key in the form
of a globally unique identifier (of type TSGUID) is returned by the store on its
insertion. Stores implement the following interface:

TSBundle storeGet(TSGUID guid)
Retrieves a bundle from the store

 TSGUID storePut(TSBundle bundle)
Adds a new bundle to the store

 void storeRemove(TSGUID guid)
Removes a bundle from the store

Figure 4: The Store Interface

The storePut operation inserts a bundle into the store, and returns a key. If that key is
later presented via the storeGet operation, the original bundle is returned. The
storeGet operation fails if presented with an unknown key. Stores do not support any
update operations. Where the effects of update are required by an application, these
may be obtained using binders as described later. A desire for simplicity drove the
decision to have a store generate the key for a given bit-string, rather than let the key
be supplied by the caller.
Figure 5 illustrates the use of the storePut and storeGet operations to add a bundle
and later retrieve it.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 7/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Figure 5: Main Store Operations

The Store Binder
The store interface is sufficient to allow information of any kind to be stored and
retrieved. For practical use, however, two further abilities are required:

• to support update operations;
• to be able to access stored information through symbolic names as well as

arbitrary system-specified keys.
These are provided by the store binder (sbinder) component, which implements a
modifiable many-to-many mapping between symbolic names and keys. A name may
be bound to multiple keys, allowing a set to be retrieved in a single operation; a key
may be bound to multiple names, giving aliasing. Mappings may be updated so that a
given name may refer to various keys over time. The binder provides the following
interface:

 TSGUID[] sBinderGet(String symName)
Retrieves an entry from the Binder

 void sBinderPut(String symName, TSGUID guid)
Inserts an entry in the Binder

 void sBinderPut(String symName, TSGUID guid, String clue)
Inserts an entry in the Binder

 void sBinderRemove(String symName, TSGUID guid)
Removes an entry from the Binder

Figure 6: Binder Interface

The sBinderPut and BbinderRemove operations establish and remove a binding
between the given name and key respectively. The sBinderGet operation returns all
the keys currently bound to the given name; this may be an empty set. Figure 7
illustrates the use of the sBinderPut and sBinderGet operations to bind a name to key
binding, and later to retrieve the set of keys currently bound to that name.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 8/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Figure7 Main Binder Operations

The Process Binder
Just as the store binder permits data in the store to be symbolically named, another
binder, the process binder (pbinder) permits processes (services) to be named. The
interface to the pbinder is shown in Figure 8 below. The process binder provides
operations for the addition and removal of services via the operations pBinderPut and
pBinderRemove. These operate in a similar fashion to the corresponding store and
store binder interface functions. In addition to the specification of a symbolic service
name and the GUID of bundle implementing that service, the pBinderPut operation
takes an extra parameter specifying the maximum number of processes that may be
instantiated to deliver the named service. Whenever another process attempts to bind
to the named service, a new process will be created to provide that service up to the
number specified in instances and thereafter the process will be connected to an
extant process. Processes lookup services using the inter-process communication
mechanisms described below.

 void pBinderPut(String service, TSGUID guid, int instances)
Adds a new entry into the store PBinder

 void pBinderRemove(String service)
Removes an entry from the PBinder

Figure8 PBinder Interface

A mechanism is also required that permits executing bundles to name themselves as a
service. This is achieved using the setResourceName method shown in Figure 9.

 void setResourceName(java.lang.String resourceName)
Permits a running bundle to name itself as a resource

Figure9 SetResourceName Interface

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 9/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Inter-Process Communication
CINGAL supports asynchronous message oriented inter-process communication. All
communication is via channels. In CINGAL, all channels implement the ITSChannel
interface which supports conventional read and write operations. Whenever a bundle
is fired on a machine, a Channel to that bundle is returned to its creator. This Channel
may be accessed by the (Thin Server side) fired bundle using the getDefaultChannel
operation shown in Figure 10 below. In the case of a bundle being pushed from a
conventional client, this Channel is returned by the bundle deployment software
wrapped up in an object of type ThinServerClient as shown below. This channel
permits direct communication between a deployed Bundle and its creator, be it local
or remote.

ITSChannel getDefaultChannel()

The Default user level communications Channel

Figure10 The get Default Channel Interface

The ThinServerClient object is supplied by the CINGAL deployment infrastructure. It
provides functionality to interact with a Thin Server. It can connect and send mobile
code to a remote Thin Server as well as send requests about resources already present
on the local Thin Server. Figure 3 may now be refined as shown in Figure 11 to show
the inter-process communication between the deployer and the executing bundle.

fire

Bundle

Listener

Protection Barrier

4 getDefaultChannel
5. Channel r/w

Machine

Store Binder

Regular Computer

Protection Barrier

OS Process

1. Construct Bundle

2 Send Bundle

3 Fire Bundle

4 Start machine
6 Channel r/w

Figure11 Inter-process communication

To fire a bundle, the (almost real) pseudo code shown in Figure 12 is executed.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 10/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

public class OriginatingProcess {
 public void main() {
 // get a bundle from somewhere
 TSBundle bundle = getBundleToFire();
 // send bundle to Thin Server with address ipaddr
 ThinServerClient client = ThinServerClient.send(ipaddr,bundle);
 // Get chanel from ThinServerClient
 TSChannel defaultChannel = client.getResourceChannel();
 // read off the channel
 String messageFromFiredBundle = defaultChannel.getString();
 }
}

Figure12 Deployment code

The code executed in the bundle on the Thin Server might look something like that
shown in Figure 13 below.

public MobileCode implements ITSBundle {
 // Start is the entry point for mobile code
 // This blocks until a connection is made.
 public void Start() {
 ITSChannel defaultChan = machine.getDefaultChannel()
 defaultChan.writeString(“HelloWorld”);
 }
}

Figure13 Deployed Code

The channel established between a bundle and its progenitor is of limited use and is
normally only used for diagnostics and the passing of parameters. A running bundle
may establish Channels with other bundles using the resourceConnect method which
has a number of variations shown in Figure 14.

 ThinServerClient resourceConnect(String resource, String provider)

Open a Channel with a resource residing on same TS node.
ThinServerClient resourceConnect(String host, String resource, String provider)

Open a Channel with a resource residing on another TS
node.

 ITSChannel resourceConnect(String host, int port)
Open a Channel with a resource residing on a conventional
node.

Figure14 Inter-process communication

The first variation of resourceConnect is used to obtain a Channel to a resource
running on the same Thin Server. The second is used to connect to a process on a
remote thin server. In both cases the resource name is used to find a resource which
has been registered with the Thin Server either using the setResourceName call or has
been registered in the pbinder. The last resourceConnect call provides a connection to
a machine running on a conventional node and functions like a IP socket connection.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 11/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Firing Local Bundles
Executing Bundles (running in a machine) may instantiate new machines running
other bundles using the interfaces shown in Figure 15 below. These permit both
bundles from the store and dynamically created bundles to be fired. The latter
interface may be used to fire bundles with arbitrary parameters stored in a bundle’s
data section.

 ThinServerClient fire(TSGUID guid)

Fire a bundle that resides in the node's Store
 ThinServerClient fire(TSBundle bundle)

Fire a specified bundle

Figure15 The Local Fire Interface

Named Channels
The diagram in Figure 1 shows components arranged in a pipeline with the outputs of
one process connected to the inputs of another. The mechanisms describe thus far are
sufficient for this purpose. However they lack flexibility in regard to the way in which
globally distributed computations may be arranged and evolved. In order to increase
this flexibility the CINGAL computational model includes named channels between
entities. This idea stems from Milner’s pi calculus. Using named channels, individual
executing bundles are isolated from the specifics of what components are connected
to them. CINGAL provides mechanisms binding, unbinding and rebinding named
channels.
When the concept of named channels is introduced, the Bundle execution model may
be refined as shown n Figure 16. To recap, the bundle executes within a machine
presents the bundle with a small number of methods via an interface passed to its start
method (the entry point) on initialisation.

Protection Barrier

Executing Bundle

Machine

Named
Channels

Default
Channel

Machine
API

Machine
Channel

“c”
“in”
“x”
“out”

ConnectionManager

listen

Figure16 The Local Fire Interface

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 12/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

In addition to the operations we have shown this far, the machine interface also
permits bundles to obtain bindings to named channels within the machine in which
they execute. This interface is called getAbstractChannel and takes the name of a
named channel as a parameter and returns a channel of type ITSChannel.

ITSChannel getAbstractChannel(String name)
Return an abstract Channel

Figure17 The Abstract Channel interface presented to running Bundles

The channels returned by getAbstractChannel() are initially unbound – that is, they
are not connected to any other machine instance. Some mechanism needs provided to
permit the binding of abstract channels to other channels. Furthermore, the
mechanism needs to support the connection of abstract channels by a third party (If
this were not so the other channel mechanisms would suffice). To support wiring by
third parties, in addition to the default channel, each running machine provides
another channel interface which permits interaction with the machine infrastructure
rather than the bundle running in the machine. This is channel interface is known as
machine channel and is also shown in Figure 17. All interactions with the machine are
via the TSSCP described earlier.
Within the machine infrastructure a component called the connection manager is
responsible for the management of named channels. The interface to this component
is shown in Figure 18 below. This component is not accessible to bundles executing
with the machine.

boolean connectChannelToName(String host, int port, String Channel
name)
Connect to another TS Machine

ITSChannel getAbstractChannel(String name)
Return an abstract Channel

Port_id listenForConnectionAndBindToChannel(String name)
Wait for binding to a remote named channel

Figure18 Connection Manager interface

The pseudo code for a machine X establishing a channel between a named channel
called in contained within machine Y and a named channel called out on machine Z
is as follows. Machine X sends a TSSCP request to the machine Y requesting that a
named channel called in is established. Machine Y. Machine Y calls the
listenForConnectionAndBindToChannel method within Machine Y with “in” as a
parameter. The connection manager starts a thread listening for an incoming request
and returns the port via TSSCP to machine X. Next, machine X sends a TSSCP
message to machine Z with parameters “out” and the address of the node hosting Y
and the port returned by machine Y.. Machine Z calls the connectToChannelName
method of Z’s connection manager. This connection manager establishes a connection
with machine Y and the channel is established. The getAbstractChannel method
provided by the connection manager is where the channel implementation resides.
The code running in the bundle calls this method indirectly when the machine
interface method of the same name is called.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 13/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

CINGAL Protection Model
The model described thus far is a perfect virus propagation mechanism. Code may be
executed on remote nodes and that code may create new processes, update the store,
create name bindings and fire bundles on other thin servers. The CINGAL system
implements a two level protection system. The first level restricts the firing of bundles
on thin servers; the second restricts what bundles can do when they are running.
However, before describing the CINGAL protection model a distinction must be
made between the ability to make use of services provided by CINGAL nodes and the
ability to deploy and run code on nodes. The use of services running on a CINGAL
server such as a Web server is never restricted by the CINGAL security model, it is
the firing of bundles on a remote server and the operations that the fired bundles may
perform that is subject to security restrictions.
As stated above the first level of restriction is on who is permitted to fire bundles.
Clearly a convention Unix or Windows style security model is not appropriate for thin
servers which do not have users in the conventional sense. Instead, security is
achieved by means of digital signatures and certificates To implement security, each
CINGAL node maintains a list of trusted entities each associated with a security
certificate. This data structure is maintained in a repository called the Valid Entity
Repository (VER) which presents the interface shown in Figure 19 below.

String verPut(byte[] certificate, String type, String subject, Cap Rights)
Adds a new entry in the VER

 void verRemove(String entity)
Deletes an entity from the VER

boolean verify(Bundle b)
Verifies the integrity and authenticity of a Bundle.

Figure19 Valid Entity Repository interface

Bundles presented for firing from outwith a Thin Server node are required to be
signed by a valid entity stored in the valid entity repository. Like many of the data
structures maintained by CINGAL nodes, the VER maintains an associative data
structure. In the case of the VER this data structure is indexed by the entity id and
maps to a tuple including certificates and rights. Operations are provided for adding
(verPut) and removing (verRemove) entities from the repository. Of course these
operations are subject to the second protection mechanism which is capability based.
An example of a signed bundle is shown in Figure 20.

<BUNDLE>
<AUTHENTICATION
 entity="19730129df7442a5bb5373447eb91509"
 signature="DQowLAIUPFq…BQu1JP5JfO44” />

 <CODE entry=”XX"> … </CODE>
<DATA> … </DATA>

</BUNDLE>

Figure20 A Signed Bundle

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 14/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

The attributes of the AUTHENTICATION tag represent the name of an entity in the
VER of the node on which the bundle is being fired and the signature is the signed
body of the code payload of the bundle. The Thin Server deployment infrastructure
provided for deploying bundles from conventional machines provides programmers
with the methods shown in Figure 21 to ease the pain of managing the signing of
Bundles.

Bundle generateSignature(PrivateKey pKey, Bundle b)

Signs a Bundle with the private key of owner.
PrivateKey getPrivateKey(File keystore, String type, String alias,

char[] password)
Retrieves the private key from a key store.

protected
 boolean

verify(byte[] signed)
Verifies the integrity and authenticity of a Bundle.

Figure21 Operations for managing signing

The signing of bundles and their validation on arrival at thin servers prevents the
misuse of Thin Server nodes by unauthorised entities. However it does not prevent a
bundle from interfering with other bundles or entities in the binder or store. Ideally,
bundle could be totally isolated from each other if they wish giving the illusion that
they are the only entities running on a Thin Server node. Conversely, bundles should
be able to share resources if required.
To address these needs, the second protection mechanism provided by thin servers is a
capability based protection mechanism. In addition to the signatures stored in the
VER, Thin Server nodes store segregated capabilities for entities stored in the store,
sBinder, pBinder and the VER itself. Whenever a running bundle attempts an
operation, the capabilities stored in the VER associated with the entity that invoked
the operation are checked. The operation only proceeds if the entity holds sufficient
privilege. Further discussion of these mechanisms is beyond the scope of this
document.

Dynamic Deployment using the Deployment Engine
The CINGAL system provides the infrastructure for deploying arbitrary components
in arbitrary geographical components which is a prerequisite for the deployment of
Global Smart Spaces. However, it is not sufficient. Some infrastructure needs to be
provided to: a) describe global architectures and b) to deploy components from the
descriptions. This requirement is addressed by a description language and a
deployment engine and mobile code documents and tools which are described below.

Deployment Engine
The Deployment Engine distributes autonomous components which perform a
specific computation/function (service). The deployment engine consists of a parser
that reads a Deployment Description Document (DDD) and a deployer which
transmits bundles which perform the tasks necessary to instantiate the architecture
described in the DDD. These tasks typically consist of deploying components,
running components and configuring the topology of the deployed application.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 15/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Control Documents
Central to the deployment process are mobile code tools and XML control documents
– to do lists and task reports. To do lists are composed of a set of Tasks which detail
actions a tool must attempt to perform upon arrival at a Thin Server. Consequent task
report documents list the outcomes of each task and any other associated information.
When the tool completes its assigned tasks a task report is sent back to the
deployment engine. An example to do list and task report is shown in Figure 22
below.

<ToDoList>
 <Task guid="urn:gloss:aEcncdeEe" type="INSTALL">
 <datum id="PayloadRef">urn:gloss:a222jdjd2s</datum>
 </Task>
 <Task guid="urn:gloss:aBcbcdebe" type="INSTALL">
 <datum id="PayloadRef">urn:gloss:b333jdjd2s</datum>
 </Task>
</ToDoList>

<TaskReport>
 <TaskOutcome guid="urn:gloss:aEcncdeEe" success="TRUE">

<!-- TaskOutcomes can have zero, one or many datum
elements which are bindings and data this
permits any application specific information
to be sent back to the Deployment Engine -->

 <datum id="StoreGuid">AECJCJDKSKDLDJSUVDJD</datum>
 </TaskOutcome>
 <TaskOutcome guid="urn:gloss:aBcbcdebe" success="FALSE">
 <datum id="Error">403</datum>
 </TaskOutcome>
</TaskReport>

Figure 22 – Example to do list and consequential task report

Mobile code tools are CINGAL bundles which are configurable by attaching an
appropriate to do list to the bundle which encloses the tool. The deployment engine
utilises three primary tools: Installers, Runners and Wirers. An example of an installer
bundle is shown in Figure 23 below which carries a payload of a bundle containing
two Java classes named MatchingEngine and HearsayClient in addition to the
installer code itself which is of of class uk.StAnd....Installer. Note that in addition to
the classes, the bundle also carries within its payload a to do list as described above.
Note that the payload reference identifies the datum with id=”urn:gloss:a222jdjd2s”
as the bundle to be installed.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 16/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

<BUNDLE>
 <AUTHENTICATION entity="197301m7wWwrPxX9..EySLGU"
 signature="kUdzrv6T..fFNn5Kap" />
 <CODE entry="uk.StAnd....Installer" type="java">
 <Class name=”uk.StAnd....Installer"
 <!-- MIME Encoded Class -->
 </Class>
 </CODE>
 <DATA>
 <DATUM id="urn:gloss:a222jdjd2s">
 <BUNDLE>
 <AUTHENTICATION entity="1973012..91509"
 Signature="DQowLAIUNs..if1Dn5Kap" />
 <CODE entry="MatchingEngine" type="java">
 <Class name="MatchingEngine">
 <!-- MIME Encoded Class -->
 </Class>
 <Class name="MatchingEngine">
 <!-- MIME Encoded Class -->
 </Class>
 <Class name="HearsayClient">
 <!-- MIME Encoded Class -->
 </Class>
 </CODE>
 <DATA>
 <DATUM />
 /DATA>
 </BUNDLE>
 </DATUM>
 <DATUM id="ToDoList">
 <ToDoList>
 <Task guid="urn:gloss:aEcncdeEe"
 type="INSTALL">
 <datum id="PayloadRef">
 urn:gloss:a222jdjd2s
 </datum>
 </Task>
 </ToDoList>
 </DATUM>
 </DATA>
</BUNDLE>

Figure 23 An installer

Installer tools install an arbitrary number of bundles into the store of the Thin Server
to which they are sent. Runner Tools start the execution of bundles installed in the
store of a Thin Server. Wirer Tools are responsible for making concrete connections
between pairs of components using the named channel mechanisms described above.
Thus components move between three states as they move towards becoming
functional components of a deployed architecture:

Deployed – corresponds to the state when a bundle has been installed into the
TSStore of a node.
Running – corresponds to the state when a bundle has started computation.
Any read/write on named channels will block as they have not been
connected.
Wired – corresponds to the state when a bundle has started computation and
all abstract channels have been connected to other components.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 17/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Deployment Description Document
A Deployment Descriptor Document is a static description of a distributed graph of
components. An example DDD is shown in Figure XX1. From this example it can be
seen that a DDD specifies where to retrieve components (Bundles), the machines
available, the mapping of components to machines (a deployment) and the
connections between abstract channel pairs. These are specified in the bundles, nodes,
deployments and connection sections respectively.

<DDD name="gloss infrastructure">
 <bundles>
 <bundle name="MatchingEngine"
 code="bundles/MatchingEngine.xml" />
 <bundle name="HearsayCachingServer"

 code="bundles/cachingBundle.xml" />
 </bundles>
 <nodes>
 <node id="als machine" address="129.127.8.34" />
 <node id="andrews machine" address ="129.127.8.23" />
 <node id="grahams machine" address ="129.127.8.35" />
 </nodes>
 <deployments>
 <deployment name ="St_Andrews_Hearsay_Engine"
 bundle="MatchingEngine"

 target="Als Machine" />
 < deployment name ="St_Andrews_Hearsay_Infrastructure"
 bundle="HearsayCachingServer"

 target="andrews machine" />
 < deployment name ="Fife_Hearsay_cache"
 bundle="HearsayCachingServer"

 target="grahams machine" />
 </deployments>
 <connections>
 <connection>
 <source deployment="St_Andrews_Hearsay_Engine"
 channel="OutGoingMatches" />
 <destination
 deployment=

 "St_Andrews_Hearsay_Infrastructure"
 channel="IncomingMatches" />
 </connection>
 <connection>
 <source deployment="Fife_Hearsay_Cache"
 channel="DownstreamCache" />
 <destination
 deployment=
 "St_Andrews_Hearsay_Infrastructure"
 channel="UpstreamCache" />
 </connection>
 </connections>
</DDD>

Figure 24 A Deployment Description Document

The Deployment Process
The deployment process is as follows, the DDD is input to the Deployment Engine
(this process is known as compilation of the DDD). Following compilation, the engine
retrieves the specified bundles from a component catalogue and installers are

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 18/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

configured (by creating an appropriate to do list). Next the installers are fired (sent to
appropriate nodes and executed) to install required components onto Thin Servers
throughout the network. One installer is fired per Thin Server. Each installer sends
back a report to the deployment engine listing the TSGUIDs of each installed bundle.
Figure 25 shows the installation process with the installers running on the set of thin
servers specified in the DDD shown in Figure 24.

Figure 25 The Installation Process

Upon completion of this phase of the deployment process the required bundles are
stored in each Thin Server’s store as shown in Figure 26.

Node: Als machine

Node: Andrews Machine Node: Grahams machine

Stage: Installed

TSStore TSStore

TSStore

St_andrews_hearsay_infrastructure
stored into the TSStore on Andrews
Machine

St_andrews_hearsay_engine
stored into the TSStore on
Als Machine

Fife_hearsay_cache stored into the
TSStore on Grahams Machine

Figure 25 Result of the Installation Process

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 19/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Each installer tool returns a Task Report to the initiating site containing the store
TSGUID for each bundle installed. The example below shows the task report returned
by the Installer sent to Als Machine.

Lists the store GUID the bundle is stored as in the store
Figure 26 Task report sent from Als Machine

Following installation, the deployment engine configures the set of runners by
creating an appropriate to do list. These runners are fired to start execution of all
‘dormant’ installed bundles for this deployment. One runner is fired per Thin Server.
Figure 27 shows the runner Bundle for Als machine showing the to do list instructing
the tool to fire a specified bundle from the Store. This bundle is the bundle installed
earlier by the installer.

 ToDoList
 Instructs Runner tool to fire
 specified bundles from the store of
 the Thin Server it is fired on

Runner Tool
Classes required for the Runner

Figure 27 The installer bundle sent to Als Machine

Figures 28 and 29 show the runners executing at each Thin Server to fire the
appropriate bundles from the Thin Server stores and the result of their execution.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 20/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Als machine

Andrews Machine Grahams machine

Stage: Runners fired onto
required ThinServers.

TSStore TSStore

TSStore Runner configured to fire a
previously installed bundle in store

Runner

RunnerRunner

Runner configured to fire a
previously installed bundle in store

Runner configured to fire a
previously installed bundle in store

<ToDoList>
<ToDoList>

<ToDoList>

St_andrews_hearsay_infrastructure Fife_Hearsay_Cache

St_Andrews_Hearsay_Engine

Figure 27 The runner bundles running on the distributed thin servers

Node: Als machine

Node: Andrews Machine Node: Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Running

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

Figure 28 Components running but not connected

As with the installation process, each Runner tool returns a Task Report listing the
connector of the enclosing machine for each fired bundle. Figure 29 shows the task
report returned by the Runner fired on Als Machine.

Information about the enclosing machine the bundle was fired on.
Allows later communication with the machine or resource.
Format :
<IP Address>-<MachinePort>-<ResourcePort>

Figure 29 Task report sent from Als Machine

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 21/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

The last step in the process is to connect the named channels on each running bundle
to assemble the global application topology. To achieve this, the deployment engine
first configures wirers by creating appropriate to do lists and fires them to connect the
named channels in each machine. One wirer is used per connection. The two nodes
which hold the channels to be connected are labelled arbitrarily as the primary and
secondary nodes. The primary node is where the wiring process will begin, the other
end at which the connection is to be created is known as the secondary node.
Each wirer created is provided with configuration data describing

1. The connector for each machine – this contains the IP address of the
machine and the machine and resource ports.

2. The name used by executing bundle to reference the channel in both
machines (may be different for each machine).

Shown in Figure 30 is the wirer Bundle for Als Machine which is (arbitrarily chosen
as) the primary machine for the connection between the named Channels
“OutgoingMatches” and “IncomingMatches”.

Wirer Tool
Classes required for Wirer

ToDoList
Instructs Wirer Tool to connect the
abstract channel “Outgoing
Matches” in the Primary Machine to
the abstract channel “Incoming
Matches” in the secondary machine

Figure 30 The wirer bundle sent to Als machine

As described above, the Thin Server provides a TSSCP protocol permitting the wirer
to communicate with the Connection Manager. The result of the primary phase of the
channel establishment process for the working example is shown in Figure 31.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 22/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Als machine

Andrews Machine Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wirers fired to Primary machines to set up primary phase of connection
process Connection Callback listening in each machine for incoming connection

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

<ToDoList>Wirer <ToDoList>Wirer

IPC IPC

Connection
Callback
Port 4512

Connection
Callback
Port 6534

Connection
Callbacks

listening for
incoming

connection from
secondary
machines

IPC with
connection

manager to set up
connection on

primary machines

Figure 31 First Phase of Channel establishment

Following completion a listener at the primary node, configures another wirer bundle
(its ‘offspring’) which is sent to the secondary node. The purpose of this wirer is to
connect the named Channel on the secondary node to the waiting channel on the
primary node. When the offspring wirer arrives at the secondary node, it
communicates with the Connection Manager of the machine which requires wiring
and instructs it to connect the second named Channel to the listener on the primary
node as described above and the connection is established.

Als machine

Andrews Machine Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wirers migrated to Secondary
machines to complete connection process

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

If process has attempted a
read/wire on the Abstract
Channel it will block until
the abstract channel has

been connected

IPC

Connection
Callback
Port 4512

Connection
Callback
Port 6534

Connection
Callbacks

listening for
incoming

connection from
secondary
machines

<ToDoList>Wirer<ToDoList>Wirer

IPC

IPC with connection
manager to instruct

connection manager to
connect Abstract Channels

to specified ports

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 23/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

Figure 32 Second Phase of Channel establishment

Once all the wirers have completed (possibly parallel) computation the installation
process is complete and all named Channels are connected as shown in Figure 33.

Node: Als machine

Node: Andrews Machine Node: Grahams machine

St_andrews_hearsay_infrastructure

St_andrews_hearsay_engine

Fife_Hearsay_CacheAbstract
Channel
named

Incoming
Matches

Abstract
Channel
named

OutGoing
Matches

Abstract
Channel
named

Downstream
Cache

Abstract
Channel
named

Upstream
Cache

Stage: Wired and Running

Socket
connected
abstract
channels

Figure 32 Result of installation

Conclusion
At the start of this paper it was claimed that it would describe an architecture which
provides the following:

1. Permits the deployment and execution of components in appropriate
geographical locations.

2. Provides security mechanisms that prevent misuse of the architecture.
3. Supports a programming model that is familiar to application programmers.
4. Permits installed components to share data.
5. Permits the deployed components to communicate via communication

channels.
6. Provides evolution mechanisms permitting the dynamic rearrangement of

inter-connection topologies the components that they connect.
7. Supports the specification and deployment of distributed component

deployments.
In conclusion these claims are critically re-examined.
Claim 1
The CINGAL infrastructure permits bundles to be deployed in arbitrary geographic
locations from conventional machines. Bundles may perform arbitrary computation
and offer arbitrary network services.
Claim 2
The two level security mechanisms provided by CINGAL prevent unauthorised
entities from firing bundles on nodes on which they do not have privilege. The
ownership model which makes uses of standard cryptographic certificate techniques is
well suited to distributed deployment. Tools (not described here) but which operate in

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 24/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

a similar manner to the deployment tool are provided for managing entity privileges
and updating collections of machines. The capability protection system provided
within CINGAL nodes prevents bundles for malicious or unintentional abuse of the
Thin Server infrastructure.
Claim 3
The programming model is familiar to application programmers. New concepts have
been introduced, for example, named channels, but these are not unlike abstractions
commonly used by application programmers. Programmers can write bundle code in
Javascript or Java and in theory the system could be extended to support
programming arbitrary languages.
Claim 4
The store and binder provided by Thin Server nodes support content addressed
storage which permits code and data to be stored with zero chance of ambiguous
retrieval. The binder permits objects to be symbolically named to facilitate the
retrieval of components whose content keys are not known. The binder also provides
an evolution point supporting update of component mappings.
Claim 5

8. Permits the deployed components to communicate via communication
channels.

The CINGAL infrastructure supports asynchronous channel based communication. A
variety of mechanisms are provided for the establishment of channels including
default channels to the progenitors of bundles, standard (socket-based channels)
between conventional clients and Thin Server machines and named channels.
Claim 6

9. Provides evolution mechanisms permitting the dynamic rearrangement of
inter-connection topologies the components that they connect.

A number of novel evolution mechanisms are provided by the architecture. Firstly, the
architecture supports the ability to remotely update components. Secondly flexible
binding between components is made possible thorough the binder and store
interfaces. Most importantly, distributed architectures may be re-arranged by
unbinding and reconnecting named channels within running machines running on
Thin Server nodes.
Claim 7
Distributed Deployment Description documents support the specification of
distributed architectures. The deployment engine technology combined with the Thin
Server infrastructure permits these distributed deployments to be realised into running
instances of component based architectures. The process of deployment from
specification through to having a connected collection of running components on
distributed nodes is totally automated.

Future Work
In the future we propose to expand the system in two primary ways. Firstly we would
like to make the specification of distributed components more declarative. To this end
we are currently investigating the use of constraint based specification languages. It is
our intention to construct higher level specifications and a set of tools to support them
and compile these specifications down onto DDD documents. Secondly, we are
investigating how evolution can be specified at the DDD level. Since we use DDDs to

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D15
AN INFORMATION FLOW ARCHITECTURE FOR
SMART SPACES

 PAGE 25/25

© 2001 GLOSS CONSORTIUM

13/11/03
VERSION 1

specify deployments, it seems natural to have high level descriptions of evolution and
automatically generate bundles to enact the necessary changes.

