
 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 1/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

IST BASIC RESEARCH PROJECT
SHARED COST RTD PROJECT
THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO
PROJECT OFFICER: THOMAS SKORDAS

Global Smart Spaces

Final Reference Framework
for Interaction Surfaces

D19

27/10/2003, UNIV. JOSEPH FOURIER/WP7/VERSION 2.0
J. COUTAZ, N. BARRALON, C. LACHENAL, G. REY

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 2/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

IST Project Number IST-2000-26070 Acronym GLOSS

Full title Global Smart Spaces

EU Project officer Thomas Skordas

Deliverable Number D19 Name Final Reference Framework for Interaction Surfaces

Task Number T Name n/a

Work Package Number WP7 Name Interaction Techniques

Date of delivery Contractual October 2003 Actual Oct. 2003

Code name n/a Version 2.0 draft ¨ final þ

Nature Prototype þ Report þ Specification ¨ Tool ¨ Other:

Distribution Type Public þ Restricted ¨ to:

Authors (Partner) J. Coutaz, N. Barralon, C. Lachenal, G. Rey

J. Coutaz Contact Person

Email Joelle.coutaz@imag.fr Phone +33 4 76 51 48 54 Fax +33 4 76 44 66 75

Abstract
(for dissemination)

This document describes the final version of a reference
framework for understanding, reasoning and implementing user
interfaces for global smart spaces. This framework includes an
ontology that makes explicit the concepts of multi-surface
interaction and, based on this ontology, I-AM, a software
infrastructure that supports the dynamic composition of
heterogeneous interaction resources to form a unified space. In this
space, users can distribute and migrate whole or parts of user
interfaces as if they were handled by a unique computer. I-AM
provides users with the illusion of a unified space at no extra cost
for the developer.

Keywords Multi-surface interaction, distributed user interface, migratory user interface, user interface
development tool, Interaction Abstract Machine.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 3/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Table of Content
1 INTRODUCTION...4
2 MULTI-SURFACE INTERACTION ONTOLOGY...5

3 STATE OF THE ART..8
3.1 DYNAMIC SOFTWARE RECONFIGURATION .. 8
3.2 DYNAMIC DISCOVERY OF INTERACTION RESOURCES... 9
3.3 HETEROGENEITY OF INTERACTION RESOURCES... 9
3.4 USER INTERFACE INFRASTRUCTURES .. 11

3.4.1 Infrastructure in the large: Aura ...11
3.4.2 Infrastructure in the Small: BEACH..12
3.4.3 Infrastructure in the Small: iROS and PointRight13

4 I-AM (INTERACTION ABSTRACT MACHINE) ...15
4.1 PRINCIPLES .. 15
4.2 OVERALL STRUCTURE OF I-AM.. 17
4.3 I-AM: CURRENT LIMITATIONS AND HYPOTHESES.. 18

4.3.1 Current Limitations ...18
4.3.2 Hypotheses ...18

4.4 THE PLATFORM LEVEL: THE IAMPLATFORM PACKAGE.. 18
4.4.1 SurfacesContextor ...19
4.4.2 Surface Manager..20
4.4.3 Instrument Manager ..22
4.4.4 Summary ..23

4.5 THE LOGICAL LEVEL: THE IAMAPP PACKAGE... 23
4.5.1 Functional coverage of an IAMApp ..24
4.5.2 The Mapping Problem ...25
4.5.3 Our Solution to the Mapping Problem...26

4.6 THE INTERACTOR LEVEL: IAMINTERACTOR PACKAGE.. 29
4.7 A PROGRAM EXAMPLE ... 31

5 I-AM WITHIN AN INFRASTRUCTURE FOR PLASTIC UI..33
5.1 CLOSE-ADAPTIVE COMPONENTS.. 33
5.2 COMPONENTS FOR OPEN-ADAPTIVENESS... 34
5.3 AN EXAMPLE: CAMNOTE ... 34

6 CONCLUSION..36

7 REFERENCES ...37
ANNEX1: FORMAL DEFINITION OF A PLATFORM ...40

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 4/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

1 INTRODUCTION
The state of the art in ubiquitous computing shows early examples of interactive

systems, motivated by human-centered concerns, that are based on the dynamic
composition of interaction resources: Distributed UI as in Rekimoto’s Pick and Drop
[Rekimoto 97], dynamic docking of multiple displays to enlarge real screen estate (e.g.,
the ConnecTable [Tandler 01b] or Hinckley’s work [Hinckley 03]), Migratable UI as in
I-land [Streitz 99] and Seescoa [Luyten 02], or the Personal Server approach that
promotes the borrowing of near-by interaction resources [Want 01]. As far as we know,
all of these prototypes have been developed as concept demonstrators reusing and
hacking the current foundational tools of the GUI technology.

A number of European projects (e.g., Cameleon1 and Consensus2 are currently
concerned with the definition of models and tools that support the design and
development of plastic UIs, i.e., UIs that can dynamically adapt to context of use while
preserving usability [Thevenin 99]. Tools such as Teresa [Paternò 02], Vaquita
[Vanderdonckt 01] and ARTStudio [Calvary 01] have been developed to support the
specification and generation of UIs that can adapt to PDAs, cell phones and
workstations. These tools support well-established methods that ensure the usability of
the resulting UI. But they do so for centralized UIs where a virtual machine like JVM or
a Web browser is sufficient for supporting the portability of the generated code. When it
comes to address distributed plastic UI over a dynamic set of heterogeneous resources,
these tools are impeded by the existing windowing systems and toolkits.

In the GLOSS
vision, users have a
number of devices
available, some of
which they own and
which travel with them,
and others that are
available from their
current location. A GLOSS user may want to use GLOSS services, plug them together
in order to create new services and arrange their interaction resources to suit the
activities at hand. In addition, several users may discover themselves in a place and may
decide to work together.

In summary, state of the art in distributed, migratable, composable, and plastic UI’s
as well as UI development tools are limited by existing windowing systems and toolkits
designed at a time where user interfaces where confined to a single screen using a single
pointing and text entry device. To address the problem, either we hack the current
foundational tools and develop short-term demonstrators, or we aim at general

1 http://giove.cnuce.cnr.it/cameleon.html

2 http://www.consensus.upv.es

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 5/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

foundational solutions that support the new requirements imposed by global smart
spaces. If the scientific community aims at supporting a sound approach to the
development of distributed migratable, plastic UI’s, we need to revise our foundational
tools, which, by definition, set the basis for the development of higher level of
abstraction tools. In turn, experience shows that these high level tools increase the
capacity to develop usable user interfaces.

In WP7, we are concerned with the development of a software infrastructure that
enables users to borrow and lend local interaction resources in an opportunistic manner
as they move in the global fabric of networked computation. The multi-surface
interaction ontology presented in Year 2 (Cf. D17), now integrated in the GLOSS
ontology (See D9), has provided a sound rationale for eliciting the limitations of current
foundational tools. It is briefly recalled in Section 2. Next, we analyse how the state of
the art addresses our requirements (Section 3). In Section 4, we describe I-AM, our
proposal for a middleware run-time infrastructure that addresses the limitations of
current tools. I-AM complements the local infrastructure as defined in D8 by St
Andrews, and draws upon the proximity-group model developed by TCD. It is not
intended for traditional centralised UI’s. Instead, it is aimed at facilitating the
development of distributed and migratable UI’s at no extra cost for the developer while
providing users with a unified view as if the user interface were handled by a single
computer. In Section 5, we illustrate the integration of I-AM within an infrastructure
that supports the run time adaptation of plastic user interfaces. This infrastructure has
been designed by UJF for the CAMELEON R&D IST-2000-30105 project.

2 MULTI-SURFACE INTERACTION ONTOLOGY
A more detailed description of the Multi-surface Interaction ontology is available in

D9. Figure 1.1 is here to recall the elements of the model.

The concepts necessary to understand our software solution are the following:
platform, interaction resources, surfaces and instruments, spatial relationships, coupling
interaction resources with digital content, distributed UI and migratable UI.

A platform may be elementary or a cluster. An elementary platform is a set of
physical and software resources that function together to form a working computational
unit whose state can be observed and/or modified by a human user. None of these
resources is able per se to provide the user with observable and/or modifiable
computational function. A personal computer, a PDA, or a mobile phone, are
elementary platforms. On the other hand, resources such as processors, central and
secondary memories, input and output interaction devices, sensors, and software
drivers, are unable, individually, to provide the user with observable and/or modifiable
computational function.

Some resources are packaged together as an immutable configuration called a core
configuration. For example, a laptop, which is composed of a fixed configuration of
resources, is a core configuration. The resources that form a core configuration are core
resources or Machine-bound [Johanson 02] resources. Other resources such as external
displays, sensors, keyboards and mice, can be bound to (and unbound from) a core
configuration at will. They are extension resources.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 6/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Figure 1.1. The GLOSS ontology for multi-surface interaction.

A cluster is a composition of elementary
platforms. The cluster is homogeneous
when it is composed of elementary
platforms of the same class. For
example, the DynaWall is an
homogenous cluster composed of three
electronic white boards running the
same operating system [Streitz 99]. The
cluster is heterogeneous when different
types of platforms are combined
together as in Rekimoto’s augmented
surfaces [Rekimoto 99].

Interaction resources are subclasses of core and extension resources. They are
mediators between an artificial actor (e.g., a GLOSS system) and a natural actor (e.g., a
user). An interaction resource may serve as an instrument (e.g., a pen and a mouse)
and/or as a surface (e.g., a screen display or a wall). As an instrument, an interaction
resource mediates the actions of an actor. As a surface, the outmost boundary of a
physical entity serves as a recipient for making information observable to an actor.
Physical surfaces and instruments are characterised by attributes (grounded in the
physical world) as well as by relations. An action surface is a subset of a physical
surface on which an actor can act directly with actuators and/or indirectly with
instruments. Similarly, an observation surface is a subset of a physical surface that an
actor can observe with sensors.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 7/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Among these relationships, geometric spatial relations are central. They form a physical
topology that results from the way surfaces and instruments are assembled. The physical
topology can be projected on digital content in many ways. For example, a set of screen
displays can be used as multiple physical magic lenses that can be moved independently
over the digital space. Alternatively, the displays, although not contiguous in the
physical space, may partition the digital space in a continuous manner in order to show
the informational content without any hole. In other words, coupling interaction
resources onto (with) digital content is an important issue for HCI design. It is therefore
important that the technical solution provides coupling mechanisms while, at the same
time, it is able to support different application-dependent policies.

A user interface is distributed when its interaction components (e.g., windows and
panels) are allocated (whether it be statically or dynamically) to different platforms of a
cluster. For example, using the painter metaphor, tools palettes are displayed on a PDA
held in the non-dominant hand whereas a stylus is held in the dominant hand. Like a
painter artist, the user picks the appropriate tool on the palette with the stylus, and then
draws on the canvas supported by a wall-size electronic screen. Distribution of user
interfaces can be performed at multiple grains. Granularity of user interface distribution
may vary from application level to pixel level:

- At the application level, the user interface is fully replicated on the platforms of
the target cluster. If the cluster is heterogeneous (e.g., is comprised of a mixture
of PC’s and PDA’s), then each platform runs a specific targeted user interface.
All of these user interfaces, however, simultaneously share the same functional
core.

- At the workspace level, the user interface components that can be allocated to
different surfaces are workspaces. A workspace groups together a collection of
interactors that support
the execution of a set of
logically connected
tasks. In graphical user
interfaces, a workspace
is mapped onto the
notions of window and
panels. The painter
metaphor is an example
of UI distributed at the
workspace level.

- At the domain concept level, the user interface components that can be
distributed between platforms are interactors that allow users to manipulate
domain concepts. In Rekimoto’s augmented surfaces, domain concepts can be
distributed between laptops and horizontal and vertical surfaces. (In their demo,
tables and chairs interactors can be moved between physical surfaces.).

- At the pixel level, any user interface component can be partitioned across
multiple platforms. For example, in I-land, a window may simultaneously lie
over two contiguous white boards.

Distribution is complemented with the capacity of the user interface to migrate at run
time. A user interface is migratable when all or parts of its components can be
transferred at run time between platforms. Migration may be total or partial:

QuickTime™ and a
PNG decompressor

are needed to see this picture.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 8/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

- Migration is total if the user interface
migrates entirely to a different platform.

- Migration is partial when a subset only of
the user interface moves to different
platform(s). The subset that can migrate is consistent with the granularity of
distribution: partial migration may be performed at the workspace level, concept
level or pixel level.

The GLOSS I-AM aims at supporting the essence of multi-surface interaction, that is,
the dynamic composition of heterogeneous clusters within which user interfaces can be
distributed and migrated in a continuous way at multiple levels of granularity without
imposing any extra programming on the developer. In the next section, we analyse
the state of the art in the lights of our requirements.

3 STATE OF THE ART
From a software perspective, the problem space described in Section 2 implies that

the software that implements an interactive system be dynamically reconfigurable,
possibly distributed across a dynamic set of heterogeneous resources, and migratable
across these resources. Thus, we need to consider how to address:

- dynamic reconfiguration which, in turn, requires system integrity,

- heterogeneity of system resources, and

- detection of arrival/departure of interaction resources.

These issues are discussed next along two dimensions: first, the general proposals
from the state of the art followed by current UI-oriented infrastructures.

3.1 DYNAMIC SOFTWARE RECONFIGURATION

Dynamic software reconfiguration primarily covers the following issues: 1)
modification of the structure of the system (i.e., by adding, removing, substituting
components, and/or by modifying their connection) and 2) modification of the
geographical distribution of the components across the currently available
comptutational resources. In the context of this discussion, a component is considered to
be a software unit responsible for implementing a set of services that can be composed
with other components. For doing so, it includes a description of the inputs it requires
and the outputs it supplies.

As discussed in [Oreizy 99], dynamic reconfiguration may be close-adaptive or
open-adaptive:

- When close-adaptive, the system includes all of the mechanisms and data to perform
adaptation on its own: it is self-contained (autonomous).

- Open-adaptiveness implies that adaptation is performed by mechanisms and data
that are external to the system.

Whether it be close-adaptive or open-adaptive, dynamic reconfiguration is best
supported by a component-connector approach [Oreizy 99, Garlan 01]. Components
that are capable of reflection (i.e., components that can analyse their own behaviour and
adapt) support close-adaptiveness. Components that are capable of introspection (i.e.,

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 9/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

components that can describe their behaviour to other components) support open-
adaptiveness.

In I-AM, we have adopted a component-connector approach. The notion of
component provides the foundations for system flexibility. In addition, system
reconfiguration implies that links between the components change over time, and that
components may be eliminated or replaced in the reconfiguration process. This
flexibility requires that components should not reference their peers explicitly, nor
should they know the communication protocol expected by their peers. In a connector-
based approach, where connectors are in charge of linking the components and
supporting their communication protocol, a clear distinction between the functional
aspects of the system (the components) and the communication aspect of the system
(the connectors) is achieved. However, in a connector-based approach, the overall
structure of the system must be described. An ADL (Architecture Description
Language) as described in D11 is a promising way to go.

3.2 DYNAMIC DISCOVERY OF INTERACTION RESOURCES

The dynamic discovery of system resources is a complex problem. Jini, based on a
client-server model is appropriate for small-scale applications. For ubiquitous
environments, the existence of a centralised server is not an option. Rendez-Vous3 from
Apple, based on the ZeroConf standard [Guttman 01], supports mutual discovery
between the IP resources connected to a network. UPnP from Microsoft goes in the
same direction [Microsoft 00]. These are useful techniques for managing the arrival and
departures of elementary platforms in a cluster. However, they do not address the
specific case of interaction resources that are not IP devices.

In I-AM, we have used contextors [Coutaz 02], an infrastructure aimed at acquiring
contextual information about the physical environment and the platform, to discover the
arrival and departure of interaction resources.

3.3 HETEROGENEITY OF INTERACTION RESOURCES

In software engineering, resources heterogeneity has been addressed with the notion
of abstract machine.

Current windowing systems and UI toolkits are based on this technique but reveal a
number of limiting factors for multi-surface interaction:

1. The window model is biased by the workstation screen. Instead, the concept of
window must be replaced with that of a physical surface with an explicit model
of its physical attributes. Today, windowing systems model windows as
rectangular drawables whose borders are constrained to be parallel to that of the
display. This model is based on the (wrong) the assumption (for multi-surface
interaction) that users keep facing a vertical screen and that the rendering
surface is rectangular. With the proliferation of video projectors, it is
increasingly popular to project window contents on horizontal surfaces such as
circular tables. In this situation, users should be able to rotate the digital content

3 http://www.arstechnica.com

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 10/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

so that everyone can share information without twisting their neck (Cf. our
Year2 GLOSS demonstrator). Today, rotating windows and user interfaces must
be implemented from scratch from low-level graphics primitives. Jazz/PAD++
[Bederson 00] and DiamondSpin4 are toolkits that offer the basics for
implementing rotative, zoomable user interfaces but they do so for centralised
UIs only. Similarly, physical attributes of rendering surfaces, such as size,
shape and colour, must be made available to the application program: one does
not want to render information on a rectangular white surface in the same way as
on a circular table covered with a red cloth. In turn, the capture of the physical
attributes of a surface calls for new requirements on the sensing technology. The
contextors infrastructure can serve as a basis for implementing colonies of
perceptual processes [Crowley 02].

2. Geometrical relationships between physical displays are poorly modelled.
Instead, the (possibly 3D) spatial relationships between the interaction
resources and the user should be explicitly modelled, dynamically acquired and
maintained. Windowing systems are able to support a limited number of
screens. In addition, the relative location of the display screens must be set up by
the user through dedicated system forms. As a result, the user is in charge of
additional articulatory tasks. Again, because they are screen-centric, windowing
systems do not support topologies that include the surrounding environment
(e.g., walls, tables, users’ location with respect to the display surfaces, etc.).
However, for many novel interactive systems, the topology of the rendering
surfaces matters: for example, 3D rendering on a vertical surface and 2D
presentation on a horizontal surface [Rekimoto 99].

3. Only single instances of input instruments are supported. Instead, the system
should be able to support any number of instances of an instrument class. In
current windowing systems, the reference workstation is supposed to have one
single mouse and keyboard. On systems like MacOS, it is possible to plug two
physical mice. Unfortunately, they are linked to the same interruption level and
are modelled by the event manager as a device type, not as a device instance. As
a result, multi-user applications such as MMM [Bier 92] whose users share the
same screen with multiple mice, require the underlying toolkit and event
manager to be revisited as in MID [Hourcade 99].

4. Interaction is confined to the resources of a single workstation. Instead, we need
to distribute UI’s across a set of interaction resources managed by a cluster of
possibly heterogeneous machines. Applications like i-LAND [Streitz 99] and
Rekimoto’s augmented surfaces [Rekimoto 99] require the aggregation of
multiple computers. Pocket-size computers can play the role of input devices to
control information displayed on wall-mounted electronic boards as in Pebbles
[Myers 98]. In addition, UI migration requires additional functionalities such as
mechanisms for state recovery.

4 http://www.merl.com/projects/diamondspin

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 11/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

5. Absence of dynamic discovery of interaction resources. Instead, in ubiquitous
computing, interaction resources appear and disappear opportunistically: users
can upload situated information on their private PDA as they pass by a public
active wall. Two users who meet serendipitously in the street, may want to start
a collaborative activity by bringing together their PDA’s to form a larger
interaction space. GaiaOS [Viswanathan 01] and Aura [Sousa 02] aim at
supporting heterogeneity and dynamic migration. However, they address
centralised user interfaces only.

In the next paragraph, we analyse state of the art infrastructures intended to support
some aspects of our concept of multi-surface interaction. We will primarily look into
those aimed at supporting clusters and/or UI migration and distribution. Solutions like
the MID toolkit and Pebbles are interesting improvements over current windowing
systems but they boil down to the dynamic connection of input devices to a single core
configuration.

3.4 USER INTERFACE INFRASTRUCTURES

There are two approaches to user interface-oriented infrastructures: those where the
focus is on developing an infrastructure at the scale of the Planet as in Gaia
[Viswanathan 01] and Aura [Sousa 02]. Those where the infrastructure is adapted to a
room as for BEACH [Tandler 01a], iROS-PointRight [Johanson 02a] and Easyliving
[Brumitt 01]. In the following paragraph, we discuss Aura as an example of a run time
infrastructure in the large, BEACH and iROS-PointRight as run time infrastructures in
the small.

3.4.1 INFRASTRUCTURE IN THE LARGE: AURA

The goal of the Aura project is to find solutions to the following competing goals: 1)
to maximise use of available resources in a ubiquitous-enabled computing world, 2) to
minimise the distraction and drains on user attention that stem from managing those
resources.

Figure 3.1. Functional decomposition of an Aura environment (from [Sousa 02]).

The approach to the problem is to provide an infrastructure that configures itself
automatically for the mobile user, “potentially using whichever computing capabilities
are available or reachable from the current location” [Sousa 02]. When a user moves to
a different platform, Aura attempts to reconfigure the computing infrastructure so that
the user can continue working on tasks started elsewhere. Figure 3.1 shows the
functional decomposition of an “Aura environment”.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 12/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

An Aura environment is supposed to run in multiple places on the Planet such as
home, office, car, etc. In the GLOSS terminology, it is a local architecture. The context
observer of an Aura environment detects events of interest that occur in the physical
local place (e.g., user is entering, user is leaving, etc.) and informs the local
environment manager as well as the local task manager of these facts. The local
environment manager is in charge of modeling the computing and interaction resources
locally available. The task manager, called Prism, checkpoints the state of the running
suppliers (i.e., services needed to support users’ tasks) at a high level of abstraction. For
example, for a text editing supplier, the task manager saves the file name and well as the
current insertion point in the text of the source document.

When the current local context observer detects the user is leaving the Aura
environment, it informs the local task manager which checkpoints the local suppliers
and causes the local environment manager to pause those services. When the user
enters another Aura environment, the new local context observer detects the fact and
informs the new local task manager. In turn, the task manager re-instantiates the tasks
that were suspended by finding and configuring services suppliers in the new Aura
environment. So, for example, a user who was working at home using Word can carry
on the task in the new environment but possibly using a different text editor such as
Emacs.

Aura is intended to address all types of platforms and sources of context changes.
However, adaptation is addressed by software component substitution and the
granularity for substitution is a whole interactive system (i.e., a supplier in the Aura
terminology). As a result, only total migration is possible with a state recovery at the
task level. In other words, Aura addresses UI migration, but does not support UI
distribution across heterogeneous interaction resources if the supplier did not do so in
its own code. Therefore, Aura is an infrastructure for open-adaptivity.

3.4.2 INFRASTRUCTURE IN THE SMALL: BEACH

The BEACH framework (Basic Environment for Active Collaboration with
Hypermedia) [Tandler 01a] provides functionalities for synchronous cooperation and
interaction for roomware. As shown in Figure 3.2, it can be viewed as a four layer
abstract machine. (Actually, there are others views of the BEACH framework that we
have not been able to fully understand, despite code inspection.)

Figure 3.2. BEACH four conceptual levels of abstraction (From [Tandler 01a]).

The core level, which uses the COAST framework [Tandler 01a], encapsulates
platform dependent details including multi-user events handling, sensor drivers, and
access to shared data. The Model level provides higher levels with abstract classes that
are application, domain and platform independent and that allow different

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 13/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

implementations for different platforms. The Generic level includes generic components
such as the notion of document, data types, private and public workspaces that are
common to collaborative situations. The task level groups the high-level abstractions
specific to a particular application. From an implementational point of view, BEACH
relies on a client-server paradigm where the server serves as the reference for all of the
BEACH clients running in a room. To be part of the cluster, elementary platforms must
run a BEACH client.

A BEACH infrastructure addresses homogeneous dynamic clusters where all
machines run a uniform Smalltalk software environment. User interfaces built on top of
this environment can be distributed and migrated at the pixel level. Typically, a window
can overlap two surfaces. From the developer’s perspective, BEACH provides the
programmer with a single logical output display mapped onto multiple physical
displays. However, it is unclear whether BEACH includes an explicit model of the
topology between interaction surfaces (the implicit hypothesis is that the interaction
resources in a cluster are compatible and can be coupled in a predefined known way). In
addition, BEACH does not seem to address the dynamic connection of input devices.

3.4.3 INFRASTRUCTURE IN THE SMALL: IROS AND POINTRIGHT

iROS5 is an open source middleware developed at Stanford University as a basic
infrastructure for roomware. As opposed to BEACH where every application has to be
developed from a uniform Smalltalk software platform, iROS aims at supporting legacy
applications. It includes core components for data storage, service management, and
communication (the Event Heap).

Figure 3.3. The iRoom screen topology (from [Johanson 02a]).

The Event Heap is derived from the tuplespace model [Johanson 02b]. In the
tuplespace model introduced by [Gelernter 92], applications communicate and
coordinate through a commonly accessible tuplespace. Tuples, which are a collection of
ordered type-value fields, may be posted to the space, or read from the space in either a
destructive or non-destructive manner. A tuple is chosen by a template tuple specified
by the retrieving application. The template contains precise values for the fields to be
matched, and wild cards for fields containing data to be retrieved. Event Heap has
extended the tuplespace model to satisfy interactive rooms requirements. In particular,
tuples have been extended with extra fields such as type and self description for
extension and semantic checking, routing attributes to improve performance, event

5 http://iros.sourceforge.net

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 14/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

sequencing, a TimeToLive attribute to garbage collect unconsumed events, and a
publish-subscribe mechanism to complement the polling mechanism of the original
tuplespace model. On top of iROS, a number of applications have been built. PointRight
is one of them.

PointRight allows the mouse cursor to cross the display screens of an heterogeneous
cluster based on the geometric topology description of the space (see Figure 3.3). It is
implemented as a client of the Event Heap server and is supposed to run on each of the
elementary platforms of the cluster.

A PointRight client includes a sender and a receiver:

. The sender redirects the mouse and keyboard events from the local input devices. It
uses the geometric topology of the screen displays of the room to direct input to the
appropriate screen (i.e., to the elementary platform that owns the target display) and
sends the redirected local mouse and keyboard events using the Event Heap.

. The receiver accepts remote mouse and keyboard events from the Event Heap. It is
responsible for rescaling cursor motions to fit the characteristics of the local display.

The topology description of the room space consists of machines, screens and
connections. Machines are the elementary platforms that currently run PointRight. A
screen description includes the dimensions of the physical screen, the identification of
the elementary machine it is managed by, and the set of connections to other screens. A
connection represents a valid transition of pointers between screens. They are
represented by an edge (top, bottom, left, right) and the region of the edge through
which the pointer can transition. There can be multiple connections to a single screen
edge as long as the regions of the connections do not overlap.

In the current implementation,

. The topology description of the room space is read from a configuration file. By
monitoring events on the Event Heap, it is possible to know whether the
machines of the configuration file are running.

. PointRight provides a unified multi-display space for pointing and keying: as the
user moves the mouse, the cursor crosses the screens seamlessly across the space
of displays as though there were a single surface connected to a single machine.
However, windows and icons cannot be moved across screen boundaries.

PointRight is similar in spirit to VNC [Richardson 98], x2x6 and x2vnc [Hubinette
02]. VNC (Virtual Network Computing) allows a user on one computer to interact with
applications running on another computer. It does so by mirroring the remote
application display and by forwarding the local keyboard and mouse events to the
remote application. However, users can control a single screen at a time. To control
multiple screens, one would need to launch a VNC window per remote screen and
switch among the VNC windows. x2x and x2vnc are similar in spirit to PointRight, but
they are specific to X-Window and do not support arbitrary configurations.

6 http://ftp.digital.com/pub/DEC/SRC/x2x/

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 15/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

PointRight goes one step further than VNC, x2x and x2vnc, by redirecting pointer
and keyboard events in an heterogeneous cluster. It includes a model of the geometric
topology of the screens but the model is inherently 2D. In particular, horizontality and
verticality are not addressed. PointRight does not support the dynamic discovery of
interaction resources, nor does it support the overlap of windows and icons across
screen boundaries. This is where the illusion of a unified workspace breaks. The authors
“would like to find a method that elegantly extends PointRight to moving information
around the iRoom, while maintaining [the] focus on general, heterogeneous applications
and operating systems” [Johanson 02, pp. 233].

In summary, to our best knowledge, none of the current infrastructures, currently
available or under development, covers all aspects of multi-surface interaction. I-AM
presented next, aims at such goal.

4 I-AM (INTERACTION ABSTRACT MACHINE)
Our approach to the problem is to develop an Interaction Abstract Machine grounded

on a sound model such as that of X Window, and extend it to support the key concepts
of multi-surface interaction. I-AM extends the functional coverage of current
windowing systems to distributed migratable user interfaces across a dynamic set of
heterogeneous resources. More specifically:

- It hides away the low-level details of hardware and software heterogeneity at the
appropriate level of abstraction,

- It supports interaction resource discovery and models their spatial relationships,

- It permits the distribution and migration of UIs across multiple surfaces at the pixel
level. From the developer’s perspective, this facility is provided at no extra cost.
From the user’s perspective, all the surfaces and instruments form a unified
interactive space despite they are being driven by different machines.

A detailed description of I-AM is presented next. First, we outline the key principles
of I-AM (4.1), its overall structure (4.2), and the limitations of the current
implementation (4.3). The following sections (4.4, 4.5, 4.6) describe the key
components of the structure in detail. We conclude the presentation of I-AM with a
program example that gives a flavor of the developer’s view (4.7).

4.1 PRINCIPLES

Figure 4.1 illustrates the principles of I-AM. The very bottom of the figure shows an
example of a user’s view where the GLOSS logo is shown seamlessly across a set of
three surfaces handled by three distinct elementary platforms. The logo can be moved
across surfaces boundaries using any pointing device of the cluster. At the top of the
figure, the developer’s view. Here, the user interface of an application consists of
several windows as if they were part of a unique interaction space handled by a unique
computer.

As shown at the bottom of the figure, the platform is a cluster composed of three
elementary platforms. Each one handles a unique surface and runs a different operating
system (e.g., MacOS X, Windows XP, Windows NT). Through surfaces links, surfaces
are composed in a plane using, possibly different, orientations in the plane. Similar to
the PointRight notion of connection, surfaces links are reference points located on the

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 16/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

edge of a surface. They can take the form of a physical sensor (e.g., infrared sensors,
accelerometers as in Hinckley’s example of synchronous gestures for connecting tablets
[Hinckley 03]). They can also be painted dots tracked by a computer vision system.
Surfaces link allow I-AM to dynamically compute the topology of the surfaces. They
also concretise our notion of compatibility introduced in the multi-surface ontology:
surfaces can be composed only through links that are technically compatible.

Figure 4.1. The principles of IAM.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 17/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

The bottom of the figure shows the distribution of the user interface across three
surfaces. Some interactors such as the top left window of the developer’s view, are fully
rendered within a single surface whereas other interactors, such as the right most
window of the developer’s view, are split across two surfaces. In the latter case, the
logical interactor of the developer’s view is mapped into two effective interactors whose
rendering is tightly coupled to entertain the illusion of a unified space: as the user
moves one of the effective interactors using any pointing device of the cluster, the other
“twin” effective interactor is moved and resized accordingly as if the twins were one
single piece. Of course, the number of effective interactors that correspond to a logical
interactor depends on the position of the logical interactor in the logical space and on
the topology of the surfaces onto which the logical space is projected.

The role of I-AM is to continuously maintain the mapping between the logical view
of interactors as handled by the developer and the effective interactors as manipulated
by the user. As stressed earlier, PointRight does not address the problem of interactors
transition across surface boundaries at the pixel level. BEACH offers a similar illusion
to I-AM but it does not support any free form of dynamic composition of surfaces, nor
does it support different underlying operating systems. In its current implementation, I-
AM supports heterogeneous clusters composed of MacOS X, Windows NT and
Windows XP.

Having presented the principles of I-AM, we are now able to describe the technical
structure of I-AM.

4.2 OVERALL STRUCTURE OF I-AM

As shown in Figure 4.2, I-AM is structured into three levels of abstraction sitting on
top of the hardware and operating systems that form the legacy basis of the cluster:

- The Platform level hides the heterogeneity of the underlying level and manages
the interaction resources in a normalised way. This level is implemented by the
IAMPlatform Java package.

- The Logical Level provides applications with a customized abstract view of the
physical platform layer. This level is implemented by the IAMApp Java
package.

- The Interactor level implements the basic graphic interactors such as windows
and widgets that populate the logical view of the Logical Level. This level is
implemented by the IAMInteractor Java package.

Figure 4.2. I-AM as a the three levels of abstraction machine.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 18/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Before we describe the functions of the three layers of I-AM, we need to make clear
the hypotheses and limitations of the current implementation.

4.3 I-AM: CURRENT LIMITATIONS AND HYPOTHESES

4.3.1 CURRENT LIMITATIONS

- Surfaces are screen displays including video-projected displays,

- Surfaces are rectangular,

- Surfaces are assembled (coupled) within a plane but this plane can be folded as
in iRoom (see Figure 3.3). 3D topology will be integrated when the sensing
technology will be available. The steerable video projector described in
[Borkowski 03], which tightly couples a camera (sensor) and a video projector
(actuator), offers a promising way to compute the 3D orientation of any flat
surface in a room. This sensor-actuator device will be used in a future version of
I-AM.

- Legacy applications are not supported. In other words, the user interface of next
generation applications is supposed to be developed (or generated by tools)
using I-AM interactors. However, provided that their source code is available,
legacy applications may be automatically reverse-engineered using Aspect
Oriented Programming [Gregor 97]. In the past, we have used this approach
successfully to transform an AWT user interface into a rotating Jazz-based User
interface without re-programming the original UI.

4.3.2 HYPOTHESES

- Naming: an elementary platform is identified by its IP address. An interaction
resource is uniquely identified by the IP address of the elementary platform it is
managed by, followed by an integer that is unique for this platform. For
example, the ID of a surface on a screen S handled by a processeur P is a triplet:
<IP address of P, video card output number of S, unique integer>. Unique
identifiers are provided by a dedicated package of IAM not described in this
document.

- Communication: within I-AM components, processes communicate
asynchronously through TCP sockets. Within the contextors infrastructure used
for detecting the arrival/departure and composition of interaction resources,
processes (e.g., contextors) use multicast sockets and subscribe to the same
multicast group.

- Access control: A group management facility is supposed to identify the
elementary platforms that have the right to participate in the cluster. In other
word, the boundary of a cluster is known. This service can be provided by the
proximity-group software developed at TCD.

4.4 THE PLATFORM LEVEL: THE IAMPLATFORM PACKAGE
Every processor that belongs to the cluster runs an IAMPlatformManager. An

IAMPlatformManager is “elementary platform” centric:
- It manages the resources that are local to the elementary platform it runs on, and

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 19/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

- It has no knowledge of the existence of its peers IAMPlatformManagers. The
absence of explicit reference to any other IAMPlatformManager supports our
requirements for scalability, flexibility and reconfigurability. The glue between
the machines is performed at the Logical Level of I-AM.

An IAMPlatformManager supports the following functions:

- It discovers the interaction resources that are locally connected to the processor
it runs on,

- It maintains a description of these resources, and
- It provides the world7 with the basic means for using the interaction resources8.

This includes the publication of (a) the existence of the interaction resources that
may interest future consumers (e.g., IAM applications), and (b) the
communication ports that will allow consumers to send requests to use a
particular interaction resource, and if successful, to obtain dedicated
communication ports to exchange messages directly with the requested resource.

More precisely, an IAMPlatformManager running on an elementary platform P:

- Creates a SurfacesContextor whose role is to gather and publish the existence of
all of the interaction resources that reside on P,

- Creates one SurfaceManager per physical surface connected to P,

- Creates an InstrumentManager that handles all of the instruments connected to
P.

These components (SurfacesContextor, SurfaceManager, and InstrumentManager)
are presented in more detail in the following paragraphs. Refer to Figure 4.5 for a
detailed representation of their relations.

4.4.1 SURFACESCONTEXTOR

There is one SurfacesContextor per elementary platform.

A SurfacesContextor is a kind of contextor. A contextor is a software component
whose role is to sense contextual information at the appropriate level of abstraction
[Coutaz 02]. In I-AM, the SurfacesContextor of an elementary platform P receives data
from the software SurfaceSensor attached to each one of the surfaces handled by P. It
bundles this information at the appropriate level of abstraction so that, through a
publish-subscribe mechanism supported by the contextors infrastructure, the world (e.g.,
the Logical Level of I-AM) can be informed about the resources P is able to provide.

At the opposite of PointRight whose resources are statically described in a
configuration file, I-AM includes a powerful mechanism for dynamically discovering
the surfaces, their properties, and their physical composition.

7 « The world » denotes any software component that is not part of the IAMPlatformManager. IAM
applications are examples of such software components.

8 Current limitation: only the existence of surfaces is published

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 20/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

4.4.2 SURFACE MANAGER

There is one SurfaceManager per surface S of an elementary platform P. The
SurfaceManager of a surface S covers the following functions:

- It gets and maintains the physical characteristics of S. As shown in Figure 4.3,
the attributes of a surface include: height and width (both in pixels and
millimeters) where digital information can be rendered, color and texture; for
each of its edges, the width of the physical border (in millimeter); a coordinates
system located at the top-left corner of the surface; and surface links that denote
the physical connecting points of the surface with other surfaces. As mentioned
above, links may be physical or logical sensors. Their location is specified in
millimeters relatively to the top-bottom-left-right edges of surfaces. Figure 4.4
shows an example of two surfaces composed via two links A and B. For core
surfaces, the SurfaceManager computes the physical characteristics of S by
using the API from the underlying legacy Operating System.

Figure 4.3. The attributes of an I-AM Surface.

- The SurfaceManager of S creates a SurfaceConnectionManager whose role is to
open two communication ports on which it will listen for IAM applications
requests such as “open connection with S to use S as an observation surface” or
“open connection with S to use S as an action surface”.

- The SurfaceManager of S informs the SurfaceSensor of S about the
characteristics of S (physical characteristics, surfaces links, communication
ports, etc.). In turn, the SurfaceSensor of S transmits the information it receives
to the SurfacesContextor that resides on P. As mentioned above, the
SurfacesContextor aggregates the information it receives from every
SurfaceManager of P into a global view for future resource consumers, e.g.,
IAM applications.

- The SurfaceManager of S creates a SurfaceDefaultPresentation whose role is to
maintain the connection between the IAM application A that uses S and the
interactors that effectively render the logical interactors of A: If A, an IAM
application, is successful at opening a connection with S through the
ActionSurfaceSocket or the ObservationSurfaceSocket of S, the

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 21/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

SurfaceDefaultPresentation of S creates an IAMAppEffectiveInteractorManager
that binds S and A. This IAMAppEffectiveInteractorManager creates a local
proxy to communicate with the possibly remote A. This includes two
communication ports, depending on the way S is used. If S is used as an
observation surface, then an IAMAppObservationProxy is created to send
observation events to A about what has been observed on the surface (e.g.,
mouse clicks). If the surface is used as an action surface, then an
IAMAppActionProxy is created to receive action events from A (e.g., create an
IAMInteractor).

Figure 4.4. Two surfaces connected through two links A and B.

As discussed in Section 4.6, an IAM interactor, which is a logical interactor, is
mapped, at the platform level, into a non empty set of Effective Interactors. As shown in
4.1, these effective Interactors belong to different surfaces. An
IAMAppEffectiveInteractorManager, which binds together a surface S and an IAMApp
A, memorizes the IAMEffectiveInteractors that are owned by A and rendered on S. By
doing so, when the application A disappears, all of its “belongings” on S can be
destroyed.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 22/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Figure 4.5. UML class diagram of the IAMPlatformManager package.

4.4.3 INSTRUMENT MANAGER

There is one InstrumentManager per elementary platform.

The role of the InstrumentManager of an elementary platform P is to manage the
instruments handled by P and to perform the appropriate redirection of events generated
with these instruments. Whereas PointRight performs events redirection based on the
mechanisms of the underlying operating system and windowing system, I-AM re-uses
for inputs, the same mapping technique developed for output. This technique is
presented in Section 4.5.

As shown in Figure 4.5, instruments are of two types: InputTextInstruments and
PointerInstruments. InputTextInstruments generate characters. Typical subclasses
include physical keyboards and speech recognition systems. PointerInstruments include
two subclasses: relative pointing instruments that provide relative positioning
information (e.g., mouse has moved dx-dy pixels) while absolute pointing instruments
such as laser beams and pens, provide a position in the coordinates system of a surface.
New types of instruments such as the iStuff instruments [Ballagas 03], can be modeled
as subclasses of the Instrument class.

Instruments that are core resources (e.g., mouse and keyboard) are discovered by the
InstrumentManager using the API of the local underlying operating system. Extension

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 23/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

instruments such as wireless iStuffs, are discovered through contextors. For every
instrument handled by P, the InstrumentManager creates an InstrumentProxy as an
abstract normalized representative of the physical instrument. In turn, this proxy creates
an IAMInstrumentInteractor, that is, an IAMPointerInteractor if the physical instrument
is a pointer instrument, or an IAMInputTextInteractor if the physical instrument is a text
input instrument.

An IAMInstrumentInteractor (including its subclasses) is a logical interactor. Its
association to an InstrumentProxy fulfills two goals:

. It allows I-AM to make the state of the physical instrument observable to the user.
Typically, for a pointer instrument, the rendering of an IAMPointerInteractor is an
arrow cursor.

. It allows I-AM to implement the events redirection by reusing the mapping that
applies for output between logical and physical interactors. This mapping is
presented in Section 4.5.

By default, the core InputTextInstrument and the core PointerInstrument of a
platform P, are tightly coupled. This means that characters generated by an
InputTextInstrument is automatically directed to the logical interactor that is the current
focus of its associated PointerInstrument. For example, if a user, using the mouse of an
elementary platform A selects a window rendered on the screen of an elementary
platform B, then the characters typed with the keyboard of A, appears in the window of
B. This default coupling can be overridden.

4.4.4 SUMMARY
In summary, the Platform Level of IAM hides away the heterogeneity of the underlying
elementary platforms of the cluster. It provides the next level of IAM, i.e., the Logical
Level, with:

(a) a normalized view of the set of physical interaction resources that are available
on each elementary platform, and

(b) networked communication means to use these resources.

While the platform level is “elementary platform” centric, the Logical Level of IAM is
application centric. This is where the illusion of a unified space is created.

4.5 THE LOGICAL LEVEL: THE IAMAPP PACKAGE

Applications that use an I-AM cluster may each have its own way to exploit and
interpret the physical configuration of the cluster. Therefore, the Logical Level of I-AM
provides applications with a means to build their own view on top of the physical
platform level. To get and exploit such a view, an application must be an instance of an
IAMApp. Figure 4.6 shows the UML class diagram of an IAMApp. First, we describe
the functions provided by an IAMApp, then we discuss the mapping problem, a key
issue to support the illusion of a unified space.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 24/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Figure 4.6. UML class diagram of the Logical Level of I-AM: an IAMApp.

4.5.1 FUNCTIONAL COVERAGE OF AN IAMAPP
An IAMApp A provides the following functions:

- It discovers the interaction resources9 that are currently available in the cluster.
To do so, an IAMApp expresses its interests through its ContextAdaptor.
Expressions of interest include “give me a large surface”, “give me the list of
surfaces available in the cluster”, “tell me when a new surface arrives or leaves”
etc. As presented in [Coutaz 02], a ContextAdaptor serves as a gateway between
an application and the contextors infrastructure. Contextual information about
the physical interaction resources is compiled from the information produced by
the SurfacesContextor that runs on each of the elementary platforms (Cf. Section
4.4.1). As illustrated in 4.5.2, the ContextAdaptor of A provides A with events
that may have an impact on the topology of the surfaces used by A.

- It creates the communication channels with the interaction resources (surfaces) it
is interested in. When the ContextAdaptator of an IAMApp A informs that a
new surface S matches its expression of interest, A may request the
SurfaceConnectionManager of S to open a communication channel for action
and/or for observation. If the connection is successful, A creates a SurfaceProxy
as its own representative of the (possibly remote) S. As presented in Section
4.4.2, a surface, at the platform level, maintains an IAMAppProxy per
application that uses it. As a result, the port ObservationSurfaceProxy of S in A
exchanges messages with its corresponding port IAMAppObservationProxy

9 Current limitations: “interaction resources” should be understood as “surfaces” only.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 25/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

associated with S at the platform level. Similarly, an ActionSurfaceproxy of the
Logical Level exchanges messages with its corresponding IAMAppAction
proxy of the Platform Level.

- It includes the mechanisms and politics to map the physical world with the
digital LogicalSpace (and vice versa). The LogicalSpace is an infinite Cartesian
space. The mapping problem and our solution are discussed next (Sections 4.5.2
and 4.5.3).

- It populates the LogicalSpace with IAMInteractors using the facilities provided
by the IAMInteractor package (e.g., create, destruction, etc.) presented in
Section 4.6.

4.5.2 THE MAPPING PROBLEM
The central problem that the Logical Level addresses is to entertain the illusion of a

unified space while the user is interacting with physically disjoint surfaces that may
differ in size, orientation, resolution, and so on. The following simple examples
illustrate the problem of rendering a window interactor across two surfaces.

In the situation depicted in Figure 4.7, the window overlaps two surfaces S1 and S2

whose physical characteristics are strictly identical. In addition, the axes of their
coordinates space are aligned. Let P1 be the intersection of the top-border line of the
window with the right border of S1. To entertain the illusion of continuity, P1 must
have a corresponding point P2 in S2. Let (x1, y1) be the coordinates of P1 in the
coordinates system of S1 and (x2, y2), the coordinates of P2 in the coordinates system
of S2. Then, for the situation depicted in Figure 4.7, P2.x2=P1.x1+1-W1 where W1 is
the width of S1, and P2.y2=P1.y1. This simple example shows that a point P that
belongs to an interactor in the LogicalSpace, is mapped in the physical world, as 2
points P1 and P2 related by geometric relationships (in our example, a translation on the
X axis).

Figure 4.7. Mapping a window on two identical surfaces S1 and S2 whose coordinates systems are
aligned.

Figure 4.8 illustrates the situation where S1 and S2 are composed as in 4.7 but

where the resolutions of S1 and S2 differ. As shown in Figure 4.8, a translation is not
enough. Rescaling is necessary to insure visual continuity.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 26/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Figure 4.8. Mapping a window on two surfaces S1 and S2 whose coordinates systems are aligned,
but whose resolutions are different.

Having illustrated the problem of entertaining the illusion of a unified space, we are

now able to present the process used in I-AM to map the LogicalSpace of an IAMApp
application to the physical space and vice versa.

4.5.3 OUR SOLUTION TO THE MAPPING PROBLEM
In I-AM, the mapping between the logical and the physical spaces is implemented

as a three-step process:
. From physical to normalized-physical spaces: this step is performed by the

PhysicalTopologyManager component. The PhysicalTopologyManager is in charge
of creating and maintaining the PhysicalTopology, a data structure that models the
spatial relationships of the surfaces used by an IAMApp.

. From normalized-physical to logical spaces: this step is ensured by the
LogicalTopologyManager component. This component is in charge of creating and
maintaining the LogicalTopology. The LogicalTopology is a data structure that
defines the projection of the PhysicalTopology onto the LogicalSpace of an
IAMApp.

. From logical to physical spaces: this step is performed by the Mapper component.
Based on the LogicalTopology, this component is in charge of rendering the logical
interactors of an IAMApp into their corresponding effective interactors.

The PhysicalTopology contains the list of surfaces (and their characteristics) used by A,
as well as the two-by-two SurfacesLinks and SurfacesRelations.
. The surfaces used by A are those for which A has obtained a communication

channel. (An application does not necessarily use all of the surfaces of the cluster.)
. As discussed in 4.4.2, a SurfacesLink denotes a physical composition point between

2 surfaces. For every SurfacesLink that connects two surfaces S1 and S2, the
PhysicalTopologyManager computes a SurfacesRelation using the description of the
SurfacesLinks and the geometric characteristics of S1 and S2 (height, width, borders
size). This is how the mapping between “physical to normalized-physical” spaces
occurs.

. A SurfacesRelation between two linked surfaces is an affine transformation (e.g.,
translation, rotation, shear, and scaling) between the coordinates systems of the two
surfaces. Reusing the illustration of Figure 4.7, the SurfacesRelation between S1
and S2 is a translation on the X axis (where W1, the value of the translation, is
expressed in millimeters). As demonstrated above, this transformation is necessary

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 27/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

to produce the illusion of continuity between surfaces as users drags interactors and
mouse cursors across surface boundaries.

Figure 4.9. Example of a sequence diagram when new surfaces and surfaces connections occur.

The LogicalTopology is built by the LogicalTopologyManager based on the knowledge
of the PhysicalTopology. It contains the list of the surfaces that are mappable onto the
LogicalSpace and, for each mappable surface S, a SurfacesRelation between S and a
reference surface.
. By default, the reference surface is the core display of the elementary platform

where A is launched. If the platform has no screen, then the first discovered screen
becomes the reference surface. The reference surface is a mappable surface.

. Surfaces of the PhysicalTopology that are mappable onto the LogicalSpace are
those that form a path that includes the reference surface. Surfaces that are not part
of the path, are not mappable. A non-mappable surface S will become mappable
when a SurfacesLinks appears between S and any mappable surface.

. A SurfacesRelation is an affine transformation (expressed in millimeters) between
the coordinates systems of the reference surface and a mappable surface. This is
how the mapping between “normalized-physical to logical” spaces occurs. And this
is how I-AM allows developers to customize their own view of the physical space
by letting them specify their own SurfacesRelation. For example, one politics is to
ignore the borders of the physical surfaces as well as the space between the surfaces,
while another politics would not. One may refer to D18 for a comparative
discussion on the different types of transformation. In particular, we show the effect
of surface borders on visual continuity, an attribute ignored in current graphical
tools, including iRoom and i-LAND.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 28/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Figure 4.10. Mapping between the LogicalSpace and the PhysicalSpace. The left most column
corresponds to a sequence of messages that notify the arrival of surfaces as well as their composition
through SurfacesLinks. The right most column shows the mapping of the surfaces onto the LogicalSpace.
The central column shows the resulting physical space as perceived by the user. The first row corresponds
to the initial state: the LogicalSpace contains a grey rectangle and there is no surface to render the
LogicalSpace. Then, surface 1 appears. By default, it becomes the reference surface and its coordinates
system is aligned with that of the LogicalSpace. A portion of the LogicalSpace can be rendered. Surface 2
arrives in the cluster but is not composed with the reference surface: it is not mapped onto the
LogicalSpace. Therefore, the arrival of the surface has no perceivable side effect. Idem for Surface 3.
Surfaces 2 and 3 are now connected. Because none of them is connected to the reference surface, they are
not mapped to the LogicalSpace. The last row shows the physical space that results from the composition
of Surface 2 with the reference surface.

Having described the data structures and the role of the components involved in
the mapping process, we now describe the dynamic aspect of the process. Any
modification to the PhysicalTopology or to the LogicalTopology is reported as a
TopologyEvent queued in the TopologyEventQueue. To receive the TopologyEvents of
interest, the PhysicalTopologyManager and the LogicalTopologyManager are
PhysicalTopologyEventListeners: both of them must be notified about changes in the
physical world. On the other hand, the mapper, whose job is grounded on the
LogicalTopology, is a LogicalTopologyEventListener.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 29/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

The sequence diagram shown in Figure 4.9 makes explicit the effect of the arrival
of the first surface of the cluster (surface 1); followed by the arrival of a second surface
(surface 2) which is then connected physically to surface 1. Roughly speaking, any
modification in the physical world that is detected by the ContextAdaptor of the
IAMApp triggers the mapping process; the PhysicalTopologyManager translates the
modification of the physical world into a modification of the PhysicalTopology which,
in turn, triggers the LogicalTopologyManager. The arrival of a surface that is not
physically connected to any mappable surface has no further effect. On the other hand,
the arrival of the surface that is physically linked to a mappable surface has an impact
on the Mapper: this new surface defines an additional peephole on the LogicalSpace.
Therefore, the content of the LogicalSpace “hidden” behind the new surface must be
rendered. Figure 4.10 provides another illustration of this process.

From the event “surfacesRelationsAppear between the reference surface 1 and the
mappable surface 2”, the Mapper gets the physical characteristics of surface 2 including
its pixel size, as well as the projection of surface 2 in the LogicalSpace. In the
LogicalSpace, pixels have a normalized size. In order to avoid the visual discontinuity
shown in Figure 4.8, the Mapper computes a new transformation that combines the
projection of the surface in the LogicalSpace with (possibly) rescaling. The
transformation is sent to the SurfaceProxy of surface 2 so that surface 2 can render the
effective interactors appropriately.

4.6 THE INTERACTOR LEVEL: IAMINTERACTOR PACKAGE
An IAMInteractor provides the programmer with the conventional programming

paradigm. As a result, an IAMInteractor can be created, destroyed, moved, etc. in the
LogicalSpace. It has a position in the LogicalSpace, it has a height and width expressed
in terms of normalized pixels, etc. It hides away the facts that it can migrate seamlessly
between surfaces at the pixel level.

Figure 4.11. UML class diagram of the IAM Interactor Level.

To do so, an IAMInteractor I of an IAMApp A is mapped into several

EffectiveInteractors, with one EffectiveInteractor E per surface S used by A. In other
word, E results from the mapping process applied to I on S. It sends to I the input events
it receives from the instruments for example “PointerInstrument M has entered”,

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 30/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

“PointerInstrument M has been clicked”, etc. Conversely, any change of I by A is
notified to all of its associated EffectiveInteractors.

Figure 4.12. Example of relationships between an IAMApp A, its IAMInteractors,

EffectiveInteractors, surfaces, and instruments.

Figure 4.11 shows the UML class diagram for IAMInterators. For now, we have
implemented three subclasses of IAMInteractors: IAMwindow interactors as graphics
containers, and IAMInstrumentInteractors that permit to graphically render the state of
input text and pointer instruments. Similarly, we have defined the classes for
corresponding EffectiveInteractors. In the current implementation, EffectiveInteractors
are implemented with Swing. Another graphical toolkit, such as OpenGL is possible.

Figure 4.12 shows an example of the relationships between an IAMApp A, its
IAMInteractors, EffectiveInteractors, surfaces, and instruments. In this example,
IAMApp A has created two IAMWindows W1 and W2 in its LogicalSpace. It is
currently using three mappable surfaces S1, S2, S3, each one handled by a distinct
elementary platform. In addition, each one of the platforms handles a mouse instrument

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 31/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

M1, M2, M3. As discussed in Section 4.4.3, instruments are modeled as IAMInteractors
owned by specific kinds of IAM Applications dedicated to instruments.

As shown in Figure 4.12, an IAMInteractor owns a corresponding EffectiveInteractor

on every surface. Therefore, IAMWindow W1 owns an EffectiveWindow interactor W1
for S1, for S2, and for S3. Depending on the location of W1 in the LogicalSpace, either
one of these EffectiveInteractors is visible, or, given the current topology of the
surfaces, two of them at most are simultaneously visible (Cf. Description in 4.5.3).

The same mechanism applies to instruments. Every IAMPointerInstrument has one

EffectiveInteractor per surface. Therefore, the user can take any mouse, move it across
surfaces boundaries seamlessly to manipulate any effective interactor. For example, the
user can take Mouse M1 to manipulate Window W2 currently visible on Surface S3
and bring it in S2. The user can observe the movement of M1 through the movement of
the currently visible EffectivePointerInteractor C1.

As Figure 4.12 shows, IAM offers the possibility to show as many mouse cursors as

there are pointing instruments. In the example, the cursors of M1 and M3 are in S2 hile
that of M2 is in S1. This facility opens the way for new opportunities in multi-user
interaction. However, from the user’s perspective, the presence of multiple cursors,
which may engender confusion, needs to be addressed carefully.

So far, we have presented the structure, services and mechanisms offered by I-AM.
The next section briefly presents I-AM from the developer’s perspective.

4.7 A PROGRAM EXAMPLE

The program shown in Figure 4.13 shows how to create a window that can be
migrated seamlessly across surfaces possibly managed by a cluster of heterogeneous
operating systems and machines.

//1.To exploit I-AM services, I need to be an IAMApp
 IAMApp myiamapp = new IAMApp ();

//2.I create a window mywindow whose barycentre is at point (300,300)
in the LogicalSpace, width and height (300, 200), and rotated by a
factor of Pi.
 IAMWindow mywindow = new IAMWindow ();
 mywindow.setCenterLocation (300, 300);
 mywindow.setSize (300,200);
 mywindow.setRotation (3.1416);

//3. I register mywindow so that it can be managed by I-AM.
 myiamapp.addInteractor (mywindow);

Figure 4.13. Creation of a migratable window across multiple surfaces.

Once step 3 of the program is executed, all of the mappables surfaces S used by
myiamapp are notified of the existence of the window in the following way. For every

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 32/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

S, its IAMEffectiveInteractorManager receives the following XML messages (where
the <action> tag denotes a method call and <id> denotes the identification of
interactor10):

<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=constructor></action>
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setCenterLocation x=300 y=300></action>
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setSize width=300 height=200></action>
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setRotation rotation=3.1416></action>

When receiving the message with the attribute method=constructor, the
IAMEffectiveInteractorManager of S creates an IAMEffectiveWindow that processes
the rest of the message to produce the appropriate feedback on the surface, as well as
any future message related to mywindow.

If, later on, the developer decides to change the size of the window:

mywindow.setSize (400,300);

then all of the mappable surfaces of myiamapp will receive the following message:

<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setSize width=400 height=300></action>

and the corresponding IAMEffectiveInteractors will be updated.

If a new mappable surface arrives, its IAMAppEffectiveInteractorManager receives
the following message which will create an IAMEffectiveInteractor for mywindow (note
that the obsolete method calls have been discarded):

<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=constructor></action>
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setCenterLocation x=300 y=300></action>
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setSize width=400 height=300></action>
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow
method=setRotation rotation=3.1416></action>

Conversely, if a surface disappears, its IAMAppEffectiveInteractorManager will be
required by myiamapp to destroy its IAMEffectiveInteractors.

10 id=129.87.31.43_4 means that mywindow has been created on the elementary platform whose ID is its
IP address (i.e., 129.87.31.43) and 4 is a unique ID for this machine generated by the IDManager of I-
AM.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 33/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

So far, we have described how I-AM manages the interaction resources of an
interactive space. This is one aspect of the general problem of plastic user interfaces. In
the next section, we show how I-AM fits within an infrastructure that supports the run
time adaptation of UI’s.

5 I-AM WITHIN AN INFRASTRUCTURE FOR PLASTIC UI
Figure 5.1 shows the run-time infrastructure that UJF has designed for the

CAMELEON R&D IST-2000-30104 European project. Details of this infrastructure can
be found in [Coutaz 03a].

Figure 5.1 . I-AM within the functional decomposition of the CAMELEON run time infrastructure.

The CAMELEON run time infrastructure includes three types of run time
components: 1) the Interaction Abstract Machine that abstracts away the heterogeneity
and the management of dynamic system resources, 2) close-adaptive components
embedded in the interactive systems that currently run on the platform, and 3)
specialised components to insure open-adaptiveness.

5.1 CLOSE-ADAPTIVE COMPONENTS

Close-adaptive components either are constituents of the interactive systems that
currently run on the platform, or items saved in a data base for future use when
adaptation is required. Interactive systems may be conventional applications (for
example, a document editor, a video-viewer) or a meta-user interface.

A meta-user interface is to clusters and distributed UIs what the desktop is to
centralised UIs on conventional PC’s. Like the desktop, it serves as an interactive glue
between the application-oriented interactive systems. It includes:

- Interaction techniques that allow users and the system to control the interaction
resources of the platform. For example, coupling interactive surfaces by proximity
as in Rekimoto’s Pick and Drop [Rekimoto 97], by alignment [Tandler 01b], by

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 34/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

bumping as in [Henckley 03], by synchronous clicks on dedicated keyboard keys
[Rekimoto 03], or by any new technique yet to be invented;

- Interaction techniques, including negotiation, that allow users and the system to
express the redistribution, migration, adaptation of all (or part of) the user interface
of an interactive system, including the meta-user interface.

5.2 COMPONENTS FOR OPEN-ADAPTIVENESS

Open-adaptivity is ensured by a set of dedicated components that, by definition, are
external to the interactive systems that currently run o the cluster. They include
observers, a situation synthesizer, an evolution engine, a component retriever, and a
configurator assisted by reificators, abstractors, and translators.

- Observers detect the causes for potential adaptation. Some observers detect changes
in the context of use: these are the platform, environment and user observers. Our
contextors infrastructure offers a way to implement these observers. The Aura
environment manager and context observer correspond, respectively, to our platform
and environment observers. A particular observer, the task manager, probes and
maintains users’ evolution within the task space. The task space is composed of the
task spaces supported by each one of the interactive systems that currently run on
the cluster. The Aura Prism component is an instance of a task manager.

- The situation synthesizer computes the current situation and context from
information provided by the observers. As discussed in [Crowley 02], a new
situation may be recognized, for example a change within the surfaces topology
(e.g., a new PDA has arrived).

- The evolution engine computes a reaction in response to the new situation or new
context. The response may require one or more of the current running interactive
systems to adapt. If the adaptation required by the new situation falls within the
domain of plasticity of the interactive system, then the interactive system is able to
self-adapt. On the other hand, if the required adaptation does not fall within the
domain of plasticity of the interactive system, then the evolution engine retrieves the
appropriate components from the components data base and produces a description
of a new configuration of the interactive system using an ADL (Architecture
Description Language).

- The configurator creates a new executable interactive system from a configuration
description. The components referred to in the description do not necessarily
correspond to executable code. They may instead be high-level descriptions such as
task models. If so, the configurator relies on reificators such as Teresa [Paternò 02]
and ARTStudio [Calvary 02] to produce executable code. Conversely, a component
may need to be reversed engineered through abstractors, and then transformed by
translators and reified again into executable code as in Vaquita [Vanderdonckt 01].

This infrastructure has been implemented and experimented with the development of an
exemplar application: CamNote.

5.3 AN EXAMPLE: CAMNOTE

CamNote (for CAMELEON Note) is a Slides viewer that can run on a dynamic
cluster composed of a single PC or of a PC and a PocketPC. It is composed of three
components:

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 35/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

- A slides viewer. On the PC, this viewer allows the insertion of translucent videos
provided by cameras (also known as pixels mirrors [Morikawa 98] [Vernier 99]).
This component is available for PC’s only.

- A personal notes editor/viewer. Comments can be entered for each slide. This
component exists for PC’s only.

- A remote controller that allows the user to navigate from slides to slides and to
control the level of transparency of the pixels mirror. A remote controller
component is available for both PC’s and for PocketPC’s.

The user interface of CamNote can be rotated at the workspace level. In other words,
windows do not need to be parallel to the borders of the display screens. Figures 5.2 and
5.3 show screen dumps of the CamNote user interface.

Figure 5.2. On the left, CamNote when the user interface is centralised on a PC screen. At the top

right, the slides viewer window. In the middle of the screen a rotative window groups together a remote
controller for navigating between the slides and controlling the transparency level of the pixels mirror, a
personal notes viewer, and the video image of the speaker. Rotation may be needed when the window is
migrated to an horizontal surface. On the right, the PC screen during the adaptation process. In this
configuration, the user is enlarging the size of the slides viewer using a mouse. The evolution model
expresses the following adaptation: “If the screen real estate gets too small to show the remote controller,
then replace the graphic mouse-driven remote controller with a keyboard-driven remote controller and, if
there is a PDA, migrate the remote controller to the PDA”. Therefore, migration is partial and is
performed at the workspace level (Cf. Section 2). As shown in the picture, during the adaptation process,
the mouse-driven remote controller dynamically weaves itself into the slides viewer window and them
disappears. This movement is a kind of Meta-UI. Figure 5.3 shows the UI of CamNote that results from
the adaptation process.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 36/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

Figure 5.3. The user interface of CamNote when distributed on a PC screen and a PocketPC screen.
This distribution results from the migration of the remote controller from the PC to the PDA. The original
remote controller available on a PC has been replaced with a new remote controller whose buttons and
layout are best suited to the PocketPC. The UI of CamNote is therefore distributable, migratable and
plastic. This is made possible in a transparent way for the user and the developer by the underlying run
time infrastructure.

6 CONCLUSION
In summary, we have designed a reference framework that helps understanding,

reasoning and implementing user interfaces for global smart spaces. This framework
includes an ontology that makes explicit the concepts of multi-surface interaction and,
based on this ontology, I-AM, a software infrastructure that supports the dynamic
composition of heterogeneous interaction resources connected into a unified space. In
this space, users can distribute and migrate whole or parts of user interfaces as if these
components were handled by a unique computer. I-AM provides users with the illusion
of a unified space at no extra cost for the developer. We have shown how I-AM can be
integrated in a wider infrastructure designed to support the run time adaptation of plastic
user interfaces. I-AM is implemented in Java. It currently runs on clusters composed of
MacOS X, Windows NT and Windows XP.

From a pure technical perspective, I-AM advances the state of the art by addressing
all of the following problems:

1. Platforms heterogeneity (e.g., clusters of machines running a mix of MacOs X,
Windows NT and Windows XP),

2. Interaction resources heterogeneity (e.g., screens with different sizes and
resolutions),

3. Platforms and interaction resources discovery based on a fabric of contextors,

4. Multi-surface interaction grounded on the dynamic composition of hinged
display surfaces whose spatial relationships are automatically modeled and
maintained,

5. Multi-keyboard, multi-pointer capabilities (so that a user can use the mouse of a
PC to manipulate a window displayed on a MacOS screen and drag the window
across screens boundaries as if there were a single screen).

Although our ontology and I-AM push the state of the art one step forward, a number
of limitations need to be addressed. In particular, we need to measure the performance
of I-AM in a formal way (e.g., latency) and consider legacy applications more carefully.
We need to integrate advanced sensory technologies and invent the Meta-UI that goes
beyond the desktop.

We plan to integrate sensory technologies for two primary purposes: 1) to maintain a
3D topology of the interaction resources and 2) to capture additional physical
characteristics of surfaces such as sophisticated shapes, textures, weight, etc. in order to
infer the properties we have elicited in our ontology: for example, is the surface
traversable? Can it be carried around?

We plan to invent elements of the Meta-UI. As discussed briefly in section 5, a
Meta-UI covers many aspects of human computer interaction. Let’s look at one
example: for traditional workstations, the state of the interaction resources is observable

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 37/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

in a simple manner. In a ubiquitous world, users need to know which resources are in
reach and how they can be composed, borrowed and lent. Early work on this problem
such as that of Hinckley [Hinckley 03] and Rekimoto [Rekimoto 03] addresses simple
cases (e.g., connect two workstations or tablets). Although, we have not yet devised any
Meta-UI except for the migration of user interface components (Cf. CamNote), I-AM
offers the technical foundations for exploring this new problem.

7 REFERENCES
[Ballagas 03] Ballagas, R., Ringel, M., Stone, M., Borchers, I. IStuff: A Physical User

Interface Toolkit for Ubiquitous Computing Environment. In Proc. CHI 2003, Fort
Lauderdale, April 5-10, 2003, ACM Publ., 5(1), pp. 537-544

[Bederson 00] Bederson, B., Meyer, J. Good, L. Jazz: An Extensible Zoomable User
Interface Graphics Toolkit in Java. In Proceedings of UIST 2000. May 2000. p171-
180.

[Bier 92] Bier E., Freeman, S., Pier, K., The Multi-Device Multi-User Multi-Editor. In
Proc. of the ACM conf. On Human Factors in Computer Human Interaction
(CHI92), (1992), pp. 645-646.

[Borkowski 03] Borkowski, S., Riff, O., Crowley, J.L. Projecting rectified images in an
augmented environment. In Proceedings of ProCams Workshop. International
Conference on Computer Vision (ICCV 2003) , IEEE Computer Society Press,
October 2003, Nice, France.

[Brumitt 01] Brumitt, B., Shafer, S. Better Living Through Geometry. Personal and
Ubiquitous Computing 2001. Vol 5.1 Springer.

[Calvary 01] Calvary, G., Coutaz, J. Thevenin. D. A Unifying Reference Framework for
the Development of Plastic User Interfaces. IFIP WG2.7 (13.2) Working Conference,
EHCI01,Toronto, May 2001, Springer Verlag Publ., LNCS 2254, M. Reed Little, L.
Nigay Eds, pp.173-192.

[Coutaz 02] Coutaz, J., Rey, G. Foundations for a theory of Contextors. Proc. of
Computer-Aided Design of User Interfaces III, J. Vanderdonckt, C. Kolski Eds.,
Kluver Academic Publ., 2002, pp. 13-32.

[Coutaz 03] Coutaz, J., Lachenal, C., Dupuy-Chessa, S. Ontology for Multi-surface
Interaction. Proc. Interact 2003, M. Rauterberg et al. Eds, IOS Press Publ., IFIP,
2003, pp.447-454.

[Coutaz 03a] Coutaz, J., Balme, L., Barralon, N., Calvary, G., Demeure, A., Lachenal,
C., Rey, G., Bandelloni, R., Paternò, F. Initial Version of the CAMELEON Run Time
Infrastructure for User Interface Adaptation, Deliverable D2.2 V1.1, October 2003,
Cameleon project, IST 2000-30104, http://giove.cnuce.cnr.it/cameleon.html

[Crowley 02] Crowley, J., Coutaz, J., Rey, G., Reignier, P. Perceptual Components for
Context-Aware Computing, UbiComp 2002:Ubiquitous Computing, 4th International
Conference, Göteburg, Sweden, Sept./Oct. 2002, G. Borriello, L.E. Holmquist Eds.,
LNCS, Springer Publ., 2002, pp. 117-134.

[Garlan 01] Garlan, D., Schmerl, B., Chang, J. Using Gauges for Architectural-Based
Monitoring and Adaptation. Working Conf. on Complex and Dynamic Systems
Architecture, Australia, Dec. 2001.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 38/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

[Gelernter 92] Gelernter, D., and Carriero, N., Coordination Languages and their
Significance, Communications of the ACM, Vol.32, Number 2, February, 1992.

[Gregor 97] Gregor, K. et al. Aspect-Oriented Programming. In proceedings of
ECOOP’97, LNCS 1241, Springer-Verlag, pp. 220-242, Juin 97.

 [Guttman 01] Guttman, E. Autoconfiguration for IP Networking : Enable Local
Communication. IEEE Internet Computing, May-June 2001, pp. 81-86.

[Hinckley 03] Hinckley, K. Synchronous gestures for multiple persons and computers.
Proc. UIST 2003, ACM, 2003.

[Hourcade 99] Hourcade J., Bederson, B. Architecture and Implementation of a Java
Package for Multiple Input Devices (MID). 1999 http://www.cs.umd.edu/hcil/mid/

[Hubinette 02] Hubinette, F. x2vnc 1.31 (home page)

[Johanson 02a] Johanson, B., Hutchins, G., Winograd, T. PointRight: Experience with
Flexible Input Redirection in Interactive Workspaces. In Proc. of User Interface
Software and Technology (UIST 2002), ACM Publ., pp. 227-234.

[Johanson 02b] Johanson, B., Fox, A. The Event Heap: A Coordination Infrastructure
for Interactive Workspaces. In Proc. of the 4th IEEE Workshop on Mobile Computer
Systems and Applications (WMCSA 2002), June, 2002.

[Luyten 2002] Luyten, K., Vandervelpen, C., Coninx, K. Migratable user interfaces
Descriptions in Component-Based Development. DSV-IS 2002, Rostock, Springer
Verlag Publ., 2002.

[Microsoft 00] Understanding Universal Plug and Play, White Paper, Windows
Millenium edition, Microsoft 2000.

[Morikawa 98] Morikawa, O., Maesako, T. HyperMirror : Toward Pleasant-to-use
Video Mediated Communication System. In proceedings of CSCW’98, ACM Publ.,
Seattle, Washington USA. pp. 149-158

[Myers 98] Myers, B., Stiel, H., Gargiulo, R. Collaboration Using Multiple PDAs
Connected to a PC. In Proceedings CSCW'98: ACM Conference on Computer-
Supported Cooperative Work, 1998, Seattle, WA. pp. 285-294.

[Oreizy 99] Oreizy, P., Tay lor, R., et al. An Architecture-Based Approach to Self-
Adaptive Software. In IEEE Intelligent Systems, May-June, 1999, pp. 54-62.

[Paternò 02] Paternò, F., Santoro, C. One model, many interfaces. In Proc. Computer-
Aided Design of User Interfaces III (CADUI), J. Vanderdonckt, C. Kolski Eds.,
Kluver Academic Publ., 2002.

[Rekimoto 97] Rekimoto, J. Pick-and-Drop: A Direct Manipulation Technique for
Multiple Computer Environments. In Proceedings of UIST'97, ACM Publ., 1997, pp.
31-39.

[Rekimoto 99] Rekimoto, J., Masanori, S. Augmented Surfaces : A Spatially Continous
Workspace for Hybrid Computing Environments. Proceedings of CHI’99, ACM
publ., 1999.

[Rekimoto 03] Rekimoto, J., Ayatsuka, Y., Kohno, M. SyncTap: an Interaction
Technique for Mobile Networking. In Proc. Mobile HCI 2003, L. Chittaro Ed.,
Springer Publ., LNCS 2795, pp. 104-115.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 39/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

[Richardson 98] Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A. Virtual
Network Computing, IEEE Internet Computing, Vol 2, No 1, Jan/Feb 1998, pp. 33-
38.

[Sousa 02] de Sousa, J., Garlan, D. Aura : an Architectural Framework for User
Mobility in Ubiquitous Computing Environments. IEEE-IFIP Conf. on Software
Architecture, Montreal, 2002.

[Streitz 99] Streitz, et al. i-LAND: An interactive Landscape for Creativity and
Innovation. In Proceedings of CHI’99, ACM publ.

[Tandler 01a] Tandler, P. Software Infrastructure for Ubiquitous computing
Environments : Supporting synchronous Collaboration with Heterogenous devices.
In Proceedings of UbiComp 2001, Springer Publ.

[Tandler 01b] Tandler, P., Prante, T., Müller-Tomfelde, C., Streitz, N., Steinmetz, R.
ConnecTables: Dynamic Coupling of Displays for the Flexible Creation of Shared
Workspaces. In Proc. UIST 2001, ACM publ., 2001, pp. 11-20.

[Thevenin 99] Thevenin, D., Coutaz, J. Plasticity of User Interfaces: Framework and
Research Agenda. In Proc. Interact99, Edinburgh, , A. Sasse & C. Johnson Eds, IFIP
IOS Press Publ. , 1999, pp.110-117.

[Vanderdonckt 01] Vanderdonckt, J., Bouillon, L., and Souchon, N., Flexible Reverse
Engineering of Web Pages with Vaquita. In Proc. WCRE'200: IEEE 8th Working
Conference on Reverse Engineering. Stuttgart, October 2001. IEEE Press.

[Vernier 99] Vernier, F., Lachenal,C., Nigay, L., Coutaz, J. Interface Augmentée Par
Effet Miroir, in Proc. IHM'99. (AFIHM conference on Human-Machine Interface,
22-26 November 1999 Montpellier, France), Cepadues Publ., pp. 158-165.

[Viswanathan 01] Viswanathan, P., Gill, B., Campbell, R. Security Architecture in
Gaia. University of Illinois, report, UIUCDCS-R-2001-2215, May, 2001.

[Want 01] Want, et al. The Personnal Server : The Center of Your Ubiquitous World.
Intel Research White Paper, May 2001.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

D19
FINAL REFERENCE FRAMEWORK FOR
INTERACTION SURFACES

 PAGE 40/40

© 2001 GLOSS CONSORTIUM

OCTOBER 27TH 2003
V2.0

ANNEX1: FORMAL DEFINITION OF A PLATFORM
Let

. C be the set of core configurations

. E be the set of extension resources

. C', C" ≠ {}: C'⊂ C and C" = C – C'

. E', E": E' ⊂ E and E" = E – E'

. c1, …, cn ∈ C , e1, …, em ∈ E for n ∈ N*, m ∈ N

. Operational be a predicate over a set of resources that returns true when this set
forms a working computational artefact whose state can be observed and/or
modified by a human user.

A platform is composed of a set of core and extension resources which, connected
together, form a working computational artefact whose state can be observed and/or
modified by a human user:

P = { c1, …, cn } ∪ { e1, …, em } and Operational (P)

P is an elementary platform if and only if:

¬∃ C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪ E").

In other words, P is an elementary platform if it not possible to build two platforms
from the set of resources that constitute P.

P is a cluster if it is possible to compose multiple platforms from the set of resources
that constitute P:

∃ C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪ E").

Note that:

A core configuration is not necessarily Operational. For example, the Intel Personal
Server, a Bluetooth-enabled micro-drive with no interaction device, is a core
configuration but not an elementary platform: its state cannot be observed nor modified
until it wirelessly connects to extension resources such as a display and/or a keyboard
[Want 01]. On the other hand, a laptop is an elementary platform even when augmented
with extension resources such as a second mouse and sensors. Similarly, Rekimoto’s
data tiles form an elementary platform that can be dynamically extended by placing
physical transparent tiles on a tray composed of an LCD flat screen display [Rekimoto
01].

