
TOWARDS AUTOMATIC EVALUATION
OF MULTIMODAL USER INTERFACES

Joëlle Coutaz, Daniel Salber, Sandrine Balbo

Laboratoire de Génie Informatique, IMAG
B.P. 53X, 38041 Grenoble Cedex

Tel. +33 76 51 48 54, e-mail: balbo@imag.fr, joelle@imag.fr, salber@imag.fr

ABSTRACT

The evaluation of the usability and the learnability of a computer system may be performed with predictive

models during the design phase. It may be done on the executable code as well as by observing the user in

action. In the latter case, data collected in vivo must be processed. Our goal is to provide software

supports for performing this difficult and time consuming task.

This article presents an early analysis and experience towards the automatic evaluation of multimodal user

interfaces. With this end in view, a generic Wizard of Oz platform has been designed to allow the

observation and automatic recording of subjects’behavior while interacting with a multimodal interface.

We then show how recorded data can be analyzed to detect behavioral patterns, and how deviations of

such patterns from a data flow-oriented task model can be exploited by a software usability critic.

KEYWORDS

Capture of behavioral data, multimodal user interface, Wizard of Oz, user interface evaluation techniques.

INTRODUCTION

The development of interactive systems is an iterative process composed of three steps: design,

construction and evaluation. Software tools such as interaction toolkits and UIMS technology, or

software architecture models such as PAC7 and the Abstraction-Link-View paradigm14, have been

developed to facilitate the construction of graphical user interfaces (GUI). Although the construction of

user interfaces has been widely addressed by the software engineering community, little attention has been

paid to support user interface design and evaluation.

Parallel to the development of graphical user interfaces, natural language processing, computer vision,

and gesture analysis have made significant progress. Clearly, the combination of medias and modalities

open a complete new world of experience but our current understanding on how to design, build and

evaluate such interactive systems is still primitive.

This article presents our early analysis and experience with the automatic evaluation of multimodal

interfaces. Our goal is to provide designers with a Wizard of Oz multimodal software platform flexible

enough to support the evaluation of multiple interactive systems. The next two sections define the problem

space: first, the main streams for user interface evaluation are presented and our own approach is situated

in this framework. Then, a taxonomy for the study of multimodal interfaces is presented. (A full

description of this classification is available in 8.) The last two sections are dedicated to our own solution

to the problem: the description of the platform and a first experience with automatic evaluation.

AN OVERVIEW OF EVALUATION TECHNIQUES

As shown in figure 1, evaluation techniques for interactive systems may be divided into two broad

categories. Predictive methods are applicable during the design phase. They do not require any system

implementation, nor do they need effective users. At the opposite, experimental techniques rely on the

existence of a physical apparatus ranging from mock-ups of the real system up to the full implementation

of a running prototype.

Predictive techniques

In general, predictive techniques are theory-based. For example, GOMS5 and its related models such as

the Cognitive Complexity Theory (CCT)15, rely on an explicit hierarchical decomposition of the user’s

tasks. This static representation is supposed to model the user’s plan for accomplishing a particular task.

The genuine GOMS is a pure analytic model of errorless performance: it is able to predict the time

required to accomplish a task without errors. Recently, GOMS has been extended to predict errors due to

cognitive overload16. CCT, on the other hand, is useful for comparing several designs in terms of

learnability and knowledge transfer.

At the opposite of GOMS and CCT, PUM builds a dynamic model of the user’s plan. It predicts errors

through a programmable cognitive architecture28. The designer specifies the knowledge that the user

needs to accomplish a particular task. This description, which includes domain knowledge as well as

knowledge about the user interface, is compiled in terms of rules. These rules represent the user’s ability

to accomplish this particular task with this particular user interface. Based on this knowledge, the PUM

cognitive architecture tries to elaborate a plan. If no plan can be generated, then the designer is notified of

a potential usability or learnability problem.

Predictive evaluation techniques may also be based on HCI heuristics. Typically, the assessor looks for

properties in the user interface design that, he knows from experience, lead to usability or learnability

problems. Such knowledge, exemplified by the Smith & Mosier’s work, may be embedded in an expert

system such as KRI18. KRI is able to detect anomalies from a formal description of the user interface.

However, only the lexical and syntactical levels of the interaction are covered by the critic. Task modelling

and any high level cognitive activity are discarded.

Assessing a design through HCI heuristics is a difficult task. The task-based “cognitive walkthrough”

method proposed by Lewis et al. provides a useful framework for extracting evaluation guidance from a

formal theory of human-computer interaction17. It consists of “a list of theoretically motivated questions

about the system” such as “how will the user access description of action?” or “how will the user

associate description to action?”.

In summary, the main benefit from predictive models and techniques is that they allow the evaluation of

user interfaces at the design stage. A design can be improved before a costly implementation takes place.

On the other hand, specifying data to a predictive model may be as time consuming as the implementation

per se. In addition, predictions made by theoretical models are based on hypotheses, not on real data. As

demonstrated by Pollier24 as well as by Nielsen et al.22, heuristic evaluation is difficult to achieve. At

least three assessors are necessary to discover a reasonable number of usability problems (i.e., half of the

problems at best!)

Experimental techniques

Experimental techniques and methods deal with real data observed from real users accomplishing real

tasks with a physical artefact. This artefact may include paper scenarios, mock-ups, computer system

prototypes, or Wizard of Oz (WOz) platforms.

With a WOz setting, “designers can illustrate how users will interact with yet-to-build software”19. In

general, WOz experiments have been applied to natural language interfaces only. Corpus collected in vivo

would be used to tune the linguistic parameters of the system, and thus would improve the robustness of

the interaction9.

In general, behavioral data from WOz experiments, are tape-recorded. As a result, they must be retrieved

and interpreted by hand. This is a time consuming task which requires expertise and patience. However,

recent WOz platforms are able to capture and mix digitized and analogical behavioral data12. By doing so,

automatic tools can be developed to support the evaluation process. However, to our knowledge, none of

the WOz platforms has tackled the problem of multimodal interfaces.

In summary, analysis from experimental methods are performed on real data, not on uncertain

hypothetical values. This benefit is counterbalanced by the volume of behavioral data to process and by

the difficulty to identify the appropriate parameters for a particular experiment. We believe that a WOz

computer platform which automatically captures selected behavioral data, provides a good basis for the

development of evaluation and design tools. In addition, a WOz computer platform to study multimodal

interaction is certainly a promising enterprise. Our approach to this problem is presented in the rest of the

article.

A TAXONOMY FOR MULTIMODAL USER INTERFACES

In psychology, a modality refers to a human sensory channel such as vision, audition and touch. In the

theoretical framework of the Model Human Processor5 as well as in ICS3, these channels are modelled as

specialized processors. Whereas a modality denotes a type of human communication channel, a media

such as a computer system, is an artefact that conveys information by triggering one or several human

communication channels. According to these definitions, how can a user interface be qualified as being

multimodal? The ICS model can provide us with a useful starting point.

Multimodal User Interfaces

In ICS, the human information processing system is subdivided into a set of specialized subsystems. The

sensory subsystems transform sense data into specific mental codes that represent the structure and

content of incoming data. These representations are then handled by subsystems specialized in the

processing of higher-level representations: the morphonolexical subsystem for processing the surface

structure of language, the object subsystem for processing visuospatial structures, and the propositionnal

and implicational subsystems for more abstract and conceptual representations. The output of these

higher-level subsystems are directed to the effector subsystems (articulatory and limb).

Using a similar process, a multimodal system is able to represent and manipulate information at multiple

levels of abstraction along multiple input or ouput channels. A channel covers a set of physical sensory

(or effector) means through which particular types of information can be received (or transmitted)8 and

processed. One observes that both multimodal and multimedia systems are characterized by

communicating information either through multiple input channels or through multiple output channels or

both. The multiplicity of communication channels along one direction (whether it be input or output)

provides the basis for multimedia-lity and multimodality.

The distinction between multimedia-lity and multimodality lies in the degree of built-in cognitive

sophistication of the system along the axis “level of abstraction”. Multimodality is characterized by the

capacity of the system to interpret raw inputs up to high levels of abstraction (e.g., that of the task

domain) or to render information starting from high level representations. Although multimedia-lity

includes interpretation and rendering, it is not capable of handling the highest task-domain level

representations.

By extension, an interactive system may be both multimedia and multimodal. For example, an hypermedia

system would illustrate task-domain concepts using images and sound replayed from a CD-ROM, and it

would be controlled by the user in a multimodal way using both speech and mouse to navigate through the

hyperspace. Note that current multimedia systems are all able to handle the highest task-domain level

representations but they do so for commands only and through a unique channel. Thus any multimedia

system is at least monomodal in order to recognize input commands.

If “striving for meaning along multiple channels” denotes multimodal user interfaces, the fusion/fission

phenomenon and the granularity of concurrency define a classification for multimodal interaction per se.

Two dimensions for classifying multimodal interfaces: Fusion/Fission, granularity of

parallelism

Fusion and Fission

Fusion refers to the combination of several chunks of information to form new chunks. Fission refers to

the decomposition phenomenon. Fusion and fission are part of the interpretation and rendering functions,

i.e., the sequence of transformations applied to input and output data respectively.

Considering fusion for the interpretation function, information chunks may (or may not) originate from

distinct digital input channels. For example, the sequence of events “mouse-down, mouse-up” that occurs

in the palette of a graphics editor are two information chunks that originate from the same input channel.

They are combined within the context of the palette to form a higher information chunk (i.e., the selection

of a geometric class). At the opposite the “put that there” paradigm as in Cubricon21 offers an example of

fusion between chunks originating from distinct input digital channels. In this example, fusion is required

to solve the coreferences expressed through distinct channels.

The interpretation function may also perform fission. It may be the case that information coming from a

single input channel need to be decomposed in order to be understood at a higher level of abstraction. For

example, consider the utterance “show me the red circle in a new window”. This sentence, received

through a single digital channel, references two domains of discourse: that of the graphics task (i.e., “the

red circle”) and that of the user interface (i.e., “a new window”). In order to satisfy the request, the

system has to decompose the sentence into two high level functions: “create a window” and “draw a red

circle” in the newly created window.

Similarly, the rendering function can perform fusion and fission. As an example of fusion, the picture of a

town may be combined to a graphical representation of the population growth. The notions of town and

population, which are modelled as two distinct data structures within the internal processes of the system,

are combined at the lowest level and presented through a single output channel. Fission occurs when an

information chunk gives birth to multiple representations whether it be through a single or multiple output

channels. For example, the spoken message “watch this wall!” along with a blinking red line on the

screen uses two distinct output channels to denote the same wall.

Parallelism

Representation and usage of time is a complex issue. In our discussion, we are concerned with the role of

time within the interpretation and rendering functions. How does time relate to levels of abstraction? How

does it interfere with fusion and fission? Parallelism at the user interface may appear at multiple grains: at

the physical leve and at the task level.

At the physical level, input corresponds to the user actions that can be sensed by input channels as an

information chunk (e.g., an event). For example, a mouse click, a spoken utterance are information

chunks. For output, the physical level denotes output primitives, that is the information chunks that can be

produced by output channels in one burst. For example, a spoken message or the reverse video of an

icon. The fusion example “Put that there” and the fission example “watch this wall” both require

parallelism at the physical level using multiple input and output channels respectively.

From the system’s perspective, a task (i.e, an elementary task) cannot be decomposed further but in terms

of physical actions. For input, an elementary task is usually called a command, that is, the smallest

fusion/fission of physical user’s actions that changes the system state. For output, an elementary task is

the set of output physical primitives used to express a system state change.

True parallelism at the command level allows the user to issue multiple commands simultaneously. It

necessarily relies on the availability of parallelism at the physical level. Pseudo-parallelism at the

command level as in Matis23, allows the user to build several commands in an interleaved way as in

multithread dialogues. Then, parallelism at the physical level is not required.

Figure 2 shows a possible classification for multimodal systems based on the parallelism and

fusion/fission dimensions. A multimodal user interface may be:

• exclusive if input (or output) expressions are built up from one channel only and no parallelism is

permitted at the interface,

• alternate if input (or output) expressions are built up from multiple channels but no parallelism is

supported,

• concurrent if input (or output) expressions are built up from one channel only and parallelism is

permitted,

• synergistic if input (or output) expressions are built up from multiple channels and parallelism is

permitted.

As an example of exclusive multimodal user interface, we can imagine the situation where, to open a

window, the user can choose among double-clicking an icon or say "open window". One can observe the

redundancy of the ways for specifying input expressions but, at a given time, an input expression uses

one channel only. In a concurrent system, the user would be able to express both commands

simultaneously but using distinct independent modalities (no fusion/fission would be supported).

As an example of synergistic multimodal system, the user of a graphics editor can say put that there while

pointing at the object to be moved and showing the location of the destination with the mouse or a data

glove. Within an alternate system, fusion/fission is supported but sequentiality is imposed. As a result, if

we consider the put that there example, sequentiality would require the user to say put that followed by a

mouse click to denote that. He would then say there and click a second time to indicate the destination.

Although not desirable, sequentiality may be imposed for technical reasons.

In summary, the two dimensions, fusion/fission and temporal constraints on the usage of modalities,

define a problem space which, as shown in the next paragraph, provides a useful framework for

reasoning about multimodality.

Benefits from the classification

As discussed in8,10, one can study the implications of fusion/fission and temporal constraints on

software architectures. Bourguet and Caelen4 exploit the framework for the interpretation of multimodal

expressions in a dialogue model.

For example, in a graphic editor supporting concurrency, consider the vocal command rotate the triangles

combined with the selection of a set of triangles with the mouse. Depending on the presence of fusion or

not, the interpretation of the vocal command may have different effects:

• In an exclusive multimodal user interface, the vocal and gesture commands are independent. Then, rotate the triangles

can be interpreted in two ways: a) rotation of the triangles selected in a previous command (i.e., the pronoun the acts

as an anaphoric reference); b) rotation of all of the triangles in the picture if no triangle has been previously selected.

• In a synergic multimodal user interface, the vocal and gesture commands can be coupled. Thus, in addition to

interpretations a) and b), rotate the triangles allows a third interpretation c) where the acts as a deictic related to the

concurrent gesture. The choice between the 3 interpretations relies heavily on the dialogue model used to drive the

interface. In particular, if parallelism at the interface prevails, then solution c is selected. If sequentiality dominates,

then solutions a and b are good candidates. In addition, if vocal modality is privileged, then a prevails over b.

A second interest of our framework is to provide the basis for human factors experiments and cognitive

psychology studies of multimodality. For example, for a given task, one can identify the usage of

modalities, or determine the constraints imposed on the user by sequentiality, or even consider the

usefulness of synergism, etc. Although psychological theories and human factor principles provide useful

recommendations for the GUI technology, they are not directly extensible to multimodal user interfaces.

In the absence of hard-core theories, we opt for the Wizard of Oz experimental approach.

NEIMO, A MULTIMODAL WIZARD OF OZ PLATFORM

Objectives

The goal of Neimo is to provide designers with a “Wizard of Oz” environment to observe and evaluate

how users interact with multimodal interfaces. Wizards are used to supplement missing functions such as

recognizers or generators for a particular modality. Modalities studied with the platform include graphics,

oral communication, and gesture. Gesture covers facial expression and 2-D mousing. We consider that

the redundancy provided by facial expression can be used to disambiguate the interpretation of end-user’s

behavior.

An essential requirement for such an environment is flexibility. Neimo must support any number of

wizards, any number of modalities, and any type of application whose source code is available (An

application is the functional core that implements task domain concepts.) In addition, for a given

application and a given set of modalities, it should allow multiple experiments with fusion/fission and time

constraints.

Hardware configuration

Figure 3 illustrates a typical hardware configuration for the Neimo platform. It includes one workstation

for the user (i.e., the subject) and several workstations for wizards. All of the workstations are Apple

Quadras.

Voice Navigator, a word-Markov network-based pattern matching system, is used as the speech

recognizer. Because of its poor performance with regard to “naturalness”, we intend to replace Voice

Navigator with a wizard and evaluate the behavioral differences.

A CCD camera is focussed on the user’s face and connected to a video acquisition board installed in one

of the wizards’ workstation. Thus, it is possible for that wizard to observe an image of the user’s face

digitized in real time (2 to 3 images per second).

Wizards are classified in two categories: the functional wizards and the modal wizards. A functional

wizard accomplishes the task domain dependent services that are not implemented in the application. A

modal wizard replaces or complements software components specialized in the processing of a particular

modality or in the fusion of multiple modalities. For example, when Voice Navigator is turned off, a

speech modal wizard comes into play. Similarly, a modal vision wizard is used to interpret facial

expressions27.

Software organisation and services

In order to satisfy the flexibility requirement, the Neimo platform is organized around a minimal

communication kernel, NeimoCom, interfaced by libraries. As shown in Figure 4, NeimoCom acts as a

communication server for transferring messages between workstations, and serves as a message recorder

in history files. Each workstation runs a set of client functions linked to a NeimoCom library. These

functions are not provided by the kernel but are developed for specific purpose. For example, the client

functions of the speech wizard workstation support the wizard's task. In particular, a list of prerecorded

answers is proposed to the wizard in order to alleviate his cognitive load as well as to guarantee a

consistent behavior with regard to the user.

A Neimo library provides client functions with the following main services:

• open and close a connection. A wizard workstation can dynamically open or close a connection during a

session.

• declare new types of message or redefine previously defined types with additional fields and/or

suppression of obsolete fields. A message type is declared as a data structure with named typed fields.

Since data fields are named, their order is not significant. By so doing, old clients can be modified or new

clients added to the environment without jeopardizing previous settings. For example, a color field may

be added to the original typeface which was first designed for black and white pictures of faces.

• dynamically subscribe to a set of message types. This service allows clients to express their interest for a

category of messages. For example, the vision wizard client subscribes to the face type to receive images

of the user’s face in order to be able to process and display them onto the wizard’s screen. In addition, the

dynamicity of the subscription allows wizards to change roles on the fly.

• send and receive messages synchronously. Messages are time-stamped by NeimoCom which maintains

the universal time.

• open, close history files and record messages in an opened history file. In addition to navigation

functions such as go to the last record of history file h, or select record i from history file h, clients can

define views. A view acts as a filter on a history file. It includes a start and a stop date to identify the

temporal window of interest, the origin (i.e., wizard VS user) as a selector of the source of the recorded

messages, and a list of the message types of interest (for example face, mouse and speech).

A more detailed description of the run time kernel is available in1. To summarize, the originality of the

Neimo kernel is three-fold:

1) messages from multiple medias are processed in a uniform and integrated way,

2) message types are not imposed by the system. Instead, their level of abstraction is client defined. It is

then possible to record information from low level events such as mouse clicks up to high level

commands;

3) messages are recorded on request in dedicated files. Messages can be subsequently retrieved either

directly according to their record sequencing number, or indirectly through the notion of views. Views

allow client programs to extract messages through temporal windows on a set of message types. A user

interface critic is one of such potential clients.

In addition to the run time kernel, a minimal user interface common to all of the wizards has been

designed. This user interface allows a wizard to:

• set up the configuration for the session: which user’s workstation to observe, which message types to

receive, etc.;

• control message recording and message load during the session;

• observe the user’s behavior: reception of the user’s utterances, message sequence received from the

user, replication of the user’s screen as well as the user’s mouse movements.

The Neimo platform is under development using MacApp in the MPW environment. Although we have

not yet been able to make full-fledged experiments with Neimo, an early experiment of message recording

and interpretation under X window2 will be re-implemented in the Neimo environment. The model

developed in this experiment is described in the next section.

OUR APPROACH TO AUTOMATIC EVALUATION

Our automatic evaluation of user interfaces is a four step process: 1) definition of a task model, 2)

acquisition of behavioral data, 3) identification of behavioral patterns, and 4) critic per se.

A task model defines the optimal way of performing the task in a particular context for a particular

domain. It is a behavioral reference model. Recorded data, as those captured by Neimo, reflect the

effective behavior of the user performing a task in a quasi-realistic setting. As in the MRP technique26,

behavioral patterns are repeated user actions that may reveal usability problems. The critic per se combines

general heuristic HCI knowledge with data specific to the case at hand: it detects deviations of the

behavioral patterns from the reference task model. These four aspects are developed in the following

paragraphs.

The task model

The definition of a task model depends on its end use.

In the design stage, the task model expresses the logical use of the system. It structures the work space in

terms of tasks and subtasks showing the relationships between clusters of logically connected tasks. As in

GOMS and CLG20, the representation is a task hierarchy whose leaves denote the tasks that are

conceptually indivisible. This is the conceptual task model.

When considering the running prototype, the task model aims at specifying the way the system functions.

At the opposite of the conceptual task model, it specifies the way the user should perform the task with the

real system. It does not necessarily describe a manner that is convenient for the user. Ideally, the

conceptual task model and the effective task model should be isomorphic. In particular, the elementary

tasks of the conceptual model should correspond to commands in the effective task model.

Although mapping elementary tasks to commands is straightforward, the correspondence for compound

tasks is difficult to formalize. This situation results mainly from the discrepancy between the points of

view adopted at the design and implementation steps. In the design phase, attention is focussed on the

domain. As a result, syntactic tasks such as window manipulations which, by definition are domain

independent, are not considered. Clearly, our evaluation technique, based on the acquisition of real data,

speaks in favor of an effective task model: the sequence tree.

A sequence tree represents the sequence of possible elementary tasks. An elementary task is indivisible

and modifies the system state. A node denotes an elementary task. As shown in figure 5, a node may be

decorated with preconditions P. For example, to open a file from the Macintosh desktop, the folder which

contains the file must be opened. Edges express ordering between elementary tasks. If A and B denote

two elementary tasks, then A B means that A must be executed before B, and A cannot be executed

again. In A B, A must be executed before B but A may be executed again in the future. If a node has

multiple sibblings, then the user may choose any one of them and switch freely between the subtrees.

This property allows for the expression of interleaving between tasks.

In summary, a sequence tree shows the possible migration of the user through an organized and constraint

space of elementary tasks. In turn, elementary tasks are expressed in terms of the physical actions that the

user can perform with input medias. A notation like UAN13 can be used to specify the correspondence.

Collecting behavioral data

Recorded data correspond to the physical actions of the user.

In an X Window environment, actions such as mouse clicks and key presses, are modelled as events. We

have recorded them in a history file with additional information such as the name of the elementary task to

which it belongs. In a Neimo environment, actions are conveyed through messages and additional actions

such as facial expressions and meta-comments, can be interpreted by a wizard and recorded.

Data has been recorded for a set of simple tasks selected from a complex problem space: the design of

user interfaces for everyday cars. This design environment, Compo, is similar to an authoring system like

HyperCard, where scripts are expressed with an iconic language6.

Behavioral patterns

The analysis of the recorded data within Compo led us to identify three classes of interesting behavioral

patterns: direction shift, action repetition and action cancellation as part of syntactic tasks.

A direction shift occurs when the user stops following a downward path in the sequence tree. For

example, although it is useless to do so, he may systematically select an icon file in the Macintosh desktop

before invoking the page setup item in the file menu.

Action repetition as part of syntactic tasks cover actions that do not modify the functional core but concern

the user interface portion only. Typically, we have observed systematic resizing, or iconification, or

scrolling tasks on newly opened windows.

Action cancellation as part of syntactic tasks refer to closing newly opened windows or navigating

through menus without selecting any item.

The critic

Behavioral pattern types are then related to usability problems based on human factor and psychological

principles. These are numerous, inflationary or even contradictory. As a first step experience, we have

used the simple taxonomy provided by Scapin25 with the notions of compatibility, homogeneity,

concision, feedback pertinence, explicit control, cognitive load, and error management.

Rules encoded in the critic point out user interface flaws through behavioral patterns. For example, the

systematic occurrence of a direction shift at a particular node in the sequence tree expresses a cognitive

dead-end. The interface does not lead the user to build the appropriate model. There is an incompatibility

between the effective task model and the user’s mental model. In the same way, systematic iconification

of newly opened window may correspond to a messy screen or expresses the irrelevance of the

information contained in the window.

CONCLUSION

In summary, we have developed an early experience with the automatic evaluation of interfaces using a

simple apparatus. From low level captured data (i.e., user’s mouse clicks and key presses), from a task

model, and from general HCI heuristic knowledge, we have been able to detect anomalies for a graphical

user interface. This technique needs to be extended to multimodal interfaces. With this end in view, we

have designed Neimo, a generic platform, able to register a wide range of behavioral data in an integrated

way. These data may result either from the automatic interpretation of the user’s behavior by the system,

or from on the fly interpretation by human wizards. With such a tool, experimenters should be able to

build rich but focussed history files and conduct experiments about the usage of modalities along the

dimensions of our framework. As an additional benefit from history files, we expect to devise user

models applicable to the design of multimodal interfaces.

ACKNOWLEDGEMENTS

This work has been supported by project ESPRIT BR 7040 AMODEUS2 and by PRC Communication

Homme-Machine.

REFERENCES
1 Ambone, G Noz, B & Salber, D ‘Projet Neimo, Spécifications externes’, rapport équipe IHM LGI-

IMAG (1992).

2 Balbo, S Coutaz, J ‘Automatic Evaluation in Human Computer Interaction’ The Ergonomics Society
1993 Annual Conference Edinburgh 13-16 April (1993).

3 Barnard, P J ‘Cognitive Resources and the Learning of Humnan-Computer Dialogs’, in Interfacing
Thought, Cognitive Aspects of Human-Computer Interaction, Carroll Ed. MIT Press Publ.(1987)
pp112-158.

4 Bourguet, M L & Caelen, J ‘Interfaces Homme-Machine Multimodales: Gestion des Evénements et
Représentation des Informations’, ERGO-IA’92 proceedings Biarritz (1992).

5 Card, S K, Moran, T P & Newell, A The Psychology of Human Computer Interaction Lawrence
Erlbaum Associates (1983).

6 Chabert, A ‘La programmation visuelle’, Rapport de DEA d’Informatique Institut National
Polytechnique de Grenoble (1991).

7 Coutaz, J ‘PAC: an Implementation Model for Dialog Design’ Proceedings of the Interact'87
conference Stuttgart, Bullinger & Shackel (ed.) North Holland (1987) pp 431-436.

8 Coutaz, J. Nigay, L. & Salber, D ‘The MSM Framework: A Design Space for Multi-Sensory-Motor
Systems’, EWHCI’93 proceedings Moscow (1993).

9 Dahlbäck, N & Jönsson, A ‘Empirical studies of discourse representations for natural language
interfaces’ Fourth Conference of the European Chapter of the ACL Proceedings (1989) pp 291-298.

10 Gourdol, A Nigay, L Salber, D & Coutaz, J ‘Two cases studies of software architecture for
multimodal interactive systems: VoicePaint and a Voice enabled graphical notebook’ IFIP’92
Congress (1992)

11 Diaper, D ‘The Wizard's Apprentice: A Program to Help Analyse Natural Languages Dialogues’
proceedings of the fifth conference of the British Computer Society Human-Computer Interaction
Specialist Group, University of Nottingham, (1989) pp 231-243.

12 Hammontree, M L Hendrickson, J J & Hensley, B W ‘Integrated Data Capture and Analysis Tools
for Research and Testing on Graphical User Interfaces’ in the CHI’92 Conference Proceeding, ACM
Press Publ. (1992) pp 431-432.

13 Hartson, R & Gray, P D ‘Temporal Aspects of Tasks in the User Action Notation’ Human-Computer
Interactio Laurence Erlbaum vol. 7 No 1 (1992) pp 1-45.

14 Hill, R ‘The Abstraction-Link-View paradigm: using constraints to connect user interfaces to
applications’ in Proceedings of CHI’92 ACM Press (1992) pp 335-342.

15 Kieras, D & Polson P G ‘An Approach to the Formal Analysis of User Complexity’ International
Journal of Man-Machine Studies 22 (1985) pp 365-394.

16 Lerch, F L Mantei, M M & Olson, J R ‘Skilled financial planning: The Cost of Translating Ideas into
Actions’ in Proceedings of CHI’89 ACM Press (1989) pp 121-126.

17 Lewis, C Polson, P Wharton, C & Rieman, J ‘Testing a Walkthrough Methodology for Theory-
Based Design of Walk-Up-and-Use Interfaces’ in Proceedings of CHI’90 ACM Press (1990) pp 235-
241.

18 Löwgren, J & Nordqvist, T ‘A Knowledge-Based Tool for User Interface Evaluation and its
Integration in a UIMS’ Human-Computer Interaction-INTERACT'90 (1990) pp 395-400.

19 Mackay, W ‘Video: Data for Studying Human-Computer Interaction’ CHI '88 (1988) pp 133-137.

20 Moran, T ‘The Command Langage Grammar : a representation for the user interface of interactive
computer systems’ International Journal of Man-Machine Studies vol. 15 (1981) pp 3-50.

21 Neal, J Thielman, C Bettinger, K & Byoun, J ‘Multi-modal References in Human-Computer
Dialogue’ Proceedings of AAAI-88 (1988) pp 819-823

22 Nielsen, J & Molich, R ‘Heuristic Evaluation of User Interfaces’ in CHI’90 Proceedings ACM Press
Publ. (1990) pp 249-256.

23 Nigay, L. & Coutaz, J. ‘A Design Space for Multimodal Systems: Concurrent Processing and Data
Fusion’ INTERCHI’93 Proceedings Amsterdam (1993) pp 172-178

24 Pollier, A ‘Evaluation d’une interface par des ergonomes : diagnostics et stratégies’ Rapport de
recherche INRIA no 1391(1991).

25 Scapin, D ‘Guide ergonomique de conception des interfaces homme-machine’ Rapport Technique
INRIA no 77 (1986).

26 Siochi, A & Hix, D ‘A study of Computer-Supported User interface Evaluation Using Maximal
Repeating Patern Analysis’ in Proceedings of the CHI’91 Conference ACM Press (1991) pp 301-305.

27 Turk, M & Pentland, A ‘Eigenfaces for recognition’ Journal of Cognitive Neuroscience Vol. 3 No. 1
(1991) pp 71-86.

28 Young, R M &Whittington, J ‘Interim Report on the Instruction Language’ AMODEUS Project
Document: Deliverable D5, ESPRIT Basic Research Action 3066 (1990).

Evaluation techniques

Predictive
models&techniques

Experimental
techniques

HCI-based
heuristics

Theory-based
models

Wizard of Oz
platforms

Mockups Prototypes
GOMS
CCT

KRI
Cognitive

walktthrough

FU
SI

O
N

/F
IS

SI
O

N

USE OF MODALITIES

Combined

Independent

Sequential Parallel

SYNERGISTIC

CONCURRENTEXCLUSIVE

ALTERNATE

Observed User

Speech Wizard

Face Wizard

Mouse Wizard

NeimoCom

User
Client

Wizard
Clients

Neimo
Library

Neimo
Library

History files

Neimo
Library

A

B C

D

P: folder opened

Figure 1: An overview of evaluation techniques for interactive systems.

Figure 2. A taxonomy of multimodal interactive systems.

Figure 3: Hardware configuration of the Neimo platform.

Figure 4: The software organisation of the Neimo platform. Dimmed areas denote common services and

white areas, specific components.

Figure 5: The sequence tree model.

