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Abstract

This paper describes an active-camera real-time system
for tracking, shape description, and classification of the
human face and mouth using only an SGI Indy computer.
The system is based on use of 2-D blob features, which are
spatially-compact clusters of pixels that are similar in terms
of low-level image properties. Patterns of behavior (e.g.,
facial expressions and head movements) can be classified
in real-time using Hidden Markov Model (HMM) methods.
The system has been tested on hundreds of users and has
demonstrated extremely reliable and accurate performance.
Typical classification accuracies are near 100%.

1. Introduction

This paper describes a real-time system for accurate
tracking and shape description, and classification of the hu-
man face and mouth using 2-D blob features and Hidden
Markov Models (HMMs). All of the experimental appa-
ratus described here is real-time, at 20 to 30 frames per
second, and runs on SGI Indy workstations without any
special-purpose hardware.

The notion of “blobs” as a representation for image fea-
tures has a long history in computer vision [25, 19, 5, 34],
and has had many different mathematical definitions. In our
usage it is a compact set of pixels that share a visual property
that is not not shared by the surrounding pixels. This prop-
erty could be color, texture, brightness, motion, shading, a
combination of these, or any other salient spatio-temporal
property derived from the signal (the image sequence). In
our usage blobs are, therefore, a coarse, locally-adaptive en-
coding of the images’ spatial and color/texture/motion/etc.
properties. A prime motivation for our interest in blob repre-
sentations is our discovery that they can be reliably detected
and tracked even in complex, dynamic scenes, and that they
can be extracted in real-time without the need for special pur-
pose hardware. These properties are particularly important
in applications that require tracking people, and recently we

have used 2-D blob tracking for real-time whole-body hu-
man interfaces [34] and real-time recognition of American
Sign Language hand gestures [32].

In recent years, much research has been done on machine
recognition of human facial expressions. Feature points
([3]), physical skin and muscle activation models ([21], [33],
[30]), optical flow models ([13] ), feature based models us-
ing manually selected features ([26]), local parametrized
optical flow ([4]), deformable contours ([20], [23]), com-
bined with optical flow ([35]) as well as deformable tem-
plates ([18],[37],[15],[6]) among several other techniques
have been used for facial expression analysis. This paper
extends these previous efforts to real-time analysis of the
human face using our blob tracking methodology. This
extension required development of an incremental Expec-
tation Maximization method, a new mixture-of-Gaussians
blob model, and a continuous, real-time HMM classification
method suitable for classification of shape data. Applica-
tions of this new system, called LAFTER (Lips and Face
TrackER) include video-conferencing, real-time computer
graphics animation, and “virtual windows” for visualization.
Of particular interest is our ability for accurate, real-time
classification of the user’s mouth shape without constrain-
ing head position; this ability makes possible (for the first
time) real-time speech-reading and expression recognition
in unconstrained office environments.

The paper is structured as follows: the general mathe-
matical framework; use in face detection and tracking; use
in mouth detection and mouth tracking; mouth expression
recognition; results and applications; conclusions and future
work.

2. Mathematical Framework

The notion of grouping atomic parts of a scene together
to form blob-like entities based on proximity and visual
appearance is a natural one, and has been of interest to visual
scientists since the Gestalt psychologists studied grouping
criteria early in this century [12].



In modern computer vision processing we seek to group
pixels of images together and to “segment” images based
on visual coherence, but the “features” obtained from such
efforts are usually taken to be the boundaries, or contours,
of these regions rather than the regions themselves. In very
complex scenes, such as those containing people or natural
objects, contour features often prove unreliable and difficult
to find and use.

The blob representation that we use was developed by
Pentland and Kauth et al [25, 19] as a way of extracting an
extremely compact, structurally meaningful description of
multi-spectral satellite (MSS) imagery. In this method fea-
ture vectors at each pixel are formed by adding (x; y) spatial
coordinates to the spectral (or textural) components of the
imagery. These are then clustered so that image properties
such as color and spatial similarity combine to form coherent
connected regions, or “blobs,” in which all the pixels have
similar image properties. This blob descriptionmethod is, in
fact, a special case of recent Minimum Description Length
(MDL) algorithms [9, 8, 2].

We have used essentially the same technique for real-time
tracking of people in color video [34]. In that application the
spatial coordinates are combined with color and brightness
channels to form a four-element feature vector at each point
(x; y; r

r+g+b ;
g

r+g+b ). These were then clustered into blobs
to drive a “connected-blob” representation of the person.

By using Expectation Maximization (EM) methods to
obtain Gaussian mixture models for the spatio-chrominance
feature vector, very complex shapes and color patterns can
be adaptively estimated from the image stream. In our sys-
tem we use an incremental version of EM, which allows us
to adaptively and continuously update the spatio-chromatic
blob descriptions. Thus not only can we adapt to very dif-
ferent skin colors, etc., but also to changes in illumination.

2.1. Blobs: A Probabilistic Representation

We can represent shapes in both 2-D and 3-D by their
low-order statistics. Clusters of 2-D points have 2-D spatial
means and covariance matrices, which we shall denote q̄ and
Cq. The blob spatial statistics are described in terms of their
second-order properties; for computational convenience we
will interpret this as a Gaussian model. The Gaussian inter-
pretation is not terribly significant, because we also keep a
pixel-by-pixel support map showing the actual occupancy.

Like other representations used in computer vision and
signal analysis, including superquadrics, modal analysis,
and eigen-representations, blobs represent the global as-
pects of the shape and can be augmented with higher-order
statistics to attain more detail if the data supports it. The
reduction of degrees of freedom from individual pixels to
blob parameters is a form of regularization which allows
the ill-conditioned problem to be solved in a principled and
stable way.

For both 2-D and 3-D blobs, there is a useful physical
interpretation of the blob parameters in the image space. The
mean represents the geometric center of the blob area (2-D)
or volume (3-D). The covariance, being symmetric, can be
diagonalized via an eigenvalue decomposition: C = ΦLΦT

,where Φ is orthonormal and L is diagonal.
The diagonal L matrix represents the size of the blob

along independent orthogonal object-centered axes and Φ
is a rotation matrix that brings this object-centered basis in
alignment with the coordinate basis of C.

This decomposition and physical interpretation is im-
portant for estimation, because the shape L can vary at a
different rate than the rotation Φ. The parameters must be
separated so they can be treated appropriately.

2.2. Maximum Likelihood Estimation

The blob features are modeled as a mixture of Gaussian
distributions in the color (or texture, motion, etc.) space.
The algorithm that is generally employed for learning the
parameters of such a mixture model is the Expectation-
Maximization (EM) algorithm of Dempster et al [10], [29].

In our system the input data vector d is the normalized
R,G,B content of the pixels in the image. The color dis-
tribution of each of our blobs is modeled as a mixture of
Gaussian Probability Distribution Functions (PDF’s) that
are iteratively estimated using EM. We can perform a max-
imum likelihood decision criterium after the clustering is
done because human skin forms a dense manifold in color
space. Two different clustering techniques, both derived
from EM are employed: an off-line training process and an
on-line adaptive learning process.

In order to determine the mixture parameters of each of
the blobs, the unsupervised EM clustering algorithm is com-
puted off-line on hundreds of images of the different classes
to be modeled (in our case, face, lips and interior of the
mouth), in a similar way as is done for skin color modeling
in [17]. When a new frame is available the likelihood of
each pixel is computed using the learned mixture model and
compared to a likelihood threshold. Only those pixels whose
likelihood is above the threshold are classified as belonging
to the model.

2.3. Adaptive Modeling via EM

Even though general models make the system relatively
user-independent, they are not as good as an adaptive, user-
specific model would be. We therefore use adaptive sta-
tistical modeling of the blob features to narrow the general
model, so that its parameters are closer to the specific users’
characteristics.

The first element of our adaptive modeling is to update
the model priors as soon as the user’s face and face features
have been detected. The new distribution parameters are



computed as follows:

Σnew = [Σ�1
general + Σ�1

user]
�1

�new = Σnew[Σ�1
general � �general + Σ�1

user � �user]

(1)
Equation 1 corresponds to a model averaging of the general
and the learned models, in which the prior probability for
each model is the same.

This update of priors occurs only at the beginning of
the sequence, assuming that the blob features are not going
to drastically change during run time. To obtain a fully
adaptive system, however, one must also be able to handle
second-to-second severe changes in illumination and user
characteristics.

We therefore use an on-line Expectation-Maximization
algorithm ([27]) to adaptively model the image characteris-
tics, We model both the background and the face as a mixture
of Gaussian distributions with mixing proportions�i and K
components:

p(x=Θ) =
KX
i

�i
e�1=2(x��i)T Σ(�1)

i
(x��i)

(2�)d=2jΣij1=2
(2)

The unknown parameters of such a model are the sufficient
statistics of each Gaussian distribution (�i;Σi), the mixing
proportions�i and the number of components of the mixture
K.

The sufficient statistics are updated by computing an on-
line version of the traditional EM update rules. If the first
n data points have already been computed, the parameters
when data point (n + 1)1 is read are estimated as follows:
First, the responsibility hn+1

i for a new data point xn+1 is
computed:

hn+1
i =

�ni p(x
n+1=�ni )P

j �
n
j p(x

n+1=�nj )
(3)

This responsibility can be interpreted as the probability
that a data point xn+1 was generated by component i. Once
this responsibility is known, the sufficient statistics of the
mixture components are updated, weighted by the responsi-
bilities:

�n+1
i = �ni +

hn+1
i � �ni

n
(4)

�n+1
i = �ni +

hn+1
i

n �wn
i

(xn+1 � �ni ) (5)

�
2(n+1)
i = �

2(n)
i +

hn+1
i

n �wn
i

((xn+1 � �ni )
2 � �

2(n)
i )(6)

where �i is the standard deviation of component i and
wn+1
i is the average responsibilityof component i per point:

1Superscript n will refer in the following to the estimated parameters
when n data points have already been processed

wn+1
i = wn

i +
hn
i
�wn

i

n . The main idea behind this update
rules is to distribute the effect of each new observation to all
the terms in proportion to their respective likelihoods.

A new component is added to the current mixture model if
the most recent observation is not sufficiently well explained
by the model. If the last observed data point has a very
low likelihood with respect of each of the components of
the mixture, i.e. if it is an outlier for all the components,
then a new component is added with mean the new data
point and weight and covariance matrix specified by the
user. The threshold in the likelihood can be fixed or could
be stochastically chosen: the algorithm would randomly
choose whether to add a component or not given an outlier.
There is a maximum number of components for a given
mixture as well.

The foreground models are initialized with the off-line
unsupervised learned a priori mixture distributions de-
scribed above. In this way, the algorithm quickly converges
to a mixture model that can be directly related to the a priori
models’ classes. The background models are not initialized
with an a priori distribution but learned on-line from the
image.

2.4. MAP segmentation

Given these models, a MAP foreground-background de-
cision rule is applied to compute support maps for each of
the classes, that is, pixel-by-pixel maps showing the class
membership of each model. Given several statistical blob
models that could potentially describe some particular image
data, the membership decision is made by searching for the
model with the Maximum A Posteriori (MAP) probability.

Once the class memberships have been determined, the
statistics of each class are then updated via the EM algo-
rithm, as described above. This approach can easily be seen
to be a special case of the MDL segmentation algorithms
developed by Darrell and Pentland [9, 8] and later by Ayer
and Sawhney [2].

2.5. Kalman filtering

To ensure stability of the MAP segmentation process, the
spatial parameters for each blob model are filtered using a
zero-order Kalman filter. For each blob we maintain two
independent, zero-order filters, one for the position of the
blob centroid and another for the dimensions of the blob’s
bounding box. The MAP segmentation loop now becomes:

1. For each blob predict the filter state vector, X� = X̂
and covariance matrix, C� = Ĉ + (∆t)2W , where the
matrix W measures the precision tolerance in the esti-
mation of the vector X and depends on the kinematics
of the underlying process.

2. For each blob new observations Y (e.g., new estimates
of blob centroid and bounding box computed from the



image data) are acquired and the Mahalanobis distance
between these observations (Y,C) and the predicted
state (X̂; Ĉ) is computed. If this distance is below
threshold, the filters are updated by taking into account
the new observations:

Ĉ =

h
C
�
�1
+ C

�1
i
�1

(7)

X̂ = Ĉ

h
C
�
�1
X
�

+ C
�1
Y

i
�1

(8)

Otherwise a discontinuity is assumed and the filters
are is reinitialized: X̂ = X� and Ĉ = C�.

A generalized version of this technique is employed in [7]
for fusing several concurrent observations.

2.6. Continuous real-time HMMs

Our approach to temporal interpretation of facial expres-
sions uses Hidden Markov Models (HMMs) [28] to recog-
nize different patterns of mouth movement. HMMs are one
of the basic probabilistic tools used for time series modeling.

HMMs fall into our Bayesian framework with the addi-
tion of time in the feature vector. They offer dynamic time
warping, an efficient learning algorithm and clear Bayesian
semantics. We have developed a real-time HMM system
that computes the maximum likelihood of the input sequence
with respect to all the models during the testing or recogni-
tion phase. This HMM based system runs in real time on an
SGI Indy, with the low-level vision processing occurring on
a separate Indy, and communications occurring via a socket
interface.

3. Automatic Face Detection and Tracking

Our approach to the face finding problem uses coarse
color and size/shape information. This approach has advan-
tages over correlation or eigenspace methods, such as speed
and rotation invariance under constant illumination condi-
tions. Moreover, our own work [34], or that of Schiele et
al or Hunke et al [31, 16] have shown that use of normal-
ized or chromatic color information ( r

r+g+b
; g
r+g+b

) can be
reliably used for finding ’flesh areas’ present in the scene
despite wide variations in lighting.

By training the model on thousands of skin color samples,
using off-line EM clustering, we have obtained a model
that is valid for a broad spectrum of users (Indian, Asian,
Caucasian, South American...).

As described in the mathematical framework (section 2),
our system uses an adaptive EM algorithm as well. Both the
foreground and background classes are learned incremen-
tally from the data. As a trade-off between the adaptation
process and speed, new models are updated only when there
is a significant drop in the a posteriori match between model
and data.

Two to three mixture components is the typical number
required to accurately describe the face. Mouth models are
more complex, often requiring up to five components. This
is because the mouth model must include not only lips, but
also the interior of the mouth and the teeth.

3.1. Blob Growing

After initial application of the MAP decision criterion to
the image, often isolated and spurious pixels are misclassi-
fied. Thus local pixel information needs to be merged into
connected regions that correspond to each of the blobs.

The transition from local to global information is
achieved by applying a connexity algorithm which grows
the blob. The algorithm we use is an speed-optimized ver-
sion of a traditional connectivityalgorithm that considers for
each pixel the values within a neighborhood of a certain ra-
dius (which can be varied at run-time) in order to determine
whether this pixel belongs to the same connected region.

Finally, these blobs are then filtered to obtain the best
candidate for being a face or a mouth. Color information
alone is not robust enough for this purpose. The background,
for instance, may contain skin colors that could be grown and
erroneously considered as faces. Additional information is
thus required. In the current system, geometric information,
such as the size and shape of the object to be detected (faces)
is combined with the color information to finally locate the
face. In consequence, only those ’skin blobs’ whose size
and shape (ratio of aspect of its bounding box) are closest to
the canonical face size and shape are considered. The result
is shown in figure 1.

Figure 1. Face detection and growing

3.2. Active Camera Control

Because our system already maintains a Kalman filter
estimate of the centroid and bounding box of each blob, it is
a relatively simple matter to use these estimates to control
the camera so that the face of the user always appears in the
center of the image and with the desired size. Our system
uses an abstraction of the camera control parameters, so that
different camera/motor systems (currently the Canon VCC1
and Sony EVI-D30) can be successfully used in a totally
transparent way. In order to increase tracking performance,
the camera pan-tilt-zoom control is done by an independent
light-weight process (thread) which is started by the main
program.

The current estimation of the position and size of the
user’s face provides a reference signal to a PD controller



which determines the tilt, pan and zoom of the camera so
that the target (face) has the desired size and is at the desired
location. The zoom control is relatively simple, because it
just has to be increased or decreased until the face reaches
the desired size. Pan and tilt speeds are controlled by Sc =
Ce�E+Cd�

dE

dt

Fz
, whereCe andCd are constants,E is the error,

i.e. the distance between the face current position and the
center of the image, Fz is the zoom factor, and Sc is the final
speed transmitted to the camera.

The zoom factor plays a fundamental role in the camera
control because the speed with which the camera needs to be
adjusted depends on the displacement that a fixed point in the
image undergoes for a given rotation angle, which is directly
related to the current zoom factor. The relation between this
zoom factor and the current camera zoom position follows a
non-linear law which needs to be approximated. In our case,
a second order polynomial provides a good approximation.

4. Mouth Extraction and Tracking

Once the face location and shape parameters are known
(center of the face, width, height and image rotation angle),
we can use anthropometric statistics to define a bounding
box within which the mouth must be located.

The mouth is modeled using the same principles as the
face, i.e. through a second-order mixture model that de-
scribes both its chromatic color and spatial distribution.
However to obtain good performance we must also produce
a more finely detailed model of the face region surrounding
the mouth. The face model that is adequate for detection and
tracking is not adequate for accurate mouth shape extraction.

Our system, therefore, acquires image patches from
around the located mouth and builds a Gaussian mixture
model. In the current implementation, skin samples of three
different facial regions around the mouth are extracted dur-
ing the initialization phase and their statistics are computed.
Figure 2 is an example of how the system performs in the
case of facial hair. The robustness of the system is increased

Figure 2. Head and mouth tracking: rotations, facial hair

by computing at each time step the linearly predicted posi-
tion of the center of the mouth. A confidence level on the
prediction is also computed, depending on the prediction
error. When the prediction is not available or its confidence
level drops below a threshold, the mouth’s position is reini-
tialized.

4.1. Mouth shape

The mouth shape is characterized by its area, its spatial
eigenvalues (e.g., width and height) and its bounding box.
The use of this feature vector to classify facial expressions
has been suggested by psychological experiments [36, 22],
which examined the most important discriminative features
for expression classification.

Rotation invariance is achieved by computing the face’s
image-plane rotation angle and rotating the region of interest
with the negative of this angle. Therefore even though the
user might turn the head the mouth always appears nearly
horizontal, as figure 2 illustrates.

5. Speed, Accuracy, and Robustness

Running LAFTER on a single SGI Indy with a 200Mhz
R4400 processor, the average frame rate for tracking is typ-
ically 25 Hz. When mouth detection and parameter extrac-
tion are added to the face tracking, the average frame rate is
14 Hz.

To measure LAFTER’s 3D accuracy during head motion,
the RMS error was measured by having users make large
cyclic motions along the X, Y, and Z axes respectively, with
the true 3D position of the face being determined by manual
triangulation. In this experiment the camera actively tracked
the face position, with the image-processing/camera-control
loop running at a nearly constant 18hz. The image size
was 1/6 full resolution, i.e. 106x80 pixels, and the camera
control law varied pan, tilt, and zoom to place the face in
the center of the image at a fixed pixel resolution.

The RMS error between the true 3D location and the
system’s output was computed in pixels and is shown in
table 1. Also shown is the variation in apparent head size,
e.g., the system’s error at stabilizing the face image size. As
can be seen, the system gave quite accurate estimates of 3D
position. Perhaps most important,however, is the robustness

X RMS Y RMS Translation
Range

(pixels) (pixels) (cm)

Static 0.5247 0.5247 0.0
Face (0.495 %) (0.6559 %)

X 0.6127 0.8397 +
�

76
translation (0.578 %) (1.0496 %)

Y 0.8034 . 1.4287 +
�

28
translation (1.0042 %) (1.7859 %)

Z 0.6807 1.1623 +
�

78
translation (0.6422 %) (1.4529 %)

Width Std Height Std Size change
(pixels) (pixels) (pixels )

Zooming 2.2206 2.6920 Max. size: 86x88
(2.09 %) (3.36 %) Min. size: 14x20

Table 1. Accuracy.

of the system. LAFTER has been tested on hundreds of



users at many different events, each with its own lighting
and environmental conditions. Examples are the Digital
Bayou, part of SIGGRAPH 96’, the Second International
Face & Gesture Workshop (October 96) or the last three
sponsors open houses (1996-1997).

6. Recognition

Using the mouth shape feature vector described above,
we trained 5 different HMM’s for each of the following
mouth configurations (illustrated in figure 3): neutral or
default mouth position, extended/smile mouth, sad mouth,
open mouth and extended+open mouth (such as in laughing).
The neutral mouth acted to separate the various expressions,

Figure 3. Smile-open, sad, open and smile

much as a silence model acts in speech recognition. The final
HMM’s we derived for the non-neutral mouth configurations
consisted of 4-state forward HMM’s. The neutral mouth was
modeled by a 3-state forward HMM.

Recognition results for a eight different users making
over 2000 expressions are summarized in table 2. The users
were divided in different groups for training and testing
purposes. The first of the recognition tasks shown in table 2
corresponds to a training and testing with all the eight users.
The total number of examples is denoted by N, having a
total N=2058 instances of the mouth expressions (N=750 for
training and N=1308 for testing). As can be seen, accurate
classification was achieved in each case.

Recognition Results On training On testing

All users 97.73 95.95
Single user 100.00 100.00

Table 2. Recognition results: training and testing data

7. Applications

7.1. Automatic Camera Man.

The static nature of current video communication systems
induces extra articulatory tasks that interfere with real world
activity. For example, users must keep their head (or an
object of interest) within the field of the camera (or of the
microphone) in order to be perceived by distant parties. As a
result, the user ends up being more attentive to the way how

to using the interface than to the conversation itself. The
communication is therefore degraded instead of enriched.

In this sense, LAFTER, with its active camera face track-
ing acts as an ’automatic camera man’ that is continuously
looking at the user while he/she moves around or gestures
in a video-conference session. In informal teleconferenc-
ing testing, users have confirmed that this capability signifi-
cantly improves the usability of the teleconferencing system.

We can also use the system in a ‘Virtual Window’ mode
[14]: as the user moves in front of his local camera, the
distant motorized camera is moved in the same way. In in-
formal tests, users have said that the LAFTER-based virtual
window system gives a good sense of the distant space.

7.2. Real-time computer graphics animation

Because LAFTER continuously tracks face location,
image-plane face rotation angle, and mouth shape, it is a
simple matter to use this information to obtain real-time an-
imation of a computer graphics character. This character
can, in a simpler version, constantly mimic what the user
does (as if it where a virtual mirror) or, in a more complex
system, understand (recognize) what the user is doing and
react to it. A ‘virtual mirror’ version of this system — us-
ing the character named Waldorf shown in figure 4 — was
exhibited in the Digital Bayou section of SIGGRAPH’96 in
New Orleans’ naive users.

Figure 4. Real time computer graphics animation

7.3. Preferential Coding

Finally, LAFTER can be used as the front-end to a pref-
erential image coding system. It is well-known that people
are most sensitive to coding errors in facial features. Thus
it makes sense to use a more accurate (and more expensive)
coding algorithm for the facial features, and a less accu-
rate (and cheaper) algorithm for the remaining image data
[11, 24, 1]. Because the location of these features is detected
by our system, we can make use of this coding scheme.

8. Conclusion and Future Work

In this paper we have described a real-time system for
finding and tracking a human face and mouth, and recogniz-
ing mouth expressions using HMM’s. The system runs on a
single SGI Indy computer, and produces estimates of head
position that are surprisingly accurate.

The system has been successfully used as the base for
several different applications, including an automatic cam-
era man, a virtual window video communications system,



and a real-time computer graphics animation system. The
system has been tested on hundreds of naive users in several
physical locations, with a success rate of over 97%.
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