Multifeature Systems:
The CARE Properties and Their Impact on Software Design

Laurence Nigay, Joélle Coutaz

Laboratoire CLIPS-IMAG
BP 53, 38041 Grenoble Cedex 9, France
Tel. +33 76 51 44 40, +33 76 51 48 54,
E-mail: Laurence.Nigay @imag.fr, Joelle.Coutaz@imag.fr

Abstract

This chapter is concerned with the usability and
implementation of multifeature systems such as
multimodal and multimedia user interfaces. We show
how the usability of such systems can be characterized
in terms of the relations they are able to maintain
between the interaction languages and the I/O devices
they support. Interaction language and devices are the
resources and knowledge that the system and the user
need to share to accomplish a task successfully.
Equivalence, assignment, redundancy, and
complementarity of interaction languages and devices
form an important set of relations relevant to usability
assessment and software design. We then depart from
the HCI perspective to consider the implications of
such properties on software design and technical
solutions: we present PAC-Amodeus, a software
architecture model, in conjunction with a generic
fusion mechanism for developing multifeature
systems. We highlight how PAC-Amodeus and the
fusion mechanism support the above four properties.

Introduction

Multifeature user interfaces support multiple interaction
techniques which may be used sequentially or
concurrently, and independently or combined
synergistically (Nigay, Coutaz 1993a). New interaction
aspects must be considered, such as the fusion and fission
of information, and the nature of temporal constraints.

The availability of multiple interaction techniques opens
a new world of experience, but our understanding of how
they relate to each other is still unclear. We propose here a
unified framework based on the notions of interaction
language and physical device. The framework illuminates
the relationship between interaction languages and physical
devices. Such relationships are useful for eliciting design
criteria, for classifying existing multifeature systems
(Nigay 1994) and for evaluating the usability of a system.
In this paper, we focus on usability aspects and show how
the usability of a system can be correlated with the
relationships that the system is able to maintain between

the interaction languages and the devices it supports. We
then depart from the HCI perspective to consider the
implications of such relationships on software techniques
and tools.

We have developed NoteBook, a voice-enabled
electronic notebook (Nigay 1993) and MATIS, a
Multimodal Airline Travel Information Systems (Nigay
1994) (Nigay, Coutaz 1993b). These systems handle both
speech, mouse and keyboard inputs. Speech input is
processed by Sphinx, a continuous speaker independent
recognition engine (Lunati, Rudnicky 1991). MATIS
allows a user to retrieve information about flight schedules
using speech, direct manipulation, keyboard and mouse, or
a combination of these techniques (Nigay 1994). MATIS
supports both individual and synergistic use of multiple
input modalities. For example, using one single modality,
the user can say “show me the USAir flights from Boston
to Denver” or can fill in a form using the keyboard. When
exploiting synergy, the user can also combine speech and
gesture as in “show me the USAir flights from Boston to
this city” along with the selection of "Denver" with the
mouse. MATIS does not impose any dominant modality :
all of the modalities have the same power of expression for
specifying a request and the user can freely switch between
them. This is in contrast to for example the GEORAL
system presented in (Siroux et al. 1996), a touristic
information retrieval system, in which speech is the
dominant modality. In this chapter, MATIS is used to
illustrate the discussion.

Although our earlier studies focused on input user
interfaces, we wish to demonstrate the relevance of our
results to the design of multimodal output interfaces. The
framework that we describe in the following two sections
embeds input as well as output interfaces. The next section
introduces a software architecture model as a guideline in
designing the software of multimodal input and output
interfaces. We then present a generic software, called
fusion mechanism, which handles user’s inputs specified
through different interaction techniques. We note though
that the fusion mechanism is a tool for developing input
user interfaces only.

The Design Space:
Physical Devices and Interaction Languages

In his theory of action, Norman structures the execution
gulf into a semantic and an articulatory distance that the
user needs to cover in order to reach a particular goal
(Norman 1986). A similar reasoning holds for information
acquisition. This user-centered approach pays little
attention to the processing steps that occur within the
computer system. Our Pipe-lines model makes these stages
explicit (Nigay 1994). By so doing, we extend Norman’s
theory in a symmetric way within the computer system. As
shown in Figure 1, information acquired by input digital
channels (physical devices) is transformed through
multiple process activities. This sequence of input
transformations forms the interpretation function (input
interface). In the other direction (output interface), internal
information (e.g., system state) is transformed to be made
perceivable to the user. This sequence of output
transformations defines the rendering function. The
interpretation and the rendering functions can be both
characterized with four intertwined ingredients: level of
abstraction, context, fusion/fission, and parallelism. These
dimensions of the MSM framework are fully described in
(coutaz, nigay & salber 93). In particular the notion of level
of abstraction expresses the degree of transformation that
the interpretation and rendering functions perform on
information. And this "level of abstraction" dimension of
the MSM framework enables us to distinguish multimedia
and multimodal systems: a multimodal system is a
multimedia system with a high capacity of interpretation
and/or rendering. The first definition of multimodality
introduced in (Gellersen 1996) is in accordance with our

The Pipe-Lines model highlights three levels of
abstraction in the interpretation and rendering functions:
* physical action in relation with a physical device,
¢ informational unit in relation with an interaction
language,
* system action in relation with a task.

Two relevant concepts therefore emerge from this model:
the notion of physical device and that of interaction
language. Interestingly, these concepts cover the semantic
and articulatory distances of Norman’s theory. They are
resources and knowledge that the system and the user need
to share to accomplish a task successfully.

Definitions

A physical device is an artifact or an organ necessary to a
system or a human in order to acquire (input device) or
deliver (output device) information. Examples include
keyboard, loudspeaker, microphone, ears and mouth.

A physical action is an action performed either by the
system or the user on a physical device. Examples include
highlighting information on the screen, synthesizing sound,
pushing a mouse button and uttering a sentence.

An interaction language is a language used by the user
or the system to exchange information. A language defines
the set of all possible well-formed expressions, i.e., the
conventional assembly of symbols, that convey meaning.
The generation of a symbol or a set of symbols, results
from a physical action. Examples include pseudo-natural
language and direct manipulation language.

An informational unit is an atomic unit that conveys
meaning. An informational unit is related to an interaction
language which defines a set of informational units.
Examples include part of command and selection of an
icon.

System action:
task I

definition multimodal = multimedia + media
interpretation.
Intention Physical action: Informational unit:
Mental physical device | interaction language!
| representation

Functional ||
Core

Figure 1: The Pipe-Lines model.

An interaction technique is defined by the couple :
(physical device, interaction language).

Adopting Hemjslev’s terminology (Hemyjslev 1947), the
physical device determines the substance (i.e., the non
analyzed material) of an expression whereas the interaction
language denotes its form or structure. For example:

¢ speech input is characterized by the couple (device =
microphone, language = the pseudo natural language NL),
where NL is defined by a grammar,

» graphic output is characterized by the couple (device =
screen, language = tables).

Modality as defined in Bernsen’s modality theory (Bernsen
1996) corresponds to an interaction technique. The theory
includes 70 modalities including dynamic analogue
graphics. But the theory does not consider the device and
language concepts in defining a modality. The information
mapping (IMAP) methodology (Bernsen 1996) focuses on
the choice of a modality starting from the concepts related
to the task. The IMAP methodology establishes links
between the task level of Pipe-Lines and both the
interaction language and physical device levels in the case
of the rendering function (output interface). A similar
approach can be found in (Karagiannidis, Koumpis, &
Stephanidis 1996): a methodology is proposed to select a
modality according to the information content to be
rendered and the interaction context. Again rules are
proposed to establish links between the task level and both
the language and device levels of Pipe-Lines. One advance
in the latter approach is that it provides temporal
combinations of modalities. In the following section we
also consider relationships between interaction techniques
which are orthogonal to the temporal combination.

Usability and Relationships
between Interaction Languages and Devices

In (Abowd, Coutaz & Nigay 1992), we discuss the
usability of a system in terms of two properties: interaction
flexibility and interaction robustness. Interaction flexibility
covers the multiplicity of ways with which the user and the
system exchange information. Interaction robustness
denotes the features of the interaction that support the
successful achievement and assessment of goals. We here
propose the CARE properties as a simple framework for
reasoning about multimodal interaction from both the user
and the system perspectives: i.e., the Complementarity,
Assignment, Redundancy, and Equivalence that may occur
between the interaction techniques available in a
multimodal user interface. The notions of equivalence,
assignment, redundancy, and complementarity have been
primarily introduced in the TYCOON design space
(Martin, Beroule 1996). We define these four notions as
relationships between devices and interaction languages
and between interaction languages and tasks (the three
levels of the Pipe-Lines model): the CARE properties.
These properties affect flexibility and robustness.

The TYCOON framework offers another approach to
the analysis of multimodal systems (Martin, Beroule 1996).
In TYCOON, a modality is modelled as a computational
process similar to the interactor-based modelling technique
developed in Amodeus (Paterno & Mezzanotte 1996),
(Duke & Harrison 1994). Multimodality is discussed in
terms of various types of composition between modality
processes. Although TYCOON is a useful computational
model for reasoning about software design, it is not
primarily driven by end-user concerns.

In the following paragraphs we define and illustrate
using examples the system CARE properties (the CARE
properties supported by the system) applied to tasks,
interaction languages and physical devices. We then show
that these properties affect both flexibility and robustness.

The system CARE properties

As shown in figure 2, the CARE properties involve both
devices and languages. In addition, they can be either
permanent or transient, and either total or partial. In this
context, a relation is permanent if it holds for any state of
the system ; otherwise, it is said to be transient. A relation
is total if it holds for any task supported by the system. It is
partial when the relation is true for a subset of the task
space.

Complementarity 4 — — 4+ —
Assignment +t - — + —
Redundancy -T- —_ - .T_ —
Equivalence +r - = =
e Language

Figure 2: A framework to characterize multifeature user
interfaces with relations between interaction languages,
physical devices and tasks.

Having presented the general picture of our
framework, we need now to define the relations more
formally. To do so, we will consider the notions of system
state and set of tasks to express the coverage of the
relations over time and over the user’s task space.

Language equivalence: L-Equivalence(L, s, T)

Interaction languages of a set L are equivalent over a state
s and a non empty set T of tasks, if all of the tasks in T can
be expressed using either one of the languages in L.
Equivalence is permanent if the relation holds for any state.
Equivalence is total if the relation holds for all of the tasks
that can be performed with the system. In MATIS, the user
can specify a request using direct manipulation or natural
language. For example, the departure time of a flight may

be specified by clicking “morning” on the screen or by
saying “arriving in the morning”. Direct manipulation and
natural language are permanently and totally equivalent for
tasks that are related to the specification of requests.

Language assignment: L-Assignment(l, s, T)

An interaction language 1 is assigned in state s to a set of
tasks T, if there exists no other interaction language
equivalent to 1 over s and T. Assignment is permanent if
the relation holds for any state. Assignment is total if the
relation holds for all of tasks that can be performed with
the system. For example, in MATIS, window manipulation
such as cut and paste tasks can be performed using direct
manipulation language only. In particular, speech is not
available for any task other than request specification tasks.

Language redundancy: L-Redundancy(L, s, t)

Interaction languages of a set L can be used redundantly in
some state s for a task t, if these languages are equivalent
over s and t, and if they can be used simultaneously to
express t. In MATIS, the user can articulate the sentence
“flights from Boston” while selecting “Boston” with the
mouse in the menu of known cities. Here, speech and direct
manipulation are used redundantly. As another example
drawn from the literature (Neal et al. 1988), a wall is
represented redundantly by the system via a red line
(graphics interaction language) and the vocal message
“mind the red wall!” (natural interaction language).
Redundant usage has been identifyed in the WOZ
experiment carried out by Siroux et al (Siroux et al. 1996).
In (Dowell, Shmueli & Salter 1996) redundant usage of
text and speech for outputs are refined into two categories:
verbatim reinforcement (text and speech are exactly the
same) and priming reinforcement (text is an abbreviated
version of the spoken sentence).

Language complementarity: L-Complementary(L, s, T)
Interaction languages of a set L are complementary over a
state s and a non empty set T of tasks, if T can be
partitioned such that for each partition Tp of T, there exists
a language 1 of L assigned to Tp over s. Language
complementarity is best illustrated by coreferential
expressions. For example, in MATIS, natural language and
direct manipulation are complementary deictic expressions.
In particular, the user can articulate the sentence "Flights
from this city to that city" while selecting "Boston" and
"Pittsburgh" in the menu of known cities. In this example,
speech is assigned to denote the slots concerned in the
request (i.e., the source and destination), and direct
manipulation is assigned to the specification of the slot
values (i.e., Boston and Pittsburgh). Again
complementarity use has been pointed out by Sirioux et al
(Sirioux et al 1996) as an observed behavior resulting from
a WOZ experiment.

Similar relations hold between devices and languages.
To illustrate the approach, we will consider the equivalence
of a set of devices for a particular language 1:

Device equivalence: D-Equivalence(D, s, E, [)

Devices in a set D are equivalent over a state s and a non
empty set E of expressions of an interaction language 1, if
all of the expressions of E can be defined using either one
of the devices in D. Equivalence is permanent if the
relation holds for any state. Equivalence is total if the
relation holding for E also holds for the set of expressions
that define 1. For example, in MATIS, the user who
chooses to specify a request in natural language, can either
type-in or utter the sentence: thus keyboard and
microphone are permanently and totally equivalent within
the natural language domain.

Similarly, device assignment connects a device to a
particular language. In MATIS, the mouse is permanently
assigned to the direct manipulation language. An example
of device redundancy would be the situation where the user
spells a character using the microphone and, in the mean
time, types in the same character.

Figure 3 schematically shows the CARE properties in
terms of interrelationships between the three levels of
abstraction of the Pipe-Lines model: devices, languages
and tasks. In addition we can apply the CARE properties at
a coarse grain and define the CARE properties in terms of
interrelationships between interaction techniques and tasks.
At this level of abstraction, the CARE properties could be
used to combine unimodal modalities in Bernsen’s
modality theory (Bernsen 1996). If we go one step forward
and consider several users (and not only one user and
several modalities) as in CSCW systems, the CARE
properties can be defined as relationships between users
and tasks. For example one user is assigned to a particular
task, or two users are "complementary" in performing a
given task. Within such systems the CARE properties can
therefore help define the role of each participant. In
conclusion, the CARE properties can be used at multiple
levels of goal refinement. Designers can exploit the
recursive nature of CARE to reason about multimodality at
the appropriate level.

The system CARE properties and usability
assessment

From the above definitions, we conclude that equivalence
provides a way to enhance flexibility: for input, the user
has multiple choices among languages and/or devices and,
for output, the system can choose among multiple
renderings. Equivalence is also a good ingredient for
robustness. For example, in a noisy environment, a MATIS
user may switch to direct manipulation or key-in natural
language sentences. For critical systems, equivalence of
languages and/or devices may be required to overcome
device breakdowns or processing limitations. In contrast to
this, assignment can be viewed as a restrictive feature.
Redundancy provides freedom and may also be used to
increase robustness. In complementarity however, usage of
multiple devices and languages may generate cognitive

overload and extra articulatory synchronization problems.
“Permanentcy” and “totalness” of the CARE relations are
also important usability factors. A permanent relation,
which holds for any state, and a total relation which holds
for all of the tasks and/or languages available, express the
absence of exceptions. “Partialness” and “transiency”, on
the other hand, fall into the “inconsistency trap”. For input,
the user will have to remember the context (e.g., the tasks)
for which the relations hold. For output, the system may
appear unstable with regard to its rendering strategy. The
CARE properties can be analyzed from additional
perspectives. In particular, time and processing resources
may provide useful insights. For example, in MATIS the
keyboard and the microphone are not equivalent for
specifying sentences in NL if one considers the time
needed to express the sentence. From the system
perspective, the acquisition of a NL sentence involves
more processing resources when uttered than when it is
typed in.

(' Devices)

(Languages

In (Coutaz et al. 1995) we adopt a formal approach and
show that the CARE properties of the computer system
have counterparts in the corresponding properties of the
user: the User-CARE properties. As with the system CARE
properties, the user properties are concerned with the
choice between different modalities for communicating
with the computer. We refer to user's preferences, affecting
her/his choice of input modalities, as U-preferences.:
¢ U-assignment: If only one modality is acceptable to the
user, or if she/he has a strong preference for one particular
modality.

° U-equivalence: If there exists a subset of the possible
modalities which she/he prefers to all others, but between
which she/he is indifferent.

¢ U-redundancy: If the user prefers to employ two or more
means of communication to convey the same information.

° U-complementarity: If the user’s preference is to use one
modality for one aspect of the task and another modality
for another aspect.

(Tasks)

@))

(D

) 4)

a set D of Devices can

according to

a set L of Languages can

be : be :

- equivalent - equivalent

- redundant - redundant

- complementary - complementary

according to

e adevice dican bp : /
assigned to ##

e a particular language li

e alanguage l.can be :

e a particular task t

assigned t(ﬁ

. J

\\ J L

-
/

Y

Qnteraction Techniques I@

/C D)

Techniques can be :
- equivalent

- redundant

- complementary

a set IT of Interaction

according to

itj can be :

¢ an interaction technique

_ assigned toj _ J

C

))

e a particular task t

NS

Figure 3: Overall representation of equivalence, assignment, redundancy, and complementarity between devices, languages

and tasks.

The requirement on the design of the system is that its
properties must be compatible with the user’s
U-preferences. In (Coutaz et al. 1995) we use the notion of
compatibility between user preferences and system
properties to show how the CARE properties interact with
user modeling and predict usability during system design.

In summary, we have shown that the CARE relations
provide insights for usability assessment of multifeature
systems. We are aware that our current definitions may be
enriched in many different ways. Additional constraints
such as time and processing resources used by the user
and/or the system are two relevant features. For now, we
stick to the definitions provided above and discuss their
implications on software design. Our technical solution for
implementing the system CARE properties draws upon our
software architecture model: PAC-Amodeus.

PAC-Amodeus, a software architecture model

PAC-Amodeus (Nigay 1994) (Nigay, Coutaz 1993a) is a
software archirecture model. It provides a framework for
performing functional partitioning and allocation of
function to structural components based on system and
user-centered properties.

PAC-Amodeus uses the Arch model (UIMS workshop
1992) as the foundation for the functional partitioning of an
interactive system and populates the key element of this
organisation, i.e., the Dialogue Controller, with PAC
agents (Coutaz 1987). Indeed PAC-Amodeus incorporates
the two adaptor components of Arch, the Interface with the
Functional Core (IFC) and the Presentation Techniques
Component (PTC), to insulate the keystone component
(i.e., the Dialogue Controller, DC) from modifications
occurring in its unavoidable neighbors, the Functional Core
(FC) and the Low Level Interaction Component (LLIC).

As shown in Figure 4, PAC-Amodeus makes explicit the
boundaries of the Presentation Techniques and the Low
Level Interaction components using the notions of physical
device and interaction language. In PAC-Amodeus, the
functional partitioning of an interactive system should be
defined according to the following rule:

¢ the Low Level Interaction Component should be device
dependent and language dependent;

o

the Presentation Techniques Component is device
independent but still language dependent;

o

the other components of the interactive system, including
the Dialogue Controller, should be both device and
language independent.

This rule is mainly guided by two software engineering
quality criteria, namely re-usability and modifiability. The
PAC-Amodeus model however, does not indicate how the
CARE properties can be supported within the architecture.
Implementation of the CARE properties are detailed in the
following section. We here consider the CARE properties
defined as relationships between interaction techniques and
tasks (bottom layer of figure 3).

Implementation of the system CARE properties
within PAC-Amodeus

Equivalence and assignment properties do not require a
specific code. On the one hand, equivalence implies that
the same piece of information resulting from the usage of
different interaction techniques is passed from the PTC to
the same PAC agent of the DC. Equivalence can therefore
be achieved within the PTC. On the other hand, assignment
implies that only one interaction technique can be used to
convey a particular piece of information to a particular
PAC agent of the DC. Again assignment is a property that
can be implemented in the PTC.

Fusion engine

Dialogue Controller

1
Conceptual
Objects

“Presentation
Objects

\

Y
Interface with the

Functional Core

Presentation ’i"echniques
Component

Language dependent

Domain Objects

Interaction Objects

Functional Core

Domain dependent

Low Level
InteractionComponent

Device dependent

Figure 4: The PAC-Amodeus model and the fusion engine which implements the CARE properties.

To implement the redundancy and the complementarity
properties, we have developed a fusion engine (Nigay,
Coutaz 1995) at the Dialogue Controller level. A related
approach consisting of a merging process can be found in
(Sirioux 1996). Because our fusion algorithm is generic
and can be reused, it disappears from the architectural
design solution. It is not part of a PAC-Amodeus
architecture. It operates behind the scene as a reusable
mechanism.

Each PAC agent has access to the fusion mechanism
through its Control facet. The fusion mechanism is
responsible for combining information specified by the
user using different interaction techniques. Criteria to
combine information include time and structural
complementarity.

The fusion mechanism is based on a uniform
representation, the melting pot object. As shown in Figure
5, a melting pot object is a 2-D structure. The "structural
parts" correspond to the structure of the tasks that the
Dialogue Controller is able to handle. Events generated by
user's actions are abstracted and mapped onto the structural
parts. These events have different time-stamps. The
structural decomposition of a melting pot is described in a
declarative way outside the engine. By doing so, the fusion
mechanism is domain independent: structures that rely on
the domain are not “code-wired”. They are used as
parameters for the fusion engine.

Before describing the types of fusion which define the
overall behavior of the engine we consider an example
using MATIS tasks: Figure 5 shows how redundancy and
complementarity are handled by the fusion mechanism. In
the redundancy example, the user has uttered the sentence
“Flights from Boston” while selecting “Boston” with the
mouse in the scrollable list of known cities. The speech act
generates the bottom left melting pot: at time tj, the slot

“from” is filled in with the value “Boston”. The melting

Structural parts

Bos

» Time

Structural Aru%
[

parts | parts

Bos Bos

- »Time » Time
t ti

Redundancy
<Uttered sentence
"Flights from Boston"
while selecting Boston>

pot to its right results from the mouse selection. The fusion
engine combines these two melting pots into a new one
(top left) which contains the value "Boston". A similar
reasoning applies to complementarity.

The criteria for triggering fusion are threefold: the
logical structure of commands, time, and context. When
triggered, the engine applies three types of fusions in the
following order: microfusion, macrofusion, and contextual
fusion.

* Microfusion is performed when input data are
structurally complementary and very close in time: i.e.,
microfusion combines inputs if they have been produced in
parallel or in pseudo-parallelism. (Intersection of time
intervals.)

* Macrofusion is performed according to the same criteria
as microfusion but combines data that belong to a given
temporal window. (Temporal proximity.) Macrofusion
implies proximity of time intervals as opposed to
microfusion which involves intersection of time intervals.

* Contextual fusion is performed according to the structure
of the data to be combined and the current context. For
example in MATIS, the context corresponds to the current
request. Contextual fusion combines new input data with
the current request if their respective structures are
compatible.

In addition to the three types of fusion which implement
complementarity, the mechanism checks for redundancy.
This is done before applying the Microfusion rule. As
opposed to complementarity, only one type of redundancy
is implemented, the microredundancy. Microredundancy is
defined as two very close columns that contain the same
information. As in microfusion, microredundancy
compares inputs if they have been produced in parallel or
in pseudo-parallelism.

Structural parts

Pit
Bos
» Time
Structural Aﬁh
parts [parts
Pit
Bos
»Time » Time
tj ti+1
Complementarity

<Uttered sentence
"Flights from Pittsburgh to this city"
while selecting Boston>

Figure 5: Redundancy and complementarity handled by the fusion mechanism.

The fusion engine and its rules are formally defined in
(Nigay, Coutaz 1995). Another formal approach based on
LOTOS is presented in (Paterno & Mezzanotte 1996). A
time extension of LOTOS is required to describe the
MATIS user behavior in terms of an interactor.

We note that the fusion mechanism supports simple
interaction of modalities. Moreover there is no dominant
modality handled by the fusion mechanism. As future
work, the context or history of interaction needs to be taken
into account: this can be accomplished by focusing on each
PAC agent which locally maintains its state. In addition,
we plan to enrich our fusion mechanism with a confidence
factor attached to every slot of a melting pot. The notion of
confidence factor provides a simple mechanism for
modelling uncertainty and can be usefully exploited for
solving ambiguities in deictic expressions
(Complementarity). Figure 6 shows the relevance of
confidence factors using the following example: the user
utters the sentence “Flights from Boston to this city” while
selecting “Denver” using the mouse.

A

From|Bos CF=10)
To Den CF=5

A —7 T~

From| Den CF=0 From[Bos CF=10

To Den CF=0 To [Null CF=10
' -
"Denver" "Flights from Boston to this city"

Figure 6: Confidence factor (CF € [0,10]): Example of a
deictic expression .

The fusion mechanism is generic and works
symbiotically with PAC-Amodeus, our software
architecture model. It defines a framework for developing
interfaces that support multiple interaction techniques.

Conclusions

We first presented the Pipe-Lines design space which
identifies three important levels of abstraction in the
interpretation and rendering functions. We then defined
the CARE properties as relationships between the three
levels of abstraction of Pipe-Lines and demonstrated how
they can be exploited to assess the usability of multifeature
systems. We have addressed the problem of why and how a
system supports different languages and devices. For
example:

* Do we use languages and devices synergistically (the
complementarity property)?

* Do we use languages and devices for specific tasks (the
assignment property)?

The definitions of the CARE properties provide a formal
framework for reasoning about the design of multimodal
systems. We have then shown how the CARE properties
can be used as constraints for the implementer. We have
designed a software architectural model, PAC-Amodeus,
augmented with a fusion mechanism to support the CARE
properties. The contribution of the software architecture
model and fusion engine is two-fold:

* an attempt to bridge the gap between HCI properties and
software design,

e a generic platform for implementing multifeature
systems.

Our natural next step is to study systems that support
multiple languages and devices for output. This may lead
to the development of a "fission" mechanism to implement
complementarity. Such a fission mechanism can be based
on the melting pot representation: by considering the
example of Figure 5, and by inverting the direction of the
arrows, we can sketch how the fission mechanism can
work to support complementarity and redundancy in output
interfaces. Several melting pots are deduced from a single
one and each derived melting pot is made perceivable by
the user through different output interaction techniques.

Acknowledgements

This work has been partly supported by project ESPRIT
BR 7040 Amodeus II. Many thanks to George Serghiou for
help with style and English grammar.

References

Abowd, G.; Coutaz, J.; and Nigay, L. 1992. Structuring the
Space of Interactive System Properties, IFIP WG2.7
Working Conference on Engineering for Human Computer
Interaction, Elsevier Publ., Finland, 113-128.

Bernsen, N. O. 1996. Rule-based multimodal interface
design. IMMI-1, session 3, John Lee ed.

Coutaz, J. 1987. PAC: an Implementation Model for
Dialog Design, Proceedings of Interact'87, H-J. Bullinger,
and B. Shackel eds, North Holland, Stuttgart, 431-436.

Coutaz, J.; Nigay, L.; and Salber, D. 1993. The MSM
framework: A Design Space for Multi-Sensori-Motor
Systems, in Proc. EWHCI’93, Moscow, Springer Verlag
(Lecture notes in Computer Science, Vol. 753, 1993, 231-
241).

Coutaz, J.; Nigay, L.; Salber, D.; Blandford, A.; May J.;
and Young, R. 1995. Four Easy Pieces for Assessing the
Usability of Multimodal Interaction:The CARE properties,
Proceedings of Interact'95, K. Nordby, P.H. Helmersen,

D.J. Gilmore and S. Arenesen eds, Chapman&Hall,
Norway, 115-120.

Duke, D.; and Harrison, M.. 1994. Folding Human Factors
into Rigourous Development. Proceedings of Eurographics
Workshop "Design, Specification, Verification of
Interactive Systems", F. Paterno ed., 335-352.

Dowell, J.; Shmueli, Y.: and Salter, I. 1996. Applying a
cognitive model of the user to the design of a multimodal
speech interface. IMMI-1, session 2, John Lee ed.

Gellersen, H-W. 1996. Toward engineering for multimodal
interactive systems. IMMI-1, session 4, John Lee ed.

Hemjslev,L. 1947. Structural Analysis of language, Studia
Phonetica, vol. 1, 69-78.

Karagiannidis, C.; Koumpis. A.; and Stephanidis, C. 1996.
Media/Modalities Allocation in Intelligent Multimedia
User Interfaces: Towards a Theory of Media and
Modalities. IMMI-1, session 3, John Lee ed.

Lunati J-M.; and Rudnicky, A. 1991. Spoken Lanmguage
interfaces: The OM system, CHI'91 Proceedings, New
Orleans, 453-454.

Martin, J.-C.; and Beroule, B. 1996. Multimodal interfaces

based on types and goals of cooperation between
modalities. IMMI-1, session 6, John Lee ed.

Neal, J.G.; Dobes, Z.; Bettinger, K. E.; and Byoun, J. S.
1988. Multi-Modal References in Human-Computer
Dialogue, The Seventh National Conference on Artificial
Intelligence, Saint Paul, Minesota, Vol. 2.

Nigay, L. 1993. A Case Study of Software Architecture for
Multimodal Interactive System: a voice-enabled graphic
notebook, Technical Report LGI-IMAG, 31 pages.

Nigay, L.; and Coutaz, J. 1993a. A design space for
multimodal interfaces: concurrent processing and data
fusion. INTERCHI’93 Proceedings, Amsterdam, 172-178.

Nigay, L.; and Coutaz, J. 1993b. Problem space, fusion and
parallelism in multimodal interfaces, INFORMATIQUE'93
Proceedings, Interface to Real&Virtual Worlds, 2th
international conference, Montpellier, 67-76.

Nigay, L. 1994 Conception et modélisation logicielles des
systemes interactifs application aux interfaces
multimodales, PhD dissertation, 315 pages.

Nigay, L.; and Coutaz, J. 1995. A Generic Platform for
Addressing the Multimodal Challenge. CHI'95
Proceedings, Denver, 98-105.

Norman, D. A. 1986. Cognitive Engineering, User
Centered System Design, New Perspectives on Computer
Interaction, D. A. Norman, S.W. Draper eds, Hillsdale,
New Jersey : Lawrence Erlbaum Associates, 31-61.

Paterno, F.: and Mezzanotte M. 1996. Reasoning on

multimodal interactive systems. IMMI-1, session 2, John
Lee ed.

Siroux. J.; Guyomard, M.: Multon, F.; and Remondeau C.
1996. Oral and gestural activities of the users in the
GEORAL system. IMMI-1, session 2, John Lee ed.

The UIMS Workshop Tool Developers 1992. A
Metamodel for the Runtime Architecture of an Interactive
System, SIGCHI Bulletin, 24, 1, 32-37.

