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Abstract
We provide a structured classification of properties to guide the principled design of

interactive systems.  This classification is motivated by an existing software quality
framework, which we extend with respect to the usability of the software product.  We
distinguish between high-level categories of product usability and criteria within those
categories which can be represented and ultimately measured in terms of the software product
itself.  In this paper, we highlight three usability categories, learnability, interaction flexibility
and interaction robustness, and define criteria which contribute to them.
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1. INTRODUCTION

A real challenge in the development of interactive software is the establishment of principled
practices to ensure the quality of the products produced.  Software quality assurance is an ac-
tive area of research in software engineering.  It is believed that the 1990s will be the quality
era, in which software quality is quantified and brought to the center of the development pro-
cess [1].  In this paper, we focus attention on software quality as it is affected by the interactive
features of the software being developed.  We can further divide this main objective of
principled interactive software development into four more specific objectives:

• define general properties for interactive software;
• provide a method for organizing and assessing the interactive properties;
• provide formalisms in which to express more clearly the properties; and
• link these properties to software engineering practice and measurement.

We directly address the first two of these objectives, definition and organization, in this paper.
In so doing, we provide the foundation for achieving the final two objectives in our further re-
search.

There have been many attempts in the past to define the desirable properties for interactive
software.  This body of literature ranges from very specific interface guidelines for particular
platforms, such as the Apple human interface guidelines [2], to very general principles of
interactive behaviour, such as those given by Thimbleby [3, 4].  We desire a list of general
properties that are not tied to any existing technology; indeed, we would hope that our list of
properties might inspire new interaction mechanisms that satisfy a set of interactive properties
not currently satisfiable with today's technology.  Generality, however, is not enough, as we
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also want to provide an organizational structure for interactive properties which can be readily
extended.  This paper is a preliminary attempt to provide such a structured catalogue.

An interactive property is a feature of an interactive system which is the subject of analysis
and evaluation.  Properties are neither necessarily good nor bad features;  they simply serve to
define an absolute design space which exhausts the possibilities for a design.  The evaluation
of a given design can occur at various stages in the design process.  Currently, the majority of
evaluation for usability of a system occurs in the form of user testing which takes place after
implementation.  User testing is essential, and development environments which allow for
rapid prototyping and iterative design can maximize the effect of user testing by introducing
them at earlier stages in the life cycle.  Current research in HCI, however, is now making it
plausible to provide an alternative to explicit user testing.  Specifically, theoretical tools such as
Barnard's Interactive Cognitive Subsystems (ICS) [5] and Young's Programmable User Model
(PUM) [6] based on the SOAR problem solving architecture [7], make it possible to perform
usability testing at earlier stages in the design process without the need for direct user testing.
From our perspective as software engineers,  the only way that this type of theoretical research
will impact software evaluation is if the results of the HCI theory are expressed in software
engineering terms.  As we shall see in Section 2, this means that the factors affecting product
usability must be characterized in terms of criteria for the software specification that can be
measured by the software engineer.  

Though we do not directly address the use of formalisms to represent the general interactive
properties in this paper, there are two reasons why we promote their use.  Firstly, a mathemat-
ical language provides the expressive precision necessary for intellectual debate.  Secondly,
since a significant portion of the software engineering community has recognized the need for
formalism in design, the general purpose mathematical notations of software engineering, such
as Z, VDM, CSP, CCS, Larch, RAISE, LOTOS and others, can provide the language needed
to translate cognitive phenomena into their design equivalents.  Our belief is that most, if not
all, of the general interactive properties presented in this paper can be expressed as precise
properties of the specification of an interactive system that can thus be evaluated before imple-
mentation.  Indeed, in compiling the list of properties, we tended only to consider those which
we felt were realizable within some formalism.  More work must be done to substantiate this
claim.

Methodologies exist for quality assessment in software engineering.  We propose in the re-
mainder of this paper to relate the organization of general interactive properties to one such
quality assurance method, based on work by McCall and others [8, 9]. The McCall framework
has directly inspired standards work done more recently by the IEEE and the AFCIQ (part of
the French association for standards) [10, 11].   Though each of these earlier standards have
considered the end user of the final product, those concerns have been underrepresented in the
published standards.  The McCall framework provides the structure for organizing general
interactive properties in a way that is currently lacking.

Overview of paper
In Section 2, we briefly outline the McCall framework for the measurement of software

quality, emphasizing how we intend to augment this framework by expanding the definition of
the usability factor into three separate categories of learnability, interaction flexibility and
interaction robustness.  The following three sections provide a detailed discussion of software
criteria which support each of those categories in turn, with the results of each section
summarized in tabular form.  We conclude in Section 6 with a summary of the contributions of
this work and some suggestions for further research on the topic of quality measurement in
interactive software design.



To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

3

2. THE MCCALL FRAMEWORK

In this section, we will give a brief definition of the McCall framework for software quality
measurement and explain how we can augment the framework by further discussion of the
usability factor.

2.1. Definition
The process of quality assessment involves a contractual arrangement between the supplier

(or vendor) and consumer (or customer) of a software product.  The customer places
requirements on the product they wish to use and it is up to the vendor to demonstrate that they
have met those requirements.  In order for the contract to make sense, therefore, the customer
must be able to express requirements in a way that is suitable for both themselves and the
vendor.  To accommodate this, we distinguish between quality factors and quality criteria in
order to represent the differing viewpoints of the customer and the vendor.

A quality factor is a software quality goal from the customer's perspective.  They arise from
a "management-oriented view of product quality." [9]  These factors are separated into three
categories that relate to a software product:

• operational characteristics (product operations);
• ability to support changes (product revision); and
• capacity to adapt to new environments (product transition).

There are 11 quality factors within these three categories, and these are defined more
formally within the framework (see Table 1).  Quality factors are not directly measurable.  The
idea in the McCall framework is that the customer is familiar with the meaning of the quality
factors and, therefore, makes demands on the delivered product in terms of those factors.  

A quality criterion is a property of the software product which a software engineer can
directly measure at some stage in the development of the product.  Each quality factor is related
to some set of quality criteria which are believed to affect that factor.  Precisely how the
relationship between factors and criteria is generated empirically within the McCall framework
is not our concern here.  Rather, we are only interested in the distinction between high-level
factors and measurable criteria.  Within the scope of this paper, measurability of a criterion
means the ability to represent its meaning within some formalism.

2.2. Improvements for interactive systems
Within the McCall framework, there has not been enough attention given to the identification

of factors and criteria that affect the interaction between a human user and the computer system.
The existing framework outlines 11 quality factors, only one of which, usability, directly
concerns this interaction.  The criteria related to the usability factor are:

• operability, i.e., ease of use;
• training, i.e., ease of learning; and
• communicativeness , i.e., ease of understanding.

In addition to ease of use, ease of learning, and communicativeness mentioned in the McCall
model,  the 1989 AFCIQ model expresses usability with self-descriptiveness (i.e., readability
and the appropriateness of the documentation), consistency, completeness, and fault tolerance
criteria. We argue that not only are the above descriptions of usability far too coarse to lead to a
sound evaluation but also that usability in general is not given a high enough profile in the
existing frameworks.  It is understandable that these earlier frameworks do not give adequate
attention to the usability factor.  Research in HCI has only begun to mature over the past
decade and very little of this research has trickled down into software engineering practice from
where the original factors and criteria were gleaned.  The definitions provided by McCall and
others for software quality factors and criteria can be improved by input from the HCI research
community.
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In Table 2, we suggest an extension to the original McCall quality factors.  We remove
usability as a quality factor under the category of product operations and promote it to become a
category by itself and add a further three quality factors which are directly linked to product
usability: learnability; interaction flexibility; and interaction robustness.  In the next three
sections we expound on the definition of these usability factors and define related criteria.

Table 1
McCalls software quality factors

Category Factor Definition

Product
operations

Correctness Extent to which a program satisfies its specifications and
fulfils the users mission objectives.

Reliability Extent to which a program can be expected to perform its
intended function with required precision.

Efficiency The amount of computing resources and code required
by a program to perform a function.

Integrity Extent to which access to software or data by
unauthorized persons can be controlled.

Usability Effort required to learn, operate, prepare input, and
interpret output of a program.

Product
revision

Maintainability Effort required to locate and fix an error in an operational
program.

Flexibility Effort required to modify an operational program.

Testability Effort required to test a program to insure it performs its
intended function.

Product
transition

Portability Effort required to transfer a program from one hardware
configuration and/or software system environment to
another.

Reusability Extent to which a program can be used in other
applications-related to packaging and scope of the
functions that programs perform.

Interoperability Effort required to couple one system with another.

Table 2
Usability as a software quality category

Category Factor Definition

Product
usability

Learnability The ease with which new users can begin effective
interaction and achieve maximal performance.

Interaction
flexibility

Multiplicity of ways the user and system exchange
information.

Interaction
robustness

Features of the interaction which support successful
achievement and assessment of goals.
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3. LEARNABILITY

Learnability concerns the features of the product that allow novice users to initially
understand how to use it and then how to attain a maximal level of performance.  Jordan et al.
refer to the gap between the users initial performance capability and their experienced, maximal
performance as the learnability gulf [12].  This includes not only the first time a user ever
interacts with a particular system but also how the system supports the ability in the user to
generalize from a few examples of interaction behavior to different and slightly varied
examples.  In this section, we identify criteria that contribute to learnability.  The major criteria
are discussed in separate subsections together with related criteria.  The contents of this section
are then summarized in Table 3 at the end of this section.

3.1. Predictability
Except when interacting with some video games, a user does not take very well to surprises.

Predictability of an interactive system means that the users knowledge of the interaction history
is sufficient to determine the result of future interaction. There are many degrees to which
predictability can be satisfied.  The knowledge can be restricted to the presently perceivable
information, so that the user need not remember anything that is not currently observable.  The
knowledge requirement can be increased to the limit where the user is actually forced to
remember what every previous keystroke was and what every previous screen display
contained (and the order of each!) in order to fully determine the consequences of the next input
action.  

This notion of predictability is distinguished from deterministic behaviour of the computer
system.  Predictability is a user-centred concept; it is deterministic behaviour from the
perspective of the user.  Though a system-defined function, such as selection of a graphical
object in a drawing package using a mouse, may be completely deterministic, for that function
to be predictable the user must be aware of all of the information required to determine which
object will be selected.  So the user must be able to determine which set of objects the mouse is
pointing to, what order those objects were created on the canvas, and what previous grouping
commands had been performed to create compound objects from primitive objects.  The user
may even have to know which layer of the graphics package is the current one.  If all of this
information is not immediately perceivable by the user, then the user must remember some of
the interaction history which is relevant to the selection algorithm.  Predictability, once
represented within some formalism, can then be used to provide cognitive requirements for the
user, and these requirements will lead to a measure of the cognitive load that the system
imposes on the user.

This notion of predictability deals with the users ability to determine the effect of operations
on the system.  Another form of predictability has to do with the users ability to know which
operations can be performed.  Operation visibility refers to the rendering of operations in a way
that  expresses their availability in the current state.  If an operation can be performed, then
there must be some perceivable indication of this to the user.  Likewise, users should
understand from the interface if an operation they might like to invoke cannot be performed.  In
addition, operations that cannot be performed should satisfy the do nothing principle [13].
Although perceivable, they cannot be invoked (e.g., dimmed menu items).

3.2. Synthesizability
Predictability focuses on the users ability to determine the effect of future interactions.  This

assumes that the user has some mental model of how the system behaves.  Predictability says
nothing about the way the user forms a model of the systems behaviour.   In building up some
sort of predictive model of the system’s behavior, it is important for the user to assess the
consequences of previous interactions in order to synthesize the behavior of the system.
Synthesis, therefore, is the ability of the user to assess the effect of past operations on the
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current state. We separate synthesis into two related activities, detection of change and
detection of similarities.

When an operation changes some aspect of the internal state, it is important that that change
be observable by the user.  Honesty is the ability of the user interface to provide the user with
an observable and informative account of such change.  In the best of circumstances, this
notification can come immediately, requiring no further interaction initiated by the user.  Or at
the very least, the notification should appear eventually after explicit user directives to make the
change observable.  The problem with eventual honesty is that the user must know to look for
the change.  In a situation where the user is learning a new interactive system, it is likely that
he/she will not know to look for change.  The eventual (accidental) discovery of a change may
then be difficult to associate to a previous operation. It can appear eventually as a consequence
of some user action which was not directly intended to expose the change (accidental
discovery).  In the worst case, some changes could be forever hidden from the user, in which
case it would be impossible for the user to be able to associate such a change to its
corresponding operation.

A user could be interested in detecting similarities between different commands.  As we will
discuss with interaction flexibility in Section 4, there is often more than one way to achieve a
specified goal.  In order to take advantage of this flexibility, the user must determine that two
different command sequences yield the same result.  This similarity can occur just after the
execution of the different command sequences, in which case we would say the command
sequences were equivalent.  In the limit, the similarity may continue to any point in the future,
in which case we would say the command sequences were indistinguishable.  If the interactive
system is immediately honest, equivalence command sequences would also be indistin-
guishable.

3.3. Familiarity
New users of a system bring with them a wealth of experience across a wide number of

application domains.  This experience is obtained both through interaction in the real world and
also through interaction with previously existing computer systems.  For a new user, the
familiarity of an interactive system measures the correlation between the user’s existing
knowledge and the knowledge required for effective interaction.  For example, when word
processors were originally introduced, an analogy between the word processor and a
typewriter were intended to make the new technology more immediately accessible to those
who had little experience with the former and quite a bit of experience with the latter.

Familiarity has to do with a user’s first impression of the system.  In this case, we are
interested in how the system is first perceived and whether the user can determine how to
initiate any interaction.  One of the advantages of a metaphor, such as the typewriter metaphor
for word processing described above, is precisely captured by familiarity.  Jordan et al. refer to
this familiarity as the guessability gulf [12].  They have also shown how guessability can be
directly measured based on a user’s rate of completion of a set of tasks over time.  In ecological
psychology, one can refer to the affordance provided by perceivable interface objects [13, 14].
There is affordance when the perceivable intrinsic properties of any object instigate the
appropriate actions upon it, that is, the appearance of the object stimulates a familiarity with its
behavior. For example, the shape of a door handle can suggest how it should be manipulated to
open a door, or a soft button used in a forms interface can suggest it should be pushed (though
it does not suggest how it is to be pushed via the mouse).  Taking advantage of the affordances
which exist for interface objects enhances the predictability of an interface as well.

3.4. Generalizability
Users often try to extend their knowledge of specific interaction behavior to situations which

are similar but previously unencountered.  The generalizability of an interactive system
supports this activity, leading to a more complete predictive model of the system for the user.
We can apply generalization to situations in which the user wants to apply knowledge which
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helped achieve a particular goal to another situation in which the goal is in some way similar.  
Generalizability can be seen as a form of consistency, and we can discuss its relevance within a
single application and across a variety of applications.  For example, using a graphical drawing
package which draws a circle as a constrained form of ellipse, we would want the user to
generalize that a square can be drawn as a constrained rectangle.  A good example of
generalizability across a variety of applications can be seen in multiwindowing systems which
attempt to provide cut/paste/copy operations to all applications in the same way (with varying
degrees of success).

3.5. Summary of Learnability
Table 3 summarizes the criteria we have discussed in this section which contribute to

learnability.  

Table 3
Summary of criteria affecting interaction learnability

Criterion Definition Related Criteria

Predictability Support for the user to determine the affect of
future action based on past interaction history.

Operation visibility,
Consistency,
Affordance

Synthesis Support for the user to assess the affect of past
operations on the current state.

Immediate/Eventual
honesty,
Equivalence,
Indistinguishability

Familiarity The extent to which a user’s knowledge and
experience in other real-world or computer-based
domains can be applied when interacting with a
new system.

Guessability,
Affordance

Generalizability Support for the user to extend knowledge of
specific interaction within and across applications
to other similar situations.

Consistency

4. INTERACTION FLEXIBILITY

Interaction flexibility refers to the multiplicity of ways the end user and the system exchange
information.  We identify several criteria that contribute to interaction flexibility, and these are
summarized in Table 4 at the end of this section.

4.1. Dialogue initiative
When considering the interaction between user and system as a dialogue between partners, it

is important to consider which partner has the initiative in the conversation.  The system can
initiate all dialogue, in which case the user simply responds to requests for information.  We
call this type of dialogue system pre-emptive.  For example, a dialogue box may prohibit the
user from interacting with the system in any way that does not direct input to the box.
Alternatively, there are situations in which system pre-emptiveness can hinder a user’s
progress; it is desirable at times for the user to preempt the system.  User pre-emptiveness
defines the span for user freedom.  The system may control the dialogue to the extent that it
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prohibits the user from initiating any other desired communication pertaining to the same or
different task [4].  From the user’s perspective, a system-driven interaction hinders flexibility
whereas a user-driven interaction favors it.  

In general, we want to maximize the user’s ability to pre-empt the system and minimize
system’s ability to preempt the user.   Although non-pre-emptive systems are desirable, some
situations may require it for safety reasons, prohibiting the user from the freedom to do
potentially serious damage.  In the extreme, this criterion would have the user being able to
offer any input action at any time for maximum flexibility.  This is not an entirely desirable
situation, since it increases the likelihood that the user will lose track of the tasks that have been
initiated and not yet completed.  However, if the designer has a good understanding of the sets
of tasks the user is likely to perform with a system and how those tasks are related, they can
minimize the likelihood that the user will be prevented from initiating some task at a time when
they would want.

4.2. Multithreading
Multithreading of the user/system dialogue allows for interaction to support more than one

task at a time. Concurrent multithreading allows simultaneous communication of information
pertaining to separate tasks. Interleaved multithreading permits a temporal overlap between
separate tasks but stipulates that at any given instant, the dialogue is restricted to a single task.
Multithreading contributes toward interaction flexibility since it allows the user to perform
multiple tasks simultaneously or switch freely between them.  There are many software
engineering formalisms, most notably process algebras such as CSP [15] and CCS [16],
which can describe multithreaded dialogues in which the threads are considered as independent
sequences of events or actions.  There is still a considerable research gap in software
engineering in addressing how threads of events from the system perspective connect to the
actual tasks in the work domain.  Therefore, the value of process algebras as formalisms which
lead to a measurement of multithreading capacity of the interaction is minimal at the moment.

4.3. Task migratability
Task migratability concerns the transfer of control for execution of tasks between system

and user.  It should be possible for the user or system to pass the control of a task over to the
other or promote the task from a completely internalized one to a shared and co-operative
venture.  Hence, a task that is internal to one can become internal to the other or shared
between the two partners.  For example, OPAL, based on a model of operator intentions, is
able to take over tasks normally assigned to an aircraft pilot [17].

4.4. Substitutivity
Substitutivity requires that equivalent values can be substituted for each other [3].  For

example, the user may enter either 24 or 6*4 for some slot in a form.  Entering 24 implies that
the user performs the calculation. When the user submits 6*4, the system takes the
responsibility for evaluating the expression.  This input substitutivity contributes toward
interaction flexibility by allowing the user to choose whichever form best suits the needs of the
moment.  By avoiding undesirable calculations, substitutivity can minimize user errors and
cognitive effort.  

We can also consider substitutivity with respect to output, or the system’s rendering of state
information. Representation multiplicity illustrates flexibility for state rendering.  For example,
the temperature of a physical object over a period of time can be presented as a digital
thermometer if the actual numerical value is important or as a graph if it is important to notice
trends.  It might even be desirable to make these representations simultaneously available to the
user. Each representation provides a perspective on the internal state of the system. At a given
time, the user is free to consider the representations that are most suitable for the current task.
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The PAC multiagent architecture [18] especially emphasizes this feature of multiple
representation of a single system concept.

Equal opportunity blurs the distinction between input and output at the interface.  The user
has the choice of what is input and what is output; in addition, output can be reused as input
[3].  If you can see it, you can use it!  It is a common belief that input and output are separate.
Many have stressed the significance of the link between input and output.  Equal opportunity
pushes that view to the extreme.  For example, in spreadsheet programs, the user fills in some
cells and the system automatically determines the values attributed to some other cells.
Conversely, if the user enters values for those other cells, the system would compute the
values for the first ones.  In this example, it is not clear which cells are the inputs and which
are the outputs.  Furthermore, this distinction might not be clear nor useful to the user. In a
drawing package, the user may draw a line by direct manipulation and the system would
compute the length of the line; or conversely, the user may specify the line coordinates and the
system would draw the line.  Both means of manipulating the line are equally important and
must be made equally available. Note that equal opportunity implies that the system is not pre-
emptive toward the user.  The spreadsheet example is just one type of constraints-based system
which is very characteristic of this criterion.  Formal notations are good for exploiting equal
opportunity, for their abstractness can concentrate description on the constraints which exist
between various system and interface attributes and not on their input/output characteristics.

4.5. Multimodality
Multimodality refers to the multiple use of communication channels1.  Input from the user

can originate from different channels, such as the keyboard, mouse, or voice.  Output from the
system can be received by the user through visual, audio, or haptic channels.  Each different
channel for the user is referred to as a modality of interaction.  Multimodal systems may be
characterized along two dimensions: fusion (exclusive or synergic) and time (sequentiality or
concurrency) [19].

A user interface is exclusive multimodal if multiple modalities are available to the user, and
input (and output) expressions are built up from one modality only (there is no fusion of
modalities).  For example,  to open a window, the user can choose among a double-click on an
icon, a keyboard shortcut, or say "open window".  A system is synergic multimodal if input
and output expressions can be expressed using a combination of modalities.  For example, one
can say “put that there” while pointing at the object to be moved and showing the location of
the destination with the mouse or a data glove.  In this formulation, speech events, such as
“that” and “there”, call for complementary input events, such as mouse clicks and/or data glove
events, in order to complete the input expression.

Time constraints express the possibility for the user to build exclusive or synergic
expressions sequentially or in parallel.  Sequentiality implies that there is no concurrency at the
interface. For example, in the absence of concurrency, the user would say “put that” followed
by a mouse click to denote “that”.  He would then say “there” and click a second time to
indicate the destination.  Concurrency at the actions level supports “natural” flexibility for
synergic multimodal interaction.

4.6. Customizability
Customizability is the modifiability of the user interface by the user or the system. From the

system side, we are not concerned with modifications that would be attended to by a
programmer actually changing the system and its interface.  Rather, we are concerned with the
automatic modification that the system would make based on its knowledge of the user.  We

                                                
1There is a distinction between multimedia and multimodal user interfaces. Multimedia and multimodal

systems use similar physical input and output devices. Both acquire, maintain and deliver visual and sonic
information. Although similar at the surface level, they serve distinct purposes. Multimedia systems are
concerned with the form whereas multimodal systems are concerned with meaning.
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distinguish between the user-initiated and system-initiated modification, referring to the former
as adaptability and the latter as adaptivity.

Adaptability refers to the user’s ability to adjust the form of input and output.  This
customization could be very limited, with the user only allowed to adjust the position of soft
buttons on the screen or redefine command names. This type of modifiability, which is
restricted to the surface of the interface, is referred to as lexical and pragmatic customization.
The overall structure of the interaction is kept unchanged. The power given to the user can be
increased by allowing the definition of macros to speed up the articulation of certain common
tasks. In the extreme, the interface can provide the user with programming language
capabilities, such as the UNIX shell or the script language Hypertalk [20] in Hypercard.  In
these cases, Thimbleby points out that it would be suitable to invoke well-known principles of
programming languages to the users interface programming language [4, 21].

Adaptivity is automatic customization of the user interface by the system.  Decisions for
adaptation can be based on user expertise or observed repetition of certain task sequences. The
distinction between adaptivity and adaptability is that the user plays an explicit role in
adaptability, whereas his role in an adaptive interface is more implicit.  A system can be trained
to recognize the behaviour of an expert or novice and accordingly adjust its dialogue control or
help system automatically to match the needs of the current user. This is in contrast with a
system which would require the user to explicitly classify themselves as novice or expert at the
beginning of a session.  Current research in the application of neural networks to pattern
recognition problems in HCI addresses this type of adaptivity [22].

Automatic macro construction as proposed in Eager [23], combines adaptability with
adaptivity in a simple and useful way. Repetitive tasks can be detected by observing user
behaviour and macros can be automatically constructed from this observation to perform
repetitive tasks automatically.

4.7. Summary of interaction flexibility
We summarize the criteria which contribute toward interaction flexibility in Table 4 below.

Table 4
Summary of criteria affecting interaction flexibility
Criterion Definition Related Criteria

Dialogue
initiative

Allowing the user freedom from artificial
constraints on the input dialogue imposed by the
system.

System/User, pre-
emptiveness

Multithreading Ability of the system to support user interaction
pertaining to more than one task at a time.

Concurrent vs.
Interleaving

Task
Migratability

The ability to pass control for the execution of a
given task so that it becomes either internalized by
the user or the system or shared between them.

Substitutivity Allowing equivalent values of input and output to
be arbitrarily substituted for each other.

Representation
multiplicity, Equal
opportunity

Multimodality The use of multiple human communication
channels.

Exclusive/Synergic,  
Sequential/ Parallel

Customizability Modifiability of the user interface by the user or the
system.

Adaptivity, vs.
Adaptability
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5. INTERACTION ROBUSTNESS

A user is engaged with a computer in order to achieve some set of goals in the work or task
domain.  Interaction robustness covers features of this interaction which support the successful
achievement and assessment of the goals.  In the following subsections, we describe criteria
which support interaction robustness.  A summary of these criteria are presented in Table 5 at
the end of the section.

5.1. Observability
Observability allows the user to evaluate the internal state of the system from the perceivable

representation of that state.  State evaluation allows the user to compare the current observed
state with the state intended in the action plan, possibly leading to a plan revision.
Observability is further divided into five criteria: browsability, default-ness, reachability,
persistence and operation visibility.  Operation visibility was covered in Section 3 with respect
to predictability.  The remaining four are discussed next.

Browsability allows the user to explore the current internal state of the system via the limited
view provided at the interface.  Usually the complexity of the domain does not allow the
interface to show at once all of the relevant domain concepts.  Indeed, this is one reason why
the notion of task is used, in order to constrain the domain information needed at one time to a
subset connected with the user’s current activity.  Even so, it is probable that all of the
information a user needs to continue work is not immediately perceivable.  There needs to be a
way for the user to investigate, or browse, the internal state.  And this browsing itself should
not have any side-effects on that state, i.e., the browsing commands should be passive  [24]
with respect to the domain-specific parts of the internal state.  Harrison and Dix have provided
abstract and formal requirements for passive strategies used to observe all of the information
contained in the internal state [25].

Default-ness assists the user by passive recall (i.e., a value is recognized as correct);  it also
reduces the number of physical actions necessary to specify a value.  Thus, providing default
values is a kind of error prevention mechanism. There are two kinds of default values:  static
and dynamic.  Static defaults do not evolve with the session.  They are either defined within the
system or are acquired at initiation time from a profile file.  On the other hand, dynamic
defaults evolve during the session.  They are computed by the system from previous user
inputs.

Reachability refers to the possibility of navigation through the observable system states [3,
26].  There are various levels of reachability that have been given a formal definition, but the
main notion is whether the user can navigate from any given state to any other state.
Reachability in an interactive system affects the recoverability of the system, as we will discuss
later.  In addition, different levels of reachability can reflect the amount of interaction flexibility
in the system as well, though we did not make that explicit in the discussion on flexibility.

Persistence deals with the duration of the effect of a communication act and the ability of the
user to make use of that effect.  The effect of vocal communication does not persist except in
the memory of the receiver.  Visual communication, on the other hand, can remain as an object
which the user can subsequently manipulate long after the act of presentation.

5.2. Recoverability
Users make mistakes from which they want to recover.  Recoverability is the ability to reach

a desired goal after recognition of some error in previous interaction.  There are two directions
in which recovery can occur, forward or backward.  Forward error recovery involves the
acceptance of the current state and negotiation from that state toward the desired state.
Backward error recovery is an attempt to undo the effects of previous interaction in order to
resurrect a prior state from which to proceed toward the desired state.  

Recovery can be initiated by the system or by the user. When performed by the system,
recoverability is connected to the notion of fault-tolerance. This issue is one of the criteria
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mentioned by McCall although fault-tolerance in software engineering is viewed from the
functional perspective only. At the user interface level, the system can initiate a meta-dialogue
to clarify user requests. For example, a speech recognizer may negotiate the meaning of an
utterance. When performed by the user, it is important that a recoverability facility determine
the intent of the user’s recovery actions, i.e., whether they desire forward (negotiation) or
backward (using undo/redo actions) corrective action.  There are many formal definitions of
backward error recovery mechanisms (see [3] for a clear review of some of these).
Recoverability relies on reachability because we want to avoid blocking the user from getting to
a desired state from some other undesired state (going down a blind alley).

In addition to providing the ability to recover, the procedure for recovery should reflect the
work being done (or undone, as the case may be).  Commensurate effort states that if it is
difficult to undo a given effect on the state, then it should have been difficult to do in the first
place.  Conversely, easily undone actions should be easily doable.  For example, if it is
difficult to recover files which have been deleted in an operating system, then it should be
difficult to remove them, or at least it should require more effort by the user to delete the file
than to, say, rename it.

5.3. Response time
Response time measures the rate of communication between the system and the user.

Response time is generally defined as the duration of time needed by the system to express
state changes to the user.  It depends on the computational resources involved to satisfy the
user’s request.  In general, short durations and instantaneous response times are desirable.
Instantaneous means that the user perceives system reactions as immediate.  As significant are
response time conformance and response time stability:  Response time conformance expresses
the adequacy of the duration as compared to user expectation.  It enforces a feeling of good
collaboration. Failure to satisfy response time conformance may result in an unusable system.
Response time stability covers the invariance of the duration for identical or similar
computational resources.  For example, pull down menus are expected to pop up
instantaneously as soon as a mouse button is pressed. Variations, that is failure to satisfy
response time stability, would impede anticipation exploited by motor skill.

5.4. Task conformance
Since the purpose of an interactive system is to allow a user to perform various tasks in

achieving certain goals within a specific application domain, we can ask whether the system
supports all of the tasks of interest and whether it supports these as the user would want.
Completeness addresses the coverage issue and adequacy addresses the user’s understanding
of the tasks.  

It is not sufficient that the software product fully implements some set of computational
services that were identified at early specification stages.  It is essential that the system allows
the user to achieve any of the desired tasks in a particular work domain as identified by a task
analysis that precedes system specification.  Further, it is not necessary that the system only
support the tasks identified by a task analysis.  Indeed, it is quite possible that the provision of
a new computer-based tool will suggest to a user some tasks that were not even conceivable
before the tool.

Task completeness is supported, for example, in the Diane method [27], which  provides a
framework and a notation for identifying and specifying the functions of the end user-computer
system couple.  A Diane analysis is task-oriented, making explicit the operations performed by
the computer system and those performed by the final user. Similarly, MAD which embeds a
method and a notation for task analysis [28], bridges the gap between the task analysis and the
specification phase. User interface generators such as Sirocco [29] and UIDE [30]
automatically produce a user interface from a high level conceptual description.  This
specification denotes the domain concepts and their relations as computational counterparts of
the mental entities handled by the end user in the task domain.  The automatic generation
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provided by this type of tool guarantees the completeness of the user interface with regard to
the specified domain-dependent concepts and functions, though it does not provide help for
generalized tasks that might emerge with use of the system.

Discussion of task conformance has its roots in an attempt to formally model the meaning of
direct manipulation by means of a conformance between a display and the underlying state it
represents [25].  Abowd has since demonstrated the link between this conformance and
standard data refinement in software engineering [31].  Completeness is only one aspect of this
conformance/refinement relationship.  With the intuition of the model-world metaphor [32], we
demand that the task as represented by the world of the interface match the task as understood
by the user and supported by the system.  We use the term adequacy because the formal model
resembles the adequacy condition in software engineering expressed between an abstract
system specification and its set of possible concrete refinements.

5.5. Summary of interaction robustness
We summarize the criteria which contribute toward interaction robustness in Table 5.

Table 5
Summary of criteria affecting interaction robustness
Criterion Definition Related

Criteria

Observability Ability of the user to evaluate the internal state of
the system from its perceivable representation.

Browsability,
Static/Dynamic
defaults,
Reachability,
Persistence,
Operation visibility

Recoverability Ability of the user to take corrective action once an
error has been recognized.

Reachability,
Forward vs.
Backward recovery,
Fault tolerance,
Commensurate
effort

Response time How the user perceives the rate of communication
with the system.

Conformance,
Stability

Task
conformance

The degree to which the system services support
all of the tasks the user wishes to perform and in
the way that the user understands them.

Completeness,
Adequacy

6. CONCLUSIONS AND DIRECTIONS FOR RESEARCH

We have proposed 3 categories of quality factors, learnability, interaction flexibility and
interaction robustness, which contribute to the usability of a software product.  Within those
categories we defined criteria which more directly relate to the interactive features of a software
product.  These can be used to clarify the notion of usability which has been relatively
overlooked in the quality assurance work of software engineering.  In so doing, we have
addressed two of the four objectives for this research, namely, we have:
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• defined an extensive, if not comprehensive, list of properties to guide the
principled design of interactive systems;

• provided an organization for categorizing these properties which can easily be
extended to account for other interactive properties.

We do not claim that the three categories of usability factors outlined in this paper represent
a complete treatment of usability, which is why the second point above is important.  In fact,
we can see at least three categories which might be readily added.  

From the ISO draft standard on usability measurement [33], we can highlight user
performance, perhaps the ultimate measure for usability, at least in the context of that standard
for office automation, which is only implicitly covered in some of the criteria mentioned above,
and user satisfaction, which is not addressed at all.

In future extensions to this work, we anticipate that consistency will appear as a general
category for the usability factor as well.  We have mentioned consistency only briefly with
respect to learnability.  Such slight explicit mention of consistency is a serious problem,
especially since this property is so widely acknowledged in just about every book on guidelines
for user interface design.  The reason for this is that we believe that consistency has many
different forms, some of which appear in the above discussion of learnability.  There is also
considerable debate  about the utility of consistency as a general guide for design [34].

The major emphasis in our work will now address how to use formalisms to represent these
usability properties in a software engineering framework.  We have cited throughout this paper
several instances where this activity has already taken place.

The categorization of quality factors and criteria provided in this paper can also provide
guidance to a design rationale, such as the Questions-Options-Criteria (QOC) notation [35].  
QOC is an interesting illustration of traceability in user interface design.  It makes explicit the
questions a user interface designer asks during the design phase.  The properties that we have
catalogued in this paper can be used as the criteria to judge various design options for a design
question.

Many now recognize the importance of integrating the results of HCI research with the
practices of software engineering.  We hope that this paper provides sufficient impetus in the
direction of integration and serves as motivation for an interesting agenda for further research.
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