GLOSS: GLOBAL SMART SPACES D19
PROJECT NO. IST-2000-26070 FINAL REFEREN CE FRAMEWORK FOR
INTERACTION SURFACES PAGE 1/40

IST BASIC RESEARCH PROJECT

SHARED COST RTD PROJECT

THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO

PROJECT OFFICER: THOMAS SKORDAS

Global Smart Spaces

Final Reference Framework
for Interaction Surfaces

D19

27/10/2003, UNIV. JOSEPH FOURIER/WP7/VERSION 2.0

J. CouTAz, N. BARRALON, C. LACHENAL, G. REY

OCTOBER 27 '™ 2003

© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19

PROJECT No. IST-2000-26070

FINAL REFERENCE FRAMEWORK FOR

INTERACTION SURFACES PAGE 2/40

IST Project Number
Full title

EU Project officer

Deliverable

Task

Work Package
Date of delivery
Code name
Nature
Distribution Type
Authors (Partner)

Contact Person

Abstract
(for dissemination)

Keywords

IST-2000-26070 Acronym GLOSS
Global Smart Spaces

Thomas Skordas

Number D19 Name Final Reference Framework for Interaction Surfaces
Number T Name n/a

Number WP7 Name Interaction Techniques

Contractual October 2003 Actual Oct. 2003

n/a Version 2.0 draftO final &

Prototype @ Report M Specification 0 Tool O Other:
Public ¥ Restricted O to:
J. Coutaz, N. Barralon, C. Lachenal, G. Rey

J. Coutaz

Email Joelle.coutaz@imag.fr Phone +33 4 76 51 48 54 Fax +33 476 4466 75

This document describes the find verson of a reference
framework for undersanding, reasoning and implementing user
interfaces for globa smart spaces. This framework includes an
ontology that makes explicit the concepts of multi-surface
interaction and, based on this ontology, I-AM, a software
infrestructure that supports the dynamic compostion of
heterogeneous interaction resources to form a unified space. In this
space, users can didribute and migrate whole or parts of user
interfaces as if they were handled by a unique computer. 1-AM
provides usars with the illuson of a unified goace & no extra cost
for the devel oper.

Multi-surface interaction, distributed user interface, migratory user interface, user interface
development tool, Interaction Abstract Machine.

OCTOBER 271 2003

© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 3/40

Table of Content

1 INTRODUCTION. c..ceuteutestestestestessessesseeseessessessessessessessenssensessessessessessessessesssessessessessensenses 4
2 M ULTI-SURFACE I NTERACTION ONTOLOGY ..cuveivesviereesenseeseeseessessessessessessesssssssssessessenns 5
S YN 1 =@ Y = S
31 DYNAMIC SOFTWARE RECONFIGURATIONccouummmmnnessannns
32 DYNAMIC DISCOVERY OF INTERACTION RESOURCES............
33 HETEROGENEITY OF INTERACTION RESOURCES.........ccossrrre..
34 USER INTERFACE INFRASTRUCTURES ...
34.1 Infrastructureinthelarge AUra.......ccccoieiieciiecie e
3.4.2 Infrastructureinthe Small: BEACH..........ccccooiiieiinineee e
3.4.3 Infrastructurein the Small: iIROSand POINtRIghtccovviiiinenincnne 13
4 1-AM (INTERACTION ABSTRACT M ACHINE)
AL PRINCIPLES ..ooovvvuuueusuuasssssssssssssssssssssssssssssssssss e85 55 800555885888
42 OVERALL STRUCTURE OF [-AM ..crrrreeeeeevnmsssssssenssssssssssssssss
43 |-AM: CURRENT LIMITATIONS AND HYPOTHESES.......ooovvvvvvvvrsssessnns 18
4.3.1 Current LIMITAtIONSccceieereeieniesieeie e sie e see e ee et ssesseesseseesseenes 18
4.3.2 HYPOLNESES.......oouiieiiiieieeee ettt 18
44 THEPLATFORM LEVEL: THE IAMPLATFORM PACKAGE...............oovmmmmsessssssssssssssssssssssssssssssssnsnns 18
72 RS U [= (003 @0 1> o 19
4.4.2 UfAaCE MANAGESccceeee ettt 20
4.4.3 INSIrUMENt MaNAGESeveiiieiiiee et s sraeeens 22
A A4 SUMIMAIY ceeeivreeeiteeeesieeeeseeessseessseeeaseesssesasssesasssessassesssssesssssessnsenssnsenssnsanesns 23
45 THELOGICAL LEVEL: THE IAMAPP PACKAGE......ocoovvvvvveeveesssnns 23
4.5.1 Functional coverage of an IAMADDcoveeereriererenesese e 24
4.5.2 TheMapping Problem ... 25
4.5.3 Our Solution to the Mapping Problem...........cccveeiiece e 26
46 THEINTERACTOR LEVEL: IAMINTERACTOR PACKAGEcvvvvrveereevessesssssssssssssssssssssssssssmsssssssnnns 29
A7 A PROGRAM EXAMPLE ..ot sesseseesssssssesessnssssssssons 31
5 1-AM WITHIN AN INFRASTRUCTURE FOR PLASTIC Ulcoiuiiiiiiiiienceeee e 33
51 CLOSE-ADAPTIVE COMPONENTS....commenerssssssssssssssssessns 33
52 COMPONENTS FOR OPEN-ADAPTIVENESS.oiiiiineereneensessnns 4
5.3 AN EXAMPLE: CAMNOTE .ooovtutuuuummsmmmssssssssssssssssssssssesssss s sssnns 4
O 00 N[0 I U o) OSSO 36
A = = = N ST 37
ANNEX1: FORMAL DEFINITION OF A PLATFORMuoiuiiiiiesiesiesiestesiessessesesseesseseeseessessens 40

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 4/40

1 INTRODUCTION

The dae of the at in ubiquitous computing shows early examples of interactive
sysems, motivated by humancentered concerns, that are based on the dynamic
composition of interaction resources Didributed Ul as in Rekimoto's Pick and Drop
[Rekimoto 97], dynamic docking of multiple displays to enlarge red screen edtate (eg.,
the ConnecTable [Tandler 01b] or Hinckley's work [Hinckley 03]), Migratable Ul as in
I-land [Streitz 99] and Seescoa [Luyten 02], or the Personal Server approach that
promotes the borrowing of near-by interaction resources [Want 01]. As far as we know,
al of these prototypes have been developed as concept demonstrators reusing and
hacking the current foundationa tools of the GUI technology.

A number of European projects (eg., Camedeont and Consensus? are currently
concerned with the definition of modds and tools that support the design and
development of plagtic Uls, i.e, Uls that can dynamicaly adapt to context of use while
preserving usability [Thevenin 99]. Tools such as Teresa [Paterno 02], Vaguita
[Vanderdonckt 01] and ARTStudio [Cavary 01] have been developed to support the
gpecification and generation of Uls that can adegpt to PDAs cdl phones and
workstations. These tools support well-established methods that ensure the usability of
the resulting Ul. But they do so for centrdized Uls where a virtud machine like VM or
a Web browser is sufficient for supporting the portability of the generated code. When it
comes b address didributed plastic Ul over a dynamic set of heterogeneous resources,
these tools are impeded by the existing windowing systems and toolkits.

In the GLOSS .,
vison, uses have a o~ F
number of devices 'sfi %'ﬁﬂ?
avalable some of |
which they own and
which travel with them,
and others that are
avaldble from thar -
current location. A GLOSS user may want to use GLOSS services, plug them together
in order to create new sarvices and arange ther interaction resources to suit the
activities at hand. In addition, severd users may discover themsdlves in a place and may
decide to work together.

In summary, date of the art in distributed, migratable, composable, and plagtic Ul's
as wdl as Ul development tools are limited by exigting windowing systems and toolkits
designed a a time where user interfaces where confined to a dngle screen using a single
pointing and text entry device To address the problem, ether we hack the current
foundational tools and develop short-term demondrators, or we am a generd

1 http://giove.cnuce.cnr.it/cameleon.html

2 http://WwWWw.CONSeNsus.upv.es

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 5/40

foundetiond solutions that support the new requirements imposed by globa smart
spaces. If the scientific community ams a supporting a sound goproach to the
development of distributed migratable, plastic UI's, we need to revise our foundationa
tools, which, by definition, st the bass for the deveopment of higher levd of
abdraction tools. In turn, experience shows tha these high level tools incresse the
capacity to develop usable user interfaces.

In WP7, we are concerned with the development of a software infrastructure that
enables users to borrow and lend loca interaction resources in an opportunistic manner
as they move in the globad fabric of networked computation. The multi-surface
interaction ontology presented in Year 2 (Cf. D17), now integrated in the GLOSS
ontology (See D9), has provided a sound rationde for diciting the limitations of current
foundational tools. It is briefly recalled in Section 2. Next, we anadyse how the state of
the art addresses our requirements (Section 3). In Section 4, we describe FAM, our
proposd for a middleware run-time infragtructure that addresses the limitations of
current tools. I-AM complements the locd infradructure as defined in D8 by S
Andrews, and draws upon the proximity-group modd developed by TCD. It is not
intended for traditional centrdised Ul's. Ingead, it is amed a faclitating the
development of distributed and migratable UI’s at no extra cost for the developer while
providing users with a unified view as if the user interfface were handled by a sngle
computer. In Section 5, we illudrate the integration of 1-AM within an infrastructure
that supports the run time adaptation of plagtic user interfaces. This infrastructure has
been designed by UJF for the CAMELEON R&D 1ST-2000-30105 project.

2 MULTI-SURFACE INTERACTION ONTOLOGY

A more detailed description of the Multi-surface Interaction ontology is available in
D9. Figure 1.1 is here to recdl the elements of the modd.

The concepts necessary to understand our software solution are the following:
platform, interaction resources, surfaces and ingruments, spatid reaionships, coupling
interaction resources with digital content, distributed Ul and migratable UI.

A plaform may be dementay or a cluster. An elementary platform is a set of
physcd and software resources that function together to form a working computationa
unit whose state can be observed and/or modified by a human user. None of these
resources is able per se to provide the user with observable and/or modifigble
computational function A persond computer, a PDA, or a mobile phone are
eementary platforms. On the other hand, resources such as processors, central and
secondary memories, input and output interaction devices, sensors, and Software
drivers, are unable, individualy, to provide the user with observable and/or modifiable
computationd function.

Some resources are packaged together as an immutable configuration cdled a core
configuration. For example, a laptop, which is composed of a fixed configuration of
resources, is a core configuration. The resources that form a core configuration are core
resources or Machine-bound [Johanson 02] resources. Other resources such as external
displays, sensors, keyboards and mice, can be bound to (and unbound from) a core
configuration a will. They are extension resour ces.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19

PROJECT NO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 6/40
Artificial i
o has __'___._.__ﬂ_,_._—— Sensor
M—'—f oEr
Matural 3
prosls Actor Q7 0.7 | Information | _ |
i elaborates Content
Interaction has
Resource e 8
gﬁemetrlcal Rale Actuator
shape - 1.1 -
iy Sl play social use o o
weight :
material et 0D observes
texiure
acts on
2.0
Raw g 0."
Content Instrument W
0.1 actson | Action
has_l . isPrecise | surtace
- isStable
Surface SR .
o spatial relationship
speci .
o 0.
isSolid A‘l’;
isFluid bl
e <} K Observation
isRigi e H FEE Surface
isFlexible compatibility Pt
isTransparent || L
i 0.”
!sgpalcrue e
isMobile coupling

Figure 1.1. The GLOSS ontology for multi-surface interaction.

A cluster is a compostion of eementary

platforms. The cduder is homogeneous

when it is composed of dementay

plaforms of the same class For

exanple, the Dynawdl is an

homogenous cluster composed of three Type of platiorm
dectronic white boards running the NeGIOganEOuS GlLBHE
same operating system [Streitz 99]. The

cluser is heterogeneous when different

types of plaforms ae combined

together as in Rekimoto's augmented

surfaces [Rekimoto 99].

Interaction resources are subclasses of core and extension resources. They ae
mediators between an artificid actor (eg., a GLOSS system) and a naturd actor (e.g., a
user). An interaction resource may serve as an instrument (eg., a pen and a mouse)
and/or as a surface (eg., a screen display or a wadl). As an instrument, an interaction
resource mediates the actions of an actor. As a surface, the outmost boundary of a
physcd entity sarves as a recipient for making information observable to an actor.
Physcd surfaces and indruments are characterised by datributes (grounded in the
physca world) as wel as by reations. An action surface is a subset of a physcd
surface on which an actor can act directly with actuators and/or indirectly with
ingruments. Smilarly, an observation surface is a subset of a physicd surface that an
actor can observe with sensors.

elementary
homogeneous cluster

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 7/40

Among these reationships, geometric spatiad reations are centra. They form a physical
topology tha results from the way surfaces and insruments are assembled. The physicd
topology can be projected on digital content in many ways. For example, a set of screen
displays can be used as multiple physcad magic lenses that can be moved independently
ova the digitd space. Altenaively, the displays, dthough not contiguous in the
physcd space, may partition the digitd pace in a continuous manner in order to show
the informationa content without any hole. In other words coupling interaction
resources onto (with) digital content is an important issue for HCI design. It is therefore
important that the technical solution provides coupling mechanisms while, a the same
time, it is able to support different application dependent policies.

A user interface is distributed when its interaction components (eg., windows and
pands) are dlocated (whether it be daticaly or dynamicdly) to different platforms of a
cluster. For example, using the painter metaphor, tools paettes are displayed on a PDA
held in the non-dominant hand whereas a sylus is hed in the dominant hand. Like a
painter artist, the user picks the appropriate tool on the paette with the stylus, and then
draws on the canvas supported by a wall-9ze dectronic screen. Didribution of user
interfaces can be peformed a multiple grans. Granularity of user interface distribution
may vary from gpplication leve to pixd leve:

- At the application level, the user interface is fully replicated on the platforms of
the target cluger. If the cluster is heterogeneous (eg., is comprised of a mixture
of PC's and PDA’S9), then each platform runs a specific targeted user interface.
All of these user interfaces, however, smultaneoudy share the same functiond
core.

- At the workspace level, the user interface components that can be dlocated to
different surfaces are workspaces. A workspace groups together a collection of
interactors that support
the execution of a set of
logicdly connected
tasks. In grephica user
interfaces, a workspace e e 2
iS ma) ped onto the are needed to see this picture.
notions of window and
pands. The panter
metephor is an example
of Ul digributed a the
workspace levdl.

- At the domain concept level, the user inteface components that can be
digributed between platforms are interactors that dlow users to manipulate
domain concepts. In Rekimoto's augmented surfaces, domain concepts can be
distributed between laptops and horizontal and vertical surfaces. (In their demo,
tables and chairs interactors can be moved between physica surfaces).

- At the pixel level, any user interface component can be partitioned across
multiple platforms. For example, in I-land, a window may sSmultanecudy lie
over two contiguous white boards.

Didribution is complemented with the capacity of the user interface to migrate a run
time. A user interface is migratable when al or pats of its components can be
transferred at run time between platforms. Migration may be total or partia:

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 8/40

- Migration is total if the user interface
migrates entirdy to a different platform. partial

- Migration is partial when a aibset only of ~ TYPeotUlmigration 8, -
the user inteface moves to different
plaform(s). The subsst that can migrate is condgent with the granularity of
digribution: partid migration may be peformed a the workspace level, concept
level or pixd levd.

The GLOSS I-AM aims at supporting the essence of multi-surface interaction, that is,
the dynamic composition of heterogeneous clusters within which user interfaces can be
distributed and migrated in a continuous way at multiple levels of granularity without
imposing any extra programming on the developer. In the next section, we andyse
the state of the art in the lights of our requirements.

3 STATE OF THEART

From a software perspective, the problem space described in Section 2 implies that
the software that implements an interactive sysem be dynamicaly reconfiguradle,

possbly distributed across a dynamic set of heterogeneous resources, and migratable
across these resources. Thus, we need to consider how to address:

- dynamic reconfiguraion which, in turn, requires sysem integrity,
- heterogeneity of system resources, and
- detection of arriva/departure of interaction resources.

These issues are discussed next dong two dimensons. firg, the generd proposas
from the state of the art followed by current Ul-oriented infrastructures.

3.1 DYNAMIC SOFTWARE RECONFIGURATION

Dynamic software reconfiguration primarily covers the following issues 1)
modification of the dructure of the sysem (i.e, by adding, removing, subdituting
components, and/or by modifying their connection) and 2) modification of the
geographicd digribution of the components across the currently avalable
comptutational resources. In the context of this discussion, a component is considered to
be a software unit responsible for implementing a set of services tha @n be composed
with other components. For doing so, it includes a description of the inputs it requires
and the outputs it supplies.

As discussed in [Oreizy 99], dynamic reconfiguration may be close-adaptive or
open-adaptive:

- When close-adaptive, the system includes dl of the mechanisms and data to perform
adaptation on its own: it is sdf-contained (autonomous).

- Open-adaptiveness implies that adaptation is performed by mechanisms and data
that are externd to the system.

Whether it be close-adaptive or openradaptive, dynamic reconfiguration is best
supported by a component-connector approach [Oreizy 99, Garlan 01]. Components
that are capable of reflection (i.e, components that can andyse their own behaviour and
adapt) support close-adaptiveness. Components that are capable of introspection (i.e,

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 9/40

components that can describe their behaviour to other components) support opert
adaptiveness.

In I-AM, we have adopted a component-connector approach. The notion of
component provides the foundations for sysem flexibility. In addition, system
reconfiguration implies that links between the components change over time, and tha
components may be diminaed or replaced in the reconfiguration process. This
flexibility requires that components should not reference ther peers explicitly, nor
should they know the communication protocol expected by their peers. In a connector-
based approach, where connectors are in charge of linking the components and
supporting their communication protocol, a clear didinction between the functiond
aspects of the sysem (the components) and the communication aspect of the system
(the connectors) is achieved. However, in a connector-based approach, the overdl
dructure of the sysem must be described. An ADL (Architecture Description
Language) as described in D11 isapromising way to go.

3.2 DYNAMIC DISCOVERY OF INTERACTION RESOURCES

The dynamic discovery of system resources is a complex problem. Jini, based on a
dient-sarver model is appropriate for smdl-scde applications. For ubiquitous
environments, the exisence of a centrdised server is not an option. RendezVous3 from
Apple, based on the ZeroConf sandard [Guttman O01], supports mutual discovery
between the IP resources connected to a network. UPNnP from Microsoft goes in the
same direction [Microsoft 00]. These are useful techniques for managing the arriva and
departures of edementary platforms in a cluster. However, they do not address the
specific case of interaction resources that are not |P devices.

In FAM, we have used contextors [Coutaz 02], an infrastructure amed a acquiring
contextud information about the physica environment and the platform, to discover the
arrival and departure of interaction resources.

3.3 HETEROGENEITY OF INTERACTION RESOURCES

In software engineering, resources heterogeneity has been addressed with the notion
of abgtract machine.

Current windowing systems and Ul toolkits are based on this technique but reved a
number of limiting factors for multi-surface interaction:

1. The window modé is biased by the workstation screen. Instead, the concept of
window must be replaced with that of a physical surface with an explicit model
of its physical attributes. Today, windowing sysems mode windows as
rectangular drawables whose borders are constrained to ke pardld to that of the
display. This modd is based on the (wrong) the assumption (for multi-surface
interaction) that users keep facing a verticd screen and that the rendering
auface is rectangular. With the proliferation of video projectors, it is
increesingly popular to project window contents on horizontd surfaces such as
circular tables. In this Stuation, users should be able to rotate the digita content

3 http://www.arstechnica.com

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 10/40

0 that everyone can share information without twisting ther neck (Cf. our
Year2 GLOSS demongtrator). Today, rotating windows and user interfaces must
be implemented from scraich from low-leve graphics primitives Jazz/PAD++
[Bederson 00] and DiamondSpin* are toolkits that offer the basics for
implementing rotative, zoomable user interfaces but they do so for centralised
Uls only. Smilarly, physcd atributes of rendering surfaces, such as sze
shape and colour, must be made available to the agpplication program: one does
not want to render information on a rectangular white surface in the same way as
on a circular table covered with a red cloth. In turn, the capture of the physica
attributes of a surface cdls for new requirements on the sensing technology. The
contextors infrastructure can sarve as a bads for implementing colonies of
perceptua processes [Crowley 02].

2. Geometrical relationships between physical displays are poorly modelled.
Instead, the (possibly 3D) gpatial relationships between the interaction
resources and the user should be explicitly modelled, dynamically acquired and
maintained. Windowing sysems are able to support a limited number of
screens. In addition, the relative location of the display screens must be set up by
the user through dedicated system forms. As a result, the user is in charge of
additiond articulatory tasks. Again, because they are screen-centric, windowing
sysems do not support topologies that include the surrounding environment
(eg., wadls, tables, users location with respect to the display surfaces, etc.).
However, for many nove interactive systems, the topology of the rendering
surfaces matters. for example, 3D rendering on a veticd surface and 2D
presentation on a horizontal surface [Rekimoto 99].

3. Only single instances of input instruments are supported. Instead, the system
should be able to support any number of instances of an instrument class. In
current windowing systems, the reference workgtation is supposed to have one
sngle mouse and keyboard. On systems like MacOS, it is possible to plug two
physcd mice. Unfortunately, they are linked to the same interruption level and
are modelled by the event manager as a device type, not as a device ingtance. As
a result, multi-user applications such as MMM [Bier 92] whose users share the
same screen with multiple mice, require the underlying toolkit and event
manager to berevisited asin MID [Hourcade 99].

4. Interaction is confined to the resources of a single workstation. Instead, we need
to distribute Ul's across a set of interaction resources managed by a cluster of
possibly heterogeneous machines. Applications like I-LAND [Streitz 99] and
Rekimoto's augmented surfaces [Rekimoto 99] require the aggregation of
multiple computers. Pocket-size computers can play the role of input devices to
control information displayed on wadl-mounted eectronic boards as in Pebbles
[Myers 98]. In addition, Ul migration requires additiond functiondities such as
mechanisms for sate recovery.

4 http://www.merl.com/projects/diamondspin

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 11/40

5. Absence of dynamic discovery of interaction resources. Instead, in ubiquitous
computing, interaction resources appear and dsappear opportunistically: users
can upload gStuated information on their privete PDA as they pass by a public
active wdl. Two users who meet serendipitoudy in the street, may want to dtart
a collaborative activity by bringing together ther PDA’s to form a larger
interaction space. GaiaOS [Viswanahan 01] and Aura [Sousa 02] am a
supporting heterogeneity and dynamic migration. However, they address
centralised user interfaces only.

In the next paragraph, we andyse dstate of the art infrastructures intended to support
some aspects of our concept of multi-surface interaction. We will primarily look into
those amed a supporting custers and/or Ul migration and distribution. Solutions like
the MID toolkit and Pebbles are interesting improvements over current windowing
systems but they boil down to the dynamic connection of input devices to a single core
configuration.

3.4 USER INTERFACE | NFRASTRUCTURES

There are two agpproaches to user interface-oriented infrastructures. those where the
focus is on devdoping an infragtructure a the scde of the Plangt as in Gaa
[Viswanathan 01] and Aura [Sousa 02]. Those where the infrastructure is adapted to a
room as for BEACH [Tandler Ola], iROS-PointRight [Johanson 02a) and Easyliving
[Brumitt 01]. In the following paragaph, we discuss Aura as an example of a run time
infragtructure in the large, BEACH and iROS-PointRight as run time infrastructures in
the amall.

3.4.1 |INFRASTRUCTURE IN THE LARGE: AURA

The god of the Aura project is to find solutions to the following competing gods. 1)
to maximise use of avalable resources in a ubiquitous-enabled computing world, 2) to
minimise the didraction and drains on usy atention that sem from managing those

resources.
{n—vF Task Manager (Prism)]
Fil Fil el M

- L L

Y L | s Y

; : n s
Enviranrmant Supplier Supplier
< Manager T text ----*> yideo
Emacs Xanim

Operating System

Context Obsarver

Figure 3.1. Functional decomposition of an Aura environment (from [Sousa 02]).

The approach to the problem is to provide an infragtructure that configures itsdlf
automaticaly for the mobile user, “potentidly usng whichever computing capabilities
are avalable or reachable from the current location” [Sousa 02]. When a user moves to
a different platform, Aura atempts to reconfigure the computing infrastructure so tha
the usr can continue working on tasks darted esewhere. Figure 3.1 shows the
functional decompaosition of an “ Aura environment”.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 12/40

An Aura environment is supposed to run in multiple places on the Planet such as
home, office, car, etc. In the GLOSS terminology, it is a loca architecture. The context
obsarver of an Aura environment detects events of interest that occur in the physica
locd place (eg, user is entering, usxr is leaving, ec) and informs the loca
environment manager as wdl as the locd task manager of these facts. The locd
environment manager is in charge of modding the computing and interaction resources
locdly avalable. The task manager, caled Prism, checkpoints the state of the running
suppliers (i.e., services needed to support users tasks) at a high level of abstraction. For
example, for a text editing supplier, the task manager saves the file name and well as the
current insertion point in the text of the source document.

When the current locd context observer detects the user is leaving the Aura
environment, it informs the loca task manager which checkpoints the loca suppliers
and causes the locd environment manager to pause those servicess. When the user
enters another Aura environment, the new loca context observer detects the fact and
informs the new loca task manager. In turn, the task manager re-ingantiates the tasks
that were suspended by finding and configuring services suppliers in the new Aura
environment. So, for example, a user who was working a home usng Word can carry
on the task in the new environment but possbly usng a different text editor such as
Emacs.

Aura is intended to address dl types of platforms and sources of context changes.
However, adaptation is addressed by software component substitution and the
granularity for subditution is a whole interactive system (i.e, a supplier in the Aura
terminology). As a result, only totd migration is possble with a dae recovery at the
tak level. In other words, Aura addresses Ul migration, but does not support Ul
digtribution across heterogeneous interaction resources if the supplier did not do so in
itsown code. Therefore, Auraiis an infrastructure for open-adaptivity.

3.4.2 |INFRASTRUCTURE IN THE SMALL: BEACH

The BEACH framework (Badc Environment for Active Collaboration with
Hypermedia@) [Tandler Ola provides functiondities for synchronous cooperation and
interaction for roomware. As shown in Figure 3.2, it can be viewed as a four layer
abdract machine. (Actualy, there are others views of the BEACH framework that we
have not been able to fully understand, despite code inspection.)

tailored support for tasks
task lovel application-specific
st vl reusable functionality

g application-independant, domain-specific

del level abstraction o ensure separation of concams
AL s application-, domain-, and platform- independent
T L specialized infrastructune

i platform-cdependent

Figure 3.2. BEACH four conceptua levels of abstraction (From [Tandler 014]).

The core level, which uses the COAST framework [Tandler Ola], encapsulates
plaform dependent detalls induding multi-user events handling, sensor drivers, and
access to shared data. The Modd level provides higher levels with abstract classes that
ae goplication, doman and plaform independent and that dlow different

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 13/40

implementations for different platforms. The Generic levd includes generic components
such as the notion of document, data types, private and public workspaces that are
common to collaborative stuations. The task level groups the high-level abstractions
gpecific to a paticular gpplication. From an implementationd point of view, BEACH
relies on a dient-server paradigm where the server serves as the reference for dl of the
BEACH cdlients running in a room. To be pat of the clugter, dementary platforms must
run aBEACH client.

A BEACH infrastructure addresses homogeneous dynamic clusters where al
machines run a uniform Smaltak software environment. User interfaces built on top of
this environment can be digributed and migrated a the pixd levd. Typicdly, a window
can overlap two surfaces. From the developer’s perspective, BEACH provides the
programmer with a dngle logicad output display mepped onto multiple physica
displays. However, it is unclear whether BEACH includes an explicit modd of the
topology between interaction surfaces (the implicit hypothess is that the interaction
resources in a cluster are compatible and can be coupled in a predefined known way). In
addition, BEACH does not seem to address the dynamic connection of input devices.

3.4.3 |INFRASTRUCTURE IN THE SMALL: IROS AND POINTRIGHT

IROS is an open source middleware developed a Stanford Univerdty as a basic
infrastructure for roomware. As opposed to BEACH where every gpplication has to be
developed from a uniform Smdltak software platform, iIROS ams at supporting legacy
gpplications. It includes core components for data storage, service management, and
communication (the Event Heap).

SmartBoard | | SmartBoard HEmartBaanﬂ
COne Twio Three

/
2=

Figure 3.3. TheiRoom screen topology (from [Johanson 02a]).

The Event Hesp is derived from the tuplespace model [Johanson 02b]. In the
tuplespace modd introduced by [Geemnter 92], applications communicate and
coordinate through a commonly accessible tuplespace. Tuples, which are a collection of
ordered type-vaue fidlds, may be posted to the space, or read from the space in ether a
destructive or nortdestructive manner. A tuple is chosen by a template tuple specified
by the retrieving application. The template contains precise values for the fieds to be
matched, and wild cards for fields containing data to be retrieved. Event Hegp has
extended the tuplespace modd to satisfy interactive rooms requirements. In particular,
tuples have been extended with extra fidds such as type and sdf description for
extenson and semantic checking, routing attributes to improve performance, event

5 http://iros.sourceforge.net

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 14/40

sequencing, a TimeTolive dtribute to garbage collect unconsumed events, and a
publishsubscribe mechanism to complement the polling mechanism of the origind
tuplespace model. On top of iIROS, a number of gpplications have been built. PointRight
isone of them.

PointRight alows the mouse cursor to cross the display screens of an heterogeneous
cluster based on the geometric topology description of the space (see Figure 3.3). It is

implemented as a client of the Event Hegp server and is supposed to run on each of the
elementary platforms of the clugter.

A PointRight client includes a sender and areceiver:

The sender redirects the mouse and keyboard events from the loca input devices. It
uses the geometric topology of the screen diplays of the room to direct input to the
appropriate screen (i.e, to the dementary platform that owns the target display) and
sends the redirected local mouse and keyboard events using the Event Heap.

The recelver accepts remote mouse and keyboard events from the Event Hesp. It is
responsible for rescaing cursor motions to fit the characteristics of the loca display.

The topology description of the room space consists of machines, screens and
connections. Machines are the dementary plaforms that currently run PointRight. A
screen description includes the dimensons of the physcd screen, the identification of
the eementary machine it is managed by, and the set of connections to other screens. A
connection represents a vaid trangtion of pointers between screens. They ae
represented by an edge (top, bottom, left, right) and the region of the edge through
which the pointer can trandtion. There can be multiple connections to a single screen
edge as long as the regions of the connections do not overlap.

In the current implementation,

The topology description of the room space is read from a configuration file. By
monitoring events on the Event Hegp, it is possble to know whether the
meachines of the configuration file are running.

PointRight provides a unified multi-display space for pointing and keying: as the
user moves the mouse, the cursor crosses the screens seamlesdy across the space
of displays as though there were a single surface connected to a sngle machine.
However, windows and icons cannot be moved across screen boundaries.

PointRight is Imilar in soirit to VNC [Richardson 98], x2x¢ and x2vnc [Hubinette
02]. VNC (Virtual Network Computing) alows a user on one computer to interact with
goplications running on ancther computer. It does so by mirroring the remote
goplication display and by forwarding the locd keyboard and mouse events to the
remote gpplication. However, users can control a sngle screen a a time. To control
multiple screens, one would need to launch a VNC window per remote screen and
switch among the VNC windows. x2x and x2vnc are Smilar in spirit to PointRight, but
they are specific to X-Window and do not support arbitrary configurations.

6 http:/ftp.digital.com/pub/DEC/SRC/x2x/

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 15/40

PointRight goes one step further than VNC, x2x and x2vnc, by redirecting pointer
and keyboard events in an heterogeneous clugter. It includes a model of the geometric
topology of the screens but the modd is inherently 2D. In particular, horizontdity and
verticdity are not addressed. PointRight does not support the dynamic discovery of
interaction resources, nor does it support the overlap of windows and icons across
screen boundaries. This is where the illuson of a unified workspace bresks. The authors
“would like to find a method that degantly extends PointRight to moving information
aound the iRoom, while maintaining [the] focus on generd, heterogeneous applications
and operating systems’ [Johanson 02, pp. 233].

In summary, to our best knowledge, none of the current infrastructures, currently
avalable or under development, covers dl aspects of multi-surface interaction. 1-AM
presented next, ams at such god.

4 1-AM (INTERACTION ABSTRACT MACHINE)

Our approach to the problem is to develop an Interaction Abstract Machine grounded
on a sound modd such as that of X Window, and extend it to support the key concepts
of multi-surface interaction. [-AM extends the functiond coverage of current
windowing sysems to didributed migratable user interfaces across a dynamic st of
heterogeneous resources. More specificaly:

- It hides away the low-level details of hardware and software heterogeneity at the
gppropriate level of abstraction,

- It supportsinteraction resource discovery and models their spatial relationships,

- It permits the didribution and migration of Uls across multiple surfaces a the pixd
level. From the developer's perspective, this facility is provided a no extra cos.
From the user's perspective, dl the surfaces and indruments form a unified
interactive space despite they are being driven by different machines.

A detailed description of FAM is presented next. First, we outline the key principles
of I-AM (4.1), its overdl dructure (4.2), and the limitations of the current
implementation (4.3). The following sections (4.4, 45, 4.6) describe the key
components of the dructure in detall. We conclude the presentation of I-AM with a
program example that gives aflavor of the developer’sview (4.7).

4.1 PRINCIPLES

Figure 4.1 illugtrates the principles of FAM. The very bottom of the figure shows an
example of a user's view where the GLOSS logo is shown seamlesdy across a set of
three surfaces handled by three distinct dementary platforms. The logo can be moved
across surfaces boundaries using any pointing device of the clugter. At the top of the
figure, the developer's view. Here, the user inteface of an gpplication conssts of
severd windows as if they were part of a unique interaction space handled by a unique
computer.

As shown a the bottom of the figure, the platform is a cluster composed of three
dementary platforms. Each one handles a unique surface and runs a different operating
sysem (eg., MacOS X, Windows XP, Windows NT). Through surfaces links, surfaces
are composed in a plane using, possbly different, orientations in the plane. Smilar to
the PointRight notion of connection, surfaces links are reference points located on the

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 16/40

edge of a surface. They can take the form of a physicd sensor (eg., infrared sensors,
accelerometers as in Hinckley's example of synchronous gestures for connecting tablets
[Hinckley 03]). They can aso be painted dots tracked by a computer vison system.
Surfaces link dlow 1-AM to dynamicaly compute the topology of the surfaces. They
aso concretise our notion of compatibility introduced in the multi-surface ontology:
surfaces can be composed only through links that are technically compatible.

A Developer’s View

Logical

D Interacktors

Logical Lewel

- Effective
4 :55 Interactors
2
E _55 E:: D 2
10U [
5 B
! |
it Dk -
C : :___... ::.: - 3
T e Sullrfaﬂeﬁ .'5'1#.3
¥ Sirface managed Surface managed Surface managed
on a MaoDs on YWindows PC o Windows PC

User's View

Figure4.1. The principles of IAM.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 17/40

The bottom of the figure shows the digribution of the user interface across three
surfaces. Some interactors such as the top left window of the developer’s view, are fully
rendered within a sngle surface wheress other interactors, such as the right most
window of the developer's view, are split across two surfaces. In the &tter case, the
logicd interactor of the developer's view is mapped into two effective interactors whose
rendering is tightly coupled to entertain the illuson of a unified space as the user
moves one of the effective interactors usng any pointing device of the clugter, the other
“twin” effective interactor is moved and reszed accordingly as if the twins were one
sngle piece. Of course, the number of effective interactors that correspond to a logica
interactor depends on the postion of the logicd interactor in the logical space and on
the topology of the surfaces onto which the logica space is projected.

The role of I-AM is to continuoudy maintain the mapping between the logica view
of interactors as handled by the developer and the effective interactors as manipulated
by the user. As dressed earlier, PointRight does not address the problem of interactors
trangtion across surface boundaries a the pixd leve. BEACH offers a smilar illuson
to FAM but it does not support any free form of dynamic compostion of surfaces, nor
does it support different underlying operating systems. In its current implementation, |-
AM supports heterogeneous clusters composed of MacOS X, Windows NT and
Windows XP.

Having presented the principles of 1-AM, we are now dle to describe the technica
Sructure of [-AM.

4.2 OVERALL STRUCTURE OF I-AM

As shown in Figure 4.2, 1-AM is sructured into three levels of abdraction dtting on
top of the hardware and operating systems that form the legacy basis of the clugter:

- The Hatform level hides the heterogenety of the underlying level and manages
the interaction resources in a normalised way. This leve is implemented by the
|AMPlatform Java package.

- The Logicd Leve provides gpplications with a customized abstract view of the
physcd plaform layer. This levd is implemented by the IAMApp Java
package.

- The Interactor level implements the basc graphic interactors such as windows
and widgets that populate the logicd view of the Logicd Levd. This levd is
implemented by the |AMInteractor Java package.

Application

'

Logical interactor level

Logical level

Platform level

Hardware and Operating System

Figure4.2.1-AM as athethree levels of abstraction machine.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 18/40

Before we describe the functions of the three layers of -FAM, we need to make clear
the hypotheses and limitations of the current implementation.

4.3 |-AM: CURRENT LIMITATIONSAND HYPOTHESES

4.3.1 CURRENTLIMITATIONS
- Surfaces are screen displays including video-projected displays,
- Surfaces are rectangular,

- Surfaces are assembled (coupled) within a plane but this plane can be folded as
in iRoom (see Figure 3.3). 3D topology will be integrated when the sensng
technology will be avalable The deerable video projector described in
[Borkowski 03], which tightly couples a camera (sensor) and a video projector
(ectuator), offers a promisng way to compute the 3D orientation of any fla
surface in a room. This sensor-actuator device will be usad in a future verson of
[-AM.

- Legacy applications are not supported. In other words, the user interface of next
generation applications is supposed to be developed (or generated by tools)
usng I-AM interactors. However, provided that thelr source code is available,
legacy applications may be automaticaly reverse-enginesred using Aspect
Oriented Programming [Gregor 97]. In the past, we have used this gpproach
successfully to trandform an AWT user interface into a rotating Jazz-based User
interface without re-programming the origind UI.

4.3.2 HYPOTHESES

- Naming: an dementary plaform is identified by its IP address. An interaction
resource is uniquely identified by the IP address of the dementary patform it is
managed by, followed by an integer that is unique for this platform. For
example, the ID of a surface on a screen S handled by a processeur P is a triplet:
<IP address of P, video card output number of S, unique integer>. Unique
identifiers are provided by a dedicated package of IAM not described in this
document.

- Communication: within~ I-AM components, processes communicate
asynchronoudy through TCP sockets. Within the contextors infrastructure used
for detecting the arriva/departure and compostion of interaction resources,
proceses (eg., contextors) use multicast sockets and subscribe to the same
multicast group.

- Access control: A group management facility is supposed to identify the
dementary plaforms that have the right to paticipate in the clugter. In other

word, the boundary of a cluster is known. This service can be provided by the
proximity-group software developed a TCD.

4.4 THEPLATFORM LEVEL: THE|I AM PLATFORM PACKAGE

Every processor that belongs to the cluster runs an IAMPlaformManager. An
IAMP aformManager is“dementary platform” centric:
- It manages the resources that are locd to the eementary platform it runs on, and

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 19/40

- It has no knowledge of the existence of its peers IAMPlatformManagers. The
absence of explicit reference to any other 1AMPIlatformManager supports our
requirements for scalability, flexibility and reconfigurability. The glue between
the machinesis performed at the Logica Levd of I-AM.

An IAMPatformManager supports the following functions.

- It discovers the interaction resources that are locally connected to the processor
it runson,

- It maintains a description of these resources, and

- It provides the world” with the basc means for using the interaction resourcest.
This incudes the publication of (a) the existence of the interaction resources that
may interest future consumers (eg., |AM gpplications), and (b) the
communication ports that will dlow consumers to send requests to use a
paticular interaction resource, and if successful, to obtan dedicated
communication ports to exchange messages directly with the requested resource.

More precisdly, an IAMPlaformManager running on an dementary platform P

- Creates a SurfacesContextor whose role is to gather and publish the existence of
al of theinteraction resources that reside on P,

- Creates one SurfaceManager per physical surface connected to P,

- Creates an InstrumentManager that handles dl of the instruments connected to
P.

These components (SurfacesContextor, SurfaceManager, and InstrumentManager)
are presented in more detall in the following paragraphs. Refer to Figure 4.5 for a
detailed representation of their relations.

441 SURFACESCONTEXTOR
There is one SurfacesContextor per e ementary platform.

A SurfacesContextor is a kind of contextor. A contextor is a software component
whose role is to sense contextud information at the appropriate level of abgtraction
[Coutaz 02]. In FAM, the SurfacesContextor of an dementary platform P recelves data
from the software SurfaceSensor attached to each one of the surfaces handled by P. It
bundles this information a the appropriate level of abdraction so tha, through a
publishtsubscribe mechanism supported by the contextors infragtructure, the world (eg.,
the Logica Leve of I-AM) can be informed about the resources P is able to provide.

At the oppodte of PointRight whose resources are daticaly described in a
configuration file, I-AM includes a powerful mechanism for dynamicaly discovering
the surfaces, their properties, and their physical composition.

7 « The world » denotes any software component that is not part of the |AMPlatformManager. IAM
applications are examples of such software components.

8 Current limitation: only the existence of surfacesis published

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR

INTERACTION SURFACES PAGE 20/40

44,2 SURFACE MANAGER

There is one SurfaceManager per surface S of an dementary plaform P. The
SurfaceManager of asurface S covers the following functions:

It gets and maintains the physcad characteristics of S. As shown in Figure 4.3,
the attributes of a surface incdude heght and width (both in pixds and
millimeters) where digitd information can be rendered, color and texture for
each of its edges, the width of the physicd border (in millimeter); a coordinates
system located at the top-left corner of the suface; and surface links that denote
the physcad connecting points of the surface with other surfaces. As mentioned
above, links may be physcd or logicd sensors. Ther location is specified in
millimeters rdaively to the top-bottom-left-right edges of surfaces. Figure 4.4
shows an example of two surfaces composed via two links A and B. For core
surfaces, the SurfaceManager computes the physical characteristics of S by
using the API from the underlying legecy Operating System.

Color Texture
X immj T i
 (pixel) : Top v
y (pixel) >] A
yimm &
v W W Height
(mm)
Height
[pixel)
A Width Width
Left P {mm) (pixel) Right
o + -
i “'bl
! A Bottom :
: i
Surface Border

Figure 4.3. The attributes of an 1-AM Surface.

The SurfaceManager of S creates a SurfaceConnectionManager whose role is to
open two communication ports on which it will ligen for IAM gpplications
requests such as “open connection with S to use S as an observation surface” or
“open connection with Sto use S as an action surface’.

The SurfaceManager of S informs the SurfaceSensor of S about the
charecteristics of S (physcd characteristics, surfaces links, communication
ports, etc.). In turn, the SurfaceSensor of S transmits the information it receives
to the SurfacesContextor that resdes on P. As mentioned above, the
SurfacesContextor aggregates the information it recaves from every
SurfaceManager of P into a globd view for future resource consumers, eg.,
IAM applications.

The SurfaceManager of S creates a SurfaceDefaultPresentation whose role is to
maintain the connection between the IAM gpplication A that uses S and the
interactors that effectively render the logicd interactors of A: If A, an |IAM
aoplication, is successful a opening a connection with S through the
ActionSurfaceSocket or the ObservationSurfaceSocket of S, the

OCTOBER 271 2003

© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 21/40

SurfaceDefaultPresentation of S crestes an |AMA ppEffectivel nteractorManager
tha binds S and A. This IAMAppEffectivelnteractorManager creates a loca
proxy to communicate with the possbly remote A. This includes two
communication ports, depending on the way S is used. If S is used as an
observation surface, then an IAMAppObservationProxy is created to send
observation events to A about what has been observed on the surface (eg.,
mouse cdlicks). If the surface is used as an action surface, then an
IAMAppActionProxy is crested to receive action events from A (eg., creste an

|AMInteractor).
[u {rrem)
W immj
ra
#
&
f
: Surtacs 1
Fiatation
{physicai)
1\
%
o
~ i 7B
: A B
™ kx (mm) e
y (mm) -

Surtace 2

@ Link A: connecting poimt (200,210) in mm of Surface 1 on side botiom comesponds to
bz commacting point (130,-30) In mm of Surface 2 on side 1op

.CB) Link B: connecling point (320,210) in mm of Surtace 1 on side botiom comesponds to
be commactng point (250,-30) in mm of Surface 2 on side top

Figure 4.4. Two surfaces connected through two links A and B.

As discussed in Section 4.6, an IAM interactor, which is a logicd interactor, is
mapped, at the platform levd, into a non empty set of Effective Interactors. As shown in
4.1, these effective Interactors bdong to different surfaces An
|AMA ppEffectivelnteractorManager, which binds together a surface S and an IAMApp
A, memorizes the IAMEffectivelnteractors that are owned by A and rendered on S. By
doing s0, when the application A disgppears, dl of its “beongings’ on S can be
destroyed.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19

PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 22/40
ActlonSurfaceSocketServer lAMAppObservationProxy laMAppActionProxy
a.1

LN N

SurfaceSockelServer SurfaceConnectionManager IAMApRProxy]

1AMAppEMectivelnteractorManager]; = IAMEffectivelnteractor

0.1
ObservationSurfaceSocketSarver }/

t

‘ Surfaces I SurlaceManager —){ SurfaceDefaultPresentation |] LoglealTopologyEventlistener
T »”
Surfacest: LaMPlattormManager InstrumentiManager IAMApPR
= ‘
—
‘'_d_.:-'"
d__f___,.-—""
IDManager Inatrument InstrumentProxy]- = lAMInstrumentinteractor
._f-_—-(- |
.-d'"-j
_-—-'f/
._—'_P-_-
Pointerinstrument InputTextinstrument LAMPointerinteractor lAMInputTextinteractor
___““h—_____
___'_"——_

RelativePolnterinatrument AbselutePointerinstrument

Figure4.5. UML class diagram of the |AMPlatformManager package.

4.4.3 INSTRUMENT MANAGER
Thereis one InsrumentManager per dementary platform.

The role of the InstrumentManager of an dementary platform P is to manage the
insruments handled by P and to perform the appropriate redirection of events generated
with these indruments. Whereas PointRight performs events redirection based on the
mechaniams of the underlying operaing sysem and windowing system, I-AM re-uses
for inputs, the same mapping technique developed for output. This technique is
presented in Section 4.5.

As shown in Figure 45, ingruments are of two types InputTextinstruments and
Pointerinstruments. InputTextindruments generate characters. Typicd subclasses
include physcad keyboards and speech recognition sysems. Pointerlnstruments include
two subclasses rddive pointing indruments that provide rdative postioning
information (eg., mouse has moved dx-dy pixels) while absolute pointing instruments
such as laser beams and pens, provide a postion in the coordinates system of a surface.
New types of instruments such as the iStuff indruments [Balagas 03], can be modeed
as subclasses of the Instrument class.

Ingruments that are core resources (e.g., mouse and keyboard) are discovered by the
InsrumentManager usng the APl of the locd underlying operating sysem. Extenson

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 23/40

ingruments such as wirdess iStuffs, are discovered through contextors. For every
ingrument handled by P, the InstrumentManager crestes an IngrumentProxy as an
abstract normdized representative of the physica insrument. In turn, this proxy creates
an IAMIngrumentlnteractor, that is, an IAMPointerinteractor if the physica instrument
is a pointer instrument, or an IAMInputTextinteractor if the physcd ingrument is a text
input instrument.

An IAMIngrumentinteractor (including its subclasses) is a logicad interactor. Its
association to an InstrumentProxy fulfillstwo gods:

It dlows I-AM to make he date of the physca ingrument observable to the user.
Typicdly, for a pointer instrument, the rendering of an IAMPointerlnteractor is an
arrow Cursor.

It dlows I-AM to implement the events redirection by reusng the mapping that
goplies for output between logicd and physca interactors. This mapping is
presented in Section 4.5.

By default, the core InputTextingrument and the core Pointerinstrument of a
plaform P, ae tightly coupled. This means that characters generated by an
InputTextingrument is automaticaly directed to the logica interactor that is the current
focus of its associated Pointeringrument. For example, if a user, usng the mouse of an
dementary platform A sdects a window rendered on the screen of an dementary
platform B, ten the characters typed with the keyboard of A, appears in the window of
B. This default coupling can be overridden.

444 SUMMARY

In summary, the Plaform Level of IAM hides awvay the heterogenaity of the underlying
dementary platforms of the cluster. It provides the next levd of 1AM, i.e, the Logica
Leve, with:
(& a normdized view of the sat of physica interaction resources tha are available
on each dementary platform, and
(b) networked communication means to use these resources.

While the plaform levd is “dementary plaiform” centric, the Logica Levd of 1AM is
goplication centric. Thisiswhere theillusion of aunified spaceis created.

45 THELOGICAL LEVEL: THEIAM APP PACKAGE

Applications that use an I-AM cluster may each have its own way to exploit ad
interpret the physica configuration of the cluster. Therefore, the Logicd Leve of FAM
provides gpplications with a means to build their own view on top of the physca
platform level. To get and exploit such a view, an gpplication must be an ingance of an
IAMApp. Figure 4.6 shows the UML class diagram of an IAMApp. First, we describe
the functions provided by an IAMApp, then we discuss the mapping problem, a key
issue to support theilluson of a unified space.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 24/40

" s
- } - l G l - | - .
| S = r| AANGDTT Surlsc=alink | | Surlsce I-— e rfmceP I A Preay
. i S o [
—— . . = h

",

" - -
—— e el —_— T ™, e
Rty W irucidis) - T opadungryEor i | = ‘;‘ﬁlrhﬂrlpuwr 1 Easivese Praay |— 1 i o o vy
.- T o ;

o 1_.-‘:

P oy E eeirlLisienss y
' i Conteal Adapiar
Langh iTageatiog it ot })
k\ | PhpsicaiTapsiogyManag e]
'\ /
', !
ML Logiead Top singyManage / :
..... ? ff._tf__..___..r_ o A e lAkpaid |
4 [ITTTEe |- =

Figure4.6. UML class diagram of the Logical Level of I-AM: an IAMApp.

4.5.1 FUNCTIONAL COVERAGE OF AN IAMAPP

AnIAMApp A provides the following functions.

- It discovers the interaction resources’ tha are currently available in the cuder.
To do s0, an IAMApp expresses its interests through its ContextAdaptor.
Expressons of interest include “give me a lage surface’, “give me the lig of
surfaces avallable in the cluster”, “tedl me when a new surface arrives or leaves’
etc. As presented in [Coutaz 02], a ContextAdaptor serves as a gateway between
an goplication and the contextors infragtructure. Contextud information about
the physicd interaction resources is compiled from the information produced by
the SurfacesContextor that runs on each of the eementary platforms (Cf. Section
44.1). As illugrated in 4.5.2, the ContextAdaptor of A provides A with events
that may have an impact on the topology of the surfaces used by A.

- It creates the communication channds with the interaction resources (surfaces) it
is interested in. When the ContextAdaptator of an IAMApp A informs that a
new surface S maiches its expresson of interest, A may request the
SurfaceConnectionManager of S to open a communication channd for action
and/or for observation. If the connection is successful, A creates a SurfaceProxy
as its own representative of the (possibly remote) S. As presented in Section
442, a suface, a the platform levd, mantans an |AMAppProxy per
gpplication that uses it. As a result, the port ObservationSurfaceProxy of S in A
exchanges messages with its corresponding port IAMAppObservationProxy

9 Current limitations: “interaction resources’ should be understood as “ surfaces” only.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NO. IST-2000-26070 FINAL REFEREN CE FRAMEWORK FOR
INTERACTION SURFACES PAGE 25/40

associaed with S a the platform leve. Smilarly, an ActionSurfaceproxy of the
Logicd Leve exchanges messages with its corresponding |IAMAppAction
proxy of the Platform Levd.

- It incdudes the mechanisms and politics to map the physca world with the
digita LogicdSpace (and vice versa). The LogicdSpace is an infinite Cartesan
gpace. The mapping problem and our solution are discussed next (Sections 4.5.2
and 4.5.3).

- It populates the LogicaSpace with IAMInteractors using the facilities provided
by the IAMInteractor package (e.g., creste, destruction, etc.) presented in
Section 4.6.

45.2 THE MAPPING PROBLEM

The centra problem that the Logica Level addresses is to entertain the illuson of a
unified space while the user is interacting with physcdly digoint surfaces that may
differ in dze orientation, resolution, and so on. The following smple examples
illugtrate the problem of rendering awindow interactor across two surfaces.

In the dtuation depicted in Figure 4.7, the window overlaps two surfaces S1 and S2
whose physcd charecterisics are drictly identical. In addition, the axes of ther
coordinates space are aligned. Let P1 be the intersection of the top-border line of the
window with the right border of S1. To entertain the illuson of continuity, P1 must
have a corresponding point P2 in S2. Let (x1, yl) be the coordinates of P1 in the
coordinates system of S1 and (x2, y2), the coordinates of P2 in the coordinates system
of S2. Then, for the Stuation depicted in Figure 4.7, P2.x2=P1.x1+1-W1 where W1 is
the width of S1, and P2y2=Plyl. This smple example shows that a point P that
belongs to an interactor in the LogicalSpace, is mapped in the physicd world, as 2
points P1 and P2 related by geometric relationships (in our example, a trandation on the
X axis).

WA

Figure 4.7. Mapping awindow on two identical surfaces S1 and S2 whose coordinates systems are
aligned.

Figure 4.8 illudrates the dtuation where S1 and S2 are composed as in 4.7 but
where the resolutions of S1 and S differ. As shown in Figure 4.8, a trandation is not
enough. Rescaling is hecessary to insure visud continuity.

OCTOBER 27 '™ 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 26/40

Figure 4.8. Mapping awindow on two surfaces S1 and S2 whose coordinates systems are aligned,
but whose resolutions are different.

Having illusrated the problem of entertaning the illuson of a unified space, we are
now able to present the process used in FAM to map the Logica Space of an IAMApp
gpplication to the physical space and vice versa.

4.5.3 OUR SOLUTION TO THE MAPPING PROBLEM
In 1-AM, the mapping between the logicd and the physicd spaces is implemented
as athree-step process:
From physical to normalized-physical spaces. this sep is peformed by the
PhyscaTopologyManager component. The PhyscaTopologyManager is in charge
of cregting and maintaining the PhyscaTopology, a data structure that models the
spatid relationships of the surfaces used by an IAMApp.
From normalized-physical to logical spaces. this sep is ensured by the
Logica TopologyManager component. This component is in charge of creating and
maintaining the LogicaATopology. The LogicdTopology is a daa ructure that
defines the projection of the PhyscaTopology onto the LogicdSpace of an
IAMApp.
From logical to physical spaces. this step is performed by the Mapper component.
Based on the LogicadTopology, this component is in charge of rendering the logica
interactors of an IAMApp into their corresponding effective interactors.

The Physical Topology contains the list of surfaces (and their characteristics) used by A,
aswdl as the two-by-two SurfacesLinks and SurfacesRelations.
The surfaces used by A ae those for which A has obtaned a communication
channd. (An application does not necessarily use dl of the surfaces of the clugter.)
As discussed in 4.4.2, a Surfaceslink denotes a physical compostion point between
2 surfaces. For every SurfacesLink that connects two surfaces S1 and S2, the
Physica TopologyManager computes a SurfacesRelation using the description of the
SurfacesLinks and the geometric characteristics of S1 and S2 (height, width, borders
gze). This is how the mapping between “physcd to normaized-physical” spaces
OCCuUrs.
A SurfacesRddion between two linked surfaces is an affine transformation (eg.,
trandation, rotation, shear, and scaling) between the coordinates systems of the two
aurfaces. Reusing the illustration of Figure 4.7, the SurfacesRelaion between S1
and & is a trandation on the X axis (where W1, the vaue of the trandation, is
expresed in millimeters). As demonstrated above, this transformation is necessary

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 27/40

to produce the illuson of continuity between surfaces as users drags interactors and
MOUSE Cursors across surface boundaries.

ContaxtAdapior PhyeicalTopologyManager l PhysicalTopalogy | TopologyEventQueue Logical TopologyManager | LogicalTopalogy | Mapper]
nawsurlace R
(surface 1} i T 1SurfaceEvent
g (surface 1) IF;?.I?"E:JE ?c: i aurtacedppaar sddSurfacesfelation
tace 1 appear)
= _ > {surface 1) (batween surfaca 1
- & surface 1)
postSurfaceEvent
(suracesralation batwaan
surlace 14
surface 1 appear) surfacesRelstionAppear
(between surface 1 mapinteractars
Eaurecad) o (on surfaca 1)
newSurface ddSurt
{surface 2| Tsun‘:::; postSurtacaEvent ;
- i = (surface 2 appear) alrface/ppesr
T S {surface 1}
newlink .
{between surlace 1 sddSurfacesLink
& surtaca 2) {between surtace 1
oo il & surface 2}
—e I
addSurfaces Relation postSurfaceEvent
(batwean surfaca 1 [surtacasrelation betweean
& surfeca 2) surface 1 & surface 2 - "BOE'SH‘EE‘IOI'IAF aar
appear) " fiatwin sunacepl sddSurfacesRelation
. (i
7 (batwaan surface 1
& surface
2 & surface 2)
postSurfaceEvent
(surfacesrelation batwean
surtaca 14
surface 2 appear) sull'lacesﬂelmlnrﬁccea.r
(between surface 1 mapinteractors
Erinecss) . (on surface 2)

Fi gure4.9. Ex};\mpl eof aseciuence diagram when new surfaces and surfaces connections occur.

The LogicalTopology is built by the Logica TopologyManager based on the knowledge
of the PhyscaTopology. It contains the list of the surfaces that are mappable onto the
LogicaSpace and, for each mappable surface S, a SurfacesRdation between S and a
reference surface.
By default, the reference surface is the core display of the dementary platform
where A is launched. If the platform has no screen, then the first discovered screen
becomes the reference surface. The reference surface is amappable surface.
Surfaces of the PhysicaTopology that are mappable onto the LogicaSpace are
those that form a path that includes the reference surface. Surfaces that are not part
of the path, are not mappable. A non-mappable surface S will become mappable
when a SurfacesLinks appears between S and any mappable surface.
A SurfacesRddion is an dffine trandformation (expressed in millimeters) between
the coordinates systems of the reference surface and a mappable surface. This is
how the mapping between “normdized-physca to logicd” spaces occurs. And this
is how I-AM dlows developers to customize their own view of the physca space
by letting them specify ther own SurfacesRdation. For example, one palitics is to
ignore the borders of the physica surfaces as well as the space between the surfaces,
while another politics would not. One may refer to D18 for a comparative
discusson on the different types of trandformation. In particular, we show the effect
of surface borders on visud continuity, an atribute ignored in current graphicd
tools, including iRoom and i-LAND.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR

INTERACTION SURFACES PAGE 28/40

physical evenis

physical space

Logical space

surlace 1
appears

surtace 2
appears

surface 3

appears
= (X

suriacasrelatbon
2-3 appears

&)
23

suriacesrelatkon

o

Surface 1
[

Referenca surlace

Surface 1

o —

‘ Surface 1
Y

Surface 2

1
|

Reterence surface

Surface 3

——

Surface 1 |

Surface 1

1-Z appaars H’I '
@ (Surface 1 1-2 | Surfac% 2 :
\ i Surfage 3
_____________ :
Surface 3

Figure 4.10. Mapping between the LogicalSpace and the PhysicalSpace. The left most column
corresponds to a sequence of messages that notify the arrival of surfaces as well as their composition
through SurfacesLinks. The right most column shows the mapping of the surfaces onto the L ogical Space.
The central column shows the resulting physical space as perceived by the user. The first row corresponds
to the initial state: the Logical Space contains a grey rectangle and there is no surface to render the
Logical Space. Then, surface 1 appears. By default, it becomes the reference surface and its coordinates
system is aligned with that of the Logical Space. A portion of the Logical Space can be rendered. Surface 2
arrives in the cluster but is not composed with the reference surface: it is not mapped onto the
LogicalSpace. Therefore, the arrival of the surface has no perceivable side effect. Idem for Surface 3.
Surfaces 2 and 3 are now connected. Because none of them is connected to the reference surface, they are
not mapped to the Logical Space. The last row shows the physical space that results from the composition
of Surface 2 with the reference surface.

-l

Fl.eflaranne surface

Having described the data structures and the role of the components involved in
the mapping process, we now describe the dynamic aspect of the process. Any
modification to the PhyscaTopology or to the LogicaTopology is reported as a
TopologyEvent queued in the TopologyEventQueue. To receive the TopologyEvents of
interest, the PhyscadTopologyManager and the LogicdTopologyManager are
Physicad TopologyEventLigeners both of them must be notified about changes in the
physcd world. On the other hand, the mapper, whose job is grounded on the
Logica Topology, is aLogica TopologyEventListener.

OCTOBER 271 2003

© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 29/40

The sequence diagram shown in Figure 4.9 makes explicit the effect of the arriva
of the first surface of the cluster (surface 1); followed by the arrivd of a second surface
(surface 2) which is then connected physicdly to surface 1. Roughly spesking, any
modification in the physcd world that is detected by the ContextAdeaptor of the
IAMApp triggers the mapping process, the PhysicdTopologyManager trandates the
modification of the physcd world into a modification of the PhyscaTopology which,
in turn, triggers the LogicaTopologyManager. The arivd of a surface that is not
physicaly connected to any mappable surface has no further effect. On the other hand,
the arriva of the surface that is physicaly linked to a mappable surface has an impact
on the Mapper: this new surface defines an additional peephole on the Logica Space.
Therefore, the content of the LogicdSpace “hidden” behind the new surface must be
rendered. Figure 4.10 provides another illustration of this process.

From the event “surfacesRelaionsAppear between the reference surface 1 and the
mappable surface 2°, the Mapper gets the physcad characteristics of surface 2 including
its pixd dze, as wdl as the proection of suface 2 in the LogicaSpace. In the
LogicaSpace, pixds have a normdized Sze. In order to avoid the visua discontinuity
shown in Figure 4.8, the Mapper computes a new transformation that combines the
projection of the suface in the LogicdSpace with (possbly) rescaing. The
trandformation is sent to the SurfaceProxy of surface 2 s0 that surface 2 can render the
effective interactors gppropriately.

46 THEINTERACTORLEVEL: | AMINTERACTOR PACKAGE

An |AMiInteractor provides the programmer with the conventiona programming
paradigm. As a result, an IAMInteractor can be created, destroyed, moved, etc. in the
LogicdSpace. It has a pogtion in the LogicadSpace, it has a height and width expressed
in terms of normdized pixes, etc. It hides away the fcts that it can migrate seamlessly
between surfaces a the pixd level.

lAMInputTextinteractor

| 1AMPointerinteractor

laMEftectivePointerinteractor | LAMEffectivelnput Textinteractor

| laMInstrumentinteractor B
_-d"'-f 3
laMWindow
corresponds 10

| /{ IAMEftectivelnstrumentinieractor

LAMEffectivelnteractor & LAMEffective Window |

Figure4.11. UML classdiagram of the IAM Interactor Level.

To do so, an IAMinteractor | of an IAMApp A is mapped into severa
Effectivelnteractors, with one Effectivelnteractor E per surface S used by A. In other
word, E results from the mapping process gpplied to | on S. It sends to | the input events
it recaves from the indruments for example “Pointerinstrument M has entered’,

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 30/40

“Pointeringrument M has been clicked”, etc. Conversdy, any change of | by A is
notified to al of its associated Effectivel nteractors.

1

G3
Surface 51 Surface 52 Surface 53
G e e

e Ay

..

5 Fa' B __;_ ”.E.--.&

g |8 2 &

i|: i i

It g 5

] 5 b : 'z

i B g g
- = T

.
-

“ Pointarinstrumant M1 et L Pointardnstrumeant M2 F'-ulnmrlcnsmr Pointarinstrumant M3
{uses an IAMApp AZ) {uses an lAMApp A3) {uses an lAMApp Ad)

Figure 4.12. Example of relationships between an IAMApp A, its|AMInteractors,
Effectivel nteractors, surfaces, and instruments.

Figure 411 shows the UML class diagram for IAMInterators. For now, we have
implemented three subclasses of IAMinteractors: IAMwindow interactors as graphics
containers, and IAMIngtrumentinteractors that permit to grgphicdly render the dae of
input text and pointer indruments. Smilaly, we have defined the classes for
corresponding Effectivelnteractors. In the current implementation, Effectivel nteractors
are implemented with Swing. Another graphical toolkit, such as OpenGL ispossble.

Figure 4.12 shows an example of the rdationships between an IAMApp A, its
IAMInteractors, Effectivelnteractors, surfaces, and instruments. In this example,
IAMApp A has created two IAMWindows W1 and W2 in its LogicalSpace. It is
currently using three mappable surfaces S1, S2, S3, each one handled by a digtinct
dementary plaiform. In addition, each one of the platforms handles a mouse instrument

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 31/40

M1, M2, M3. As discussed in Section 4.4.3, instruments are modeled as |AMInteractors
owned by specific kinds of IAM Applications dedicated to instruments.

As shown in Figure 4.12, an IAMInteractor owns a corresponding Effectivel nteractor
on every surface. Therefore, IAMWindow W1 owns an EffectiveWindow interactor W1
for S1, for S2, and for S3. Depending on the location of W1 in the Logica Space, ether
one of these Effectivelnteractors is visble, or, given the current topology of the
surfaces, two of them a most are Smultaneoudy visble (Cf. Description in 4.5.3).

The same mechanism goplies to indruments. Every IAMPointeringrument has one
Effectivelnteractor per surface. Therefore, the user can take any mouse, move it across
surfaces boundaries seamlesdy to manipulate any effective interactor. For example, the
user can take Mouse M1 to manipulate Window W2 currently visble on Surface S3
and bring it in S2. The user can observe the movement of M1 through the movement of
the currently visible EffectivePointerinteractor C1.

As Figure 4.12 shows, IAM offers the possbility to show as many mouse cursors as
there are pointing indruments. In the example, the cursors of M1 and M3 are in S2 hile
that of M2 is in S1. This facility opens the way for new opportunities in multi-user
interaction. However, from the user's perspective, the presence of multiple cursors,
which may engender confusion, needs to be addressed carefully.

So far, we have presented the Structure, services and mechanisms offered by FAM.
The next section briefly presents I-AM from the devel oper’ s perspective.

47 A PROGRAM EXAMPLE

The program shown in Figure 4.13 shows how to creste a window that can be
migrated seamlesdy across surfaces possbly managed by a cluster of heterogeneous
operating systems and machines.

/[11.To exploit I-AMservices, | need to be an | AMApp
| AMApp nyi amapp = new | AMApp ();

/12.1 create a wi ndow mywi ndow whose barycentre is at point (300, 300)
in the Logical Space, wi dth and hei ght (300, 200), and rotated by a
factor of Pi.

| AMW ndow nywi ndow = new | AMW ndow () ;
mywi ndow. set Cent er Locati on (300, 300);
myw ndow. set Si ze (300, 200);

mywi ndow. set Rot ati on (3.1416);

/13. | register mywi ndow so that it can be managed by |-AM
myi amapp. addl nt eract or (nmyw ndow) ;

Figure 4.13. Creation of amigratable window across multiple surfaces.

Once step 3 of the program is executed, dl of the mappables surfaces S used by
myiamapp are notified of the exigence of the window in the following way. For every

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 32/40

S, its IAMEffectivelnteractorManager receives the following XML messages (where
the <action> tag denotes a method cadl and <id> denotes the identification of
interactor10):

<action i1d=129.87.31.43_4 class=I AM nteractor.| AMN ndow
met hod=const ruct or ></ acti on>

<action 1d=129.87.31.43 4 cl ass=I AM nt eractor. | AMN ndow
met hod=set Cent er Locati on x=300 y=300></acti on>

<action i1d=129.87.31.43_4 class=I AM nteractor.| AMN ndow
met hod=set Si ze wi dt h=300 hei ght =200></ acti on>

<action 1d=129.87.31.43 4 cl ass=I AM nt eractor. | AMN ndow
met hod=set Rot ati on rotation=3.1416></acti on>

When receving the message with the atribute met hod=construct or, the
IAMEffectivelnteractorManager of S crestes an |AMEffectiveWindow that processes
the rest of the message to produce the appropriate feedback on the surface, as well as
any future message related to mywindow.

If, later on, the developer decides to change the size of the window:
myw ndow. set Si ze (400, 300);
then al of the mappable surfaces of myiamapp will receive the following message:

<action id=129.87.31.43 4 cl ass=I AM nt er act or. | AMN ndow
nmet hod=set Si ze wi dt h=400 hei ght =300></ acti on>

and the corresponding | AM Effectivel nteractors will be updated.

If a new mappable surface arrives, its IAMAppEffectivel nteractorManager receives
the following message which will create an IAMEffectivelnteractor for mywindow (note
that the obsolete method calls have been discarded):

<action id=129.87.31.43 4 class=lI AM nt er act or. | AMN ndow
met hod=const ruct or ></ acti on>

<action id=129.87.31.43 4 cl ass=I AM nt er act or. | AMN ndow
nmet hod=set Cent er Locati on x=300 y=300></acti on>

<action id=129.87.31.43 4 class=lI AM nt er act or. | AMN ndow
met hod=set Si ze wi dt h=400 hei ght =300></ acti on>

<action id=129.87.31.43 4 class=lI AM nteractor.| AMN ndow
met hod=set Rot ati on rotation=3.1416></acti on>

Conversdy, if a surface disgppears, its IAMAppEffectivelnteractorManager will be
required by myiamapp to destroy its |AMEffectivel nteractors.

10 jd=129.87.31.43 4 means that mywindow has been created on the elementary platform whose ID is its
IP address (i.e., 129.87.31.43) and 4 is a unique ID for this machine generated by the IDManager of |-
AM.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 33/40

So far, we have described how [-AM manages the interaction resources of an
interactive space. This is one aspect of the generd problem of plastic user interfaces. In
the next section, we show how [-AM fits within an infrastructure that supports the run
time adaptation of Ul’s.

5 I-AM WITHIN AN INFRASTRUCTURE FOR PLASTIC UI

Figure 51 shows the run-time infrastructure that UJF has desgned for the
CAMELEON R&D IST-2000-30104 European project. Details of this infrastructure can
be found in [Coutaz 034].

Probes - Gontextors

Llsgr
nnEarer

Platiorm
obisenar

Erviranmaani
b

Task manegear
Siluation

i Mz DG [“Meta DG BN | Mot DG : 1 synEhosizer

_

Evalistion anging

Campomnant
ralrgivar

T -)-:4 Carfligurater b
Interactive system F-nteractive system n R =
F\.I‘.'ISIrEICII m-"llum = - 4

] s e e

Faificator, Abshractar,
L Transiator

T

Figure5.1. I-AM within the functional decomposition of the CAMELEON run time infrastructure.

The CAMELEON run time infragtructure includes three types of run time
components. 1) the Interaction Abstract Machine that abstracts away the heterogeneity
and the management of dynamic system resources, 2) close-adaptive components
embedded in the interactive sysems that currently run on the platform, and 3)
gpeciaised components to insure open-adaptiveness.

5.1 CLOSEADAPTIVE COMPONENTS

Close-adaptive components either are condituents of the interactive sysems tha
currently run on the platform, or items saved in a daa base for future use when
adaptation is required. Interactive systems may be conventiona applications (for
example, adocument editor, avideo-viewer) or a meta- user interface.

A meta-user interface is to clusters and didributed Uls what the desktop is to
centralised Uls on conventional PC's. Like the desktop, it serves as an interactive glue
between the application-oriented interactive systems. It includes:

- Interaction techniques that dlow users and the sysem to control the interaction
resources of the platform. For example, coupling interactive surfaces by proximity
as in Rekimoto's Pick and Drop [Rekimoto 97], by dignment [Tandler Olb], by

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 34/40

bumping as in [Henckley 03], by synchronous clicks on dedicated keyboard keys
[Rekimoto 03], or by any new technique yet to be invented,

- Interaction techniques, including negotiation, that adlow users and the system to
express the redigtribution, migration, adaptation of dl (or part of) the user interface
of an interactive system, including the meta- user interface.

5.2 COMPONENTSFOR OPEN-ADAPTIVENESS

Open-adaptivity is ensured by a set of dedicated components that, by definition, are
extena to the interactive sysems tha currently run o the cluster. They include
obsarvers, a Stuation synthesizer, an evolution engine, a component retriever, and a
configurator assisted by reificators, abstractors, and trandators.

- Observers detect the causes for potential adaptation. Some observers detect changes
in the context of use these are the platform, environment and user observers. Our
contextors infrastructure offers a way to implement these observers. The Aura
environment manager and context observer correspond, respectively, to our platform
and environment observers. A particular observer, the task manager, probes and
maintains usars evolution within the task space. The task space is composed of the
task gpaces supported by each one of the interactive systems that currently run on
the duster. The Aura Prism component is an instance of atask manager.

- The dtuation synthesizer computes the current dtuation and context from
information provided by the observers. As discussed in [Crowley 02], a new
gtuation may be recognized, for example a change within the surfaces topology
(e.g., anew PDA has arrived).

- The evolution engine computes a reaction in response to the new Stuation or new
context. The response may require one or more of the current running interactive
sysems to adapt. If the adaptation required by the new dStuation fdls within the
domain of pladicity of the interactive system, then the interactive sysem is able to
sdf-adgpt. On the other hand, if the required adaptation does not fal within the
domain of pladticity of the interactive system, then the evolution engine retrieves the
appropriate components from the components data base and produces a description
of a new configuration of the interactive sysem usng an ADL (Architecture
Description Language).

- The configurator creates a new executable interactive sysem from a configuration
decription. The components referred to in the description do not necessarily
correspond to executable code. They may ingtead be high-levd descriptions such as
task modes. If so, the configurator relies on reificators such as Teresa [Paterno 02]
and ARTStudio [Cavary 02] to produce executable code. Conversely, a component
may need to be reversed engineered through abstractors, and then transformed by
trandators and reified again into executable code as in Vaquita [Vanderdonckt 01].

This infrastructure has been implemented and experimented with the development of an
exemplar application: CamNote.

53 ANEXAMPLE: CAMNOTE

CamNote (for CAMELEON Note) is a Sides viewer that can run on a dynamic
duster composed of a single PC or of a PC and a PocketPC. It is composed of three
components:

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 35/40

- A dides viewer. On the PC, this viewer dlows the insertion of tranducent videos
provided by cameras (dso known as pixels mirrors [Morikawa 98] [Vernier 99]).
This component is available for PC' s only.

- A persond notes editor/viewer. Comments can be entered for each dide. This
component exists for PC's only.

- A remote controller that dlows the user to navigate from dides to dides and to
control the leve of trangparency of the pixes mirror. A remote controller
component is available for both PC’'s and for PocketPC's.

The user interface of CamNote can be rotated at the workspace level. In other words,
windows do not need to be pardld to the borders of the display screens. Figures 5.2 and
5.3 show screen dumps of the CamNote user interface.

=
-. - i T L AP s e s
Bl e
w lnt.qﬂ— i Fl'-'-.ll 1€sirard 20088
- b 1
-zﬁm

Figure 5.2. On the left, CamNote when the user interface is centralised on a PC screen. At the top
right, the slides viewer window. In the middle of the screen a rotative window groups together a remote
controller for navigating between the slides and controlling the transparency level of the pixels mirror, a
personal notes viewer, and the video image of the speaker. Rotation may be needed when the window is
migrated to an horizontal surface. On the right, the PC screen during the adaptation process. In this
configuration, the user is enlarging the size of the slides viewer using a mouse. The evolution model
expresses the following adaptation: “If the screen real estate getstoo small to show the remote controller,
then replace the graphic mouse-driven remote controller with a keyboard-driven remote controller and, if
there is a PDA, migrate the remote controller to the PDA”. Therefore, migration is partia and is
performed at the workspace level (Cf. Section 2). As shown in the picture, during the adaptation process,
the mouse-driven remote controller dynamically weaves itself into the slides viewer window and them
disappears. This movement is a kind of Meta-Ul. Figure 5.3 shows the Ul of CamNote that results from
the adaptation process.

Etai de I"art : Apporis extérieurs i

o Compll | inierpreie
* éelarati | impé-ani
= ey Ll | farien branmurens s et —
o Surevemplc ou mom I n;

& L a},&'mu e ;lmp.'mululinu. |Girwrd W Eﬂlmm

* il R | o=

S
= Iour i caplinliabies

C i b g e = sebes ber Lo s

5 -
; DS INEE
€9

———

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 36/40

Figure 5.3. The user interface of CamNote when distributed on a PC screen and a PocketPC screen.
This distribution results from the migration of the remote controller from the PC to the PDA. The original
remote controller available on a PC has been replaced with a new remote controller whose buttons and
layout are best suited to the PocketPC. The Ul of CamNote is therefore distributable, migratable and
plastic. This is made possible in a transparent way for the user and the developer by the underlying run
time infrastructure.

6 CONCLUSION

In summary, we have desgned a reference framework that helps understanding,
reesoning and implementing user interfaces for globd smat spaces. This framework
includes an ontology that makes explicit the concepts of multi-surface interaction and,
based on this ontology, I-AM, a software infrastructure that supports the dynamic
composition of heterogeneous interaction resources connected into a unified space. In
this space, users can digtribute and migrate whole or parts of user interfaces as if these
components were handled by a unique computer. I-AM provides users with the illuson
of a unified space a no extra cost for the developer. We have shown how FAM can be
integrated in a wider infrastructure designed to support the run time adaptation of plastic
user interfaces. 1-AM is implemented in Java It currently runs on clusters composed of
MacOS X, Windows NT and Windows XP.

From a pure technica perspective, FAM advances the dtate of the art by addressing
al of the following problems:

1. Hatforms heterogendty (eqg., cugers of machines running a mix of MacOs X,
Windows NT and Windows XP),

2. Interaction resources heterogeneity (eg., screens with different szes and
resolutions),

3. Platforms and interaction resources discovery based on afabric of contextors,

Multi-surface interaction grounded on the dynamic compostion of hinged
digolay surfaces whose gpatid rdationships are automaticdly modded and
mantained,

5. Multi-keyboard, multi-pointer capabilities (so that a user can use the mouse of a
PC to manipulate a window displayed on a MacOS screen and drag the window
across screens boundaries as if there were a single screen).

Although our ontology and FAM push the dtate of the art one step forward, a number
of limitations need to be addressed. In particular, we need to measure the performance
of I-AM in a forma way (eg., latency) and consder legacy applications more carefully.
We need to integrate advanced sensory technologies and invent the Meta-Ul that goes
beyond the desktop.

We plan to integrate sensory technologies for two primary purposes. 1) to maintan a
3D topology of the interaction resources and 2) to capture additiond physica
characterigtics of surfaces such as sophisticated shapes, textures, weight, etc. in order to
infer the properties we have dicted in our ontology: for example, is the surface
traversable? Can it be carried around?

We plan to invent dements of the MetaUIl. As discussed briefly in section 5, a
MetaUl covers many aspects of human computer interaction. Let's look a one
example: for traditional workgations, the state of the interaction resources is observable

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 37/40

in a smple manner. In a ubiquitous world, users need to know which resources are in
reech and how they can be composed, borrowed and lent. Early work on this problem
such as that of Hinckley [Hinckley 03] and Rekimoto [Rekimoto 03] addresses smple
cases (eg., connect two workstations or tablets). Although, we have not yet devised any
Meta-Ul except for the migration of user interface components (Cf. CamNote), 1-AM
offers the technica foundations for exploring this new problem.

/ REFERENCES

[Ballagas 03] Bdlages, R., Ringd, M., Stone, M., Borchers, |. IStuff: A Physcd User
Interface Toolkit for Ubiquitous Computing Environment. In Proc. CHI 2003, Fort
Lauderdde, April 5-10, 2003, ACM Publ., 5(1), pp. 537-544

[Bederson 00] Bederson, B., Meyer, J. Good, L. Jazz: An Extensible Zoomable User
Interface Graphics Toolkit in Java. In Proceedings of UIST 2000. May 2000. p171-
180.

[Bier 92] Bier E., Freeman, S, Fer, K., The Multi-Device Multi-User Multi-Editor. In
Proc. of the ACM conf. On Human Factors in Computer Human Interaction
(CHI92), (1992), pp. 645-646.

[Borkowski 03] Borkowski, S, Riff, O., Crowley, JL. Projecting rectified images in an
augmented environment. In Proceedings of ProCams Workshop. Internationd
Conference on Computer Vison (ICCV 2003) , IEEE Computer Society Press,
October 2003, Nice, France.

[Brumitt 01] Brumitt, B., Shafer, S. Better Living Through Geometry. Personal and
Ubiquitous Computing 2001. Vol 5.1 Springer.

[Cavary 01] Cdvary, G., Coutaz, J. Thevenin. D. A Unifying Reference Framework for
the Development of Plastic User Interfaces. IFIP WG2.7 (13.2) Working Conference,
EHCI01,Toronto, May 2001, Springer Verlag Publ., LNCS 2254, M. Reed Little, L.
Nigay Eds, pp.173-192.

[Coutaz 02] Coutaz, J., Rey, G. Foundations for a theory of Contextors. Proc. of
Computer-Aided Design of User Interfaces Ill, J. Vanderdonckt, C. Kolski Eds,,
Kluver Academic Publ., 2002, pp. 13-32.

[Coutaz 03] Coutaz, J., Lachena, C., Dupuy-Chessa, S. Ontology for Multi-surface
Interaction. Proc. Interact 2003, M. Rauterberg et d. Eds, 10S Press Publ., IFIP,
2003, pp.447-454.

[Coutaz 03] Coutaz, J., Bame, L., Barrdon, N., Cavay, G., Demeure, A., Lachend,
C., Rey, G., Banddloni, R., Paterno, F. Initial Version of the CAMELEON Run Time
Infrastructure for User Interface Adaptation, Deliverable D2.2 V1.1, October 2003,
Cameleon project, IST 2000-30104, hitp://giove.cnuce.cnr.it/camel eon.html

[Crowley 02] Crowley, J., Coutaz, J., Rey, G., Reignier, P. Perceptua Components for
Context-Aware Computing, UbiComp 2002: Ubiquitous Computing, 4th Internationa
Conference, Goteburg, Sweden, Sept./Oct. 2002, G. Borridlo, L.E. Holmquist Eds.,
LNCS, Springer Publ., 2002, pp. 117-134.

[Garlan 01] Garlan, D., Schmerl, B., Chang, J. Usng Gauges for Architectura-Based
Monitoring and Adaptation. Working Conf. on Complex and Dynamic Systems
Architecture, Audtralia, Dec. 2001.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 38/40

[Geernter 92] Gelernter, D., and Carriero, N., Coordination Languages and their
Sgnificance, Communications of the ACM, Vol.32, Number 2, February, 1992.

[Gregor 97] Gregor, K. et a. Aspect-Oriented Programming. In proceedings of
ECOOP’ 97, LNCS 1241, Springer-Verlag, pp. 220-242, Juin 97.

[Guttman 01] Guttman, E. Autoconfiguration for IP Networking: Enable Locd
Communication. | EEE Internet Computing, May-June 2001, pp. 81-86.

[Hinckley 03] Hinckley, K. Synchronous gestures for multiple persons and computers.
Proc. UIST 2003, ACM, 2003.

[Hourcade 99] Hourcade J., Bederson, B. Architecture and Implementation of a Java
Package for Multiple Input Devices (MID). 1999 http:/Aww.cs.umd.edu/hcil/mid/

[Hubinette 02] Hubinette, F. x2vnc 1.31 (home page)

[Johanson 02a] Johanson, B., Hutchins, G., Winograd, T. PointRight: Experience with
Flexible Input Redirection in Interactive Workspaces. In Proc. of User Interface
Software and Technology (UIST 2002), ACM Publ., pp. 227-234.

[Johanson 02b] Johanson, B., Fox, A. The Event Heap: A Coordination Infrastructure
for Interactive Workspaces. In Proc. of the 4" |EEE Workshop on Mobile Computer
Systems and Applications (WMCSA 2002), June, 2002.

[Luyten 2002] Luyten, K., Vandervelpen, C., Coninx, K. Migratable user interfaces
Descriptions in - Component-Based Development. DSV-IS 2002, Rostock, Springer
Verlag Publ., 2002.

[Microsoft 00] Undergtanding Universdl Plug and Play, White Paper, Windows
Millenium edition, Microsoft 2000.

[Morikawa 98] Morikawa, O., Maesako, T. HyperMirror : Toward Pleasant-to-use
Video Mediated Communication System. In proceedings of CSCW 98, ACM Publ.,
Sesttle, Washington USA. pp. 149-158

[Myers 98] Myers, B., Stid, H., Gargiulo, R. Collaboraion Usng Multiple PDAs
Connected to a PC. In Proceedings CSCW98: ACM Conference on Computer-
Supported Cooperative Work, 1998, Seattle, WA. pp. 285-294.

[Oreizy 99] Oreizy, P, Taylor, R, e d. An Architecture-Based Approach to Sdlf-
Adaptive Software. In |EEE Intelligent Systems May-June, 1999, pp. 54-62.

[Paternd 02] Paterno, F., Santoro, C. One modd, many nterfaces. In Proc. Computer-
Aided Design of User Interfaces Il (CADUI), J. Vanderdonckt, C. Kolski Eds,
Kluver Academic Publ., 2002.

[Rekimoto 97] Rekimoto, J. Pick-and-Drop: A Direct Manipulation Technique for
Multiple Computer Environments. In Proceedings of UIST'97, ACM Publ., 1997, pp.
31-39.

[Rekimoto 99] Rekimoto, J, Masanori, S. Augmented Sufaces : A Spdialy Continous
Workspace for Hybrid Computing Environments. Proceedings of CHI’99, ACM
publ., 1999.

[Rekimoto 03] Rekimoto, J, Ayatsuka, Y., Kohno, M. SyncTap: an Interaction
Technique for Mobile Networking. In Proc. Mobile HCI 2003, L. Chittaro Ed.,
Springer Publ., LNCS 2795, pp. 104-115.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 39/40

[Richardson 98] Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A. Virtua
Network Computing, IEEE Internet Computing, Vol 2, No 1, Jan/Feb 1998, pp. 33-
38.

[Sousa 02] de Sousa, J, Garlan, D. Aura: an Architectura Framework for User
Mohility in Ubiquitous Computing Environments. IEEE-IFIP Conf. on Software
Architecture, Montreal, 2002.

[Straitz 99] Sireitz, et d. i-LAND: An interactive Landscgpe for Credtivity and
Innovation. In Proceedings of CHI' 99, ACM publ.

[Tandler 0la] Tandler, P. Software Infrastructure for Ubiquitous computing
Environments: Supporting synchronous Collaboration with Heterogenous devices.
In Proceedings of UbiComp 2001, Springer Publ.

[Tandler O1b] Tandler, P, Prante, T., Muller-Tomfelde, C., Streitz, N., Steinmetz, R.
ConnecTables Dynamic Coupling of Displays for the Hexible Cregtion of Shared
Workspaces. In Proc. UIST 2001, ACM publ., 2001, pp. 11-20.

[Thevenin 99] Thevenin, D., Coutaz, J Padticity of User Interfaces. Framework and
Research Agenda. In Proc. Interact99, Edinburgh, , A. Sasse & C. Johnson Eds, IFIP
|OS Press Publ. , 1999, pp.110-117.

[Vanderdonckt 01] Vanderdonckt, J., Bouillon, L., and Souchon, N., Flexible Reverse
Engineering of Web Pages with Vaquita. In Proc. WCRE'200: IEEE 8th Working
Conference on Reverse Engineering. Stuttgart, October 2001. | EEE Press.

[Vernier 99] Vemnier, F., Lachend,C., Nigay, L., Coutaz, J. Interface Augmentée Par
Effet Mirair, in Proc. IHM'99. (AFIHM conference on Human-Machine Interface,
22-26 November 1999 Montpellier, France), Cepadues Publ., pp. 158-165.

[Viswanathan 01] Viswanahan, P., Gill, B., Campbel, R. Security Architecture in
Gaia. Universty of lllinais, report, UIUCDCS-R-2001-2215, May, 2001.

[Want 01] Want, et d. The Personna Server : The Center of Your Ubiquitous World.
Intel Research White Paper, May 2001.

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

GLOSS: GLOBAL SMART SPACES D19
PROJECT NoO. IST-2000-26070 FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES PAGE 40/40

ANNEX1: FORMAL DEFINITION OF A PLATFORM
Let

C bethe st of core configurations

E be the set of extension resources

c,C't{}:Cl CandC"'=C-C

E,E"El EadE'=E-E

Ci,...,c1 C,e1,...,enl EfornT N*, mT N

Operational be a predicate over a set of resources that returns true when this set
forms a working computationd artefact whose state can be observed and/or
modified by a human user.

A platform is composed of a st of core and extenson resources which, connected
together, form a working computational artefact whose dtate can be observed and/or
modified by a human user:

P={cy....,cn} E{ e, ..., &m} and Operational (P)

Pisan dementary plaform if and only if:
@$ C, E, C", E": Operational (C' E E) and Operational (C" E E").

In other words, P is an dementary platform if it not possible to build two platforms
from the set of resources that congtitute P.

P is a duder if it is possble to compose multiple platforms from the set of resources
that condtitute P

$ C,E, C", E": Operational (C' E E) and Operational (C" E E").

Note that:

A core configuration is not necessarily Operational. For example, the Intel Persond
Server, a Bluetooth-enabled micro-drive with no interaction device, is a core
configuration but not an dementary platform: its state cannot be observed nor modified
until it wirdesdy connects to extenson resources such as a display and/or a keyboard
[Want 01]. On the other hand, a laptop is an dementary platform even when augmented
with extenson resources such as a second mouse and sensors. Similarly, Rekimoto's
data tiles foom an dementary platform that can be dynamicaly extended by placing
physicd transparent tiles on a tray composed of an LCD flat screen display [Rekimoto
01].

OCTOBER 271 2003
© 2001 GLOSS CONSORTIUM V2.0

