To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

Structuring the Space of Interactive System Properties
Gregory D. Abow@, Joélle Coutd2 and Laurence Nigé’y

a Dependable Computin§ystemsCentre and Human-Computer Interacti@noup, Depart-
ment of Computer Science, University of York, Heslington, York Y01 5DD, United Kingdom

b Laboratoire de Génie Informatique, BP 53 X, 38041 Grenoble Cedex, France

Abstract

We provide a structured classification of properties to guide the princg#gedn of
interactive systems. This classification ismotivated by an existingsoftware quality
framework, which weextend with respect tthe usability of thesoftware product. We
distinguish between high-level categories of product usability enitdria within those
categories which can be represented @tichately measured in terms of tleftware product
itself. In this paper, waighlight three usabilitcategories, learnabilitynteraction flexibility
and interaction robustness, and define criteria which contribute to them.

Keyword Codes: H.1.2, H.5.2, D.2.10
Keywords:User/Machine Systems, User Interfaces, Software engineering Design

1. INTRODUCTION

A real challenge in the development of interactive software is the establishment of principled
practices to ensure the quality of gweducts produced. Softwageality assurance is an ac-
tive area ofresearch in software engineering. Ibaieved that thd990swill be the quality
era, in which softwarguality is quantified an@rought tothe center of the developmemro-
cess [1]. In this paper, we focus attention on software quality as it is affectieel ioyeractive
features of thesoftware being developed. Wan further dividethis main objective of
principled interactive software development into four more specific objectives:

« define general properties for interactive software;

* provide a method for organizing and assessing the interactive properties;
* provide formalisms in which to express more clearly the properties; and

* link these properties to software engineering practice and measurement.

We directly address the first two of these objectives, definition and organization, papes.
In so doing, we provide the foundation for achievingfthal two objectives inour further re-
search.

There have been many attempts inphst to definghe desirable propertider interactive
software. This body diteratureranges from very specifinterface guidelinegor particular
platforms, such athe Applehuman interface guidelind®], to very general principles of
interactivebehaviour, such as thogezen by Thimbleby[3, 4]. Wedesire a list of general
propertiesthat arenot tied toany existing technologyndeed, we would hopthat our list of
properties might inspire neiwmteraction mechanisms thsatisfy a set ointeractiveproperties
not currently satisfiable wittoday's technology Generality, however, isot enough, as we

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

also want to provide an organizational structiareinteractiveproperties whickcan be readily
extended. This paper is a preliminary attempt to provide such a structured catalogue.

An interactive property is a feature of an interaciystem which ighe subject of analysis
and evaluation. Properties are neither necessarily good ndedtades; they simply serve to
define an absolute design space which exhdbstpossibilitiedor a design. The evaluation
of a given design can occur at various stagdisdlesign process. Currentifhe majority of
evaluationfor usability of a system occurs the form of usertesting which takeplace after
implementation. User testing is essential, ardevelopment environments which allow for
rapid prototyping andterative designcan maximize the effect afsertesting by introducing
them at earliestages irthe life cycle. Current research HCI, however, is nownaking it
plausible to provide an alternative to explicit user testing. Specifically, theoreticabtmblsas
Barnard's Interactive Cognitive Subsystems (ICS) [5] and Young's Programmabiddsér
(PUM) [6] based orthe SOAR problensolving architecturg 7], make itpossible to perform
usability testing at earlier stagestire design process withotihe needor directuser testing.
From our perspective as software engineers, the only way that this tijmowdtical research
will impact softwareevaluation is if theesults ofthe HCI theory areexpressed in software
engineering terms. As we shall see in Section 2, this nteanthefactors affecting product
usability must becharacterized in terms of criterfar the softwarespecification that can be
measured by the software engineer.

Though we do not directly address the use of formalisms to repthseg¢neral interactive
properties in this paper, there are two reasons why we promotegbeirFirstly, anathemat-
ical languageprovidesthe expressive precision necessary iatellectualdebate. Secondly,
since a significant portion of treoftware engineeringommunityhasrecognized the need for
formalism in design, the general purpose mathematical notations of software engineering, such
as Z, VDM, CSP, CCS, Larch, RAISEQTOS andothers,can provide the language needed
to translate cognitive phenomena into tltEsign equivalentsOur belief is thamost, if not
all, of the general interactivproperties presented in this paman beexpressed as precise
properties of the specification of an interactsystemthat canthus beevaluated beforemple-
mentation. Indeed, in compiling the list of properties, we tended only to consider those which
we felt wererealizablewithin some formalism.More work must be done teubstantiate this
claim.

Methodologies exist for quality assessment in software engineering. We proplosean
mainder of this paper teelate the organization of general interactreperties to one such
quality assurance method, based on work by McCall and othé% [8he McCallframework
has directly inspired standard®rk donemore recently by the IEEEBnd the AFCIQ (part of
the French association for standarfs), 11]. Thougheach of these earlistandardshave
considered the end user of the final product, those concerns have been underrepresented in the
published standardsThe McCallframework provideshe structurefor organizing general
interactive properties in a way that is currently lacking.

Overview of paper

In Section 2, we briefly outline thklcCall framework forthe measurement «oftware
quality, emphasizing how we intend to augment this framework by expatmeiragfinition of
the usability factor into three separate categories of learnability, interaction flexibility and
interaction robustness. The followitigyee sections provide detaileddiscussion of software
criteria which supporteach ofthose categories iturn, with the results of each section
summarized in tabular form. We conclude in Section 6 with a summary of the contributions of
this work and some suggestions for further researctthentopic of quality measurement in
interactive software design.

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

2. THE MCCALL FRAMEWORK

In this section, we will give a brief definition tiie McCallframework for softwarejuality
measurement and explaimow we can augment thébamework by further discussion of the
usability factor.

2.1. Definition

The process ofjuality assessment involvescantractual arrangement between the supplier
(or vendor) and consumer (or customer) of a softwan@duct. The customer places
requirements on the product they wish to use and it is up to the vendor to demdmestritvesy
have met those requirements. In ordertif@r contract to maksense, therefor¢he customer
must beable toexpressrequirements in avay that is suitabl€for both themselves and the
vendor. Toaccommodatehis, we distinguistbetween qualityfactors and qualitycriteria in
order to represent the differing viewpoints of the customer and the vendor.

A quality factor is a software quality goal from the customer's perspective. They arise from
a "management-oriented view of prodgciality.” [9] These factors are separated itiicee
categories that relate to a software product:

 operational characteristics (product operations);
« ability to support changes (product revision); and
* capacity to adapt to new environments (product transition).

There are 11 quality factors within these thoegegories, and theswe defined more
formally within the framework (see Table 1). Quality factors are not direwtlysurable. The
idea in the McCalframework isthat thecustomer idamiliar with the meaning of the quality
factors and, therefore, makes demands on the delivered product in terms of those factors.

A quality criterion is a property athe software product which a softwaengineer can
directly measure at some stage in the development of the product. Each quality fatabeds
to some set of qualitgriteria which are believed to affect thdactor. Preciselyhow the
relationship between factors aodteria is generated empiricalyithin the McCall framework
is not ourconcernhere. Rather, wareonly interested irthe distinction between high-level
factors and measurable criteria. Within ge®pe of this papemeasurability of a criterion
means the ability to represent its meaning within some formalism.

2.2. Improvements for interactive systems

Within the McCall framework, there has not been enough attention given to the identification
of factors and criteria that affect the interaction between a human user and the ceygtatar
The existingframework outlines 11 qualityactors, onlyone of which, usability, directly
concerns this interaction. The criteria related to the usability factor are:

* operability, i.e., ease of use;
e training, i.e., ease of I(_aarnlng; and _
e communicativeness , i.e., ease of understanding.

In addition to ease of use, ease of learning, and communicativeness mentiondddGdte
model, the 1989 AFCIQ modelexpressesisability with self-descriptivenegse., readability
and the appropriateness the documentation), consistency, completeness,famltl tolerance
criteria. We argue that not only are the above descriptions of usability far too cdaesk tiw a
soundevaluation but alsthat usability in general inot given a high enough profile in the
existingframeworks. It isunderstandabléhat these earliframeworks do nogive adequate
attention to the usabilitfactor. Research iRICl has only begun tonature over the past
decade and very little of this research has trickled down into software engirgagtigefrom
where the original factors araiteriawere gleaned.The definitionsprovided byMcCall and
others for software quality factors and criteria can be improved by inputtfr@mCI research
community.

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

Table 1

McCalls software quality factors
Category | Factor Definition
Product Correctness Extent to which a program satisfies its specifications and
operations fulfils the users mission objectives.

Reliability Extent to which a program can be expected to perfoiqm its
intended function with required precision.

Efficiency The amount of computingesources andode requirefl
by a program to perform a function.

Integrity Extent to which access to software odata by
unauthorized persons can be controlled.

Usability Effort required to learn, operatprepare input, andg
interpret output of a program.

Product Maintainability Effort required to locate and fix an error in an operatipnal
revision program.

Flexibility Effort required to modify an operational program.

Testability Effort required to test@ogram to insure it performs |ts
intended function.

Product Portability Effort required to transfer a program from one hardware
transition configuration and/or software system environment to
another.

Reusability Extent towhich a programcan be used in other
applications-related to packaging and scope of| the
functions that programs perform.

Interoperability Effort required to couple one system with another.

In Table 2, wesuggest an extension tbe originalMcCall quality factors. Weremove
usability as a quality factor under the category of product operations and promote it to become a
category by itself and add a further three quality factdngch are directly linked to product
usability: learnability; interaction flexibility; and interactioobustness. Irthe next three
sections we expound on the definition of these usability factors and define related criteria.

Table 2
Usability as a software quality category
Category | Factor Definition
Product Learnability The easevith which new userscan begin effective
usability interaction and achieve maximal performance.
Interaction Multiplicity of ways the user and systenexchange
flexibility information.
Interaction Features ofthe interactionwhich support successiul
robustness achievement and assessment of goals.

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

3. LEARNABILITY

Learnability concernsthe features of the produdhat allow noviceusers to initially
understand how to use it and then how to attaimagimal level ofperformance. Jordaet al.
refer to the gap between the users initial performance capability and their expermesxied|
performance as the learnabiligulf [12]. This includes not onlyhe first time auserever
interacts with a particulasystem but alstdiow the system supportghe ability in theuser to
generalizefrom a few examples of interaction behavior to different and slightly varied
examples. In this section, we identify criteria that contribute to learnability. The critgaa
are discussed in separate subsections together with related criteria. The contents of this section
are then summarized in Table 3 at the end of this section.

3.1. Predictability

Except when interacting with some video games, a user does not take verysuetirises.
Predictability of an interactive system means that the users knowledge of the intehéstiooy
is sufficient to determine the result of future interaction. There are many degregscko
predictability can besatisfied. The knowledgecan be restricted to the presently perceivable
information, so that the user need not remember anything that is not cuotesgtyable. The
knowledge requiremertan be increased to tHmnit where the user isactually forced to
remember what everprevious keystroke wasnd what every previous screen display
contained (and the order of each!) in order to fully determine the consequences of the next input
action.

This notion ofpredictability isdistinguished frondeterministic behaviour of the computer
system. Predictability is a user-centred concept; it is deterministic behaviour from the
perspective of theser. Though a system-defined function, suchsatection of a graphical
object in a drawing package using@use,may be completely deterministiigr that function
to be predictable theser must baware ofall of theinformation required to determirvehich
object will be selected. So the user must be able to determine which set of objeatsiskeas
pointing to, what order those objects wereated on theanvas,and what previous grouping
commands had been performedcteatecompound objects fromrimitive objects. The user
may even have tknow whichlayer of thegraphics package the currenione. Ifall of this
information is noimmediately perceivable by theser,then theuser mustemember some of
the interactionhistory which isrelevant to the selectioalgorithm. Predictability,once
represented within some formalism, can then be used to provide cognitive requirfeméres
user, and these requirements widlad to a measure of the cognitive load that gixstem
imposes on the user.

This notion of predictability deals with the users ability to determine the effect of operations
on the systemAnother form ofpredictabilityhas to do withthe usersability to know which
operations can be performe@peration visibilityrefers to the rendering of operations in a way
that expressesheir availability in the currergtate. If anoperation can b@erformed,then
there must be some perceivable indication of thisth® user. Likewise, users should
understand from the interface if an operation they might like to invoke cannot be performed. In
addition, operationshat cannot bgerformed should satisfihe do nothing principld13].
Although perceivable, they cannot be invoked (e.g., dimmed menu items).

3.2. Synthesizability

Predictability focuses on the users ability to determine the effect of future interactions. This
assumes that the user has sanamtal model ohow the system behavesPredictabilitysays
nothing about the way the user forms a model of the systems behaviour. In building up some
sort of predictive model of thesystem’s behavior, it igmportantfor the user to assess the
consequences of previousteractions in order teynthesizethe behavior of thesystem.
Synthesis, therefore, the ability of theuser to assesthe effect ofpast operations on the

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

current state. Weseparatesynthesisinto two related activities, detection of change and
detection of similarities.

When an operation changes some aspect of the internal staimporsant that that change
be observable by the usdfonestyis theability of theuserinterface to provide thaser with
an observable and informative accountsath change. Ithe best of circumstances, this
notification can come immediately, requiring no further interadtdiated by theuser. Or at
the very least, the notification should appear eventually after explicit user directives to make the
change observable. The problem with eventual honesitgtisheuser must know to look for
the change. In a situation whehe user islearning anew interactivesystem, it idikely that
he/she will not know to look for change. Téeentual (accidentafliscovery of a change may
then be difficult to associate to a previous operation. It can appear eventually as a consequence
of some useraction which was not directly intended tcexposethe change (accidental
discovery). In the worst case, some changes could be forever hiddethéaoser, inwhich
case itwould be impossible fothe user to beable to associatsuch achange to its
corresponding operation.

A user could be interested in detecting similarities between different commands. As we will
discuss with interaction flexibility in Section 4, there is often more thanvayeto achieve a
specified goal. In order tiake advantage dhis flexibility, the user mustetermine that two
different command sequencgeld the sameesult. Thissimilarity can occufjust after the
execution of the different commarsgquences, in whicbase wewould saythe command
sequences weexjuivalent In the limit, the similarity may continue to any point in fbeure,
in which case we would say the command sequencesimggsiinguishable If the interactive
system isimmediately honest, equivalence commandequences would also be indistin-
guishable.

3.3. Familiarity

New users of a system bring witlem a wealth of experien@eross a wide number of
application domains. This experience is obtained both through interaction in teorkebbnd
also throughinteraction withpreviously existing computesystems. For a new user, the
familiarity of an interactivesystem measurethe correlation between theser’s existing
knowledge andhe knowledge required foeffective interaction. For example, whenvord
processors were@riginally introduced, an analogy betwedhe word processorand a
typewriter were intended tmake thenew technology mor@émmediately accessible tihose
who had little experience with the former and quite a bit of experience with the latter.

Familiarity has to do with a user’s first impression tbé system. In this case, we are
interested inhow the system is first perceived and whethie usercan determindiow to
initiate any interaction. One of the advantages of a metaphoi, aghe typewriter metaphor
for word processing described above, is precisely captured by familiarity. éo@arefer to
this familiarity as theguessability gul{12]. They have alsshown howguessability can be
directly measured based on a user’s rate of completion of a set of tasks over @oaodital
psychology, one can refer to taordanceprovided by perceivablimterface object§l3, 14].
There is affordancevhen the perceivable intrinsic properties of any object instigate the
appropriate actions upon it, that is, the appearantteabbject stimulates a familiarityith its
behavior. For example, the shape of a door handle can suggest how it should be manipulated to
open a door, or a soft button used in a forms interface can suggest it should be pushed (though
it does not suggest how it is to be pushed via the mouse). Taking advantagefiérdances
which exist for interface objects enhances the predictability of an interface as well.

3.4. Generalizability

Users often try to extend their knowledge of specific interaction behavior to situations which
are similar butpreviously unencountered.The generalizability of an interactiveystem
supports this activity, leading to a maremplete predictive model of tisystem forthe user.
We can apply generalization to situationsvnich the user wants t@pply knowledge which

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

helped achieve a particular goal to another situatiomhiich the goal is insome way similar.
Generalizability can be seen as a form of consistency, and we can discuss its relevance within a
single application and across a variety of applications. For example, using a grdgzvicad)

package whichdraws acircle as aconstrained form of ellipse, we would wahe user to
generalize that aquarecan bedrawn as a constrained rectangle. A gaé@mple of
generalizability across a variety of applications carsd®n in multiwindowing systems which
attempt toprovide cut/paste/copy operationsabapplications in the sameay (with varying
degrees of success).

3.5. Summary of Learnability
Table 3 summarizes the criteria we hadéscussed in thisection which contribute to
learnability.

Table 3
Summary of criteria affecting interaction learnability
Criterion Definition Related Criteria

Predictability | Support forthe user to determine the affect dfOperationvisibility,
future action based on past interaction history. [Consistency,

Affordance
Synthesis Support fothe user to assesthe affect of pasf Immediate/Eventual
operations on the current state. honesty,
Equivalence,

Indistinguishability

Familiarity The extent towhich a user's knowledge arndsuessability,
experience in other real-world or computer-basAffordance

domains can be appliedhen interacting with &
new system.

Generalizability| Support for the user to extend knowledge of Consistency
specific interaction within anécrossapplications
to other similar situations.

4. INTERACTION FLEXIBILITY

Interaction flexibility refers to the multiplicity of ways the end user andsyls¢em exchange
information. We identify severaiiteria that contribute to interactidlexibility, and these are
summarized in Table 4 at the end of this section.

4.1. Dialogue initiative

When considering the interaction between user and system as a dialogue between partners, it
is important to consider which partneaisthe initiative in theconversation. The system can
initiate all dialogue, in which castne user simplyresponds to requests for information. We
call this type of dialogusystem pre-emptiveFor example, dialoguebox may prohibit the
user frominteracting withthe system in any wayhat does notdirect input to thebox.
Alternatively, there are situations mwhich system pre-emptivenessn hinder auser’s
progress; it idesirable at time$or the user topreempt thesystem. User pre-emptiveness
defines thespan for user freedomThe systemmay control the dialogue to the extent that it

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

prohibitsthe user frominitiating any otherdesired communication pertaining to the same or
different taskj4]. Fromthe user’s perspective, a system-driviateractionhindersflexibility
whereas a user-driven interaction favors it.

In general, we want tanaximize theuser’s ability to pre-empt thesystem andminimize
system’s ability to preempt theser. Although non-pre-emptiveystemsare desirable, some
situations may require ifor safety reasons,prohibiting theuser fromthe freedom to do
potentially serious damage. lthe extreme, this criteriomvould have theuserbeing able to
offer any inputaction at anyime for maximumflexibility. This is not an entirely desirable
situation, since it increases the likelihood that the user will lose track of the tasks that have been
initiated and not yet completed. However, if the designer has a good understarttimgets
of tasksthe user islikely to performwith a system antiow those taskarerelated, they can
minimize the likelihood that the user will be prevented from initiating some tasknag hen
they would want.

4.2. Multithreading

Multithreading of theuser/system dialogue allovisr interaction tasupportmore than one
task at a timeConcurrentmultithreadingallows simultaneousommunication of information
pertaining to separat@asks. Interleaved multithreadingpermits a temporal overlap between
separate tasks but stipulates that at any given insi@ntlialogue is restricted to a singgesk.
Multithreading contributesoward interaction flexibility since itallows the user to perform
multiple tasks simultaneously or switdineely betweenthem. There are manysoftware
engineeringformalisms, moshotably process algebras such @SP [15]and CCS [16],
which can describe multithreaded dialogues in which the threads are considered as independent
sequences of events or actionsthere is still a considerable research gapsaftware
engineering in addressidgpw threads okvents fromthe system perspectiveonnect to the
actual tasks in the work domain. Therefore, the value of process algebras as formalisms which
lead to a measurement of multithreading capacity of the interaction is minimal at the moment.

4.3. Task migratability

Taskmigratability concernghe transfer of controfor execution oftasksbetween system
and user. It should be possible for the user or system tahgassntrol of aask over to the
other or promote théask from acompletely internalized one to shared ancdco-operative
venture. Hence, a tagkat is internal toone can become internal to the othersbared
between thewo partners. For example, OPAL, based anaalel of operatointentions, is
able to take over tasks normally assigned to an aircraft pilot [17].

4.4. Substitutivity

Substitutivityrequiresthat equivalentwvalues can be substitutédr each othef3]. For
example, the user may enter either 24 or 6*4 for some slofarma Entering 24 implieghat
the user performsthe calculation. When theiser submits 6*4,the system takes the
responsibility forevaluating theexpression. Thidgnput substitutivity contributes toward
interaction flexibility by allowing the user to choose whichever form best thatseeds of the
moment. By avoiding undesirable calculations, substitutivéty minimizeuser errors and
cognitive effort.

We can also consider substitutivity with respect to output, or the system’s rendestatg of
information.Representation multiplicityustrates flexibility for stateendering. For example,
the temperature of a physical objenter a period oftime can bepresented as digital
thermometer if the actual numerical value is important or grsyzh if it is important taotice
trends. It might even be desirable to make these representations simultaaeailadile to the
user. Each representation provides a perspectitieeomternal state of theystem. At agiven
time, the user is free to considbe representatiorthat aremost suitabldor the currentask.

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

The PAC multiagent architectur§l8] especially emphasizes this feature woiultiple
representation of a single system concept.

Equal opportunityblurs the distinction between input and output at the interface.uJére
hasthe choice ofwhat is input and what is output; in addition, outpamh bereused as input
[3]. If you can see it, you can use it! It ic@mmon belief that inpudnd output arseparate.
Many havestressedhe significance of the link between input amatput. Equal opportunity
pushes that view to the extreme. For example, in spreadsheet prapenserfills in some
cells and thesystem automatically determines thealues attributed to some otheells.
Conversely, ifthe user enters values for thosther cells, the system wouldcompute the
values for the firsbnes. Inthis example, it is notlearwhich cells are thenputs and which
are theoutputs. Furthermore, thdistinction might not belearnor useful tothe user. In a
drawing packagethe usermay draw aline by direct manipulatiorand thesystem would
compute the length of the line; or conversely, the user may speciipdteordinates and the
system would drawheline. Bothmeans of manipulating the line are equally important and
must be made equally available. Note that equal opportunity intphéshesystem is not pre-
emptive toward the user. The spreadsheet example is just one type of constraints-based system
which is verycharacteristic of thisriterion. Formal notationare good for exploiting equal
opportunity, fortheir abstractnessan concentrate description on th@nstraints which exist
between various system and interface attributes and not on their input/output characteristics.

4.5. Multimodality

Multimodality refers tothe multipleuse ofcommunication channéls Input fromthe user
can originate from different channels, such as the keyboard, mouse, or Quitutfrom the
systemcan be received by theser through visual, audio, bapticchannels. Each different
channelfor the user is referred to asmodality of interaction. Multimodal systemsmay be
characterized alontyvo dimensions: fusiolexclusive or synergic) antime (sequentiality or
concurrency) [19].

A user interface isxclusive multimodaf multiple modalities are available to tliser, and
input (and outputexpressionsre built upfrom one modality only (there is nfusion of
modalities). For example, to open a window, the user can choose among a double-click on an
icon, a keyboard shortcut, or say "opeimdow". A system issynergic multimodaif input
and output expressions can be expressed using a combination of modalities. For example, one
cansay “put that there” whilepointing at the object to be moved asttbwingthe location of
the destinatiorwith the mouse or alataglove. In this formulationspeechevents, such as
“that” and “there”, call for complementary input events, such as mouse clicks dathaglove
events, in order to complete the input expression.

Time constraints exprestghe possibility for the user to build exclusive or synergic
expressionsequentiallyor inparallel. Sequentiality implies that there is no concurrency at the
interface. For example, in the absence of concurrgheyser would sayput that” followed
by a mouseclick to denote‘that”. He wouldthen say “there” andclick a secondtime to
indicate thedestination. Concurrency #ie actions levesupports“natural” flexibility for
synergic multimodal interaction.

4.6. Customizability

Customizability is the modifiability of the user interface by the user osyseEm. From the
system side, weare not concerneavith modifications that would be attended to by a
programmer actually changing the system and its interface. Ratharewencernedith the
automatic modification that th&/stem wouldnakebased on its knowledge dfeuser. We

IThere is adistinction betweenmultimedia and multimodal user interfaces. Multimedand multimodal
systems use similar physical inpahd output devices.Both acquire, maintain and deliver visual and sonic
information. Although similar at theurfacelevel, they serve distinct purposes. Multimedia systems are
concerned with the form whereas multimodal systems are concerned with meaning.

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

distinguish between the user-initiated and system-initiated modification, referring to the former
asadaptabilityand the latter aadaptivity.

Adaptability refers tothe user’s ability to adjust theform of input andoutput. This
customization could be very limited, withe user onlyallowed to adjust theosition of soft
buttons onthe screen or redefine commandmes. Thistype of modifiability, which is
restricted to thesurface ofthe interface, is referred to &xical and pragmatic customization.

The overall structure of the interaction is kepthangedThe powergiven to theusercan be
increased by allowing the definition of macrosspeed uphe articulation of certain common
tasks. Inthe extreme,the interface can provide theser with programminglanguage
capabilities, such ake UNIX shell or the script language Hypertg#0] in Hypercard. In
these cases, Thimbleby points out that it would be suitable to iweké&nown principles of
programming languages to the users interface programming language [4, 21].

Adaptivity is automatic customization of theserinterface by thesystem. Decisions for
adaptation can be based on user expertise or observed repetitentamitask sequences. The
distinction between adaptivity and adaptability tiet the user plays arexplicit role in
adaptability, whereas his role in an adaptive interface is more implicit. A sgateive trained
to recognize the behaviour of an expert or novice and accordingly adjust its dialogue control or
help systemautomatically to match theeeds ofthe currentuser. This is in contrast with a
system which would require the user to explicitly classify themselves as novice or expert at the
beginning of asession. Current research in the application of neumatworks topattern
recognition problems in HCI addresses this type of adaptivity [22].

Automatic macroconstruction as proposed iBager [23], combines adaptability with
adaptivity in a simple andseful way.Repetitivetaskscan be detected bgbserving user
behaviour and macros can lbetomaticallyconstructed from this observation to perform
repetitive tasks automatically.

4.7. Summary of interaction flexibility
We summarize the criteria which contribute toward interaction flexibility in Table 4 below.

Table 4
Summary of criteria affecting interaction flexibility
Criterion Definition Related Criteria
Dialogue Allowing the user freedom from artificial | System/User, pre-
initiative constraints orthe input dialogue imposed by themptiveness
system.
Multithreading | Ability of thesystem to support usenteraction| Concurrent Vs
pertaining to more than one task at a time. Interleaving
Task The ability topasscontrol for the execution of &
Migratability given task sdhat it becomes either internalized py

the user or the system or shared between them

Substitutivity Allowing equivalent values of input and outpuf Representation

be arbitrarily substituted for each other. multiplicity, Equal
opportunity
Multimodality The use of multiple human communicatigrExclusive/Synergic,
channels. Sequential/ Parallel
Customizability | Modifiability of the user interface by theer or thg Adaptivity, vs.
system. Adaptability

10

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

5. INTERACTION ROBUSTNESS

A user is engaged with a computer in order to achieve some set of gthesviork or task
domain. Interaction robustness covers features of this interaction which simesartcessful
achievemenaind assessment tife goals. Inthe following subsections, weescribecriteria
which support interaction robustness. A summary of that&ia arepresented iMable 5 at
the end of the section.

5.1. Observability

Observability allows the user to evaluate the internal state of the systerthé&qrarceivable
representation of thatate. State evaluatioallows the user tocompare the currergbserved
state with the state intended in the actigelan, possiblyleading to a planrevision.
Observability is further divided into fiveriteria: browsability, default-nessteachability,
persistence and operation visibility. Operation visibiltgs covered in Section 3 with respect
to predictability. The remaining four are discussed next.

Browsabilityallows the user to explore the current internal state of the system Viaited
view provided atthe interface. Usually the complexity of the domaidoes notallow the
interface to show at onadl of therelevant domairconcepts. Indeed, this ®e reason why
the notion of task is used, in order to constrain the domain information neededtiateottea
subsetconnected witlthe user’s current activity. Everso, it is probablethat all of the
information a user needs to continue work is not immediately perceivable. rdegie to be a
way for the user to investigate, lorowse,the internalstate. And this browsingitself should
not have any side-effects dmat state,i.e., the browsingcommands should heassive [24]
with respect to the domain-specific parts of the intesteatie. Harrison anBix have provided
abstract and formal requirememts passivestrategiesised to observall of the information
contained in the internal state [25].

Default-nessssists the user by passive recall (i.e., a value is recognizedrast); it also
reduces the number of physical actions necessary to spaa@fye@a Thusproviding default
values is a kind of error prevention mechaniSimere ardwo kinds ofdefault values: static
and dynamic.Static defaultglo not evolve with the session. They are either defined within the
system orare acquired at initiatiotime from a profile file. On the otherhand, dynamic
defaultsevolve duringthe session. They are computed by theystem from previous user
inputs.

Reachabilityrefers to the possibility of navigatidhroughthe observablsystem states [3,
26]. There arevarious levels ofeachability that have been given a formefinition, but the
main notion is whether theuser can navigatefrom any given state to any othstate.
Reachability in an interactive system affects the recoverability of the system, as @isculis
later. In addition, different levels of reachability can reflect the amount of interaction flexibility
in the system as well, though we did not make that explicit in the discussion on flexibility.

Persistenceleals with the duration of the effect of a communication act and the ability of the
user to make use dtiat effect. The effect of vocal communicatiaioes not persiséxcept in
the memory of the receiver. Visual communication, on the other hand, can remainlgescan
which the user can subsequently manipulate long after the act of presentation.

5.2. Recoverability

Users make mistakes from which they want to recoRexcoverabilityis the ability toreach
a desired goal after recognition of some error in previous interaclibere aregwo directions
in which recoverycan occur, forward or backward. Forward ern@covery involves the
acceptance of the current staiad negotiation fromthat statetoward the desiredstate.
Backward error recovery is aitempt toundothe effects ofpreviousinteraction inorder to
resurrect a prior state from which to proceed toward the desired state.

Recovery can baitiated by thesystem or bythe user. When performed by theystem,
recoverability is connected to the notion of fault-toleraridgs issue is one ofhe criteria

11

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

mentioned byMcCall although fault-tolerance isoftware engineering is viewed from the
functional perspective only. At theserinterfacelevel, the systemcan initiate a meta-dialogue

to clarify user requests. For exampleseech recognizer may negotiate the meaning of an
utterance. When performed by thser, it isimportant that a recoverability facility determine

the intent of theuser'srecovery actionsi.e., whether they desiréorward (negotiation) or
backward (using undo/redo actior®yrectiveaction. There are many formal definitions of
backward error recovery mechanisms (48¢ for a clear review of some ofthese).
Recoverability relies on reachability because we want to avoid blocking the user from getting to
a desired state from some other undesired state (going down a blind alley).

In addition to providing thebility to recover,the procedurdor recovery shouldeflect the
work being dongor undone, ashe case maye). Commensurateffort statesthat if it is
difficult to undo a given effect on trstate,then itshouldhave been difficult to do in thiérst
place. Converselyeasily undone actionshould beeasily doable. For example, if it is
difficult to recover files which have beateleted in an operatingystem,then it should be
difficult to removethem, or aleast itshouldrequire more effort by thaser todelete the file
than to, say, rename it.

5.3. Response time

Responsdime measureshe rate of communication between tegstem andhe user.
Responsdime is generally defined as the duration tohe needed by theystem to express
state changes to theser. It depends othe computationatesources involved to satisfy the
user’'s request. In general, short duratiandg instantaneous resportsaes aredesirable.
Instantaneous means that the user perceives system reactions as immediate. As significant are
response timeonformanceandresponse timstability. Responsdéime conformanceexpresses
the adequacy of the duration as comparedstr expectation. It enforcesfeeling of good
collaboration. Failure to satisfy resportgee conformance may result in amusablesystem.
Responsetime stability covers the invariance of the duratiofor identical or similar
computationalresources. For examplgull down menusare expected topop up
instantaneously asoon as a moudeutton ispressed.Variations,that is failure tosatisfy
response time stability, would impede anticipation exploited by motor skill.

5.4. Task conformance

Since thepurpose of arnteractivesystem is to allow aiser to perform various tasks in
achieving certairgoals within a specifiapplicationdomain, wecan ask whetheithe system
supportsall of the tasks ofinterest and whether gupportsthese as theser wouldwant.
Completenesaddressethe coveragéssue andadequacyaddressethe user's understanding
of the tasks.

It is not sufficientthat thesoftware product fullymplements some set @bmputational
services that were identified at early specificastages. It igssential that theystem allows
the user to achieve any of the desired tasksparticularwork domain as identified by a task
analysisthat precedes system specificatioRurther, it isnot necessaryhat thesystem only
support the tasks identified by a task analysis. Indeedguiiis possiblethat theprovision of
a new computer-basedol will suggest to a user some tagthat were not everconceivable
before the tool.

Task completeness is supported, for exampl#henDianemethod[27], which provides a
framework and a notation for identifying and specifying the functions of the end user-computer
system couple. A Diane analysis is task-oriented, madipiicit the operations performed by
the computer system and those performedhbyfinal user. Similarly, MAD which embeds a
method and a notation for task analysis [28], bridges the gap betinesiask analysis and the
specification phase. Userinterface generatorsuch as Sirocco [29] andJIDE [30]
automatically produce a useinterface from a high level conceptualdescription. This
specification denotes the domain concepts and their relations as computational counterparts of
the mental entitiebandled by the endser inthe task domain. The automatic generation

12

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

provided by this type of tool guarantele completeness of theserinterfacewith regard to
the specified domain-dependent concepts fandtions, though it does not providelp for
generalized tasks that might emerge with use of the system.

Discussion of task conformance has its roots in an attempt to formally model the meaning of
direct manipulation by means of a conformance between a display and the underlying state it
representd25]. Abowd hassince demonstrated the link betwetms conformance and
standard data refinement in software engineering [31]. Completeness is only one aspect of this
conformance/refinement relationship. With the intuition of the model-world meté®Pjorwe
demand that the task as represented byvthrkd of the interface match thask as understood
by the user and supported by the system. We use the term adequacy thectorseal model
resembles the adequacy conditionsioftware engineering expressed betweenahstract
system specification and its set of possible concrete refinements.

5.5. Summary of interaction robustness
We summarize the criteria which contribute toward interaction robustness in Table 5.

Table 5
Summary of criteria affecting interaction robustness
Criterion Definition Related

Criteria

Observability Ability of theuser toevaluate the internal state pBrowsability,

the system from its perceivable representation. | Static/Dynamic
defaults,
Reachability,
Persistence,
Operation visibility

Recoverability | Ability of the user to take corrective action once Reachability,

error has been recognized. Forward vs.
Backward recovery,
Fault tolerance,

Commensurate
effort
Response time | How the ugeerceives the rate of communicatip@onformance,
with the system. Stability
Task The degree tavhich the system services suppgr€Completeness,

conformance all of thetasksthe user wishes to perforrand in | Adequacy
the way that the user understands them.

6. CONCLUSIONS AND DIRECTIONS FOR RESEARCH

We haveproposed 3ategories of qualitfactors, learnability, interaction flexibility and
interactionrobustness, whickhontribute to the usability of software product. Within those
categories we defined criteria which more directly relate to the interactive features of a software
product. These can beised toclarify the notion of usabilitywhich hasbeen relatively
overlooked in the qualitassurance work of software engineering. In so doing,hae
addressed two of the four objectives for this research, namely, we have:

13

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

 defined an extensive, if not comprehensilist of properties to guide the
principled design of interactive systems;

 provided an organizatiofor categorizing these propertig@gich can easily be
extended to account for other interactive properties.

We do not claim that the three categories of usability factors outlined in this paper represent
a complete treatment efsability, which is whythe second point above is important. fhct,
we can see at least three categories which might be readily added.

From the I1SO draftstandard on usability measuremdB8], we can highlight user
performanceperhaps the ultimate measure for usability, at least in the contétstandard
for office automation, which is only implicitly covered in some of the criteria mentiabette,
anduser satisfactionwhich is not addressed at all.

In future extensions to thiwork, we anticipate thatonsistencywill appear as a general
categoryfor the usability factor asvell. We have mentioned consistency only briefly with
respect to learnability. Such slightexplicit mention ofconsistency is a serious problem,
especially since this property is so widely acknowledged in just about every book on guidelines
for userinterfacedesign. The reason for this ighat we believe thatonsistency hasany
differentforms, some of which appear the abovediscussion of learnability.There is also
considerable debate about the utility of consistency as a general guide for design [34].

The major emphasis in our work will now address how to use formalisms to represent these
usability properties in a software engineering framework. We tigagtthroughout this paper
several instances where this activity has already taken place.

The categorization of quality factors andteria provided in this papecan also provide

guidance to a design rationaljch asthe Questions-Options-Criteria (QOC) notati@b].
QOC is an interesting illustration of traceabilityuserinterfacedesign. Itmakes explicit the
guestions a user interface designer asks duinedesign phase.The propertieshat we have
catalogued in this paper can be used as the criteria to judge various designfopaodssign
guestion.

Many now recognize the importance of integrating tlesults of HClresearch with the
practices ofsoftware engineering. We hop®tthis paper provides sufficient impetus in the
direction of integration and serves as motivation for an interesting agenda for further research.

7. ACKNOWLEDGEMENTS

The authors wouldlike to acknowledge the contributiorfsom colleagues in both the
ESPRIT BRA project 3066 (AMODEUS) and the IFIP Working Group 2.7 (Computer System
User Interface). Many of our thoughts andwvords have been formed by stimulating
conversations durinthe course of our research withesegroupsand we look forward to
further discussions this work might inspire.

8. REFERENCES

V. R. Basili and J. DMusa. The Future of Engineering Software: Management
Perspective lEEE Computer24(9), September, pp. 90-96, 1991.

Apple Computerinc. Human Interface Guidelines:The Apple Desktodnterface

Addison-Wesley, 1987.

H. Thimbleby.User Interface DesignACM Press, New YorkFrontier SeriesAddison-

Wesley Publ., 1990.

H. Thimbleby. Design ointeractivesystems. In J. AMcDermid, editor, The Software
Engineers Reference Bqathapter 57. Butterworths, 1991.

A WO N P

14

10
11

12

13

15
17

18
19
20

21
22

23
24

25

26

27

28

29

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

P. J. BarnardCognitive Resources arttie Learning of Human-Comput&ialogs. In
Interfacing Thoughts,Cognitive Aspects of Huma@omputerinteraction J. Carrolled.,
MIT Press, Cambridge, Mass., pp. 112-159, 1987.

R.M. Young, T.R.G. Green, T. Simon.ProgrammableUser Models for Predictive
Evaluation of InterfaceDesign. Proceedings ofCHI89. ACM, New York, pp.15-19,
1989.

J. Laird, A. Newell, and P. RosenbloorBOAR: an architecturfor general intelligence.
Artificial Intelligence 33:1-64, 1987.

J. McCall.Factors in Software QualityGeneral Electric Eds, 1977.

J.P. Cavano and J.A. McCall. A framework floe measurement software quality. In
The Proceedings of the ACM Software Quality Assurance Workppod33-139ACM,
November 1978.

IEEE Software Engineering StandaydiSEE Press, 1987.

AFCIQ, Section logicielle, Groupe planification et colts, S/Groupe Plan Ass@aalie
Logiciel PAQL. Recommandations de Plan dAssuraQualité Logicielle;version VO
23/03/89, 1989.

P. W. Jordan, S. W. Draper, K. WacFarlane and.-A. McNulty. Guessability,
learnability, and experienceder performance. In iaperand N.Hammond, editors,
People and Computers VProceedings of the HCI91 Conference. Cambridge University
Press, pp. 237-245, 1991.

D.A. NormarPsychology of Everyday Thindg3asic Books Publi., 1988.

W. W. Gaver.Technology affordances. InReaching Through Technolog€HI91
Proceedings ACM Press, pp. 79-84, 1991.

C. A. R. HoareCommunicating Sequential Procesd@entice Hall International, 1985.
R. Milner.Communication and Concurrendyrentice Hall International, 1989.

B. HardmanHoshstrasseand N. D.Geddes. OPALOperator Intent Inferencing for
Intelligent OperatoSupport SystemsJechnicalReport, Search Technologyinc., 4725
Peachtree Corners Circle, Norcross, GA 30092, 1989.

J. Coutaz. PAC, amplementation Modelor Dialog Design. InH.J. Bullinger and B.
Shackel, editordnteract'87 North-Holland, pp. 431-436, 1987.

J. Coutaz.Multimedia and Multimodal User Interfaces: A Taxonomyfor Software
Engineering Research Issu8s,Petersburg HCI Workshppugust, 1992.

D. Shafer.HyperTalk Programming MacintoshLibrary, HaydenBooks, Indianapolis,
Indiana, 1988

R. D. TenentPrinciples of Programming Languagd3rentice-Hall, 1981.

R. Bealeand J.Finlay, editors.Neural Networksand PatternRecognition in Human-
Computer Interaction Ellis-Horwood, 1992.

A. Cypher. EAGER: ProgrammingRepetitive Task by Example;Proceedings ofCHI91
(New Orleans, Apr. 28-May 2). ACM, New York, pp. 445-446, 1991.

A.J. Dix and M.D. Harrison: Formalising Models of Interactiothia Design of a Display
Editor; In H. J. Bullinger and BShackel, editorsinteract'87 North-Holland,pp.409-
414, 1987.

M. Harrison and A. Dix. A state model of direct manipulation in interactive systems. In M.
Harrison and H. Thimblebyeditors, Formal Methods in Human-Computénteraction
chapter 5. Cambridge University Press, 1990.

A.J. Dix.Formal Methods for Interactive System&cademic Press, 1991.

M.F. Barthet. Logiciels interactifs etergonomie, modéles et méthodes de conception
Dunod informatique, 1989.

D. L. Scapin and C. Pierret-Golbriech. Towardsethodfor taskdescription: MAD. In
L. Berlinguet and D. Bertheletteditors,Work with Display Units 89. Elsevier Science
Publishers. pp. 371-380, 1990.

V. Normand. Le modele Sirocco: de la Spécification Conceptuelle des Interfaces Utilisateur
a leur réalisation. These de doctorat, Université Joseph Fourier, to appear, 1992.

15

30

31

32

33

34
35

To appear in the Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Ellivuori, Finland, August, 1992, Elsevier Publ.

J.D. Foley, W.C. Kim, S.Kovacevic, K. Murray. The User Interface Design
Environment, TechnicalReport GWU-1IST-88-04, Department of ElectricaEngineering
and Computer Scienc@he George Washington University, WashingténC. 20052,
January, 1988.

G. D. Abowd.Using formal methods for the specification of user interfaces. 3elBy,

editor,Proceedings of theM® Annual IrvineSoftwareSymposium)SS92.pp. 109-130.
March, 1992.

E. L. Hutchins, J. D. Hollan and D. A. Norman. Direct Manipulation Interfaces. In D. A.
Norman and S. W. Draper, editokdser-Centeredsystem Desigrpp. 87-124. Erlbaum,
1986.

ISO. Ergonomic requirementior office work with visual display terminals. Part 11:
Guidance on usability specification and measures. 1ISO Committee Draft standard ISO-CD-
9241-11.2, 1992.

J. Grudin.The Case AgainstUser Interface ConsistencyGommunications of the ACM
32(10), pp. 1164-1173, 1989.

A. MacLean, R.Young, V. Bellotti, T. Moran.Design Space Analysis: Bridging from
Theory to Practice via Design Rationa&SPRIT91conferencgroceedings. Commission

of the European Communities, DG XIllII, pp. 720-730, 1991.

16

