
 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D16.0: INITIAL COMMON LANGUAGE
IMPLEMENTATION

© 2001,2002 GLOSS CONSORTIUM

SEPTEMBER 2002
1.0

IST BASIC RESEARCH PROJECT
SHARED COST RTD PROJECT
THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO
PROJECT OFFICER: JAKUB WEJCHERT

Global Smart Spaces

D16.0 Initial Common Language Implementation

SEPTEMBER 2002, STRATHCLYDE/WP6/V1.0
RICHARD CONNOR, DAVID LIEVENS, PAOLO MANGHI, STEVE NEELY, FABIO

SIMEONI AND PADDY NIXON

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D16.0: INITIAL COMMON LANGUAGE
IMPLEMENTATION

© 2001,2002 GLOSS CONSORTIUM

SEPTEMBER 2002
1.0

IST Project Number IST-2000-26070 Acronym GLOSS

Full title Global Smart Spaces

EU Project officer Jakub Wejchert

Deliverable Number D16 Name Initial Common Language Implementation

Task Number 1 Name Flexible Binding Mechanism

Work Package Number WP6 Name Theories of Mobility

Date of delivery Contractual October 2002 Actual September 2002

Code name Version 1.0 draft ? final ?

Nature Prototype ? Report ? Specification ? Tool ? Other:

Distribution Type Public ? Restricted ? to:

Authors (Partner) R. Connor, D. Lievens, P. Manghi, S. Neely, F. Simeoni and P. Nixon (Strathclyde)

D. Lievens Contact Person

Email david@cis.strath.ac.uk Phone +44 1415484310 Fax +44 1415525330

Abstract
(for dissemination)

The this report discusses a language-level binding mechanism between a typed
programming language and XML. Through it, programs written, for example, in Java can
safely bind to XML encoded data while maintaining a high degree of resilience to change.

In particular, any changes to the structure of the data that are irrelevant to the binding
component do not invalidate the binding. This is significantly better than the binding
mechanisms in legacy middleware such as COM or CORBA, where any change to the
structure of the data may require a complete redeployment of all the components
cooperating in the distributed application -not only those that are directly affected. Such
resilience to change is paramount for global smart applications, where redeployment may
be awkward for many components (e.g. controlling software of a smart room).

The mechanism is language-specific, but is explored in the paper in terms of a
canonical language that is flexible enough to capture many typed programming languages,
including the most commonly used imperative and object oriented ones such as Java, C++
and C. The ability to adapt the mechanism for legacy programming languages is very
important for GLOSS, as it is to be expected that large-scale smart applications will draw
upon existing tools and technologies and may therefore be more conveniently built in one
or another existing programming language.

* This paper has been published in Elsevier's Journal on Information and Software
Technology 44(2002) pp. 217-228.

Keywords XML, binding mechanism, programming language(s), SNAQue prototype

1. INTRODUCTION

Values of existing typed programming languages are increasingly generated and manip-
ulated outside the language jurisdiction. Instead, they often occur as fragments of XML
documents (cf. [1]).

This may be because the containing documents are semistructured, i.e. their structure is
too irregular or unstable to be effectively handled by traditional programming languages
or DBMSs (cf. [2,3]). It may also occur when the document is more disciplined, but needs
to be exchanged across proprietary boundaries in a standard and self-describing format.

As an example, consider the following XML document d, where some irregularities have
been intentionally added to the data for sake of illustration.

<staff>

<member code = "123517">

<name>Richard Connor</name>

<home>www.cis.strath.ac.uk/~richard</home>

</member>

<member code = "123345">

<name>Steve Neely</name>

<ext>4565</ext>

<project>

<name>SNAQue</name>

<project/>

</member>

<member code = "175417">

<ext>4566</ext>

<name>Fabio Simeoni</name>

</member>

</staff>

On a much larger scale, this irregularity would prevent the document from being con-
veniently managed within the typed framework of conventional technology. While union
types and object-oriented features may accommodate some of the irregularity, their abuse
would soon degrade the performance of the system and complicate program specification
and maintenance.

Consider instead the fragment d′ of d shown next:

<staff>

<member code = "123517">

<name>Richard Connor</name>

</member>

<member code = "123345">

<name>Steve Neely</name>

<member code = "175417">

<name>Fabio Simeoni</name>

</member>

</staff>

For most object-oriented languages, d′ may be an XML encoding of an object staff of
class Staff, where

class Staff {
private Member[] member;

Member[] getMembers() {...}
void setMembers(Member[] members) {...}
...}

and Member is the class:

class Member {
private String name;

private int code;

String getName() {...}
void setName (String n){...}
int getCode() {...}
void setCode (int c){...}
...}

This simple observation raises the expectation that programming over d′ be as simple,
safe, and efficient as programming over staff with existing programming languages. In
particular, we require these good properties to scale, i.e. hold for generalised computations
over XML fragments considerably larger than d′. Unfortunately, we believe that none of
the current approaches fully satisfies such requirement.

1.1. Background
To date, computations over XML data can be specified in a variety of paradigms, models

and languages. Two kinds of approaches, however, appear to prevail: dedicated query
languages and bindings to programming languages, typically object-oriented ones.

In query languages such as [4–7], queries have a familiar SQL-like structure, but contain
powerful path expressions specified against the tree topology of the data. This gives the
languages the flexibility required to compute over data with irregular or partially known
structure. It makes them also more succinct than full-fledged programming languages for
most operations of data filtering and transformation.

However, query languages are usually not Turing-complete, nor well suited to complex
programming tasks over large datasets, possibly involving recursion. Furthermore, they
are essentially untyped, except with respect to the tree structure of the data. While this
is justified in the general case by the typeless nature of the format, potential regular-
ity in (subsets of) the data could and should be exploited for program verification and
optimisation.

Language bindings are instead defined by implementing programming interfaces to one
of two possible in-memory representations of the data. In the Document Object Model

interface (cf. [8]), the data is organised and manipulated as a labelled tree. In the Simple
API for XML (cf. [9]), the data is a string of characters organised and processed along
parsing events.

Beside performance-related differences, both solutions impose an interpretation of the
data which generalises their structural relationships (e.g. nodes of a tree), but conveys
only indirectly and too concretely their intended meaning (e.g. staff of a university de-
partment). When computations explicitly address the structural properties of the data
(e.g. adding or removing a node, searching for a string in the data), this interpretation is
adequate. In most cases, however, it complicates program specification, making it tedious,
error-prone and hard to maintain.

Consider, for example, any computation over the names and codes of the staff members
in d. In a pure implementation of the DOM interface for a Java-like language, the code
may include something like:

int code;

String name=null;

Element staff=d.getDocumentElement();

NodeList members =

staff.getElementsByTagName("member");

int memberCount = members.getLength();

for (int i=0;i<memberCount;i++) {
Element member = (Element) members.item(i);

code = Integer.parseInt(member.getAttribute("code"));

NodeList children = member.getChildNodes();

int length = children.getLength();

for (int j=0;j<length;j++) {
Node child = children.item(j);

if (child.getNodeType()==Node.ELEMENT NODE) {
String tagName= ((Element) child).getTagName();

if (tagName.equals("name")) name=

((characterData) child.getFirstChild()).getData(); }
...do something with name and code ...}}

Even for a simple task, the code is highly convoluted and inefficient. Partly, this is
due to the document-oriented nature of any XML programming interface. For instance,
semantically related data must be accessed with the different algebras of elements and
attributes. Similarly, manipulating atomic data requires an implicit or explicit cast from
the type of strings, the only available. More generally, the logic of the computation is
unnecessarily expressed in an algebra of trees, while domain-specific concepts (e.g. names
and codes) are relegated to the role of run-time parameters.

The same task could have been specified directly against the object staff of class Staff
defined above, and as simply as:

Member[] members = staff.getMembers();

for (int i=0;i<members.length;i++) {

int code = members[i].getCode();

String name = members[i].getName();

...do something with name and code ...}

The code is now aligned to the semantics of the application. It is also more succinct
and less redundant, for generic operations on staff and staff members do not have to
be repeated within specific computations, but can be factored out in class declarations,
thoroughly tested, and then reused.

Inadequate data abstractions also compromise static checking of computations. Cor-
rectness can be guaranteed for operations on trees and strings, but not staff members.
For example, the following invocation:

NodeList members = staff.getElementsByTagName("mebmer");

where "mebmer" is a typo for "member", would silently compile and return a null

value only at run-time. Safety is thus responsibility of the programmer, not the system.
Programmatic checks worsen readability and maintainability of the code, and are not
always sufficient to guarantee correct behaviour. In the lack of some description of the
data (e.g. a DTD), the typo may be interpreted as the absence of required data and
thus trigger unintended behaviour. Even assuming some data description, the typo may
accidentally identify some other data or, in the best case, be simply signalled at run-time.

For similar reasons, the system can optimise resources only within the limits of its static
knowledge of the data. For instance, it ignores the fact that all staff members have names
and codes.

1.2. Extraction Mechanisms
Motivated by the previous observations, we aim at defining high-level bindings between

XML and existing programming languages, which preserve the intended semantics of the
data.

Specifically, we propose language-specific mechanisms that extract self-describing rep-
resentations of language values from arbitrary XML documents, and transform them into
their counterparts within the language. Thereafter, the extracted data are computed over
in a familiar, expressive, and robust environment.

To achieve this for a given language, we interpret the extraction of a value as the
projection of its language type over the containing XML document. Following the previous
example, the projection of class Staff over d would result in the extraction of the object
staff.

More formally, let D be the set of XML documents, L a typed programming language,
and V and T the value and type spaces of L, respectively (see Figure 1). Let also
sd : V → D be a self-describing interpretation of L’s values in D, and ¹ in D × D a
relation of ‘inclusion’ between XML documents.

Definition 1.1 Let v ∈ V. v is extractable from d ∈ D according to T ∈ T if: (i) v has
type T , and (ii) there exists d′ ¹ d such that sd(v) = d′.

Extraction
Mechanism<

V

T

d’

D

T

sd

L

v

d

Figure 1. An extraction mechanism for L

Finally, an extraction mechanism for L takes both a document d and a type T , and
returns a value v extractable from d according to T , if one exists.

An extraction mechanism is invoked by a programmer, via some interface to the lan-
guage. If no extractable value can be returned, the programmer is notified of the failure.
In case of successful extraction, the returned value may still not fully satisfy the program-
mer’s requirements.

The reason is that, when passing a type to the mechanism, the programmer may not be
aware of the exact structure of the target document. Such a type will probably be defined
after an eye-inspection of the document or, if available, a description of its structure. As
a result, the type may be an under-specification or an over-specification of the data that
are potentially relevant to the programmer.

These sort of misjudgements may be very frequent, especially in correspondence with
large documents in which data have been inserted at different times and possibly by
different users with a different cognition of data representation.

In general, we require that some quantification of relevance be always returned along
with the value extracted by the mechanism, and Section 6 will present one quantification
scheme in more detail. By interpreting the quantification, the programmer may conclude
the inadequacy of the proposed type, refine it, and then re-invoke the mechanism in a
prototyping fashion.

1.3. Outline
In the rest of the paper, we concentrate on the formal definition of an extraction mech-

anism. This is done in Section 4, after the definition of a simplified syntax for XML data
and a typed language core in Section 2 and Section 3, respectively.

Section 5 completes the definition of the extraction mechanism by presenting an algo-
rithm that implements it. The algorithm is then used to illustrate a sample quantification
scheme in Section 6. Section 7 presents a prototype implementation of the mechanism,
while Section 8 and Section 9 examine related work, draw conclusions, and outline further
work.

2. A DOCUMENT SYNTAX

In this Section, we define a syntax for XML documents that isolates the data-oriented
features of the format (e.g. naming and nesting) from its document-oriented features (e.g.
ordering, attributes, processing instructions, etc.). In practice, element attributes may be
replaced by subelements.

Definition 2.1 Let D be the language of documents defined by the following grammar:

d, d1, d2 ::= <> | s | < l → d > | d1 ∧ d2

where l ∈ Lbl, s ∈ Str, and the sets Lbl of labels and Str of strings are pre-defined
languages over the same alphabet of characters.

A document d is atomic or complex. An atomic document is either the empty document
<> or else a string. A complex document is either the singleton document < l → d > or
the concatenation d1 ∧ d2 of two complex or empty documents. Finally, we shall consider
equal two documents that differ only in the ordering of components (e.g. d1∧d2 = d2∧d1).

Essentially, we interpret a document as an edge-labelled tree, in slight contrast with
the standard interpretation of XML documents as node-labelled trees. This choice allows
us to simplify the formal treatment but has no impact on the applicability of our results.

In the rest of the paper, we shall abbreviate d =< l1 → d1 > ∧ . . .∧ < lp → dp > with
< l1 → d1, . . . , lp → dp > and refer to l → d as to an l-field with name l and value d. We
will also use the function FVl which takes a document and returns the set of its l-field
values.

Definition 2.2 Let l ∈ Lbl. Let FVl : D → ℘(D) be the function:

FVl(d) =

{d′} d = [l → d′]
FVl(d1)

⋃
FVl(d2) d = d1 ∧ d2

∅ otherwise

As an example, the following document d

< member →< name → Richard, age →<> >>

is a rewriting of the XML syntax

<member>

<name>Richard</name>

<age/>

</member>

while FVmember(d) = {< name → Richard, age →<>>}.

3. A LANGUAGE CORE

In this Section, we present the language L for our sample extraction mechanism of
Section 4. For our purposes, it suffices a language core defined around a value notation,
a language of structural types, and a relationship of typing between the two. Extensions
to full-fledged languages with value operators or object-oriented types do not present
particular problems.

Along the way, we follow a principle of generality that allows extraction mechanisms
for other typed languages to be derived from L’s.

We have chosen for L a selection of the type constructs commonly found in existing
programming languages. Available types are constructed from a range of atomic types
B1, B2, . . . , BN . They include record, set, and union types, possibly recursively defined.
Record constructors are the singleton record type [l : T] and the concatenation T1 ∧ T2

of two disjoint record types, where two record types are disjoint when they have no field
name in common. Set types are denoted by set(T), where T is the member type of
the set. Note that we could have chosen bag types that, differently from set types, can
describe repeated sub-documents of a given document. The extension does not present
particular problems but it slightly complicates the formal treatment and has been avoided
here. Recursive types are denoted by µX.T , where T is the body of the type and X a
type variable, and union types by T1 ∨ T2, where T1 and T2 are the branch types of the
union. Contrary to most languages, union types are untagged, as we do not need tags to
describe alternatives in the structure of the data – of course, this does not exclude the
use of tagged unions.

Definition 3.1 Let T be the language of types generated by the following grammar:

T, T1, T2 ::= Bk | X | [l : T] | T1 ∧ T2 | T1 ∨ T2 | set(T) | µX.T

where l ∈ Lbl, X ∈ V ar, k ∈ [1, n].

As for documents, two types are equal if they differ only in the ordering of the compo-
nents (e.g. T1∧T2 = T2∧T1 and T1∨T2 = T2∨T1). Similarly, we shall implicitly extend to
types the abbreviations, conventions, and auxiliary functions introduced for documents.

The values of L include the elements of the atomic types, singleton records [l = v],
disjoint concatenations v1∧v2 of two record values, sets {v1, . . . vn}, and the empty set { }.
To improve readability, we do not syntactically distinguish the operations of concatenation
of documents, types, and values. The context shall clarify the domains of definition. In
the following examples, we shall assume that L include integer numbers n of type int
and strings ”s” of type string among its atomic values and types. Finally, value equality
follows the same rules as document and type equality.

Definition 3.2 Let V be the language of values generated by the following grammar:

v, v1, . . . , vn ::= bk | [l = v] | v1 ∧ v2 | { } | {v1, . . . , vn}
where l ∈ Lbl and bk ∈ Bk.

The relation of typing between values and types is standard and can be defined as
follows:

Definition 3.3 Let d ∈ D, T ∈ T. d has type T if d : T , where :⊆ D×T is the typing
relation inductively defined by the following rules:

bk : Bk (ATM) { } : set(T) (ESET)

v1 : T, . . . , vn : T

{v1, . . . , vn} : set(T)
(SET)

v : T
[l = v] : [l : T]

(SREC)

v1 : T1 v2 : T2

v1 ∧ v2 : T1 ∧ T2
(REC)

v : T
[
µX. T/X

]

v : µX.T
(RCS)

v : T1

v : T1 ∨ T2
(ULFT)

v : T2

v : T1 ∨ T2
(URGT)

where T
[
µX. T/X

]
denotes the standard operation of (capture-avoiding) variable substi-

tution

4. AN EXTRACTION MECHANISM

In this Section, we provide a self-describing interpretation of language values as well as
an inclusion relation between documents.

Definition 4.1 Let sd : V → D be the function defined as:

sd(bk) = textify(bk)

sd([l = v]) =

<> v = { }∧n
i=1 < l → sd(vi) > v = {v1, . . . vn}

< l → sd(v) > otherwise

sd(v1 ∧ v2) = sd(v1) ∧ sd(v2)

where textify is any function that returns string representations of atomic values.

The interpretation is straightforward, except perhaps for the case of set values, which
are interpreted only within record values. The reason is that set values are not directly
supported in D and must be interpreted in correspondence with repeated field names
within complex documents.

For example, the document

<member →< name → Steve >,
member →< name → Fabio >>

interprets the value

[member = {[name = “Steve′′], [name = “Fabio′′]}].
In particular, values such as {1, 2}, v ∨ {1, 2}, or [a : {{1, 2}, 3}] cannot be interpreted in
D for no field label is available for their interpretation.

Inclusion of documents is susceptible of different interpretations. Here, we have followed
the simple intuition according to which d′ is included d if d′ is syntactically contained in
d, with the exception that the empty document is included in any document.

Definition 4.2 Let d, d′ ∈ D. d′ is contained in d if d′ ¹ d, where ¹:⊆ D ×D is the
relation inductively defined by the following rules:

< >¹ d (EMP) s ¹ s (STR)

d1 ¹ d2

< l → d1 >¹< l → d2 >
(SDOC)

d1 ¹ d3 d2 ¹ d4

d1 ∧ d2 ¹ d3 ∧ d4
(DOC)

5. EXTRACTION ALGORITHM

In this Section, we show the algorithm Ext that implements the extraction mechanism
defined in Section 4.

Definition 5.1 Let V⊥ = V
⋃ {⊥}. Let Ext : D × T → V⊥ be the algorithm defined

as

Ext(d, T) =

1 if unf(T)={T}
2 case of T
3 Bk:

4 { if ∃bk s.t. textify(bk)= d
return bk

5 return ⊥ }

6 T1 ∧ T2: return (Ext(d, T1)∧⊥Ext(d, T2))

7 [l : T ′], T ′ = set(T ′′):
8 {if d ∈ Str return ⊥
9 A := ∅
10 for each d′ ∈ FVl(d) {
11 v = Ext(d′, T ′′)
12 if v 6=⊥ A = A

⋃{v} }
13 return [l=collect(A)] }

14 [l : T ′], T ′ 6= set(T ′′):

15 { for each d′ ∈ FVl(d) {
16 v = Ext(d′, T ′)
17 if v 6=⊥ return [l=v] }
18 return ⊥ }

19 otherwise: return ⊥

20 else

21 { for each T ′ ∈ unf(T) {
22 v = Ext(d, T ′)
23 if v 6=⊥ return v }
24 return ⊥ }

where ∧⊥ : V⊥ ×V⊥ → V⊥ is the function defined as:

v1 ∧⊥ v2 =

{
⊥ v1 =⊥ or v2 =⊥
v1 ∧ v2 otherwise

Given d ∈ D and T ∈ T, Ext performs a recursive analysis of both type and document
and it either fails (i.e. returns ⊥) or else derives a value v ∈ V extractable from d according
to T . To achieve this, Ext solves two main problems.

The first is that set values must be extracted along with record values, for the same
reason underlying Definition 4.1. This explains why Ext processes set types only when
processing record types and fails with types such as set(T) ∨ T or set(set(T)).

The situation is complicated further by the possibility that set types do occur within
record types but are ‘protected’ by union or recursive types. Given the type [a : set(T)∨T],
for example, we cannot recursively delegate to the union case the extraction of a value
of type set(T), for we would lose the label a necessary to extract the value set from the
document.

Ext solves the problem by extracting values only according to record types that are
‘flattened’, i.e. contain no union or recursive type fields. This is achieved with the pre-
liminary check on line 1, which invokes an implementation of the function unf . unf is
a generalisation of the standard operation of one-step unfolding of recursive types. In
particular, it one-steps unfolds a union type into the set of its branches, and a record type
into the set of records obtained by one-step unfolding all its non-record field values.

Definition 5.2 Let unf : T → T be the function defined as:

unf(T) =

{T ′
[
µX. T/X

]
} T = µX.T ′

{T1, T2} T = T1 ∨ T2

{[l : T ′] | T ′ ∈ unfR(T)} T = [l : T]
{T ′

1 ∧ T ′
2 |

T ′
1 ∈ unf(T1), T

′
2 ∈ unf(T2)} T = T1 ∧ T2

{T} otherwise

where unfR : T → T is the function

unfR(T) =

{
{T} T = [l : T]
unf(T) otherwise

For example,

unf([a : int∨set(string), b : [c : int ∨ set(int)]]) =
{ [a : int, b : [c : int ∨ set(int)]],

[a : set(string), b : [c : int ∨ set(int)]]}.
A type T is then unfolded if unf(T) = {T}, otherwise is folded.

The second problem occurs when multiple values of type T can be extracted from d.
Due to the presence of set and union types, this possibility is in fact the norm. For
example, consider the document d =< a → 1, a → 2, b → 3, c → four > and the type
T = T1 ∨ T2, where T1 = [a : set(int), b : int] and T2 = [a : set(int), c : string].

¿From Definition 1.1 and Definition 4.1, it is easy to see that the values [a = {1, 2}, b =
3] and [a = {1, 2}, c = ”four”] are extractable from d according to T1 and T2, respectively,
and thus according to T . The same is true of the values [a = { }, b = 3], [a = {1}, b = 3],
[a = {2}, b = 3], etc.

Ext returns one extractable value on the basis of both a best-attempt and a first-attempt
policy. Specifically, it returns: (i) the largest value extractable from d according to a set
type, and (ii) the first value extractable from d according to one of the branches of
union types, when these are ordered from left to right (left-to-right is also the branch
ordering followed by the sub-routine unf). In the previous example, Ext derives the value
[a = {1, 2}, b = 3].

The best-attempt policy is justified by an immediate principle of maximisation of the
data contained in a correctly extracted value. The first-attempt policy is instead more
arbitrary but it simplifies the definition of the algorithm and is thus adequate for the
purpose of a proof of concept.

In lines 21-23, Ext implements its first-attempt policy and either fails or returns the
first extractable value returned by a recursive execution of Ext with d and an unfolding
of T .

In lines 2-19, Ext processes basic, singleton record, and concatenated record types. For
a basic type Bk, Ext is successful only if d ‘textifies’ a value v of type Bk (lines 3-5).

For singleton record types [l : T ′], Ext tries to derive a singleton record value [l : v],
where the shape of v depends on whether T ′ is a set type.

If T ′ is a set type set(T ′′) (lines 7-13), Ext implements its best-attempt policy and tries
to extract a value of type T ′′ from each l-field value of d. The extracted values are then
memorised and eventually grouped into a set value v by the sub-routine collect. Notice
that, in this case, Ext fails only when the document is a string (line 8). Otherwise, it
returns at worst the singleton record [l = { }].

If T ′ is not a set type (lines 14-18), Ext returns the first value of type T ′ extractable
from an l-field value of d. If such value does not exist, Ext fails.

If T is the concatenation of two record types T1 and T2, Ext concatenates the values
extracted from d according to T1 and T2 respectively. The operation of concatenation ∧⊥
refines standard concatenation by returning ⊥ any time one of the operands is ⊥. This
ensures that failing the extraction according to either singleton record type fails the entire
process.

Ext is clearly terminating, for it recursively operates on subdocuments of the input
document and because unf, textify, and collect are trivially terminating. Note that
termination holds under the standard assumption that contractive recursive types, such
as µX.X, are not part of the type language (cf. [10]). Next, we shall also prove that Ext
is sound, i.e. returns a value extractable from d according to T , and complete, i.e. it fails
only when no value of type T can be extracted from d.

This completeness result is already sufficient to give users confidence in applications
of Ext. As shown earlier, however, the first-attempt policy of the algorithm and the
presence of union types prevents the user of assuming any relationship between Ext’s
output and any other value of type T extractable from d. In some cases, this may not be
satisfactory. When executed against the document < a → 1, b → 2, c → foo > and the
type [a : int] ∨ [a : int, c : string], for example, Ext returns the value [a = 1] instead of
the ‘larger’ [a = 1, c = ”foo”].

5.1. Correctness
Lemma 5.3 Let v ∈ V,T ∈ T. v : T if and only if there exists T ′ ∈ unf(T) such that
v : T ′.

Proof. By structural induction on T. The proof is immediate and we shall here discuss
only the cases T = T1 ∧ T2.

Assume v : T . For typing scheme (REC), v = v1 ∧ v2, with v1 : T1, and v2 : T2. For the
inductive hypothesis, v1 : T ′

1 and v2 : T ′
2, for some T ′

1 ∈ unf(T1) and T ′
2 ∈ unf(T2). For

typing scheme (REC) and Definition 5.2, v = v1 ∧ v2 : T ′
1 ∧ T ′

2 ∈ unf(T1 ∧ T2) = unf(T).

Vice versa, assume v : T ′, with T ′ ∈ unf(T). For Definition 5.2, T ′ = T ′
1 ∧ T ′

2, with
T ′

1 ∈ unf(T1) and T ′
2 ∈ unf(T2). For type scheme (REC), v = v1 ∧ v2, v1 : T ′

1, v2 : T ′
2. For

the inductive hypothesis and typing scheme (REC), v = v1 ∧ v2 : T1 ∧ T2 = T .
¦

Proposition 5.4 Let d ∈ D, T ∈ T. If Ext(d, T) 6=⊥ then Ext(d, T) is extractable
from d according to T .

Proof. By induction on the height h of the execution tree of Ext(d, T).

For the hypothesis, the case h = 1 corresponds to one of the cases T = Bk and T ′ =
[l = T ′], with T = set(T ′′). In the first case, Ext(d, T)= bk and sd(bk) = d. The thesis
follows then from typing scheme (ATM), and the reflexivity of document inclusion, which
can be easily proven by structural induction on D. In the second case, v = [l = { }]. For
Definition 4.1 and inclusion scheme (EMP), sd(v) = sd([l = { }]) = <>¹ d. For typing
schemes (SREC) and (ESET), v : T and the thesis is proven.

Assume now an execution tree of height h > 1 and that the thesis is proven for all
execution trees of height h − 1. Let us distinguish the cases in which T is folded or
unfolded.

If T is folded, the hypothesis ensures that Ext(d, T)=Ext(d, T ′)= v 6=⊥ for some T ′ ∈
unf(T). For the inductive hypothesis, sd(v) ¹ d and v : T ′. For Lemma 5.3, v : T and
the thesis is proven.

If T is unfolded, there are three cases to examine:

(i) T = T1 ∧ T2. For the hypothesis and the definition of ∧⊥, Ext(d, T)= v = v1 ∧ v2,
where v1 =Ext(d, T1)6=⊥ and v2 =Ext(d, T2) 6=⊥. For the inductive hypothesis,
sd(v1) ¹ d,v1 : T1,sd(v2) ¹ d, and v2 : T2. For Definition 4.1 and inclusion scheme
(DOC) , sd(v) = sd(v1 ∧ v2) = sd(v1) ∧ sd(v2) ¹ d ∧ d = d. For typing scheme
(REC), v : T and the thesis is proven.

(ii) [l : T ′], with T ′ = set(T ′′). For h > 1, FVl(d) 6= ∅. For the hypothesis, Ext(d, T)=
v = [l = {v1, . . . , vn}], where vi = Ext(di, T

′′)6=⊥, di ∈ FVl(d), for each i ∈ [1, n] and
some n ∈ N . For the inductive hypothesis, sd(vi) ¹ d and vi : T ′′. For Definition 4.1
and scheme (DOC) , sd(v) = sd([l = {v1, . . . , vn}]) =

∧n
i=1 < l → sd(vi) >¹ ∧n

i=1 <
l → di >¹ d. For typing schemes (SREC) and (SET), v : T and the thesis is proven.

(iii) [l : T ′], with T ′ 6= set(T ′′). For the hypothesis, Ext(d, T)= v = [l = v′], where v′ =
Ext(d′, T ′)6=⊥, d′ ∈ FVl(d). In particular, d = [l : d′] ∧ d′′, for some d′′ ∈ (D). For
the inductive hypothesis, sd(v′) ¹ d′ and v′ : T ′. For Definition 4.1 and inclusion
scheme (DOC), sd(v) = sd([l = v′]) =< l → sd(v′) >¹ d. For scheme (SREC),
v : T and the thesis is proven.

¦

Proposition 5.5 Let d ∈ D, T ∈ T, v ∈ V. If v is extractable from d according to T
then Ext(d, T)6=⊥.

Proof. By induction on the height h of the proof tree of v : T .

The case h = 1 corresponds to one of the case v = bk and v = { }. The second case is
excluded by the hypothesis and Definition 4.1. In the first case, T = Bk, Ext(d, T)= bk 6=⊥
and the thesis is proven.

Assume now an execution tree of height h > 1 and that the thesis is proven for all
execution trees of height h − 1. Let us distinguish the cases in which T is folded or
unfolded.

If T is folded, the hypothesis v : T and Lemma 5.3 ensure that v : T ′, for some
T ′ ∈ unf(T), and thus that v is extractable from d according to T ′. For the inductive
hypothesis, Ext(d, T ′)6=⊥ and thus Ext(d, T)6=⊥.

If T is unfolded, there are three cases to examine.

(i) T = T1 ∧ T2. For typing scheme (REC) there exist v1, v2 ∈ V such that v1 :
T1, v2 : T2, and v = v1 ∧ v2. For the definition of ∧, Definition 4.1, inclusion
schemes (EMP) and (DOC), and the hypothesis sd(v) ¹ d, sd(v1) = sd(v1)∧ <>¹
sd(v1) ∧ sd(v2) = sd(v1 ∧ v2) = sd(v) ¹ d. Similarly, sd(v2) ¹ d. For the inductive
hypothesis, Ext(d, T1)6=⊥ and Ext(d, T2)6=⊥. For the definition of ∧⊥, Ext(d, T)=
Ext(d, T1)∧⊥Ext(d, T2) 6=⊥, and the thesis is proven.

(ii) [l : T ′], with T ′ = set(T ′′). The thesis follows immediately from Ext(d, T)=[l = v′],
for some v′ ∈ (V).

(iii) [l : T ′], with T ′ 6= set(T ′′). For the hypothesis v : T and scheme (SREC), v = [l =
v′], and v′ : T ′. For the hypothesis sd(v) ¹ d and Definition 4.1, sd(v) = sd([l =

v′] =< l → sd(v′) ¹ d. From inclusion scheme (DOC), d = [l : d′] ∧ d′′, for some
d′, d′′ ∈ (D), where sd(v′) ¹ d′. For the inductive hypothesis, Ext(d′, T ′)= v′′ 6=⊥,
Ext(d′, T ′)= [l : v′′] 6=⊥, and the thesis is proven.

¦

6. RELEVANCE

In this Section, we present a simple relevance quantification scheme for the extraction
mechanism defined in Section 4. The scheme can be easily embedded in Ext, but we give
it here a separate specification to improve readability.

Let us start with a motivating example. Consider the following document d:

< staff
< member →

< name → David >
< project →

< name → SNAQue, . . . > . . . >
< project →

< name → GLOSS, . . . > . . . > . . . >
< member →

< name → Paolo >
< project →

< name → Tequyla, . . . > . . . >
< project →

< name → TQL, . . . > . . . > . . . > . . . >

and assume that the programmer requires to compute over named projects of staff mem-
bers.

¿From an initial analysis of d, the programmer proposes the type T :

staff : [member : set([project : [name : string]])]]

and the mechanism returns the value v:

[staff = [member = {[project = [name = ”SNAQue”]],
[project = [name = ”TeQuyLa”]]}]].

The programmer did not notice that staff members have more than one project, i.e. d
contains more relevant data than T makes possible to extract.

To inform the user, we quantify the precision with which T describes the data in d that
are relevant to the programmer. To return a readable measure, we distribute it along the
singleton record types occurring in T , i.e where loss of relevant data may actually occur.
The result is a set of annotations for T that may help the user to refine the type and
improve extraction.

In particular, the precision of a singleton record type [l : T ′] is measured with respect
to all the documents that are processed with [l : T ′] on a successful execution path of

Ext(d, T) (by successful execution path of Ext(d, T), we intend a path of the execution
tree of Ext(d, T) along which Ext never fails).

Let thus D[l:T ′] be the set of all such documents, and let P[l:T ′] be the set defined as:

P[l:T ′] = { (d′, [l = v′]) | d′ ∈ DT ′ , [l = v′] = Ext(d′, [l : T ′]) }.

The precision prec[l:T ′] of [l : T ′] is then calculated as:

prec[l:T ′] =

∑
p∈P[l:T ′] vprec(p)

| P[l:T ′] |

where the value precision vprec of a pair in P[l:T ′] is defined as:

vprec(d′, [l = v′]) =

{ |v′|
σ

σ > 0
1 σ = 0

and, in turn, σ = | FVl(d
′) | and

| v′ |=

0 v′ = { }
n v′ = {v1, . . . , vn}
1 otherwise

Informally, prec[l:T ′] is the average of the precisions calculated at each pair (d′, [l = v′]) ∈
P[l:T ′]. Each of these is in turn the ratio between the number of l-field values from which
Ext extracted a value and the number of those it did not.

In particular, low precision for a singleton T1 = [l : set(T ′)] in T suggests that Ext did
not extract values of type T ′ from many l-field values in d. A renewed analysis of the
data may then reveal that the singleton T2 = [l : set(T ′ ∨ T ′′)] allows to extract more
relevant data from d and should thus replace T1. Similarly, [l : set(T ′)] may do better
than a low-precision singleton [l : T ′] if T ′ 6= set(T ′′).

For example, the precision of type T in the previous example may be returned as the
following annotation:

1[staff 1[member : set{ 1
2 [project :1 [name : string]]}]]

The user may then improve extraction by refining T into the type:

[staff : [member : set{[project : set([name : string])]}]]

which has precision 1 on all its singleton record types.

The problem of relevance quantification is certainly complex and identifies an interesting
research topic per se. The scheme presented is fairly simple, and we have introduced it as
a proof of concept. Although we have not yet gathered experimental results, we believe
that the scheme can be useful with large datasets, where the exact structure of relevant
data is not known when the mechanisms is first invoked.

7. SNAQue

Based on the algorithm Ext, we have built a distributed system prototype. The system,
maintained at the Computer Science Department of the University of Strathclyde, is called
SNAQue - the Strathclyde Novel Architecture for Querying extensible mark-up language
(cf. [11]). Although some parts are still under development, the system is currently being
tested in a number of biodiversity projects by the Palaeobiology Research Group at the
University of Glasgow.

SNAQue is a CORBA application that implements an extraction mechanism for a subset
of the CORBA Interface Definition Language (cf. [12]), and therefore for any CORBA-
compliant language (e.g. C, C++, Smalltalk, Java, Ada95, etc.).

E
x
t

CORBA
objects

T

D

T

d

V

v
o

XML

IDL

Client

Figure 2. The SNAQue architecture

The correctness of the system relies directly on the correctness of the extraction mech-
anism defined in Section 4. In particular, SNAQue receives an XML document and an
IDL type description from a remote client, and maps them onto a document d ∈ D and
a type T ∈ T, respectively. It then invokes Ext and transforms the output v ∈ V of type
T in a number of interrelated CORBA objects. By virtue of the mapping from IDL to T,
the objects expose interfaces corresponding to the initial IDL description.

There is always one entry point to the generated CORBA objects: the object o that
corresponds to the root of the XML document. A reference to o is returned to the
client for local binding in programs written in any CORBA-compliant language of choice.
Optionally, SNAQue may register o with a public alias provided by the client. Then any
client informed of the alias can come along and gain remote access to o (see Figure 2).

The details of the mappings from XML to D, IDL to T, and V to the corresponding
CORBA objects are out of the scope of this paper. Roughly, the mapping from XML

concentrates on the data-oriented features of the format, while the mapping from IDL
converts interfaces, sequences, and tagged union types, into records, sets, and untagged
union types in T.

As an example, consider the document d and its fragment d′ introduced in Section 1.
Using SNAQue, it is straightforward to compute over d′ with a code analogous to that
shown in Section 1. One has only to provide SNAQue with the following IDL type
description:

interface Staff {
typedef sequence <Member> MemberSeq;

attribute MemberSeq members; }

interface Member {
attribute String name;

attribute long code; }
With respect to these inputs, SNAQue will create four CORBA objects: one conforming

to the Staff interface and three conforming to the Member interface. It will then return
a reference to the first object to which clients can bind in their programs.

SNAQue choses Java to implement the extracted CORBA objects. In particular, the
Java classes generated by the system for the objects derived above are exactly the Staff

and Member classes shown in Section 1. Similarly, the Java-like code suggested there could
be immediately used to compute over the data.

The choice of CORBA IDL as the type language is an obvious one. It increases the
applicability of the extraction mechanism for L and makes it distributed. However, the
distributed nature raises performance issues, such as those related with every read or
write operation performed on the data across the network.

We are currently investigating two ways of tackling such problems. On the one hand, we
are considering the use of value types, which have been recently introduced into CORBA
to allow objects to be passed by value, rather than by reference. This allows clients to pull
the generated CORBA objects over the network and inject them in the local environment.
On the other hand, we could push computations to the server, by allowing clients to
specify additional methods in the IDL interfaces. For example, the Staff interface could
be extended with a new method:

interface Staff {
typedef sequence<Member> MemberSeq;

attribute MemberSeq members;

Member getMember(in String name) }

SNAQue can not automatically generate the implementation for this method, which
has to be provided by the client. Due to the lack of space, we cannot discuss this facility
in more detail.

8. RELATED WORK

The differences between extraction mechanisms and existing approaches has been largely
discussed in Section 1. It is worth noticing here that extraction mechanisms operate on
arbitrary XML documents and can thus be easily coupled with untyped query languages.
In an integrated environment, the convenience of the first would complement the flexibility
of the second for data with a varying degree of structural regularity.

Other high-level bindings between XML and existing programming languages have been
recently presented (cf. [13–15]. They all map some form of data description (usually
a DTD or an XML Schema) onto language types that capture directly the semantics
intended for the data. For this reason, they operate on fairly regular XML documents
and do not provide facilities for extracting regular subsets from arbitrary documents. In
addition, they have been developed for specific languages (e.g. Haskell, Java) and do not
generalise.

The idea of exploiting regularity in XML, and more generally, semistructured data, has
also motivated a number of approaches.

Early proposals were for extending standard database technology to accommodate some
degree of irregularity in the data, typically via the provision of union types. Although
similar in motivation, such approaches differ from ours in their attempt to provide a total
description of the data. As mentioned in Section 1, significantly irregular data lead to
an uncontrolled use of union types, thereby progressively decreasing system performance
and complicating program specification.

Later proposals assume a dedicated query language as a starting point, but differ in
their data-first or type-first strategy.

Approaches of the first kind infer type information from existing datasets. In this case,
type inference can be performed by the system for the entire database, automatically or
semi-automatically (cf. [16–20]). The resulting types are mainly for users to understand
the data and, to some extent, for query optimisers to improve execution (cf. [21]). Partial
inference can be also performed by users, and the results then fed to the system as hints to
reduce the scope of a search (cf. [22]). Overall, inference-based approaches exploit typing
for resource optimisation, while computations remain essentially untyped.

Approaches of the second kind exploit static knowledge to guarantee computational
safety (cf. [23–26]). To achieve this against a tree-based model, they resort to low-level
types for XML documents. Due to the support of regular expressions, such tree types are
more flexible than high-level types in capturing irregularities in the data (cf. [27–30]).

To the best of our knowledge, Ozone (cf. [31]) is the only attempt to seamlessly integrate
structured and semistructured data in the same typed environment. The system extends
the ODMG model to include semistructured data, and allows structured objects to be
queried with semistructured primitives. Interestingly, it also supports a function for
coercing semistructured data to structured objects according to a type and, as such,
implements a simple extraction mechanism for ODMG. However, our mechanism is proved
correct and returns values of a larger set of types.

9. CONCLUSIONS AND FUTURE ISSUES

We have presented a novel approach to programming over XML data based on language
bindings. The bindings are defined as mechanisms that identify and derive language
values from subsets of arbitrary XML documents. When programming over such subsets,
the approach delivers the computational advantages associated with the host language.
Furthermore, the derived values preserve the semantics intended for the data, and thus
facilitate program specification.

These mechanisms can be formally defined and correctly implemented, and we have
done it for a sample but representative core language. In particular, we have proven the
generality of the sample mechanism by deriving extraction mechanisms for all CORBA-
compliant languages directly from it.

Future research directions concern both theoretical and practical aspects of the inves-
tigation. Beyond XML, we have already extended our results to more general forms of
semistructured data. In particular, we are able to extract language values from graph-
structured data, i.e. in the presence of cycles and sharing. The interested reader is referred
to [32] for the full treatment.

Another interesting direction relates to the definition of inclusion between documents.
The one we proposed follows first intuitions, but alternative definitions could be consid-
ered. As a first example example, inclusion checks may start from arbitrary elements of
the target document, not necessarily the root element. This would save the user the often
tedious task of describing the structure that leads from the root of the document to the
data of interest. It would also give a hint of the flexibility achieved by navigational query
paradigms without reducing the advantages of the approach.

The extraction algorithm has been proved sound but the belief that it is also tractable in
pragmatic terms has not been supported by a formal analysis of its complexity. Although
tests on large data samples have shown acceptable performance even on desktop machines,
the impact of a considerable use of union types remains to be measured. Furthermore,
we are currently working with back-tracking techniques towards algorithms with stronger
properties of completeness.

Relevance quantification could be certainly improved over the sample scheme proposed
in Section 6. In particular, an extraction mechanism could customise a general scheme to
the programmer’s specifications.

Finally, SNAQue is under continuous development, and a web interface to the system
is being published at the time of writing. The research agenda is currently focusing on
whether values can be virtually injected in the value space of the target language rather
than materialised. Single or multiple indexes to regular subsets suggest the possibility
to dynamically synchronise the interface between the language and the database under
updates. At the same time, they raise the opportunity for incremental extractions.

In addition, the client/server scenario raises a number of questions related to the ef-
ficiency of the system and to the possibility of integrating data from distributed XML
servers.

Investigation is needed to identify the cases in which it is more convenient to pull
extracted values at the client side or else push client computations to the server. Com-

pleteness quantification could here be used by both client and server to make intelligent
decisions about data or code migration.

In addition, the possibility of storing and publishing typed interfaces over the data
at the server side suggests interesting data protection and data evolution policies. For
example, the usage and volume of XML data referenced through the interfaces could be
gathered into statistical information that may be used to assess the impact of changes to
the data.

REFERENCES

1. T. Bray, J. Paoli, C. Sperberg-McQueen, Extendible Markup Language (XML) 1.0,
Tech. rep., World Wide Web Consortium, w3C Recommendation (1998).

2. S. Abiteboul, Querying semi-structured data, Database Theory - ICDT ’97, 6th In-
ternational Conference, Delphi, Greece (1997) 1–18.

3. P. Buneman, Semi-structured data, In Proceedings of the Sixteenth ACM SIGACT -
SIGMOD – SIGART Symposium on Principles of Database Systems (1997) 117–121.

4. P. Buneman, M. Fernandez, D. Suciu, UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion, VLDB Journal 9 (1) (2000) 76–
110.

5. S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, The Lorel Query Language
for Semistuctured Data, Journal of Digital Libraries, 1(1) (1997) 68–88.

6. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, XML-QL: A Query Lan-
guage for XML, Tech. rep., World Wide Web Consortium, submission to the World
Wide Web Consortium (Aug. 1998).

7. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: a database man-
agement system for semistructured data, in: SIGMOD Records, 26(3), 1997, pp.
54–66.

8. Document object model (DOM), http://www.w3.org/DOM.
9. M. T. Ltd., SAX 2.0: The Simple API for XML, http://megginson.com/SAX/ (2000).
10. G. Amadio, L. Cardelli, Subtyping recursive types, ACM Transactions on Program-

ming Languages and Systems(TOPLAS), 15(4) (1993) 575–631.
11. A. Stavrianou, Querying XML through a CORBA gateway, Master’s thesis, University

of Glasgow (UK) (September 1999).
12. OMG, CORBA OMG IDL text file - The Object Management Group,

ftp://ftp.omg.org/pub/docs/formal/99-04-01.txt (1999).
13. M. Wallace, C. Ranciman, Haskell and XML: Generic combinators or type-based

translation?, in: Proceedings of the Fourth ACM SIGPLAN International Conference
on Functional Programming (ICFP‘99), Vol. 34-9 of ACM Sigplan Notices, ACM
Press, N.Y., 1999, pp. 148–159.

14. T. B. Factor, Xml data binding and breeze xml studio (white paper) .
15. S. M. Inc., Web Services Made Easier: The Java APIs for XML .
16. S. Nestorov, J. D. Ullman, J. L. Wiener, S. S. Chawathe, Representative objects:

Concise representations of semistructured, hierarchial data, in: A. Gray, P.-Å. Larson
(Eds.), Proceedings of the Thirteenth International Conference on Data Engineering,
April 7-11, 1997 Birmingham U.K, IEEE Computer Society, 1997, pp. 79–90.

17. S. Nestorov, S. Abiteboul, R. Motwani, Inferring structure in semistructured
data, Workshop on Management of Semistructured Data, in conjuction with
PODS/SIGMOD, Tucson - Arizona .

18. S. Nestorov, S. Abiteboul, R. Motwani, Extracting schema from semistructured data,
ACM SIGMOD (1998) 295–306.

19. R. Goldman, J. Widom, DataGuides: Enabling query formulation and optimization in
semistructured databases, in: VLDB’97, Proceedings of 23rd International Conference
on Very Large Data Bases, August 25-29, 1997, Athens, Greece, Morgan Kaufmann,
1997, pp. 436–445.

20. R. Goldman, J. Widom, Approximate DataGuides, in: Proceedings of the second
International Workshop WebDB ’99, Pennsylvania, 1999.

21. M. Fernandez, D. Suciu, Optimizing regular path expressions us-
ing graph schemas (full version), manuscript available from
http://www.research.att.com/~{mff,suciu} (February 1997).

22. P. Buneman, S. Davidson, M. Fernandez, D. Suciu, Adding structure to unstructured
data, Lecture Notes in Computer Science 1186 (1997) 336–350.

23. H. Hosoya, B. C. Pierce, XDuce: A typed XML processing language (preliminary
report), webDB workshop (May 2000).

24. A. Albano, D. Colazzo, G. Ghelli, P. Manghi, C. Sartiani, A type system for query-
ing xml documents, in: Proceedings of ACM SIGIR 2000 Workshop On XML and
Information Retrieval, Athens, Greece, 2000.

25. D. Chamberlin, D. Florescu, J. Robie, Quilt: an XML query language for heteroge-
neous data sources, in: Proceedings of WebDB, Dallas, TX, 2000.

26. S. Cluet, C. Delobel, J. Siméon, K. Smaga, Your mediators need data conversion!, in:
Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD-98), Vol. 27,2 of ACM SIGMOD Record, ACM Press, New York, 1998, pp.
177–188.

27. D. C. Fallside, XML Schema Part 0: Primer, Tech. rep., World Wide Web Consortium,
w3C Candidate Recommendation (Oct. 2000).

28. H. S. Thompson, D. Beech, M. Maloney, N. Mendelson, XML Schema Part 1: Struc-
tures, Tech. rep., World Wide Web Consortium, w3C Working Draft (Dec. 1999).

29. P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes, Tech. rep., World Wide
Web Consortium, w3C Working Draft (Dec. 1999).

30. Arnaud Sahuguet, Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask, in: WebDB-2000, 2000.

31. S. Abiteboul, R. Goldman, T. Lahiri, J. McHugh, J. Widom, Ozone: Integrating
structured and semistructured data, Tech. rep., Stanford University Database Group
(1998).

32. P. Manghi, Extracting typed values from semistructured databases, Ph.D. thesis,
Dipartimento di Informatica, Università di Pisa - Italy (2001).

