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1 INTRODUCTION 
The state of the art in ubiquitous computing shows early examples of interactive 

systems, motivated by human-centered concerns, that are based on the dynamic 
composition of interaction resources: Distributed UI as in Rekimoto’s Pick and Drop 
[Rekimoto 97], dynamic docking of multiple displays to enlarge real screen estate (e.g., 
the ConnecTable [Tandler 01b] or Hinckley’s work [Hinckley 03]), Migratable UI as in 
I-land [Streitz 99] and Seescoa [Luyten 02], or the Personal Server approach that 
promotes the borrowing of near-by interaction resources [Want 01]. As far as we know, 
all of these prototypes have been developed as concept demonstrators reusing and 
hacking the current foundational tools of the GUI technology.  

A number of European projects (e.g., Cameleon1 and  Consensus2 are currently 
concerned with the definition of models and tools that support the design and 
development of plastic UIs, i.e., UIs that can dynamically adapt to context of use while 
preserving usability [Thevenin 99]. Tools such as Teresa [Paternò 02], Vaquita 
[Vanderdonckt 01] and  ARTStudio [Calvary 01] have been developed to support the 
specification and generation of UIs that can adapt to PDAs, cell phones and 
workstations. These tools support well-established methods that ensure the usability of 
the resulting UI. But they do so for centralized UIs where a virtual machine like JVM or 
a Web browser is sufficient for supporting the portability of the generated code. When it 
comes to address distributed plastic UI over a dynamic set of heterogeneous resources, 
these tools are impeded by the existing windowing systems and toolkits.  

In the GLOSS 
vision, users have a 
number of devices 
available, some of 
which they own and 
which travel with them, 
and others that are 
available from their 
current location. A GLOSS user may want to use GLOSS services, plug them together 
in order to create new services and arrange their interaction resources to suit the 
activities at hand. In addition, several users may discover themselves in a place and may 
decide to work together. 

In summary, state of the art in distributed, migratable, composable, and plastic UI’s 
as well as UI development tools are limited by existing windowing systems and toolkits 
designed at a time where user interfaces where confined to a single screen using a single 
pointing and text entry device. To address the problem, either we hack the current 
foundational tools and develop short-term demonstrators, or we aim at general 

                                                 
1 http://giove.cnuce.cnr.it/cameleon.html 

2 http://www.consensus.upv.es 
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foundational solutions that support the new requirements imposed by global smart 
spaces. If the scientific community aims at supporting a sound approach to the 
development of distributed migratable, plastic UI’s, we need to revise our foundational 
tools, which, by definition, set the basis for the development of higher level of 
abstraction tools. In turn, experience shows that these high level tools increase the 
capacity to develop usable user interfaces. 

In WP7, we are concerned with the development of a software infrastructure that 
enables users to borrow and lend local interaction resources in an opportunistic manner 
as they move in the global fabric of networked computation. The multi-surface 
interaction ontology presented in Year 2 (Cf. D17), now integrated in the GLOSS 
ontology (See D9), has provided a sound rationale for eliciting the limitations of current 
foundational tools. It is briefly recalled in Section 2. Next, we analyse how the state of 
the art addresses our requirements (Section 3). In Section 4, we describe I-AM, our 
proposal for a middleware run-time infrastructure that addresses the limitations of 
current tools. I-AM complements the local infrastructure as defined in D8 by St 
Andrews, and draws upon the proximity-group model developed by TCD. It is not 
intended for traditional centralised UI’s. Instead, it is aimed at facilitating the 
development of distributed and migratable UI’s at no extra cost for the developer while 
providing users with a unified view as if the user interface were handled by a single 
computer. In Section 5, we illustrate the integration of I-AM within an infrastructure 
that supports the run time adaptation of plastic user interfaces. This infrastructure has 
been designed by UJF for the CAMELEON R&D IST-2000-30105 project. 

2 MULTI-SURFACE INTERACTION ONTOLOGY 
A more detailed description of the Multi-surface Interaction ontology is available in 

D9. Figure 1.1 is here to recall the elements of the model. 

The concepts necessary to understand our software solution are the following: 
platform, interaction resources, surfaces and instruments, spatial relationships, coupling 
interaction resources with digital content, distributed UI and migratable UI. 

A platform may be elementary or a cluster. An elementary platform is a set of 
physical and software resources that function together to form a working computational 
unit whose state can be observed and/or modified by a human user. None of these 
resources is able per se to provide the user with observable and/or modifiable 
computational function. A personal computer, a PDA, or a mobile phone, are 
elementary platforms. On the other hand, resources such as processors, central and 
secondary memories, input and output interaction devices, sensors, and software 
drivers, are unable, individually, to provide the user with observable and/or modifiable 
computational function. 

Some resources are packaged together as an immutable configuration called a core 
configuration. For example, a laptop, which is composed of a fixed configuration of 
resources, is a core configuration. The resources that form a core configuration are core 
resources or Machine-bound [Johanson 02] resources. Other resources such as external 
displays, sensors, keyboards and mice, can be bound to (and unbound from) a core 
configuration at will. They are extension resources. 
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Figure 1.1. The GLOSS ontology for multi-surface interaction. 

 

A cluster is a composition of elementary 
platforms. The cluster is homogeneous 
when it is composed of elementary 
platforms of the same class. For 
example, the DynaWall is an 
homogenous cluster composed of three 
electronic white boards running the 
same operating system [Streitz 99]. The 
cluster is heterogeneous when different 
types of platforms are combined 
together as in Rekimoto’s augmented 
surfaces [Rekimoto 99]. 

Interaction resources are subclasses of core and extension resources. They are 
mediators between an artificial actor (e.g., a GLOSS system) and a natural actor (e.g., a 
user). An interaction resource may serve as an instrument (e.g., a pen and a mouse) 
and/or as a surface (e.g., a screen display or a wall). As an instrument, an interaction 
resource mediates the actions of an actor. As a surface, the outmost boundary of a 
physical entity serves as a recipient for making information observable to an actor. 
Physical surfaces and instruments are characterised by attributes (grounded in the 
physical world) as well as by relations. An action surface is a subset of a physical 
surface on which an actor can act directly with actuators and/or indirectly with 
instruments. Similarly, an observation surface is a subset of a physical surface that an 
actor can observe with sensors. 
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Among these relationships, geometric spatial relations are central. They form a physical 
topology that results from the way surfaces and instruments are assembled. The physical 
topology can be projected on digital content in many ways. For example, a set of screen 
displays can be used as multiple physical magic lenses that can be moved independently 
over the digital space. Alternatively, the displays, although not contiguous in the 
physical space, may partition the digital space in a continuous manner in order to show 
the informational content without any hole. In other words, coupling interaction 
resources onto (with) digital content is an important issue for HCI design. It is therefore 
important that the technical solution provides coupling mechanisms while, at the same 
time, it is able to support different application-dependent policies. 

A user interface is distributed when its interaction components (e.g., windows and 
panels) are allocated (whether it be statically or dynamically) to different platforms of a 
cluster. For example, using the painter metaphor, tools palettes are displayed on a PDA 
held in the non-dominant hand whereas a stylus is held in the dominant hand. Like a 
painter artist, the user picks the appropriate tool on the palette with the stylus, and then 
draws on the canvas supported by a wall-size electronic screen. Distribution of user 
interfaces can be performed at multiple grains. Granularity of user interface distribution 
may vary from application level to pixel level: 

- At the application level, the user interface is fully replicated on the platforms of 
the target cluster. If the cluster is heterogeneous (e.g., is comprised of a mixture 
of PC’s and PDA’s), then each platform runs a specific targeted user interface. 
All of these user interfaces, however, simultaneously share the same functional 
core.  

- At the workspace level, the user interface components that can be allocated to 
different surfaces are workspaces. A workspace groups together a collection of 
interactors that support 
the execution of a set  of 
logically connected 
tasks. In graphical user 
interfaces, a workspace 
is mapped onto the 
notions of window and 
panels. The painter 
metaphor is an example 
of UI distributed at the 
workspace level. 

- At the domain concept level, the user interface components that can be 
distributed between platforms are interactors that allow users to manipulate 
domain concepts. In Rekimoto’s augmented surfaces, domain concepts can be 
distributed between laptops and horizontal and vertical surfaces. (In their demo, 
tables and chairs interactors can be moved between physical surfaces.). 

- At the pixel level, any user interface component can be partitioned across 
multiple platforms. For example, in I-land, a window may simultaneously lie 
over two contiguous white boards. 

Distribution is complemented with the capacity of the user interface to migrate at run 
time. A user interface is migratable when all or parts of its components can be 
transferred at run time between platforms. Migration may be total or partial:  

QuickTime™ and a
PNG decompressor

are needed to see this picture.
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- Migration is total if the user interface 
migrates entirely to a different platform.  

- Migration is partial when a subset only of 
the user interface moves to different 
platform(s). The subset that can migrate is consistent with the granularity of 
distribution: partial migration may be performed at the workspace level, concept 
level or pixel level. 

The GLOSS I-AM aims at supporting the essence of multi-surface interaction, that is, 
the dynamic composition of heterogeneous clusters within which user interfaces can be 
distributed and migrated in a continuous way at multiple levels of granularity without 
imposing any extra programming on the developer. In the next section, we analyse 
the state of the art in the lights of our requirements. 

3 STATE OF THE ART 
From a software perspective, the problem space described in Section 2 implies that 

the software that implements an interactive system be dynamically reconfigurable, 
possibly distributed across a dynamic set of heterogeneous resources, and migratable 
across these resources. Thus, we need to consider how to address: 

- dynamic reconfiguration which, in turn, requires system integrity,  

- heterogeneity of system resources, and 

- detection of arrival/departure of interaction resources.  

These issues are discussed next along two dimensions: first, the general proposals 
from the state of the art followed by current UI-oriented infrastructures. 

3.1 DYNAMIC SOFTWARE RECONFIGURATION 

Dynamic software reconfiguration primarily covers the following issues: 1) 
modification of the structure of the system (i.e., by adding, removing, substituting 
components, and/or by modifying their connection) and 2) modification of the 
geographical distribution of the components across the currently available 
comptutational resources. In the context of this discussion, a component is considered to 
be a software unit responsible for implementing a set of services that can be composed 
with other components. For doing so, it includes a description of the inputs it requires 
and the outputs it supplies. 

As discussed in [Oreizy 99], dynamic reconfiguration may be close-adaptive or 
open-adaptive:  

- When close-adaptive, the system includes all of the mechanisms and data to perform 
adaptation on its own: it is self-contained (autonomous). 

- Open-adaptiveness implies that adaptation is performed by mechanisms and data 
that are external to the system. 

Whether it be close-adaptive or open-adaptive, dynamic reconfiguration is best 
supported by a component-connector approach [Oreizy 99, Garlan 01]. Components 
that are capable of reflection (i.e., components that can analyse their own behaviour and 
adapt) support close-adaptiveness. Components that are capable of introspection (i.e., 
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components that can describe their behaviour to other components) support open-
adaptiveness.   

In I-AM, we have adopted a component-connector approach. The notion of 
component provides the foundations for system flexibility. In addition, system 
reconfiguration implies that links between the components change over time, and that 
components may be eliminated or replaced in the reconfiguration process. This 
flexibility requires that components should not reference their peers explicitly, nor 
should they know the communication protocol expected by their peers. In a connector-
based approach, where connectors are in charge of linking the components and 
supporting their communication protocol, a clear distinction between the functional 
aspects of the system (the components) and the communication aspect of the system 
(the connectors) is achieved. However, in a connector-based approach, the overall 
structure of the system must be described. An ADL (Architecture Description 
Language) as described in D11 is a promising way to go.  

3.2 DYNAMIC DISCOVERY OF INTERACTION RESOURCES   

The dynamic discovery of system resources is a complex problem. Jini, based on a 
client-server model is appropriate for small-scale applications. For ubiquitous 
environments, the existence of a centralised server is not an option. Rendez-Vous3 from 
Apple, based on the ZeroConf standard [Guttman 01], supports mutual discovery 
between the IP resources connected to a network.  UPnP from Microsoft goes in the 
same direction [Microsoft 00]. These are useful techniques for managing the arrival and 
departures of elementary platforms in a cluster. However, they do not address the 
specific case of interaction resources that are not IP devices.  

In I-AM, we have used contextors [Coutaz 02], an infrastructure aimed at acquiring 
contextual information about the physical environment and the platform, to discover the 
arrival and departure of interaction resources.  

3.3 HETEROGENEITY OF INTERACTION RESOURCES  

In software engineering, resources heterogeneity has been addressed with the notion 
of abstract machine.  

Current windowing systems and UI toolkits are based on this technique but reveal a 
number of limiting factors for multi-surface interaction: 

1. The window model is biased by the workstation screen. Instead, the concept of 
window must be replaced with that of a physical surface with an explicit model 
of its physical attributes. Today, windowing systems model windows as 
rectangular drawables whose borders are constrained to be parallel to that of the 
display. This model is based on the (wrong) the assumption (for multi-surface 
interaction) that users keep facing a vertical screen and that the rendering 
surface is rectangular. With the proliferation of video projectors, it is 
increasingly popular to project window contents on horizontal surfaces such as 
circular tables. In this situation, users should be able to rotate the digital content 

                                                 
3 http://www.arstechnica.com 
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so that everyone can share information without twisting their neck (Cf. our 
Year2 GLOSS demonstrator). Today, rotating windows and user interfaces must 
be implemented from scratch from low-level graphics primitives. Jazz/PAD++ 
[Bederson 00] and DiamondSpin4 are toolkits that offer the basics for 
implementing rotative, zoomable user interfaces but they do so for centralised 
UIs only.  Similarly, physical attributes of rendering surfaces, such as size, 
shape and colour, must be made available to the application program: one does 
not want to render information on a rectangular white surface in the same way as 
on a circular table covered with a red cloth. In turn, the capture of the physical 
attributes of a surface calls for new requirements on the sensing technology. The 
contextors infrastructure can serve as a basis for implementing colonies of 
perceptual processes [Crowley 02]. 

2. Geometrical relationships between physical displays are poorly modelled. 
Instead, the (possibly 3D) spatial relationships between the interaction 
resources and the user should be explicitly modelled, dynamically acquired and 
maintained. Windowing systems are able to support a limited number of 
screens. In addition, the relative location of the display screens must be set up by 
the user through dedicated system forms. As a result, the user is in charge of 
additional articulatory tasks. Again, because they are screen-centric, windowing 
systems do not support topologies that include the surrounding environment 
(e.g., walls, tables, users’ location with respect to the display surfaces, etc.). 
However, for many novel interactive systems, the topology of the rendering 
surfaces matters: for example, 3D rendering on a vertical surface and 2D 
presentation on a horizontal surface [Rekimoto 99]. 

3. Only single instances of input instruments are supported. Instead, the system 
should be able to support any number of instances of an instrument class. In 
current windowing systems, the reference workstation is supposed to have one 
single mouse and keyboard. On systems like MacOS, it is possible to plug two 
physical mice. Unfortunately, they are linked to the same interruption level and 
are modelled by the event manager as a device type, not as a device instance. As 
a result, multi-user applications such as MMM [Bier 92] whose users share the 
same screen with multiple mice, require the underlying toolkit and event 
manager to be revisited as in MID [Hourcade 99]. 

4. Interaction is confined to the resources of a single workstation. Instead, we need 
to distribute UI’s across a set of interaction resources managed by a cluster of 
possibly heterogeneous machines. Applications like i-LAND [Streitz 99] and 
Rekimoto’s augmented surfaces [Rekimoto 99] require the aggregation of 
multiple computers. Pocket-size computers can play the role of input devices to 
control information displayed on wall-mounted electronic boards as in Pebbles 
[Myers 98]. In addition, UI migration requires additional functionalities such as 
mechanisms for state recovery. 

                                                 
4 http://www.merl.com/projects/diamondspin 
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5. Absence of dynamic discovery of interaction resources. Instead, in ubiquitous 
computing, interaction resources appear and disappear opportunistically: users 
can upload situated information on their private PDA as they pass by a public 
active wall. Two users who meet serendipitously in the street, may want to start 
a collaborative activity by bringing together their PDA’s to form a larger 
interaction space. GaiaOS [Viswanathan 01] and Aura [Sousa 02] aim at 
supporting heterogeneity and dynamic migration. However, they address 
centralised user interfaces only. 

In the next paragraph, we analyse state of the art infrastructures intended to support 
some aspects of our concept of multi-surface interaction. We will primarily look into 
those aimed at supporting clusters and/or UI migration and distribution. Solutions like 
the MID toolkit and Pebbles are interesting improvements over current windowing 
systems but they boil down to the dynamic connection of input devices to a single core 
configuration. 

3.4 USER INTERFACE INFRASTRUCTURES  

There are two approaches to user interface-oriented infrastructures: those where the 
focus is on developing an infrastructure at the scale of the Planet as in Gaia 
[Viswanathan 01] and Aura [Sousa 02]. Those where the infrastructure is adapted to a 
room as for BEACH [Tandler 01a], iROS-PointRight [Johanson 02a] and Easyliving 
[Brumitt 01]. In the following paragraph, we discuss Aura as an example of a run time 
infrastructure in the large, BEACH and iROS-PointRight as run time infrastructures in 
the small.  

3.4.1 INFRASTRUCTURE IN THE LARGE: AURA 

The goal of the Aura project is to find solutions to the following competing goals: 1) 
to maximise use of available resources in a ubiquitous-enabled computing world, 2) to 
minimise the distraction and drains on user attention that stem from managing those 
resources. 

 
Figure 3.1. Functional decomposition of an Aura environment (from [Sousa 02]). 

The approach to the problem is to provide an infrastructure that configures itself 
automatically for the mobile user, “potentially using whichever computing capabilities 
are available or reachable from the current location” [Sousa 02].  When a user moves to 
a different platform, Aura attempts to reconfigure the computing infrastructure so that 
the user can continue working on tasks started elsewhere. Figure 3.1 shows the 
functional decomposition of an “Aura environment”.  
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An Aura environment is supposed to run in multiple places on the Planet such as 
home, office, car, etc. In the GLOSS terminology, it is a local architecture. The context 
observer of an Aura environment detects events of interest that occur in the physical 
local place (e.g., user is entering, user is leaving, etc.) and informs the local 
environment manager as well as the local task manager of these facts. The local 
environment manager is in charge of modeling the computing and interaction resources 
locally available. The task manager, called Prism, checkpoints the state of the running 
suppliers (i.e., services needed to support users’ tasks) at a high level of abstraction. For 
example, for a text editing supplier, the task manager saves the file name and well as the 
current insertion point in the text of the source document.  

When the current local context observer detects the user is leaving the Aura 
environment, it informs the local task manager which checkpoints the local suppliers 
and causes the local environment manager to pause those services.  When the user 
enters another Aura environment, the new local context observer detects the fact and 
informs the new local task manager. In turn, the task manager re-instantiates the tasks 
that were suspended by finding and configuring services suppliers in the new Aura 
environment. So, for example, a user who was working at home using Word can carry 
on the task in the new environment but possibly using a different text editor such as 
Emacs. 

Aura is intended to address all types of platforms and sources of context changes. 
However, adaptation is addressed by software component substitution and the 
granularity for substitution is a whole interactive system (i.e., a supplier in the Aura 
terminology). As a result, only total migration is possible with a state recovery at the 
task level. In other words, Aura addresses UI migration, but does not support UI 
distribution across heterogeneous interaction resources if the supplier did not do so in 
its own code. Therefore, Aura is an infrastructure for open-adaptivity. 

3.4.2 INFRASTRUCTURE IN THE SMALL: BEACH  

The BEACH framework (Basic Environment for Active Collaboration with 
Hypermedia) [Tandler 01a] provides functionalities for synchronous cooperation and 
interaction for roomware. As shown in Figure 3.2, it can be viewed as a four layer 
abstract machine. (Actually, there are others views of the BEACH framework that we 
have not been able to fully understand, despite code inspection.) 

 
Figure 3.2. BEACH four conceptual levels of abstraction (From [Tandler 01a]). 

The core level, which uses the COAST framework [Tandler 01a], encapsulates 
platform dependent details including multi-user events handling, sensor drivers, and 
access to shared data. The Model level provides higher levels with abstract classes that 
are application, domain and platform independent and that allow different 
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implementations for different platforms. The Generic level includes generic components 
such as the notion of document, data types, private and public workspaces that are 
common to collaborative situations. The task level groups the high-level abstractions 
specific to a particular application. From an implementational point of view, BEACH 
relies on a client-server paradigm where the server serves as the reference for all of the 
BEACH clients running in a room. To be part of the cluster, elementary platforms must 
run a BEACH client. 

A BEACH infrastructure addresses homogeneous dynamic clusters where all 
machines run a uniform Smalltalk software environment. User interfaces built on top of 
this environment can be distributed and migrated at the pixel level. Typically, a window 
can overlap two surfaces. From the developer’s perspective, BEACH provides the 
programmer with a single logical output display mapped onto multiple physical 
displays. However, it is unclear whether BEACH includes an explicit model of the 
topology between interaction surfaces (the implicit hypothesis is that the interaction 
resources in a cluster are compatible and can be coupled in a predefined known way). In 
addition, BEACH does not seem to address the dynamic connection of input devices. 

3.4.3 INFRASTRUCTURE IN THE SMALL: IROS AND POINTRIGHT 

iROS5 is an open source middleware developed at Stanford University as a basic 
infrastructure for roomware. As opposed to BEACH where every application has to be 
developed from a uniform Smalltalk software platform, iROS aims at supporting legacy 
applications. It includes core components for data storage, service management, and 
communication (the Event Heap).  

 
Figure 3.3. The iRoom screen topology (from [Johanson 02a]). 

The Event Heap is derived from the tuplespace model [Johanson 02b]. In the 
tuplespace model introduced by [Gelernter 92], applications communicate and 
coordinate through a commonly accessible tuplespace. Tuples, which are a collection of 
ordered type-value fields, may be posted to the space, or read from the space in either a 
destructive or non-destructive manner. A tuple is chosen by a template tuple specified 
by the retrieving application. The template contains precise values for the fields to be 
matched, and wild cards for fields containing data to be retrieved. Event Heap has 
extended the tuplespace model to satisfy interactive rooms requirements. In particular, 
tuples have been extended with extra fields such as type and self description for 
extension and semantic checking, routing attributes to improve performance, event 

                                                 
5 http://iros.sourceforge.net 
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sequencing, a TimeToLive attribute to garbage collect unconsumed events, and a 
publish-subscribe mechanism to complement the polling mechanism of the original 
tuplespace model. On top of iROS, a number of applications have been built. PointRight 
is one of them.  

PointRight allows the mouse cursor to cross the display screens of an heterogeneous 
cluster based on the geometric topology description of the space (see Figure 3.3). It is 
implemented as a client of the Event Heap server and is supposed to run on each of the 
elementary platforms of the cluster.  

A PointRight client includes a sender and a receiver: 

. The sender redirects the mouse and keyboard events from the local input devices. It 
uses the geometric topology of the screen displays of the room to direct input to the 
appropriate screen (i.e., to the elementary platform that owns the target display) and 
sends the redirected local mouse and keyboard events using the Event Heap. 

. The receiver accepts remote mouse and keyboard events from the Event Heap. It is 
responsible for rescaling cursor motions to fit the characteristics of the local display. 

The topology description of the room space consists of machines, screens and 
connections. Machines are the elementary platforms that currently run PointRight. A 
screen description includes the dimensions of the physical screen, the identification of 
the elementary machine it is managed by, and the set of connections to other screens. A 
connection represents a valid transition of pointers between screens. They are 
represented by an edge (top, bottom, left, right) and the region of the edge through 
which the pointer can transition. There can be multiple connections to a single screen 
edge as long as the regions of the connections do not overlap.  

In the current implementation,  

. The topology description of the room space is read from a configuration file. By 
monitoring events on the Event Heap, it is possible to know whether the 
machines of the configuration file are running.   

. PointRight provides a unified multi-display space for pointing and keying: as the 
user moves the mouse, the cursor crosses the screens seamlessly across the space 
of displays as though there were a single surface connected to a single machine. 
However, windows and icons cannot be moved across screen boundaries. 

PointRight is similar in spirit to VNC [Richardson 98], x2x6 and x2vnc [Hubinette 
02]. VNC (Virtual Network Computing) allows a user on one computer to interact with 
applications running on another computer. It does so by mirroring the remote 
application display and by forwarding the local keyboard and mouse events to the 
remote application. However, users can control a single screen at a time. To control 
multiple screens, one would need to launch a VNC window per remote screen and 
switch among the VNC windows. x2x and x2vnc are similar in spirit to PointRight, but 
they are specific to X-Window and do not support arbitrary configurations.  

                                                 
6 http://ftp.digital.com/pub/DEC/SRC/x2x/  
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PointRight goes one step further than VNC, x2x and x2vnc, by redirecting pointer 
and keyboard events in an heterogeneous cluster. It includes a model of the geometric 
topology of the screens but the model is inherently 2D. In particular, horizontality and 
verticality are not addressed. PointRight does not support the dynamic discovery of 
interaction resources, nor does it support the overlap of windows and icons across 
screen boundaries. This is where the illusion of a unified workspace breaks. The authors 
“would like to find a method that elegantly extends PointRight to moving information 
around the iRoom, while maintaining [the] focus on general, heterogeneous applications 
and operating systems” [Johanson 02, pp. 233]. 

In summary, to our best knowledge, none of the current infrastructures, currently 
available or under development, covers all aspects of multi-surface interaction. I-AM 
presented next, aims at such goal. 

4 I-AM (INTERACTION ABSTRACT MACHINE) 
Our approach to the problem is to develop an Interaction Abstract Machine grounded 

on a sound model such as that of X Window, and extend it to support the key concepts 
of multi-surface interaction. I-AM extends the functional coverage of current 
windowing systems to distributed migratable user interfaces across a dynamic set of 
heterogeneous resources. More specifically: 

- It hides away the low-level details of hardware and software heterogeneity at the 
appropriate level of abstraction, 

- It supports interaction resource discovery and models their spatial relationships, 

- It permits the distribution and migration of UIs across multiple surfaces at the pixel 
level. From the developer’s perspective, this facility is provided at no extra cost. 
From the user’s perspective, all the surfaces and instruments form a unified 
interactive space despite they are being driven by different machines. 

A detailed description of I-AM is presented next. First, we outline the key principles 
of I-AM (4.1), its overall structure (4.2), and the limitations of the current 
implementation (4.3). The following sections (4.4, 4.5, 4.6) describe the key 
components of the structure in detail. We conclude the presentation of I-AM with a 
program example that gives a flavor of the developer’s view (4.7). 

4.1 PRINCIPLES  

Figure 4.1 illustrates the principles of I-AM. The very bottom of the figure shows an 
example of a user’s view where the GLOSS logo is shown seamlessly across a set of 
three surfaces handled by three distinct elementary platforms. The logo can be moved 
across surfaces boundaries using any pointing device of the cluster. At the top of the 
figure, the developer’s view. Here, the user interface of an application consists of 
several windows as if they were part of a unique interaction space handled by a unique 
computer.  

As shown at the bottom of the figure, the platform is a cluster composed of three 
elementary platforms. Each one handles a unique surface and runs a different operating 
system (e.g., MacOS X, Windows XP, Windows NT). Through surfaces links, surfaces 
are composed in a plane using, possibly different, orientations in the plane. Similar to 
the PointRight notion of connection, surfaces links are reference points located on the 
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edge of a surface. They can take the form of a physical sensor (e.g., infrared sensors, 
accelerometers as in Hinckley’s example of synchronous gestures for connecting tablets 
[Hinckley 03]). They can also be painted dots tracked by a computer vision system. 
Surfaces link allow I-AM to dynamically compute the topology of the surfaces. They 
also concretise our notion of compatibility introduced in the multi-surface ontology: 
surfaces can be composed only through links that are technically compatible. 

 
Figure 4.1. The principles of IAM. 
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The bottom of the figure shows the distribution of the user interface across three 
surfaces. Some interactors such as the top left window of the developer’s view, are fully 
rendered within a single surface whereas other interactors, such as the right most 
window of the developer’s view, are split across two surfaces. In the latter case, the 
logical interactor of the developer’s view is mapped into two effective interactors whose 
rendering is tightly coupled to entertain the illusion of a unified space: as the user 
moves one of the effective interactors using any pointing device of the cluster, the other 
“twin” effective interactor is moved and resized accordingly as if the twins were one 
single piece. Of course, the number of effective interactors that correspond to a logical 
interactor depends on the position of the logical interactor in the logical space and on 
the topology of the surfaces onto which the logical space is projected. 

The role of I-AM is to continuously maintain the mapping between the logical view 
of interactors as handled by the developer and the effective interactors as manipulated 
by the user. As stressed earlier, PointRight does not address the problem of interactors 
transition across surface boundaries at the pixel level. BEACH offers a similar illusion 
to I-AM but it does not support any free form of dynamic composition of surfaces, nor 
does it support different underlying operating systems. In its current implementation, I-
AM supports heterogeneous clusters composed of MacOS X, Windows NT and 
Windows XP. 

Having presented the principles of I-AM, we are now able to describe the technical 
structure of I-AM. 

4.2 OVERALL STRUCTURE OF I-AM 

As shown in Figure 4.2, I-AM is structured into three levels of abstraction sitting on 
top of the hardware and operating systems that form the legacy basis of the cluster: 

- The Platform level hides the heterogeneity of the underlying level and manages 
the interaction resources in a normalised way. This level is implemented by the 
IAMPlatform Java package. 

- The Logical Level provides applications with a customized abstract view of the 
physical platform layer. This level is implemented by the IAMApp Java 
package. 

- The Interactor level implements the basic graphic interactors such as windows 
and widgets that populate the logical view of the Logical Level. This level is 
implemented by the IAMInteractor Java package. 

 
Figure 4.2. I-AM as a the three levels of abstraction machine. 
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Before we describe the functions of the three layers of I-AM, we need to make clear 
the hypotheses and limitations of the current implementation. 

4.3 I-AM: CURRENT LIMITATIONS AND HYPOTHESES  

4.3.1 CURRENT LIMITATIONS 

- Surfaces are screen displays including video-projected displays,  

- Surfaces are rectangular, 

- Surfaces are assembled (coupled) within a plane but this plane can be folded as 
in iRoom (see Figure 3.3). 3D topology will be integrated when the sensing 
technology will be available. The steerable video projector described in 
[Borkowski 03], which tightly couples a camera (sensor) and a video projector 
(actuator), offers a promising way to compute the 3D orientation of any flat 
surface in a room. This sensor-actuator device will be used in a future version of 
I-AM. 

- Legacy applications are not supported. In other words, the user interface of next 
generation applications is supposed to be developed (or generated by tools) 
using I-AM interactors. However, provided that their source code is available, 
legacy applications may be automatically reverse-engineered using Aspect 
Oriented Programming [Gregor 97]. In the past, we have used this approach 
successfully to transform an AWT user interface into a rotating Jazz-based User 
interface without re-programming the original UI. 

4.3.2 HYPOTHESES 

- Naming: an elementary platform is identified by its IP address. An interaction 
resource is uniquely identified by the IP address of the elementary platform it is 
managed by, followed by an integer that is unique for this platform. For 
example, the ID of a surface on a screen S handled by a processeur P is a triplet: 
<IP address of P, video card output number of S, unique integer>. Unique 
identifiers are provided by a dedicated package of IAM not described in this 
document. 

- Communication: within I-AM components, processes communicate 
asynchronously through TCP sockets. Within the contextors infrastructure used 
for detecting the arrival/departure and composition of interaction resources, 
processes (e.g., contextors) use multicast sockets and subscribe to the same 
multicast group. 

- Access control: A group management facility is supposed to identify the 
elementary platforms that have the right to participate in the cluster. In other 
word, the boundary of a cluster is known. This service can be provided by the 
proximity-group software developed at TCD. 

4.4 THE PLATFORM LEVEL: THE IAMPLATFORM PACKAGE 
Every processor that belongs to the cluster runs an IAMPlatformManager. An 

IAMPlatformManager is “elementary platform” centric:  
- It manages the resources that are local to the elementary platform it runs on, and  
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- It has no knowledge of the existence of its peers IAMPlatformManagers. The 
absence of explicit reference to any other IAMPlatformManager supports our 
requirements for scalability, flexibility and reconfigurability. The glue between 
the machines is performed at the Logical Level of I-AM. 

 
An IAMPlatformManager supports the following functions: 

- It discovers the interaction resources that are locally connected to the processor 
it runs on,  

- It maintains a description of these resources, and  
- It provides the world7 with the basic means for using the interaction resources8. 

This includes the publication of (a) the existence of the interaction resources that 
may interest future consumers (e.g., IAM applications), and (b) the 
communication ports that will allow consumers to send requests to use a 
particular interaction resource, and if successful, to obtain dedicated 
communication ports to exchange messages directly with the requested resource.  

 
More precisely, an IAMPlatformManager running on an elementary platform P: 

- Creates a SurfacesContextor whose role is to gather and publish the existence of 
all of the interaction resources that reside on P, 

- Creates one SurfaceManager per physical surface connected to P, 

- Creates an InstrumentManager that handles all of the instruments connected to 
P.  

These components (SurfacesContextor, SurfaceManager, and InstrumentManager) 
are presented in more detail in the following paragraphs. Refer to Figure 4.5 for a 
detailed representation of their relations. 

4.4.1 SURFACESCONTEXTOR 

There is one SurfacesContextor per elementary platform.  

A SurfacesContextor is a kind of contextor. A contextor is a software component 
whose role is to sense contextual information at the appropriate level of abstraction 
[Coutaz 02]. In I-AM, the SurfacesContextor of an elementary platform P receives data 
from the software SurfaceSensor attached to each one of the surfaces handled by P. It 
bundles this information at the appropriate level of abstraction so that, through a 
publish-subscribe mechanism supported by the contextors infrastructure, the world (e.g., 
the Logical Level of I-AM) can be informed about the resources P is able to provide.  

At the opposite of PointRight whose resources are statically described in a 
configuration file, I-AM includes a powerful mechanism for dynamically discovering 
the surfaces, their properties, and their physical composition.  

                                                 
7 « The world » denotes any software component that is not part of the IAMPlatformManager. IAM 
applications are examples of such software components. 

8 Current limitation: only the existence of surfaces is published 
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4.4.2 SURFACE MANAGER 

There is one SurfaceManager per surface S of an elementary platform P. The 
SurfaceManager of  a surface S covers the following functions: 

- It gets and maintains the physical characteristics of S. As shown in Figure 4.3, 
the attributes of a surface include: height and width (both in pixels and 
millimeters) where digital information can be rendered, color and texture; for 
each of its edges, the width of the physical border (in millimeter); a coordinates 
system located at the top-left corner of the surface; and surface links that denote 
the physical connecting points of the surface with other surfaces. As mentioned 
above, links may be physical or logical sensors. Their location is specified in 
millimeters relatively to the top-bottom-left-right edges of surfaces. Figure 4.4 
shows an example of two surfaces composed via two links A and B. For core 
surfaces, the SurfaceManager computes the physical characteristics of S by 
using the API from the underlying legacy Operating System. 

 
Figure 4.3. The attributes of an I-AM Surface. 

- The SurfaceManager of S creates a SurfaceConnectionManager whose role is to 
open two communication ports on which it will listen for IAM applications 
requests such as “open connection with S to use S as an observation surface” or  
“open connection with S to use S as an action surface”.  

- The SurfaceManager of S informs the SurfaceSensor of S about the 
characteristics of S (physical characteristics, surfaces links, communication 
ports, etc.). In turn, the SurfaceSensor of S transmits the information it receives 
to the SurfacesContextor that resides on P. As mentioned above, the 
SurfacesContextor aggregates the information it receives from every 
SurfaceManager of P into a global view for future resource consumers, e.g., 
IAM applications. 

- The SurfaceManager of S creates a SurfaceDefaultPresentation whose role is to 
maintain the connection between the IAM application A that uses S and the 
interactors that effectively render the logical interactors of A: If A, an IAM 
application, is successful at opening a connection with S through the 
ActionSurfaceSocket or the ObservationSurfaceSocket of S, the 
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SurfaceDefaultPresentation of S creates an IAMAppEffectiveInteractorManager 
that binds S and A. This IAMAppEffectiveInteractorManager creates a local 
proxy to communicate with the possibly remote A. This includes two 
communication ports, depending on the way S is used. If S is used as an 
observation surface, then an IAMAppObservationProxy is created to send 
observation events to A about what has been observed on the surface (e.g., 
mouse clicks). If the surface is used as an action surface, then an 
IAMAppActionProxy is created to receive action events from A (e.g., create an 
IAMInteractor). 

 

Figure 4.4. Two surfaces connected through two links A and B. 

 

As discussed in Section 4.6, an IAM interactor, which is a logical interactor, is 
mapped, at the platform level, into a non empty set of Effective Interactors. As shown in 
4.1, these effective Interactors belong to different surfaces. An 
IAMAppEffectiveInteractorManager, which binds together a surface S and an IAMApp 
A, memorizes the IAMEffectiveInteractors that are owned by A and rendered on S. By 
doing so, when the application A disappears, all of its “belongings” on S can be 
destroyed. 
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Figure 4.5. UML class diagram of the IAMPlatformManager package. 

4.4.3 INSTRUMENT MANAGER 

There is one InstrumentManager per elementary platform.  

The role of the InstrumentManager of an elementary platform P is to manage the 
instruments handled by P and to perform the appropriate redirection of events generated 
with these instruments. Whereas PointRight performs events redirection based on the 
mechanisms of the underlying operating system and windowing system, I-AM re-uses 
for inputs, the same mapping technique developed for output. This technique is 
presented in Section 4.5. 

As shown in Figure 4.5, instruments are of two types: InputTextInstruments and 
PointerInstruments. InputTextInstruments generate characters. Typical subclasses 
include physical keyboards and speech recognition systems. PointerInstruments include 
two subclasses: relative pointing instruments that provide relative positioning 
information (e.g., mouse has moved dx-dy pixels) while absolute pointing instruments 
such as laser beams and pens, provide a position in the coordinates system of a surface. 
New types of instruments such as the iStuff instruments [Ballagas 03], can be modeled 
as subclasses of the Instrument class. 

Instruments that are core resources (e.g., mouse and keyboard) are discovered by the 
InstrumentManager using the API of the local underlying operating system. Extension 
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instruments such as wireless iStuffs, are discovered through contextors. For every 
instrument handled by P, the InstrumentManager creates an InstrumentProxy as an 
abstract normalized representative of the physical instrument. In turn, this proxy creates 
an IAMInstrumentInteractor, that is, an IAMPointerInteractor if the physical instrument 
is a pointer instrument, or an IAMInputTextInteractor if the physical instrument is a text 
input instrument.  

An IAMInstrumentInteractor (including its subclasses) is a logical interactor. Its 
association to an InstrumentProxy fulfills two goals:  

. It allows I-AM to make the state of the physical instrument observable to the user. 
Typically, for a pointer instrument, the rendering of an IAMPointerInteractor is an 
arrow cursor.  

. It allows I-AM to implement the events redirection by reusing the mapping that 
applies for output between logical and physical interactors. This mapping is 
presented in Section 4.5.  

By default, the core InputTextInstrument and the core PointerInstrument of a 
platform P, are tightly coupled. This means that characters generated by an 
InputTextInstrument is automatically directed to the logical interactor that is the current 
focus of its associated PointerInstrument. For example, if a user, using the mouse of an 
elementary platform A selects a window rendered on the screen of an elementary 
platform B, then the characters typed with the keyboard of A, appears in the window of 
B. This default coupling can be overridden.  

4.4.4 SUMMARY 
In summary, the Platform Level of IAM hides away the heterogeneity of the underlying 
elementary platforms of the cluster. It provides the next level of IAM, i.e., the Logical 
Level, with:  

(a) a normalized view of the set of physical interaction resources that are available 
on each elementary platform, and  

(b) networked communication means to use these resources. 
 
While the platform level is “elementary platform” centric, the Logical Level of IAM is 
application centric. This is where the illusion of a unified space is created. 

4.5 THE LOGICAL LEVEL: THE IAMAPP PACKAGE 

Applications that use an I-AM cluster may each have its own way to exploit and 
interpret the physical configuration of the cluster. Therefore, the Logical Level of I-AM 
provides applications with a means to build their own view on top of the physical 
platform level. To get and exploit such a view, an application must be an instance of an 
IAMApp. Figure 4.6 shows the UML class diagram of an IAMApp. First, we describe 
the functions provided by an IAMApp, then we discuss the mapping problem, a key 
issue to support the illusion of a unified space. 
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Figure 4.6. UML class diagram of the Logical Level of I-AM: an IAMApp. 

4.5.1 FUNCTIONAL COVERAGE OF AN IAMAPP  
An IAMApp A provides the following functions: 

- It discovers the interaction resources9 that are currently available in the cluster. 
To do so, an IAMApp expresses its interests through its ContextAdaptor. 
Expressions of interest include “give me a large surface”, “give me the list of 
surfaces available in the cluster”, “tell me when a new surface arrives or leaves” 
etc. As presented in [Coutaz 02], a ContextAdaptor serves as a gateway between 
an application and the contextors infrastructure. Contextual information about 
the physical interaction resources is compiled from the information produced by 
the SurfacesContextor that runs on each of the elementary platforms (Cf. Section 
4.4.1). As illustrated in 4.5.2, the ContextAdaptor of A provides A with events 
that may have an impact on the topology of the surfaces used by A. 

- It creates the communication channels with the interaction resources (surfaces) it 
is interested in. When the ContextAdaptator of an IAMApp A informs that a 
new surface S matches its expression of interest, A may request the 
SurfaceConnectionManager of S to open a communication channel for action 
and/or for observation. If the connection is successful, A creates a SurfaceProxy 
as its own representative of the (possibly remote) S. As presented in Section 
4.4.2, a surface, at the platform level, maintains an IAMAppProxy per 
application that uses it. As a result, the port ObservationSurfaceProxy of S in A 
exchanges messages with its corresponding port IAMAppObservationProxy 

                                                 
9 Current limitations: “interaction resources” should be understood as “surfaces” only. 
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associated with S at the platform level. Similarly, an ActionSurfaceproxy of the 
Logical Level exchanges messages with its corresponding IAMAppAction 
proxy of the Platform Level.  

- It includes the mechanisms and politics to map the physical world with the 
digital LogicalSpace (and vice versa). The LogicalSpace is an infinite Cartesian 
space. The mapping problem and our solution are discussed next (Sections 4.5.2 
and 4.5.3). 

- It populates the LogicalSpace with IAMInteractors using the facilities provided 
by the IAMInteractor package (e.g., create, destruction, etc.) presented in 
Section 4.6. 

4.5.2 THE MAPPING PROBLEM 
The central problem that the Logical Level addresses is to entertain the illusion of a 

unified space while the user is interacting with physically disjoint surfaces that may 
differ in size, orientation, resolution, and so on. The following simple examples 
illustrate the problem of rendering a window interactor across two surfaces.  

 
In the situation depicted in Figure 4.7, the window overlaps two surfaces S1 and S2 

whose physical characteristics are strictly identical. In addition, the axes of their 
coordinates space are aligned. Let P1 be the intersection of the top-border line of the 
window with the right border of S1. To entertain the illusion of continuity, P1 must 
have a corresponding point P2 in S2. Let (x1, y1) be the coordinates of P1 in the 
coordinates system of S1 and (x2, y2), the coordinates of P2 in the coordinates system 
of S2. Then, for the situation depicted in Figure 4.7, P2.x2=P1.x1+1-W1 where W1 is 
the width of S1, and P2.y2=P1.y1. This simple example shows that a point P that 
belongs to an interactor in the LogicalSpace, is mapped in the physical world, as 2 
points P1 and P2 related by geometric relationships (in our example, a translation on the 
X axis).  

 
 

Figure 4.7. Mapping a window on two identical surfaces S1 and S2 whose coordinates systems are 
aligned. 

 
Figure 4.8 illustrates the situation where S1 and S2 are composed as in 4.7 but 

where the resolutions of S1 and S2 differ. As shown in Figure 4.8, a translation is not 
enough. Rescaling is necessary to insure visual continuity.  
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Figure 4.8. Mapping a window on two surfaces S1 and S2 whose coordinates systems are aligned, 
but whose resolutions are different. 

 
Having illustrated the problem of entertaining the illusion of a unified space, we are 

now able to present the process used in I-AM to map the LogicalSpace of an IAMApp 
application to the physical space and vice versa.  

4.5.3 OUR SOLUTION TO THE MAPPING PROBLEM 
In I-AM, the mapping between the logical and the physical spaces is implemented 

as a three-step process:  
. From physical to normalized-physical spaces: this step is performed by the 

PhysicalTopologyManager component. The PhysicalTopologyManager is in charge 
of creating and maintaining the PhysicalTopology, a data structure that models the 
spatial relationships of the surfaces used by an IAMApp. 

. From normalized-physical to logical spaces: this step is ensured by the 
LogicalTopologyManager component. This component is in charge of creating and 
maintaining the LogicalTopology. The LogicalTopology is a data structure that 
defines the projection of the PhysicalTopology onto the LogicalSpace of an 
IAMApp. 

. From logical to physical spaces: this step is performed by the Mapper component. 
Based on the LogicalTopology, this component is in charge of rendering the logical 
interactors of an IAMApp into their corresponding effective interactors. 

 
The PhysicalTopology contains the list of surfaces (and their characteristics) used by A, 
as well as the two-by-two SurfacesLinks and SurfacesRelations.  
. The surfaces used by A are those for which A has obtained a communication 

channel. (An application does not necessarily use all of the surfaces of the cluster.)  
. As discussed in 4.4.2, a SurfacesLink denotes a physical composition point between 

2 surfaces. For every SurfacesLink that connects two surfaces S1 and S2, the 
PhysicalTopologyManager computes a SurfacesRelation using the description of the 
SurfacesLinks and the geometric characteristics of S1 and S2 (height, width, borders 
size). This is how the mapping between “physical to normalized-physical” spaces 
occurs. 

. A SurfacesRelation between two linked surfaces is an affine transformation (e.g., 
translation, rotation, shear, and scaling) between the coordinates systems of the two 
surfaces. Reusing the illustration of Figure 4.7, the SurfacesRelation between S1 
and S2 is a translation on the X axis (where W1, the value of the translation, is 
expressed in millimeters). As demonstrated above, this transformation is necessary 
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to produce the illusion of continuity between surfaces as users drags interactors and 
mouse cursors across surface boundaries. 

  

 
Figure 4.9. Example of a sequence diagram when new surfaces and surfaces connections occur. 

 
The LogicalTopology is built by the LogicalTopologyManager based on the knowledge 
of the PhysicalTopology. It contains the list of the surfaces that are mappable onto the 
LogicalSpace and, for each mappable surface S, a SurfacesRelation between S and a 
reference surface. 
. By default, the reference surface is the core display of the elementary platform 

where A is launched. If the platform has no screen, then the first discovered screen 
becomes the reference surface. The reference surface is a mappable surface. 

. Surfaces of the PhysicalTopology that are mappable onto the LogicalSpace are 
those that form a path that includes the reference surface. Surfaces that are not part 
of the path, are not mappable. A non-mappable surface S will become mappable 
when a SurfacesLinks appears between S and any mappable surface.  

. A SurfacesRelation is an affine transformation (expressed in millimeters) between 
the coordinates systems of the reference surface and a mappable surface. This is 
how the mapping between “normalized-physical to logical” spaces occurs. And this 
is how I-AM allows developers to customize their own view of the physical space 
by letting them specify their own SurfacesRelation. For example, one politics is to 
ignore the borders of the physical surfaces as well as the space between the surfaces, 
while another politics would not. One may refer to D18 for a comparative 
discussion on the different types of transformation. In particular, we show the effect 
of surface borders on visual continuity, an attribute ignored in current graphical 
tools, including iRoom and i-LAND. 
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Figure 4.10. Mapping between the LogicalSpace and the PhysicalSpace. The left most column 
corresponds to a sequence of messages that notify the arrival of surfaces as well as their composition 
through SurfacesLinks. The right most column shows the mapping of the surfaces onto the LogicalSpace. 
The central column shows the resulting physical space as perceived by the user. The first row corresponds 
to the initial state: the LogicalSpace contains a grey rectangle and there is no surface to render the 
LogicalSpace. Then, surface 1 appears. By default, it becomes the reference surface and its coordinates 
system is aligned with that of the LogicalSpace. A portion of the LogicalSpace can be rendered. Surface 2 
arrives in the cluster but is not composed with the reference surface: it is not mapped onto the 
LogicalSpace. Therefore, the arrival of the surface has no perceivable side effect. Idem for Surface 3. 
Surfaces 2 and 3 are now connected. Because none of them is connected to the reference surface, they are 
not mapped to the LogicalSpace. The last row shows the physical space that results from the composition 
of Surface 2 with the reference surface. 
 

Having described the data structures and the role of the components involved in 
the mapping process, we now describe the dynamic aspect of the process. Any 
modification to the PhysicalTopology or to the LogicalTopology is reported as a 
TopologyEvent queued in the TopologyEventQueue. To receive the TopologyEvents of 
interest, the PhysicalTopologyManager and the LogicalTopologyManager are 
PhysicalTopologyEventListeners: both of them must be notified about changes in the 
physical world. On the other hand, the mapper, whose job is grounded on the 
LogicalTopology, is a LogicalTopologyEventListener.  
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The sequence diagram shown in Figure 4.9 makes explicit the effect of the arrival 
of the first surface of the cluster (surface 1); followed by the arrival of a second surface 
(surface 2) which is then connected physically to surface 1. Roughly speaking, any 
modification in the physical world that is detected by the ContextAdaptor of the 
IAMApp triggers the mapping process; the PhysicalTopologyManager translates the 
modification of the physical world  into a modification of the PhysicalTopology which, 
in turn, triggers the LogicalTopologyManager. The arrival of a surface that is not 
physically connected to any mappable surface has no further effect. On the other hand, 
the arrival of the surface that is physically linked to a mappable surface has an impact 
on the Mapper: this new surface defines an additional peephole on the LogicalSpace. 
Therefore, the content of the LogicalSpace “hidden” behind the new surface must be 
rendered. Figure 4.10 provides another illustration of this process. 
 

From the event “surfacesRelationsAppear between the reference surface 1 and the 
mappable surface 2”, the Mapper gets the physical characteristics of surface 2 including 
its pixel size, as well as the projection of surface 2 in the LogicalSpace. In the 
LogicalSpace, pixels have a normalized size. In order to avoid the visual discontinuity 
shown in Figure 4.8, the Mapper computes a new transformation that combines the 
projection of the surface in the LogicalSpace with (possibly) rescaling. The 
transformation is sent to the SurfaceProxy of surface 2 so that surface 2 can render the 
effective interactors appropriately. 
 

4.6 THE INTERACTOR LEVEL: IAMINTERACTOR PACKAGE 
An IAMInteractor provides the programmer with the conventional programming 

paradigm. As a result, an IAMInteractor can be created, destroyed, moved, etc. in the 
LogicalSpace. It has a position in the LogicalSpace, it has a height and width expressed 
in terms of normalized pixels, etc. It hides away the facts that it can migrate seamlessly 
between surfaces at the pixel level. 
 

  

 
 

Figure 4.11. UML class diagram of the IAM Interactor Level. 
 
To do so, an IAMInteractor I of an IAMApp A is mapped into several 

EffectiveInteractors, with one EffectiveInteractor E per surface S used by A. In other 
word, E results from the mapping process applied to I on S. It sends to I the input events 
it receives from the instruments for example “PointerInstrument M has entered”, 
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“PointerInstrument M has been clicked”, etc. Conversely, any change of I by A is 
notified to all of its associated EffectiveInteractors. 
 

 

 
Figure 4.12. Example of relationships between an IAMApp A, its IAMInteractors, 

EffectiveInteractors, surfaces, and instruments. 
 

Figure 4.11 shows the UML class diagram for IAMInterators. For now, we have 
implemented three subclasses of IAMInteractors: IAMwindow interactors as graphics 
containers, and IAMInstrumentInteractors that permit to graphically render the state of 
input text and pointer instruments. Similarly, we have defined the classes for 
corresponding EffectiveInteractors. In the current implementation, EffectiveInteractors 
are implemented with Swing. Another graphical toolkit, such as OpenGL is possible.  

Figure 4.12 shows an example of the relationships between an IAMApp A, its 
IAMInteractors, EffectiveInteractors, surfaces, and instruments.  In this example, 
IAMApp A has created two IAMWindows W1 and W2 in its LogicalSpace. It is 
currently using three mappable surfaces S1, S2, S3, each one handled by a distinct 
elementary platform. In addition, each one of the platforms handles a mouse instrument 
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M1, M2, M3. As discussed in Section 4.4.3, instruments are modeled as IAMInteractors 
owned by specific kinds of IAM Applications dedicated to instruments.  

 
As shown in Figure 4.12, an IAMInteractor owns a corresponding EffectiveInteractor 

on every surface. Therefore, IAMWindow W1 owns an EffectiveWindow interactor W1 
for S1, for S2, and for S3. Depending on the location of W1 in the LogicalSpace, either 
one of these EffectiveInteractors is visible, or, given the current topology of the 
surfaces, two of them at most are simultaneously visible (Cf. Description in 4.5.3). 

 
The same mechanism applies to instruments. Every IAMPointerInstrument has one 

EffectiveInteractor per surface. Therefore, the user can take any mouse, move it across 
surfaces boundaries seamlessly to manipulate any effective interactor. For example, the 
user can take Mouse M1 to manipulate Window W2  currently visible on Surface S3 
and bring it in S2.  The user can observe the movement of M1 through the movement of 
the currently visible EffectivePointerInteractor C1. 

 
As Figure 4.12 shows, IAM offers the possibility to show as many mouse cursors as 

there are pointing instruments. In the example, the cursors of M1 and M3 are in S2 hile 
that of M2 is in S1. This facility opens the way for new opportunities in multi-user 
interaction. However, from the user’s perspective, the presence of multiple cursors, 
which may engender confusion, needs to be addressed carefully. 

So far, we have presented the structure, services and mechanisms offered by I-AM. 
The next section briefly presents I-AM from the developer’s perspective. 

4.7 A PROGRAM EXAMPLE 

 

The program shown in Figure 4.13 shows how to create a window that can be 
migrated seamlessly across surfaces possibly managed by a cluster of heterogeneous 
operating systems and machines. 

 
//1.To exploit I-AM services, I need to be an IAMApp 
 IAMApp myiamapp = new IAMApp (); 
 
//2.I create a window mywindow whose barycentre is at point (300,300) 
in the LogicalSpace, width and height (300, 200), and rotated by a 
factor of Pi.  
 IAMWindow mywindow = new IAMWindow ();   
 mywindow.setCenterLocation (300, 300);   
 mywindow.setSize (300,200);    
 mywindow.setRotation (3.1416);    
 
//3. I register mywindow so that it can be managed by I-AM.   
 myiamapp.addInteractor (mywindow); 
 

Figure 4.13. Creation of a migratable window across multiple surfaces. 

Once step 3 of the program is executed, all of the mappables surfaces S used by 
myiamapp are notified of the existence of the window in the following way. For every 
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S, its IAMEffectiveInteractorManager receives the following XML messages (where 
the <action> tag denotes a method call and <id> denotes the identification of 
interactor10): 

<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=constructor></action> 
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setCenterLocation x=300 y=300></action> 
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setSize width=300 height=200></action> 
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setRotation rotation=3.1416></action> 
 

When receiving the message with the attribute method=constructor, the 
IAMEffectiveInteractorManager of S creates an IAMEffectiveWindow that processes 
the rest of the message to produce the appropriate feedback on the surface, as well as 
any future message related to mywindow. 

 

If, later on, the developer decides to change the size of the window: 

mywindow.setSize (400,300); 

then all of the mappable surfaces of myiamapp will receive the following message: 

<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setSize width=400 height=300></action> 

and the corresponding IAMEffectiveInteractors will be updated. 

If a new mappable surface arrives, its IAMAppEffectiveInteractorManager receives 
the following message which will create an IAMEffectiveInteractor for mywindow (note 
that the obsolete method calls have been discarded): 

<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=constructor></action> 
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setCenterLocation x=300 y=300></action> 
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setSize width=400 height=300></action> 
<action id=129.87.31.43_4 class=IAMInteractor.IAMWindow 
method=setRotation rotation=3.1416></action> 

Conversely, if a surface disappears, its IAMAppEffectiveInteractorManager will be 
required by myiamapp to destroy its IAMEffectiveInteractors. 
                                                 
10 id=129.87.31.43_4 means that mywindow has been created on the elementary platform whose ID is its 
IP address (i.e., 129.87.31.43) and 4 is a unique ID for this machine generated by the IDManager of I-
AM. 
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So far, we have described how I-AM manages the interaction resources of an 
interactive space. This is one aspect of the general problem of plastic user interfaces. In 
the next section, we show how I-AM fits within an infrastructure that supports the run 
time adaptation of UI’s.  

5 I-AM WITHIN AN INFRASTRUCTURE FOR PLASTIC UI 
Figure 5.1 shows the run-time infrastructure that UJF has designed for the 

CAMELEON R&D IST-2000-30104 European project. Details of this infrastructure can 
be found in [Coutaz 03a]. 

 
Figure 5.1 . I-AM within the functional decomposition of the CAMELEON run time infrastructure. 

The CAMELEON run time infrastructure includes three types of run time 
components: 1) the Interaction Abstract Machine that abstracts away the heterogeneity 
and the management of dynamic system resources, 2) close-adaptive components 
embedded in the interactive systems that currently run on the platform, and 3) 
specialised components to insure open-adaptiveness. 

5.1 CLOSE-ADAPTIVE COMPONENTS 

Close-adaptive components either are constituents of the interactive systems that 
currently run on the platform, or items saved in a data base for future use when 
adaptation is required. Interactive systems may be conventional applications (for 
example, a document editor, a video-viewer) or a meta-user interface. 

A meta-user interface is to clusters and distributed UIs what the desktop is to 
centralised UIs on conventional PC’s. Like the desktop, it serves as an interactive glue 
between the application-oriented interactive systems. It includes: 

- Interaction techniques that allow users and the system to control the interaction 
resources of the platform. For example, coupling interactive surfaces by proximity 
as in Rekimoto’s Pick and Drop [Rekimoto 97], by alignment [Tandler 01b], by 



 GLOSS: GLOBAL SMART SPACES 
PROJECT NO. IST-2000-26070 

D19 
FINAL REFERENCE FRAMEWORK FOR 
INTERACTION SURFACES 

 
 
 PAGE 34/40

 

  
© 2001 GLOSS CONSORTIUM 

OCTOBER 27TH 2003 
V2.0 

     

bumping as in [Henckley 03], by synchronous clicks on dedicated keyboard keys 
[Rekimoto 03], or by any new technique yet to be invented; 

- Interaction techniques, including negotiation, that allow users and the system to 
express the redistribution, migration, adaptation of all (or part of) the user interface 
of an interactive system, including the meta-user interface. 

5.2 COMPONENTS FOR OPEN-ADAPTIVENESS 

Open-adaptivity is ensured by a set of dedicated components that, by definition, are 
external to the interactive systems that currently run o the cluster. They include 
observers, a situation synthesizer, an evolution engine, a component retriever, and a 
configurator assisted by reificators, abstractors, and translators.  

- Observers detect the causes for potential adaptation. Some observers detect changes 
in the context of use: these are the platform, environment and user observers. Our 
contextors infrastructure offers a way to implement these observers. The Aura 
environment manager and context observer correspond, respectively, to our platform 
and environment observers. A particular observer, the task manager, probes and 
maintains users’ evolution within the task space. The task space is composed of the 
task spaces supported by each one of the interactive systems that currently run on 
the cluster. The Aura Prism component is an instance of a task manager.  

- The situation synthesizer computes the current situation and context from 
information provided by the observers. As discussed in [Crowley 02], a new 
situation may be recognized, for example a change within the surfaces topology 
(e.g., a new PDA has arrived). 

- The evolution engine computes a reaction in response to the new situation or new 
context. The response may require one or more of the current running interactive 
systems to adapt. If the adaptation required by the new situation falls within the 
domain of plasticity of the interactive system, then the interactive system is able to 
self-adapt. On the other hand, if the required adaptation does not fall within the 
domain of plasticity of the interactive system, then the evolution engine retrieves the 
appropriate components from the components data base and produces a description 
of a new configuration of the interactive system using an ADL (Architecture 
Description Language). 

- The configurator creates a new executable interactive system from a configuration 
description. The components referred to in the description do not necessarily 
correspond to executable code. They may instead be high-level descriptions such as 
task models. If so, the configurator relies on reificators such as Teresa [Paternò 02] 
and ARTStudio [Calvary 02] to produce executable code. Conversely, a component 
may need to be reversed engineered through abstractors, and then transformed by 
translators and reified again into executable code as in Vaquita [Vanderdonckt 01].  

This infrastructure has been implemented and experimented with the development of an 
exemplar application: CamNote. 

5.3 AN EXAMPLE: CAMNOTE 

CamNote (for CAMELEON Note) is a Slides viewer that can run on a dynamic 
cluster composed of a single PC or of a PC and a PocketPC. It is composed of three 
components:   
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- A slides viewer. On the PC, this viewer allows the insertion of translucent videos 
provided by cameras (also known as pixels mirrors [Morikawa 98] [Vernier 99]). 
This component is available for PC’s only.  

- A personal notes editor/viewer. Comments can be entered for each slide. This 
component exists for PC’s only. 

- A remote controller that allows the user to navigate from slides to slides and to 
control the level of transparency of the pixels mirror. A remote controller 
component is available for both PC’s and for PocketPC’s. 

The user interface of CamNote can be rotated at the workspace level. In other words, 
windows do not need to be parallel to the borders of the display screens. Figures 5.2 and 
5.3 show screen dumps of the CamNote user interface. 

  
Figure 5.2. On the left, CamNote when the user interface is centralised on a PC screen. At the top 

right, the slides viewer window. In the middle of the screen a rotative window groups together a remote 
controller for navigating between the slides and controlling the transparency level of the pixels mirror, a 
personal notes viewer, and the video image of the speaker. Rotation may be needed when the window is 
migrated to an horizontal surface. On the right, the PC screen during the adaptation process. In this 
configuration, the user is enlarging the size of the slides viewer using a mouse. The evolution model 
expresses the following adaptation: “If the screen real estate gets too small to show the remote controller, 
then replace the graphic mouse-driven remote controller with a keyboard-driven remote controller and, if 
there is a PDA, migrate the remote controller to the PDA”. Therefore, migration is partial and is 
performed at the workspace level (Cf. Section 2). As shown in the picture, during the adaptation process, 
the mouse-driven remote controller dynamically weaves itself into the slides viewer window and them 
disappears. This movement is a kind of Meta-UI. Figure 5.3 shows the UI of CamNote that results from 
the adaptation process. 
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Figure 5.3. The user interface of CamNote when distributed on a PC screen and a PocketPC screen. 
This distribution results from the migration of the remote controller from the PC to the PDA. The original 
remote controller available on a PC has been replaced with a new remote controller whose buttons and 
layout are best suited to the PocketPC. The UI of CamNote is therefore distributable, migratable and 
plastic. This is made possible in a transparent way for the user and the developer by the underlying run 
time infrastructure. 

6 CONCLUSION  
In summary, we have designed a reference framework that helps understanding, 

reasoning and implementing user interfaces for global smart spaces. This framework 
includes an ontology that makes explicit the concepts of multi-surface interaction and, 
based on this ontology, I-AM, a software infrastructure that supports the dynamic 
composition of heterogeneous interaction resources connected into a unified space. In 
this space, users can distribute and migrate whole or parts of user interfaces as if these 
components were handled by a unique computer. I-AM provides users with the illusion 
of a unified space at no extra cost for the developer. We have shown how I-AM can be 
integrated in a wider infrastructure designed to support the run time adaptation of plastic 
user interfaces. I-AM is implemented in Java. It currently runs on clusters composed of 
MacOS X, Windows NT and Windows XP. 

From a pure technical perspective, I-AM advances the state of the art by addressing 
all of the following problems: 

1. Platforms heterogeneity (e.g., clusters of machines running a mix of MacOs X, 
Windows NT and Windows XP), 

2. Interaction resources heterogeneity (e.g., screens with different sizes and 
resolutions), 

3. Platforms and interaction resources discovery based on a fabric of contextors, 

4. Multi-surface interaction grounded on the dynamic composition of hinged 
display surfaces whose spatial relationships are automatically modeled and 
maintained,  

5. Multi-keyboard, multi-pointer capabilities (so that a user can use the mouse of a 
PC to manipulate a window displayed on a MacOS screen and drag the window 
across screens boundaries as if there were a single screen). 

Although our ontology and I-AM push the state of the art one step forward, a number 
of limitations need to be addressed. In particular, we need to measure the performance 
of I-AM in a formal way (e.g., latency) and consider legacy applications more carefully. 
We need to integrate advanced sensory technologies and invent the Meta-UI that goes 
beyond the desktop. 

We plan to integrate sensory technologies for two primary purposes: 1) to maintain a 
3D topology of the interaction resources and 2) to capture additional physical 
characteristics of surfaces such as sophisticated shapes, textures, weight, etc. in order to 
infer the properties we have elicited in our ontology: for example, is the surface 
traversable? Can it be carried around?  

We plan to invent elements of the Meta-UI. As discussed briefly in section 5, a 
Meta-UI covers many aspects of human computer interaction. Let’s look at one 
example: for traditional workstations, the state of the interaction resources is observable 



 GLOSS: GLOBAL SMART SPACES 
PROJECT NO. IST-2000-26070 

D19 
FINAL REFERENCE FRAMEWORK FOR 
INTERACTION SURFACES 

 
 
 PAGE 37/40

 

  
© 2001 GLOSS CONSORTIUM 

OCTOBER 27TH 2003 
V2.0 

     

in a simple manner. In a ubiquitous world, users need to know which resources are in 
reach and how they can be composed, borrowed and lent. Early work on this problem 
such as that of Hinckley [Hinckley 03] and Rekimoto [Rekimoto 03] addresses simple 
cases (e.g., connect two workstations or tablets). Although, we have not yet devised any 
Meta-UI except for the migration of user interface components (Cf. CamNote), I-AM 
offers the technical foundations for exploring this new problem. 
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ANNEX1: FORMAL DEFINITION OF A PLATFORM 
Let  

. C be the set of core configurations 

. E be the set of extension resources 

. C', C" ≠ {}: C'⊂  C and C" = C – C'  

. E', E": E' ⊂  E and E" = E – E' 

. c1, …, cn ∈ C , e1, …, em ∈ E for n ∈ N*, m ∈ N 

. Operational be a predicate over a set of resources that returns true when this set 
forms a working computational artefact whose state can be observed and/or 
modified by a human user. 

A platform is composed of a set of core and extension resources which, connected 
together, form a working computational artefact whose state can be observed and/or 
modified by a human user: 

P = { c1, …, cn } ∪ { e1, …, em } and Operational (P) 

 

P is an elementary platform if and only if: 

¬∃ C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪ E"). 

In other words, P is an elementary platform if it not possible to build two platforms 
from the set of resources that constitute P. 

 

P is a cluster if it is possible to compose multiple platforms from the set of resources 
that constitute P:  

∃  C', E', C", E": Operational (C' ∪ E') and Operational (C" ∪ E"). 

 

Note that: 

A core configuration is not necessarily Operational. For example, the Intel Personal 
Server, a Bluetooth-enabled micro-drive with no interaction device, is a core 
configuration but not an elementary platform: its state cannot be observed nor modified 
until it wirelessly connects to extension resources such as a display and/or a keyboard 
[Want 01]. On the other hand, a laptop is an elementary platform even when augmented 
with extension resources such as a second mouse and sensors. Similarly, Rekimoto’s 
data tiles form an elementary platform that can be dynamically extended by placing 
physical transparent tiles on a tray composed of an LCD flat screen display [Rekimoto 
01]. 

 


