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Abstract
This report discusses possible approaches to the specification of MultiModal Interactive
Systems. Two notations which are representative of different but convergent areas are
considered and their complementary use in the design and analysis of Interactive Systems
is proposed. The remarks we make are raised by a case study consisting in the
specification of a system for interacting with a flight data base by voice and graphical
devices.
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1. Introduction
This article outlines possible approaches to the specification of MultiModal Interactive
Systems deriving from some research developed within the Amodeus II BRA Project. One
of the themes considered by the System Modelling Research Package is the design and
specification of MultiModal Interactive Systems.
Since different backgrounds are present within the team (designers of MultiModal
Systems, formal specifiers, experts in graphics systems) this seemed like a good
opportunity to mix them in order to explore new problems. One of these was to specify
MultiModal Interactive Systems. The motivations for this goal are to have a precise
description of their functionalities. This entails using rather different modalities, either
separately or combined. This is useful for both users and designers: for example, the
former can receive answers to questions related to how to fulfil given tasks, the latter are
constrained to clarify their design in the refinement process towards implementation.
While the application of formal notations is widely used in different areas of software
engineering and has already received consistent attention in the application to computer
graphics [D91] and in the abstract description of human-computer interaction [HT90],
there are no relevant experiences in the application to multimodal interactive systems.
We therefore consider two notations from different areas: UAN [HG92] developed at the
Virginia Polytechnic Institute explicitly for describing human-computer interaction, and
LOTOS [BB87] which was mainly designed for the specification of communication
protocols but which was shown to be useful for specifying any class of systems where
concurrency, interaction, reaction to external events, and nondeterminism are relevant
aspects. The case study for evaluating the suitability of the considered notations and the
specific requirements of this class of systems was Matis [CNS92], a MultiModal
Interactive System physically available in the workshop, which specifies requests to a data
base for flight reservations.
Another problem we consider is how to obtain the modelling of the corresponding system
from the performed specification by using a specific model for interaction objects such as
PAC [C87] or Interactors [PF92].



2. UAN
The User Action Notation (UAN) is a task-oriented notation that describes the behaviour
of the user and the interface as they perform a task together. Its primary abstraction is the
user task. It is a notation that supports task decomposition and refinement of each basic
task into the sequence of user actions which can perform it. The resulting user interfaces
are represented as a quasi-hierarchical structure of asynchronous tasks, the sequencing
within each task is independent of the one in the others. We refer to this notation as
described in [HG92].
There are some predefined symbols for common user actions such as moving the cursor in
the context of a specific graphical object (~[X]) or depressing (£) and releasing (¢) of the
button of the mouse; or for common system feedback such as highlight (!), dehighlight (-
!), display (Display(X)) and cancel (Erase(X)) an object. Other symbols in the notation
are: * which means iterative closure (task is performed zero or more times) and + which
indicates that task is performed zero or more times.
Each task is described by a three column diagram with one column for the description of
the user actions, another one for the interface feedback, the last one for the state of the
Interface. The described tasks and/or actions are performed top to bottom, and left to
right. We thus get an immediate representation of the user-generated interactions and the
related effects in terms of system feedback and modification of state. Each task can be
associated with a precondition which has to be verified before it can be performed.
The notation also considers time-related aspects. Time is described as a one-dimensional
quantity, made-up of points, where each point is associated with a value. The points are
ordered along the dimension by their values. Different constructs for temporal relations are
available:

A B, Sequence, tasks A and B are performed left to right, or top to bottom;
A (t > n) B, Waiting, task B is performed after a delay of more than n units of time
following task A;
(A | B)*, Repeating Disjunction, choice of A or B is performed to completion,
followed by another choice of A or B, and so on;
A & B, Order independence, tasks A or B are order independent (the order of
performance is immaterial)
A --> B, One-way interleavability, task A can interrupt B and execute, but not vice
versa;
A <--> B, Mutual interleavability, task A and B are mutually interleavable;
A ÷ B, Concurrency, task A and B can be performed concurrently.

As an example we consider the UAN specification of the task of building a request R in
Matis:
((SelR(R) | ClrR(R) | HideR(R))*
--> SpecR(R)+)
Submit(R)

It consists of specifying the request at least once (thus, SpecR (R)+ ). This task can be
interrupted 0 or more times by either one of the following atomic tasks: select a request,
clear the request, or hide (iconify) the window request ((SelR (R)  ClrR (R) 
HideR(R))* →). Once the request has been specified, it must be submitted (Submit(R)).



3. LOTOS
LOTOS is a specification language developed within the International Organization for
Standardization (ISO) environment in order to specify network protocols. Its features
make it suitable for describing concurrent systems such as Interactive Systems. It
combines the process algebra inherited by CSP and CCS with the data algebra provided
by ACT ONE. Basic LOTOS is considered to be only the concurrent part of the notation.
The basic idea of LOTOS is that systems can be specified by defining the temporal relation
among the interactions that constitute the externally observable behaviour of a system. A
system is seen as a set of processes. Each process may interact with its environment via
interaction points called gates, i.e. it performs observable actions at the gates and can also
perform unobservable (internal, hidden) actions. An observable action consists of offering
or accepting zero or more values at a certain gate. An interaction may occur when two or
more processes are ready to perform the same observable action. It may involve data
exchange and is an instantaneous event (synchronous communication).
Process behaviours are described by algebraic expressions, called behaviour expressions.
Complex behaviours are expressed by composing more simple behaviour expressions
(subprocesses) via the LOTOS operators such as sequentiality (P>>Q); parallel
composition (P|||Q); disabling (P[>Q). In a process definition the specifier has to indicate
the process identifier, a formal parameter list, a behaviour expression (and the definition
of the data types and the processes that it uses). The main operators in a process behaviour
definition are:

a;B, action prefix, means that the process can only perform and then behave like B;
B1[]B2, choice, this means that the process can act as B1 or as B2;
hide g1, ..., gn in B, hiding,  is a process which can perform any action of B which
does not make use of gates in (g1, ..., gn), any action occurring at one of these gates
is hidden and transformed into an i-action
[e] -> B, guarding, is realized by applying the boolean expression e, if it is verified, B
is executed.

When a composition between two processes has to be defined there are three possibilities:
interleaving, denoted by A|||B which means the processes are independent of each other
and any interleaving of their actions is possible, thus the two processes never synchronize;
A|[f,g,h]|B that explicitly indicates the gate where the independent processes have to
synchronize;
full synchronization, A||B, where the two composed processes are forced to proceed
together.

It is also possible to realize: sequential composition (enabling), B1 >> B2, where the
behaviour of the process B2 is enabled if and when the behaviour of the other process
successfully terminates, and disabling, B1[> B2, where the behaviour of the process B1
can be disabled at any time (except after successful termination) by the realization of an
action of the other process.
The process can be communicated in various ways, the most important are:
- value passing, if we have process A  realizing a!3; and process B a?x:int; the result is
that the value 3 is passed to B in the variable x.
- signal matching, for example process A realizes a!x1; and process B a!x2; the two
processes sharing an event gate may attach signal values to events and the corresponding
events  take place if these values coincide (x1=x2).



4. A UAN Specification of Matis
In [CP93] there is a complete UAN description of Matis. The specification consists of 38
tasks and is 22 pages long. In order to make it more comprehensible we performed a
simple graphical representation of the task decomposition. In the resulting tree we have a
node for each task, and the children of one node are the tasks which are present in the
father definition in both the user action or system feedback columns. This is useful in
order to have a compact description of the global logical structure of the specification.
The following figure represents the result.
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Figure 1: The tree-structure derived from the UAN specification.

In order to give a more precise idea of the UAN specification of Matis here is an example
of a task description. We considered the task SpecRSpeech&Mouse which allows the user
to specify a request for the data base by using the voice and mouse devices. In the example
the third column is not considered because in this case the Interface state is not modified.
Task SpecRSpeech&Mouse is similar to SpecRSpeech but sentences contain at least one
deictic expression, and deictic expressions must be solved with the mouse.



Task: SpecRSpeech&Mouse (R, fps) is atomic

User Action  Interface Feedback

SelAppli = MatisAppli ∧  SelR = R:
case
SpeechMode = Push&Hold

~[x,y in OMEarW]∨ OMEarW! (Listening)
 ProduceDeicticSentence

 (sentence, fps, )
 ∧ NLFeedback&State(sentence, )
 SelectValues

SpeechMode = Continuous
 ProduceDeicticSentence

 (sentence, fps, ) (t > tsilence)
 NLFeedback&State(sentence, )

 ||
 SelectValues 

SpeechMode = PushToStart
~[x,y in OMEarW]∨∧
 ProduceNonDeicticSentence

 (sentence, fps, )
 ||
 SelectValues
~[x,y in OMEarW]∨∧ NLFeedback&State(sentence, )

endcase
Figure 2: An Example of UAN Specification of a task supported by Matis.

The speech device can be used in three modes (Push&Hold, Continuous and
PushToStart). When SpeechMode is Push&Hold, the mouse is used to inform the speech
system that the user is currently speaking. As a result, the selection of slot values on the
screen must be performed in sequence once speech input is over (this is an example of the
sequential use of input devices). For the other speech modes, values can be selected in true
parallelism with speech input.

5. An Evaluation of UAN
A formal description of the user interface, as a UAN specification, opens the way to
automation of usability tests. For example, through the UAN exercise for Matis, we have
identified three rules that could be embedded in an automatic UAN-based usability test tool:



If preconditions for a task execution cannot be expressed in terms of user interface
feedback, then the observability principle is broken. These are conditions which cannot
be expressed in terms of user interface features. As a result, the user is not provided
with any feedback about the current value of an internal system state variable that is
relevant to the task.

If, for identical sequences of user actions and identical system feedback, feedback
occurs at different points in the user sequences, then system feedback triggering is not
consistent. For example, in one sequence, mouse down triggers a feedback such as a
reverse video while for the same sequence in a different task, the same feedback is
produced on mouse up only. This may or may not correspond to a sound design
decision.

If a feedback object exists as one instance at most, and if it is mapped by the system at
different locations on the screen, then the system layout may be inconsistent. For
example, in Matis, the RequestTools window is always mapped at the same location.
There is only one instance of such a window during a Matis session. On the other
hand, request forms are distinct instances of the request form class. They may be
mapped by the system at distinct locations to avoid, for example, overlapping.

The limitations of UAN are related to the lack of a clear semantics and to some deficiencies
in the power of expression. As for semantics, our main concern is the temporal
relationships between the descriptions in the user action, the interface feedback and the
interface state columns. The first problem is a lack of a definition for the notion of
statement (the spelling of one statement may physically cover several rows). The second
problem is that the notation is needed to express scope and relationships such as
parallelism or sequentiality between the columns.

For example, in the description of task StartMatis, R1=NewR(NbR) of the interface state
column must be executed before Display (Form(R1)) specified in the interface feedback
column. On the other hand, in task StartOM, state change of OMICON can occur at the
same time as the modification of the interface state. In SetOMPref, the interface feedback
is implicitly comprised of two sets of reaction depending on the conditions of the user
action column. Nothing in the notation makes this explicit. A similar problem arises in
task ExitForm with the  operator. In this example, we have repeated the   operator in
the interface state to visually increase the mapping with the behaviour described in the user
action column.

We have encountered a number of difficulties related to expressiveness. Some of them are
listed below : absence of a kill/break operator, no notion of default task, no attribute to
denote the actor of a task, lack of programming facilities such as control statements (e.g.,
conditional and case statements), procedures, macros, scope, etc.

 If and case statements may be replaced by the  operator. Clearly, this solution leads to
chunking. We have not analysed yet whether this chunking would have negative
consequences or would positively reveal a decomposition that might be psychologically
valid or that would be useful for the software architect. From our early experience with



Matis, we have the feeling that the absence of control statements leads to artificial
chunking that impedes the readability of the description. As a result, we have introduced
case statements and conditional statements. Scoping is not considered in UAN.
Specifically, variables that sustain the specification seem to occur throughout the whole
description. As a result, the state of the user interface is described as a single global entity.
It is useful however to be able to structure a description not only in terms of tasks and
actions, but also in terms of programming language constructs. A potential benefit for the
software designer would be to derive subcomponents such as interactors or agents, for
example from the scope of variables. A set of variables with the same scope may
correspond to the local state of some interactor or agent.

6. A LOTOS Description of Matis
We have used LOTOS to specify several systems. In this case it was used to specify Matis
at different abstraction levels and by using the interactor model for designing the
architecture of this system. We follow the interactor model as described in [PF92]: an
abstraction for describing interaction objects which can perform input-output processing in
both the application and the user side. The model was previously used to describe
Interactive Graphics System. Now we want to explore its suitability for MultiModal
Interactive Systems.
One advantage of LOTOS is the availability of a set of automatic tools (LITE [E91]) which
support different types of processing: automatic detection of the correctness of the
specification with respect to syntax and static semantics of the notation, interactive
simulation of the actions which can be performed, automatic verification of properties
expressed by using Action-Based Temporal Logic (in [P93a] examples of properties
related to single interaction objects and logical integrity of User Interface Systems are
provided, [P93b] describes examples of user-oriented properties).
One open problem is how to refine the design of an interactor-based architecture of an
Interactive System from a UAN specification. The process of deriving an interactor-based
interactive system from a UAN specification can be decomposed into two sub-problems:
identifying a set of interactors and indicating how to compose them. In [P93c] two
possible approaches are described: one approach, bottom-up, associates basic tasks with
interaction objects and then tries to compose them in order to obtain the corresponding
interactive system; the other approach is top-down as both interactors and tasks are
concepts which can be applied at different levels of abstraction, and it refines interaction
objects by reflecting the task refinement performed.
In this modelling process our approach tries to associate basic tasks (tasks which are
defined in terms of actions rather than other tasks) with the interactors which describe the
corresponding implementation. It also attempts to use the temporal operators (parallelism,
interleaving and so on) among tasks, and among the corresponding interactors as well.
Another element is to use the task decomposition for refining the corresponding model of
the system.
The interactor model can be used at very different abstraction levels. In our case we can
start from a one-interactor view of Matis: in this case the input channels from the user are
the physical devices available (Mouse, keyboard and microphone) the outputs toward the
application are requests to the data base and the inputs from it are the result of the user-
requests. Then we can have an initial refinement by the subtasks identified for the build
request task (BuildR) which is the main task for MATIS. We can thus see the build
request task composed of the specification request task, the clear request task and the



submit request task. We could associate an interactor with each of these tasks. The result
of the submit_request interactor is like an input trigger for the specify_request interactor
because when it occurs the latter sends a data to the application. On the other hand, the
result of the clear_request interactor is like an input to the input part of the specify_request
interactor. When the latter receives an input from the clear_request interactor it clears its
appearance (the indication of the previously specified values of the current request) as a
feedback of the received input.
If we consider the specify_request interactor further refinements are possible (Figure 3):
we can obtain an interactor associated with the request (R), one with the request form
(GF), one with the recognizer (Rec), one with the request tool (RT), one for each window
tool that it can activate (we consider only one, TW, for simplicity), one with the ear button
(ear), one with the send request button (SR), one with the clear request button (CR), one
with the window for providing requests with the keyboard (Win), and one for the window
providing the result of a request (AW). The request interactor (R) provides an output to
the request form which visualizes the values provided, and an output to the application
which indicates the request selected by the user. The request interactor can receive input
data from the graphical form or the clear request button or the recogniser. One possible
corresponding interactor-based architecture is in Figure 3.

R

Rec

V

Win

ear

M

K

RT

TW

GF CRSR

SA SW

FLIGHTS DATA BASE   (Functional Core)

Figure 3: An Interactor Based Description of Matis.

The task decomposition provided by a UAN specification is a useful indication of the
logical and temporal connections among interaction objects which perform the related
tasks. Some general heuristic rules found in the exercise include:

If a task can indifferently be refined into two interactions (sequences of user actions
and system feedback) then it can be performed by three interactors: one for each



interaction and one to gather the data which can be generated in one of the two
possible interactions;
If one task is associated with only one action it should not have an entire interactor for
itself;
Interactions with a window or with the related icon are described by the same
interactor;
If the feedback of several tasks is related to the same graphical entities they should be
refined into the same interactor or in communicating interactors.

7. A Comparison of LOTOS and UAN
It is interesting to compare LOTOS and UAN because they come from different areas (the
former from software engineering, the latter from human-computer interaction) but they
are based on similar concepts. Indeed, both are concurrent notations and use actions:
LOTOS describes a system by its externally observable actions, UAN describes human-
computer interactions in terms of user actions and system feedback, and these two groups
of actions are structured in asynchronous tasks. We can notice that there are functionalities
in UAN which LOTOS does not have, and viceversa.
In fact, UAN includes constructs such as one-way interleavability (a task interrupts
another one which will be continued at its completion); waiting (a task is performed after a
delay of a specific number of units of time); and true parallelism which LOTOS does not
support. In fact, the current version of LOTOS does not provide time-dependent
constructs and its semantics is an interleaving concurrency, although extensions in these
directions are being investigated. On the other hand, LOTOS has a deactivation operator
(an operator that takes two processes, when an action of the second one is performed the
first is deactivated). It explicitly allows us to indicate on which subset of gates two or
more processes can synchronise, it supports message passing among processes, it has
operators which indicate when a process finishes its processing and then it may pass the
control to another process: exit (which is very similar to the break operator introduced in
the UAN specification of Matis) and stop, respectively. Constructs of LOTOS were more
formally defined: their operational semantics was provided in terms of Label Transition
Systems. In UAN there is a different approach to defining the semantics of the constructs
of the notation: time is a one-dimension quantity, made up of points, where each point is
associated with a value and it uses intervals of activity associated with each task to
describe operators among tasks.
While in UAN operators can be applied indifferently on tasks and actions, in LOTOS
processes (it would be more precise to say their behaviour expression) and actions can be
associated with different operators: for example disabling and sequential composition need
two behaviour expressions while action prefix requires one action and one behaviour
expression. Another difference is that LOTOS distinguishes between internal and external
actions: the internal actions allow the system to change its state but they are unavailable for
synchronization with other processes.
LOTOS processes may have their own state and it is explicitly indicated if they
synchronize with other processes, on which gates they can synchronize, and if they
perform value passing. In UAN there is only a generic interface state. Tasks cannot
synchronize with each other and do not perform value passing: it is only possible to
indicate the ordering of their corresponding user actions and system feedback. The
interface state and its modifications are described informally, while the state of LOTOS
processes is described by the ACT ONE notation for algebraic data types.



Conclusions
In this report we have described the first results of some current research on the
specification of MultiModal Interactive Systems. These results seem to indicate a
complementary use of the two considered notations: UAN as a notation to evaluate,
especially from a usability point of view, existing software and as documentation for users
who want to know how to perform specific tasks; LOTOS and related tools as a notation
for design, specification and verification of the software related to the development of
Interactive Systems.
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