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Abstract: This paper introduces the notion of plasticity, a new property of interactive systems that denotes a
particular type of user interface adaptation. Plasticity is the capacity of a user interface to withstand variations
of both the system physical characteristics and the environment while preserving usability. Typically, a ‘plastic’
electronic agenda would run both on a workstation and on a hand-held computer without requiring a complete
system redesign and re-implementation. We present a generic framework inspired by the model-based approach,
for supporting the development of plastic user interfaces. Within this framework, a plastic user interface is
specified once and serves multiple sources of physical variations. The goal is to guarantee usability continuity
under variations in physical constraints while minimizing development and maintenance costs. This framework is
illustrated with two simple case studies. Preliminary results and the state of the art in HCI open a new research

agenda for the design and development of plastic user interfaces.
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1 Introduction

The need for ubiquitous access to information
processing, the success of new consumer devices
such as pocket computers and wireless networks, the
availability of large electronic boards as well as the
development of immersive caves, offer new challenges
to the HCI software community. In particular, user
interfaces need to accommodate the variability of a
large set of interactional devices without leading to
costly development efforts. For example, an electronic
agenda should run both on a workstation and on
a hand-held computer without requiring a complete
system redesign and re-implementation. In this article,
we introduce the notion of plasticity to denote this
particular type of user interface adaptation.

In the next section, we define the coverage of
plasticity within the problem space of adaptation.
We then present a generic framework inspired
from a model-based approach, for supporting the
development of plastic user interfaces. This
framework is illustrated with simple case studies.
Preliminary results and the state of the art in HCI open
a new research agenda for the design and development
of plastic user interfaces.

2 Adaptation and Plasticity
2.1 Adaptation

In HCI, adaptation is modeled as two complementary
system properties:  adaptability and adaptivity
(Browne et al.,, 1990; IFIP WG2.7, 1996).
Adaptability is the capacity of the system to allow
users to customize their system from a predefined set
of parameters. Adaptivity is the capacity of the system
to perform adaptation automatically without deliberate
action from the user’s part. Whether adaptation is
performed on human requests or automatically, the
design space for adaptation includes three additional
orthogonal axes (see Figure 1): target, means, and
time.

The target for adaptation This axis denotes the
entities for which adaptation is intended:
adaptation to users, adaptation to the
environment, and adaptation to the physical
characteristics of the system (e.g. interactional
devices such as a mouse).

The means of adaptation This axis denotes the
software components of the system involved
in adaptation: typically, the system task
model, the rendering techniques, and the help
subsystems, may be modified to adapt to the
targeted entities. The system task model is
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the system implementation of the user task
model specified by experts on human factors.
The rendering techniques denote the observable
presentation and behavior of the system. The
help subsystems include help about the system
and help about the task domain.

The temporal dimension of adaptation Adaptation
may be static (i.e. effective between sessions)
and/or dynamic (i.e. occurring at run time).

A more comprehensive classification scheme can
be found in (Dieterich et al., 1994) motivated by the
detailed analysis of intelligent user interfaces
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Figure 1: A design space for adaptation at a high level of
reasoning.

2.2 Plasticity

The term ‘plasticity’ is inspired from the property
of materials that expand and contract under natural
constraints without breaking, thus preserving
continuous usage. By analogy, plasticity is the
capacity of a user interface to withstand variations
of both the system physical characteristics and
the environment while preserving usability. In
addition, a plastic user interface is specified once
to serve multiple sources of physical variations,
thus minimizing development and maintenance costs.
Plasticity may be static and/or dynamic. It may be
achieved automatically and/or manually.

Within the design space of adaptation presented
in Figure 1, plasticity is characterized in the following
way:

1. Along the target axis, plasticity is concerned
with the variations of the system physical
characteristics and/or the environment. It

does not, therefore, cover adaptation to users’
variations.

2. Along the means axis, plasticity involves the
modification of the system task model and/or of
the rendering techniques.

3. The temporal and automaticity axes are left
opened.

Technically, platform independence of code
execution is not a sufficient condition to support
plasticity. Virtual toolkits, such as the Java abstract
machine, offer very limited mechanisms for the
automatic reconfiguration of a user interface in
response to variations of interactional devices. All
of the current tools for developing user interfaces
embed an implicit model of a single class of target
computers (typically, a keyboard, a mouse and at least
a 640x480 color screen). As a result, the rendering and
responsiveness of a Java applet may be satisfactory
on the developer’s workstation but not necessarily
usable for a remote Internet user. Therefore, platform
independence is not sufficient to guarantee usability
continuity. In addition, the iterative nature of the
user interface development process, as well as code
maintenance, make it difficult to maintain consistency
between the multiple target versions.

In the absence of appropriate software tools, we
need a framework for reasoning about the design and
development of plastic user interfaces.

3 A Framework for Plasticity

Going one step further than the slogan for portability
(i.e. “write it once and run it multiple times”),
a framework for supporting plasticity should allow
developers to specify it usable and produce it multiple
times.

Model-based user interface generators, which
promote the specification of high level models,
provide an approach consistent with our requirements:
they aim at usability while stressing computational
reification.  Our framework, inspired from such
generators, should be viewed as an added-value to the
models and methodological guides provided by the
seminal design methods in HCI (e.g. MUSE (Dowell &
Long, 1989), ADEPT (Johnson et al., 1993), or MAD
(Scapin & Pierret-Golbreich, 1990). Our framework
is not intended as a substitute to the models advocated
by the design methods. Instead:

e [t builds upon the models that work well in user
interface design and user interface development.
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e It improves existing models to satisfy the
requirements imposed by plasticity.

o It explicitly introduces new models that have
been overlooked or ignored so far.

Figure 2 shows the seven components of our
framework. A detailed description is given in
(Thevenin, 1998).
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Figure 2: A framework for the development of plastic.
Arrows denote models dependencies.

The User Task Model is a formal or semi-formal
transcription of the real world activities. It results
from the activity analysis performed by human factor
specialists.

The System Task Model describes how the work
tasks could be achieved with the introduction of the
designed system. This model is informed by the User
Task Model. The rules that govern the derivation of
the User Task Model into a System Task Model are
not well formalized yet. One can find in (Gamboa
Rodriguez & Scapin, 1997) some early attempts at
making the transformation explicit.

The Abstract User Interface is the canonical
expression of an abstract rendering of the domain
concepts and domain functions in conformance to the
System Task Model. At this level of abstraction,
rendering is interactor independent. It is similar
in spirit to the notion of common information
representation proposed in (Hiither & Rist, 1998). The
notion of Abstract User Interface will be discussed
further in Section 5.

The Interactors Model describes the interactors
available for the physical rendering of a particular
user interface. An interactor is an independent
communicating agent characterized by an internal
state and a perceivable state. It is capable of producing
events and processing events caused by a user or by
any component of the system. Graphical user interface

widgets, speech sentences are examples of interactors.
The interactor model has been used in a variety of
ways including system architecture modeling (Coutaz
et al., 1996), presentation mapping validity (Doherty
& Harrison, 1997), and user interface conformity with
system task modeling (Markopoulos et al., 1997).

The Platform Model describes the physical
characteristics of the target platforms. To our
knowledge, platform modeling has been considered
implicitly as the pervasive workstation. Plasticity
needs the explicit expression of the target platforms
in terms of quantified physical resources. A platform
model should include the interactional devices
available (e.g. mouse, screen, video cameras), the
computational facilities (e.g. memory and processing
power), as well as the communicational facilities
(e.g. bandwidth rate of the communication channels).
Although Mackinlay et al. (1990) address input
devices only, their theory provides sound foundations
for modeling the physical resources of a system.

The Environment Model specifies the context of
use. The scope of the notion of environment is still
unclear in the literature. Within the context of our
framework, the environment roughly covers objects,
persons and events that are peripheral to the current
task but that may have an impact on the system
and/or the user’s behavior. For example, a mobile
phone that knows that it has entered a public area
will automatically switch ringing signal from sonic to
vibrating. Salber in (Salber & Abowd, 1999) gives
an early attempt at defining the notion of environment
along with software components that support the
development of ‘context sensitive’ interactive systems.

The Physical User Interface results from the
constraints resolution and/or constraints propagation
expressed in the Platform Model, the Abstract User
Interface Model, the Interactors and the Environment
Models.

Finally, the models in relation to the physical
world (i.e. the Platform, the Interactors, and the
Environments Models) may in turn have an impact
on the System Task and the User Task models. For
example, users needs for reading email from a mobile
phone may not be different from the requirements
for processing email on a standard workstation.
Therefore, the derivation of a plastic user interface (as
any user interface) does not necessarily follow a pure
top-down design process.

The framework of Figure 2 sets the foundations
for the development of plastic user interfaces. To be
operational, the models it involves must be structured
and formalized. Next section provides preliminary
requirements and heuristics in that direction.
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4 Requirements and Heuristics

An early analysis of an electronic agenda has led us
to formulate a number of requirements and heuristics
in relation to the User Task Model, the System Task
Model, and the Interactors Model. The electronic
agenda runs both on a Palm Pilot and personal
workstations (i.e. PC and Macintosh).

4.1 The User Task Model

With regard to the User Task Model, we advocate the
following recommendation:

“Domain concepts involved in a task
should be ranked according to their level
of importance in the task domain as well
as according to their degree of centrality
for this particular interaction point.”

For example, in the agenda application, the day
of the month and the month of the year are first class
objects. Conversely, the day of the week (e.g. whether
the 15th of October is a Wednesday or a Friday) is not
necessary to carry most frequent tasks. It is a second
class object. The degree of centrality of a concept
denotes the extent to which that concept is part of
the environment for that particular task or is used as
a central item for carrying the task. Typically, the
location of use of an agenda is not central for executing
the task but may modify the way the task is carried out.

User and system task models and notations have
no provision for specifying the relative importance
and periphery of domain concepts. A notable
exception, however, is the task-related information
analysis presented in Sutcliffe (1997) and in TKS
(Johnson et al., 1995). The authors make an explicit
distinction between “the information required” and
“the information needed” by the user to carry a task.

The availability of first class and second class
concepts, as well as the centrality of concepts can help
the rendering process using general heuristics. An
example of such a heuristic is:

“First class objects should be observable
whereas second class objects may be
browsable if observability cannot be
guaranteed due to the lack of physical
resources.”

Another example is:

“Peripheral objects may be browsable
whereas central objects should be
observable.”

Observability is the capacity of the system to
make perceivable the concepts relevant for carrying

a particular task. Browsability allows the user to
make a concept perceivable when this concept is not
directly observable (IFIP WG2.7, 1996). In the agenda
example, a date is displayed as “Wednesday October
15,1998” on a workstation. It is rendered as “15
Oct 98 on the Palm Pilot whose screen resources are
scarce. Here, the day of the week, which is a second
class object, is not observable.

4.2 The System Task Model

The System Task Model, which describes how the
work tasks are achieved with the system, includes
domain-dependent tasks and articulatory tasks. An
articulatory task is domain independent. As such, it
does not appear in the User Task Model and it does
not modify the values of the domain concepts. In
general, an articulatory task is induced by the physical
apparatus and the rendering techniques of the system.
For example, the lack of screen space may introduce
extraneous tasks for accessing a sequence of screen
contents that would otherwise be presented at once on
a large display. Scrolling and navigating are typical
articulatory tasks.

In the context of plasticity, browsability, when
used for accessing second class objects, generates
articulatory tasks. For example, opening the agenda
at a certain date requires selecting the month and the
day in the calendar. On the PC version, the calendar is
always visible whereas on the Palm Pilot, the calendar
must be opened on demand. The ‘GoTo’ command
is an articulatory task introduced in the System Task
Model of the Palm Pilot version to access the calendar,
a browsable domain concept.

Our early analysis of simple case studies calls for
the following recommendation:

“Generic articulatory tasks should be
identified in a systematic way and
inserted appropriately in the System Task
Model.”

4.3 The Interactors Model

As mentioned in Section 3, interactors have been
used for addressing distinct issues and purposes. As
a result, a multiplicity of formal representations has
been developed for specifying interactors. Although
these modeling techniques are convenient for their
particular context of use, none of them addresses the
problem of plasticity explicitly. This leads us to
formulate the following additional recommendation:

“Interactors should specify the abstract
data types they are able to handle. They
should also be able to evaluate their
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appropriateness as well as their rendering
cost.”

The abstract data type description provides
the information necessary to perform the mapping
between a domain concept and a set of candidate
interactors. The modeling techniques of Mackinlay
(1986) and Roth & Mattis (1990) have paved the
way in this direction but for graphical non interactive
presentation only. Fischer (1997) addresses a similar
problem for direct manipulation without considering
multi-modal interaction.

The appropriateness of an interactor denotes its
user-centered effectiveness at rendering a particular
concept for a particular task. Because of constraints
imposed by the lack of physical resources, a concept
may not be rendered optimally with regard to
the designer’s intent or to the user’s requirements.
A number of mapping rules may be found in
Vanderdonckt (1995) for graphics user interfaces and
in Sutcliffe (1997) and Bernsen (1994) for multimedia
and multi-modal interaction. The capacity of an
interactor to evaluate its appropriateness serves two
purposes: It guides the selection process for concept
rendering and it permits to quantify the continuity or
the degradation of the system usability.

The rendering cost of an interactor expresses
the quantity of physical resources needed for its
instantiation. As discussed in Coutaz et al. (1995),
an interactor belongs to a modality. A modality m is
defined as the couple m =< r,d > where r denotes a
representational system, and d the physical I/O device
used to convey expressions of the representational
system. Both r and d can be characterized with a
rendition cost Cr and Cd. For example, the display
footprint is a way to express the rendition cost of
a graphical interactor. Temporal footprint, i.e. the
time to enunciate a vocal output message, expresses
the rendition cost of a speech output interactor.
The rendering cost drives the selection of the final
interactors set for presenting domain concepts.

Figure 3 shows the thumb index interactor used
on the PC for setting the visualization mode of the
agenda, whereas the Palm Pilot version deploys a
tiny set of three icons. The visualization mode is
an enumerated data type (day, month, and year) that
can be mapped to a set of three icon interactors.
Both sets use the same physical output device (i.e.
the screen) but two different representational systems
(text and graphics) whose rendition costs Cr (their
display footprint) are different. In the example of
the date (“October 1998 vs. “Oct 98”) the same
representational system is used (text) using distinct
pragmatic values that convey the same semantics at a

lower footprint cost.

Having presented general requirements and
heuristics for the components of our framework, we
now discuss the principles for producing a Physical
User Interface from an Abstract User Interface and an
Interactors model.

r/' Daily V Weekly V Monthly \_

Figure 3: On the left, the thumb index used for the
workstation. On the right, the icons set for the Palm Pilot.

S From Abstract to Physical User
Interfaces

5.1 Overall Principles

The notion of Presentation Unit (PU) used in TRIDENT
(Vanderdonckt, 1995) sets the foundations of a
canonical representation for the Abstract Interface
Model. A PU is a hierarchical structure that models
information containers such as workspaces, as well as
elementary units that correspond to domain concepts
at the appropriate level of granularity. In addition to
the structural static description of a PU, PU’s have a
behavior and are linked by navigational relationships.
These relationships reify task ordering as expressed in
the System Task Model. The Physical User Interface
is obtained by associating an interactor to every PU.
Additionally, an interactors configuration is performed
for PU’s composed of sub-PU’s.

For the selection of interactors, we advocate a two
step process:

e Step 1: Correspondence matching between PU’s
and interactors.

e Step 2: Correspondence matching between the
interactors selected in Step 1 and the physical
resources provided by the system.

Correspondence matching between PU’s and
Interactors is based on consistency checking between
the information flows that the PU’s and the Interactors
support respectively. An information flow is
characterized with attributes including:

e Direction of information: one way input, one
way output, two ways input and output,

e Information data type: type, domain of values,
cardinality, etc ((Mackinlay, 1986; Roth &
Mattis, 1990) for additional attributes). For a
PU, the information data type corresponds to the
domain concept supported by the PU. For an
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interactor, the information data type denotes the
abstract domain the interactor is able to render.

For example, the graphic thermometer and the
bar chart interactors, the graphic and the audio
real number, all support information flows that are
compatible with PU Temperature. Interactors, such as
the check box and the radio button, are not consistent
with this PU. They are discarded in step 1 of the
selection process.

Correspondence  matching  between  the
interactors selected in step 1 and the physical resources
of the system, is based on constraints resolution
between the rendering costs of the interactors
(< Cr,Cd >) and the availability of the physical
resources of the computer system. For example, the
thermometer and the bar chart interactors both require
a screen (Cd = Screen) whereas, for the real number,
Cd = (Screen or Loudspeaker). In addition, their
representational cost Cr (Cr = Screen footprint) is
higher than that of the graphic real number. On a
mobile phone with no screen or with a small screen,
the audio/graphic real number satisfies the constraints.

We have applied this simple process to MMS, a
simple media space.

5.2 MMS

MMS conveys the level of activity of the community
members of our lab. It currently runs on standard
workstations but with varying window sizes as a
means to simulate different physical screen sizes. The
activity level is computed from the use of the mouse
and the keyboard. Image differences from video
cameras could also have been used as a source of input.

In this example, a single compound PU contains
three elementary PU’s: the purpose of the system, a
quit command, the list of users currently connected
to MMS, their activity level and the name of their
workstation.  All of the concepts are first class
objects except the name of the workstation the user is
currently connected to. Table 1 shows the information
flow of the elementary PU’s.

| Concept | Direction | Data Type | Card | Domain
Person name Out ASCII 1 Undefined
‘Workstation name Out ASCII 1 Undefined
Level of activity Out Integer 1 [0, 10] step 1
Quit command In ASCI 1 {Quitter}
System Purpose Out ASCII 1 Undefined

Table 1: Information flow of the PU’s for MMS.

The interactors that satisfy the PU’s information
flow include: the string interactor for the purpose
of the system, as well as for the users and

workstations names; the button interactor fits the
quit command; the integer, the bar chart and the
plot interactors match the level of activity. In our
system, interactors are selected dynamically according
to the size of the window. This window which,
in the current implementation, simulates a physical
screen, corresponds to the compound workspace PU.
The sequence in Figure 4 shows the rendering of
MMS according to screen space variations. Figure 5
illustrates the internal representation used to compute
the final rendering. Each node is characterized with a
cost and the set of matching alternatives for rendering
a PU. An Oval node corresponds to an interactor
decorated with its rendering cost. Diamond nodes
represent interactors composition with layout rules. Its
rendering cost is a linear combination of its siblings
cost. Rectangle nodes denote rendering Alternatives.
The final representation is computed using a constraint
resolution algorithm based the rendering costs and
physical resource availability.

ser,Workstation ser,Workstation Chart ser,Workstation
Strings Strings Strings

Figure 5: Internal representation of the solution space for
rendering MMS.

6 Conclusion

In this paper, we have introduced the notion of
plasticity for addressing the portability of interactive
systems in relation to usability continuity. Building on
the model-based approach, we propose a framework
that structures the problem space and provides
the foundations for a solution space using high
level specifications. Such descriptions trigger the
appropriate design questions and open the way to
the automatic or semi-automatic generation of plastic
user interfaces. We have illustrated the feasibility
of the approach with simple case studies: an off-
the shelf electronic agenda, and MMS a media-space
that conveys the level of activity of the community
members of our lab. These preliminary results
need to be completed with a more thorough analysis
and formalization in order to make our framework
operational.
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Figure 4: Dynamic rendering of MMS in response to screen space variations.
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