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he exponential decrease in the costs of com-

putation and of communication is rapidly

leading to convergence and ubiquity. At the same time, inexpensive computing power

is enabling a quiet revolution in the machine perception of human action. In the near future,

we expect machine perception to converge with ubiquitous computing and communication.

This convergence may lead to
the widespread introduction
of things and environments
that see. However, reaping
the benefits of ubiquitous
perception will require
consideration of human
abilities and social needs as an
integral part of system design.

Research in human-computer interaction
(HCI) has developed cognitive theories, design
methods, and software tools for building useful
and usable systems. Scientific results and
empirical studies have led to sound principles
such as that of direct manipulation. For nearly
two decades, however, direct manipulation has
been instantiated in the form of the “electronic
desktop metaphor,” jeopardizing the directness
and the affordance of the physical world.
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Recent efforts in HCI seek a seamless
bridge between physical and electronic bits.
Wellner’s Digital Desk [12] and Fitzmaurice’s
Bricks [6] illustrate this trend. In the Digital
Desk, physical office tools such as paper
sheets and erasers are augmented with com-
putation using video projection and machine
vision. The Bricks allow direct manipulation
of electronic objects using Lego™-like physical
artifacts as handles to control the virtual
world. The Digital Desk and other graspable
iconic systems inspired from the Bricks have
demonstrated the benefits of mixing physical
and virtual entities. However, because they
use naive machine vision techniques, their
contribution cannot be tested in real-life con-
ditions. Advances in machine vision provide
an opportunity to make these new paradigms
effective.



Figure |. Interacting with the Magic Board (iihm.imag.fr/demos/magicboard/).
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What Can Machine Vision Do For You?

Machine vision is the observation of an environ-
ment using cameras. It differs from image processing
in that it extracts information from images that are
relevant for a particular set of services. The basic ser-
vices that machine vision can provide to HCI include
detection, identification, and tracking. Detection
determines the presence or the absence of an entity of
a given type. For example, is there a cat in the scene?
Identification is recognizing what entity of the class is
present in the scene, for example, that my cat Garfield

Figure 2. The Perceptual Window uses
small head motions as a second input stream to
navigate within a document.

is in the scene. Tracking is determining the location
of an entity over time.
In the context of HCI, entities of interest include:

*Real-world objects used as instruments such as the
physical icons inspired from the Bricks or the
eraser of the Digital Desk;

*The human body including fingers, hands and
feet of a dancer, the face of the Perceptual Win-
dow presented in a following section [1], or the
whole body in Krueger’s VideoPlace [9];

* Activities such as typing, standing up, walking,
entering a doorway or shaking hands [3].

Techniques may be designed to observe a single
entity, couples, or larger groups. For example, inter-
action envisioned for the Digital Desk requires the
management of multiple types of entities such as an
eraser, a finger, and a pen. In collaborative settings,
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the system may have to distinguish between the hands
belonging to different persons or between the two
hands of the same person.

Based on the preceding fundamental services,
machine vision can be exploited in multiple ways.
First, human action or objects can be tracked without
being constrained by cumbersome wires as with the
data glove, the body suit, or magnetic localizers such
as an Ascension Flock of Birds™. Second, machine
vision can extend human visual abilities by delegating
those tasks to the system that are hard or impossible
to perform, such as monitoring remote sites. Third,
machine vision can be exploited to improve direct-
ness in the interaction process by suppressing
mouse-like intermediate instruments: when tracked
in real time, your finger becomes an input device.
As opposed to the mouse, there is no need to grasp
it. It is already in your hand! We illustrate the prop-
erty of directness with two different systems: the
Magic Board and the Perceptual Window.

The Magic Board

The Magic Board, shown in Figure 1, is a physical
whiteboard combined with a video projector and a
steerable camera to provide a simple augmented
workspace. Like recent electronic commercial smart
boards, it allows the combined usage of electronic
ink with physical dry markers and conventional
erasers. Unlike them, it does not provide sophisti-
cated services. We wanted it to maintain the natural
affordance of the existing tools. Therefore, the
physical board is augmented with the minimal elec-
tronic editing functions used for brainstorming
(such as select, copy, move, and save).

Magic Board also does not capture physical ink on
the fly but at specific points in the interaction process
(such as copying and saving) supporting fast deletion
of markings with the usual physical tools (your hand,
a handkerchief, you name it). It is not limited by the
resolution of the sampling system: drawing with
markers can be done at any speed and with any pres-
sure without any loss of information. Finally, because
the working surface is observed by a steerable camera,
it is not limited in size. In addition, any white (or
black) surface can be used as a production space. It is
also possible to capture and digitize material written
on pieces of paper such as Post-Its.™

Figure 1 demonstrates the principles of the inter-
action supported by the Magic Board. Whereas the
Magic Board uses machine vision and image pro-
cessing for tracking a finger and capturing the con-
tent of the board at a high resolution, the
Perceptual Window [1] uses machine vision for
head tracking.



The Perceptual Window

The Perceptual Window (Figure 2) offers a novel
interaction technique using head motions to control
the 2D location of a window viewpoint within a
document (see iithm.imag.fr/demos/pwindow/). The
Perceptual Window is not an eye tracker. Indeed, eye
movements are poorly adapted to motion control.
Natural eye movements alternate between short peri-
ods of fixation and rapid saccades, which tend to
respond to involuntary reflexes. While fixation can
be used for selection, saccadic motions are too rapid
and involuntary for motion control. We have found
that head motions provide a much more natural
form of command for scrolling.

On standard workstations, scrolling is typically allot-
ted to the mouse and scroll bars. The Perceptual Win-
dow offers multiple forms of scrolling techniques. One
possibility is to control the rate of scroll while the
mouse can be used for another task (say, selection). As
the head is tilted upward outside of a neutral area, the
window content is scrolled down. The rate of scrolling
is determined by the angle of the head. Returning the
head inside the neutral area stops upward scrolling.
Tilting the head downward, left or right, or even diag-
onally, induces a similar scrolling actions. Scrolling
speed is governed by an exponential function of posi-
tion, permitting both accurate adjustments and fast
scrolling depending on the amount of head movement.

The novelty of the perceptual window results from
the use of head motion to establish the context for
interaction. In the mid-1980s, Guiard demonstrated
that using two hands improves performance provided
the hands are used asymmetrically [7]. In such motion,
the nondominant hand defines the frame of reference
for the dominant hand. The nondominant hand moves
first, followed by the dominant hand. The nondomi-
nant hand executes coarse-grained motions whereas the
dominant hand is allocated to fine-grained actions.

In the Perceptual Window, the hand and mouse
form the dominant stream and the head is used as a
nondominant stream: the head sets the window view-
point for the mouse workspace, it moves first, and
window viewpoint does not have to be set accurately.
As predicted by Guiard’s theory, head motion interac-
tion significantly outperforms scrollbars (by an average
improvement of 32% on task completion time) [1].

The Perceptual Window and the Magic Board
illustrate how HCI can benefit from machine vision.
However, this is made possible only if human-cen-
tered requirements are satisfied.

Human-centered Requirements
To be usable, machine vision must be robust and
autonomous. Designing robust and autonomous

interactive systems for real-world environments is
much more difficult than constructing systems for
controlled laboratory settings. In the real world, illu-
mination and background conditions may change in
an abrupt manner, and users may behave in unex-
pected ways. Furthermore, when tightly coupled to
human actions, response time must conform to
human action-perception skills.

Robustness and autonomy. A machine vision sys-
tem is robust if it does not break in the presence of dis-
turbances. It is autonomous if it is capable of detecting
failures and correcting problems without the explicit
intervention of the user. Robustness requires reconfig-
uration and reinitialization to accommodate new oper-
ating conditions. If reconfiguration or reinitialization
requires human intervention, then the user will be
interrupted from the central task, and the usability of
the system will be seriously degraded. Thus usability
requires both robustness and autonomy.

In current systems, acceptable compromises are
devised on a case-per-case basis. For example, in the
Magic Board, each time a user selects a menu with his
finger, the finger tracker is initialized (see Figure le).
In the media space CoMedi [4], vision processes for
face tracking are reinitialized whenever the user blinks
and reconfigured dynamically as explained here. In
both cases, reinitialization is integrated into system
operation so that adaptation is transparent (or nearly
transparent) to the user. On the other hand, the Per-
ceptual Window was designed as a laboratory experi-
ment and must be initialized manually. The lack of
autonomy for the current implementation of the Per-
ceptual Window makes it unsuitable for use in the
real world.

Tightly coupled interaction: It’s latency that
counts. When a human and an artificial system are
bound in a continuous manner in the accomplish-
ment of actions that are mutually dependent and
mutually observable, they are said to be “tightly cou-
pled.” For example, in the Magic Board, the user and
the finger tracker are tightly coupled while the user
selects a mark with the finger. In the Perceptual Win-
dow, the user and the head tracker are tightly coupled
when the user performs scrolling tasks.

In tightly coupled interaction, the artificial system
and the human processor form a closed loop with
behavior that can be formally analyzed using analyti-
cal tools developed for Control Theory. Latency (or
lag) is a key parameter for closed-loop systems. Using
the Model Human Processor [2], we have been able to
estimate that the latency of machine perception must
be less than 50ms for direct manipulation using finger
tracking. This prediction is backed up by empirical
results from Ware et al. performed on a Polhemus-
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based head tracker developed for their Fish Tank sys-
tem [11].

Improper system latency leads to redundant
actions and oscillation. For example, in the absence of
immediate system feedback, the user may attempt to
make improper corrections. These corrections then
lead to undesired system responses, which the user
may further attempt to correct. This condition can
rapidly drive a system to divergence or oscillation.

Although latency is paramount to the usability of

Figure 3. Eigen-space filtering for supporting privacy.

a socially correct image set;

(a) Eigen-space filtering for private video space.
An original image (left) with its reconstruction using

(b) An original image of Francois (left) and the resulting
reconstruction (right) using Fred’s image set.

poral difference images, and the Eigen-space filter.

The Eigen-space filter uses principal component
analysis (PCA). An orthogonal set of basis images are
determined by PCA of a set of “socially correct”
images. Live images are coded by computing the
inner product with the basis images. This technique
is made possible by keeping the user centered in the
image using automatic face tracking to drive a steer-
able camera.

An interesting property of Eigen-space coding is
that only information within the original
image set will be captured by the coding
and reconstructed in the resulting images.
For example, in Figure 3a, the source image
(left) shows Frangois with his finger in his
nose. This socially incorrect gesture does
not belong to the basis space and is not dis-
played in the reconstructed image (right).
Similarly, persons appearing in the back-
ground are not communicated unless pre-
sent in the basis.

Eigen-space coding also allows a user to
animate a database composed of images of
a face of a different person or character,
raising ethical issues. For example, the
image of Frangois (left in Figure 3b) is
reconstructed as Fred (to the right). This
property can be useful when a user wishes
to always appear properly groomed, but
can also raise ethical problems if users mas-
querade as other people.

Human-centered requirements may be
incompatible with available computational
resources and vision techniques. Robust-
ness and response time may be mutually
satisfied at the cost of accepting constraints
on the operating conditions. Such con-
straints are acceptable provided they pre-
serve the ontology (that is, the raison

tracking systems, stability, resolution, and precision
are also important characteristics to consider when
developing a perceptual system for HCI. Using a
camera for improving directness in computer-human
interaction is one thing. Being watched by remote
peers brings to bear privacy issues.

Privacy protection. Privacy protection has been
addressed in video communication used in media
spaces. Media spaces use low bandwidth video com-
munications to provide informal communication
and group awareness among geographically dis-
persed members of a team [4]. To be socially accept-
able, a media space must support privacy. Privacy
filters include reduced resolution, shadowing, tem-
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d’étre) of the system.

As a consequence of the requirement for real-time
response, machine vision for HCI must use simple,
minimal vision techniques. One method for simplify-
ing machine vision is to exploit explicit constraints on
the user or on the operating environment. Con-
straints are acceptable provided they satisty the fol-
lowing criteria:

* The constraint should simplify the processing
required, thereby speeding up the system
response; and

* The constraint must not render the system unus-
able. Constraints must conform to the ontology
of the system.



Figure 4. Popular machine-vision techniques for HCI used in the appearance-based
approach to computer vision: (a) Skin color detection. A sample of skin (small red rectangle
in the top left image) is used to construct a color space (right). The oval area in the color space
denotes pixels that are skin color. Pixels in the bottom left image denote the probability of skin.
White pixels indicate skin color region; (b) Cross-correlation. A template is acquired of the
item to be tracked (for example, the finger for the Magic Board, red rectangle). The template is

compared to the image at positions within a search region (green rectangle, englarged on the
left side). The image position at which the template most matches the image is selected and
defines the position of the search region in Figure 5.
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The KidsRoom

AARON F. BoBICK, STEPHEN S. INTILLE,
JamEes W. Davis, FREEDOM BAIRD, CLAUDIO
S. PINHANEZ, LEE W. CAMPBELL,
YURI A. IVANOV, ARJAN SCHUTTE,
AND ANDREW WILSON

Computer vision sensing technologies turn a

child’s bedroom into a dreamy wonderland.

he KidsRoom is a fully automated and interactive
T narrative playspace for children developed at the
MIT Media Laboratory. Built to explore the design of
perceptually based interactive interfaces, the Kids-
Room uses computer vision action recognition simul-
taneously with computerized control of images,
video, light, music, sound, and narration to guide
children through a storybook adventure. Unlike most
previous work in interactive environments, the Kids-
Room does not require people in the space to wear
any special clothing or hardware, and the KidsRoom
can accommodate up to four people simultaneously.
The system was designed to use computational per-
ception to keep most interaction in the real, physical
space even as participants interacted with virtual
characters and scenes.

The KidsRoom, designed in the spirit of several pop-
ular children’s books, is an interactive child’s bedroom
that stimulates imagination by responding to actions
with images and sound to transform itself into a story-
book world. Two of the bedroom walls resemble the real
walls in a child’s room, complete with real furniture,
posters, and windows. The other two walls are large,
back-projected video screens used to transform the
appearance of the room environment. Four speakers
and one amplifier project steerable sound effects,
music, and narration into the space. Three video cam-
eras overlooking the space provide input to computer
vision people-tracking and action recognition algo-
rithms. Computer-controlled theatrical lighting illumi-
nates the space, and a microphone detects the volume
of enthusiastic screams. The room is fully automated.

During the story, children interact with objects in
the room, with one another, and with virtual creatures
projected onto the walls. Perceptual recognition
makes it possible for the room to respond to the phys-
ical actions of the children by appropriately moving the
story forward thereby creating a compelling interactive

narrative experience. Conversely, the narrative context

of the story makes it easier to develop context-depen-
dent (and therefore more robust) action recognition
algorithms.

The story developed for the KidsRoom begins with a
normal-looking bedroom. Children enter after being
told to find out the magic word by asking the talking
furniture that speaks when approached. When the
children scream the magic word loudly, sounds and
images transform the room into a mystical forest. The
story narration prods the children to stay in a group
and follow a path to a river (see the stone path (a) in
the figure). Along the way, they encounter roaring
monsters and must hide behind the bed to make the
roars subside. After a short walk, the children reach the
river world, and the narrator informs them the bed has
become a magic boat that will take them on an adven-
ture. The children climb on the “boat” and paddle to
make it move, which is represented by images of the
river flowing by on the screens. To avoid obstacles in
the river, the children must row collaboratively on the
appropriate side of the bed. Finally, the children reach
the monster world. The monsters appear and teach the
children some dance steps, and then the monsters
mimic the children as the children perform these steps.
The story ends when an insistent, motherly voice off in
the distance urges the children to return to bed, at
which point the room transforms back to a normal
bedroom. A typical interaction runs nearly 12 minutes.

Throughout the adventure, the computer system
tracks the positions of the movable bed and up to four
children. The system detects and responds to events like
“Is everyone on the bed?” "Is everyone near the chest?”
“Are the children in a group?”” and “Are the children fol-
lowing the path?” The music, sound, and narrative of the
story change depending upon what the children are
doing. For example, if the children fail to get on the bed,
characters in the story encourage them to do so. The
vision systems use the context established by the story
(for example, that everyone is on the bed) for robust ini-
tialization and performance. Although the storyline is
linear, the room continually reacts to the children’s
actions, giving the environment an interactive feel. Dur-
ing the river scene, the vision system determines the
side of the bed with the highest motion energy and uses
this information to “steer” the bed as the children use
their arms to row down the virtual river. In the monster
world, the still-frame animated cartoon monsters teach
the children four different dance moves (for example,

“spin around like a top”), after which the children can
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perform any step. The vision system is
trained to recognize these dance moves,
which then triggers the corresponding ani-
mations of the monsters with encouraging
character narrations. When the vision pro-
cessing requires constraints (for example,
people in certain positions), they were built
naturally into the storyline. Forinstance, the
monsters tell the kids to stand on particular
rugs ‘“'so’s we can see ya;” this storyline
device actually ensures that each camera
has a nonoccluded view of each child.

The KidsRoom demonstrated that
nonencumbering, computer-vision sensing
technologies can be used to automatically
create new types of physical interactive
experiences in real environments by inte-
grating sensing and narrative control. We
believe the KidsRoom is the first multiper-
son, fully automated, interactive, narra-
tive playspace ever constructed, and the
experience we acquired designing and
building the space has allowed us to iden-
tify some major questions and to propose
a few solutions to simplify construction of

more complex spaces in the future. |

For sound, image, and video clips of the KidsRoom, see vis-
mod.www.media.mit.edu/vismod/demos/kidsroom. For more
information on the KidsRoom and the sensing technologies that
were employed see [1]. A simplified reimplementation of the
KidsRoom is on display at the Millennium Dome in London.
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These principles are illustrated in VideoPlace and
the Magic Board. VideoPlace requires a luminous
background and is limited to a single user at a time. In
the Magic Board, a single finger is tracked at a time.
These restrictions simplify image processing without
threatening the ontology of the system: users can come
as they are. Other possible constraints include limita-
tions on the speed of movements or the wearing of
special clothing. These constraints, which limit partic-
ipant’s skills and freedom, would not be acceptable
options in the context of VideoPlace and the Magic

Board, but can be useful in other applications.

So far, we have presented the benefits HCI design-
ers can expect from machine vision and have made
explicit the requirements machine vision developers
must address in order to provide usable techniques for
real-life settings

Machine Vision Techniques for HCI

Since the early 1990s, machine perception of human
action has been driven along a learning curve by sev-
eral factors. The dominant driving force has been

Figure 5. The media space CoMedi—Its porthole and the reactive system used for

tracking faces in a robust and (nearly) autonomous manner:
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CoMedi. The user can observe that
Eric Carraux is hiding behind the
Venetian blind whereas Eric Ponti
has selected complete privacy.
Stephane, top right, is using the
blurring filter to protect his privacy,
while Cyril has departed the Media
Space. Eric, David, and Frederic are
available; the dot in their slot is
green. Laurence and Stephane
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(b) A supervisory controller selects and controls the sequencing of perceptual processes.
Multiple processes can be active at the same time.
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inexpensive computing power. An additional influ-
ence has been the introduction of image acquisition
hardware in personal computers, which has dramat-
ically lowered the investment required to experiment
with real-time computer vision systems.

Exponential growth in experimentation has led to
the development of techniques that provide reliable
and reproducible results at close to video rates. An
important advance in image analysis and description
has been provided by appearance-based methods.
Appearance-based methods measure scene informa-
tion directly from images without attempting 3D
reconstruction.

Appearance-based vision. Most appearance-based
methods use previously observed images as models or
templates. Such techniques tend to be fast and simple
to compute, making them popular tools for building
systems for observing human action. Popular tech-
niques include active contours [8], skin color detec-
tion [10], and cross-correlation.

An active contour iteratively computes a balance
between external forces that attract it to high contrast
and internal forces that maintain connectivity. Apply-
ing principal components analysis to the points of
active contours under motion leads to simple models
that can track faces, lips, and hands in real time.

Skin color detection using a ratio of histograms of
normalized color can be programmed using table
look-up, making it possible to detect and track skin
colored regions in real time (see Figure 4a). Cross-cor-
relation uses small regions of an image as templates for
searching in later images (see Figure 4b).

The recognition of face expressions, gestures, or
pedestrian movements can be formulated as a process
of recognizing trajectories. Hidden Markov models
(HMMs) provide a formalism for recognizing trajec-
tories that represent gestures, facial expressions, or
human activity. Recent progress has extended this
model to coupled trajectories of ensembles of objects
or people.

Autonomy and robustness require methods for
integration and control of continuously operating
perceptual processes. Integration and control may be
provided by reactive systems.

Reactive systems. A reactive perception system can
be composed from a set of perceptual processes inte-
grated in an event-driven architecture. Perceptual
processes are formalized as cyclic transformations
from sensor data to symbolic events and property vec-
tors. They are initiated, controlled, and terminated by
a supervisor that reacts to events and serves as a sched-
uler and resource allocator.

Symbolic events are messages that assert informa-
tion about the environment or about the state of a

sensor or a perceptual process. Examples of symbolic
events include the arrival of a person at a door, the
grasping of an object on a table, and assertions about
the failure of a sensor. Property vectors are used to
control devices, to communicate commands, to enter
information in digital form, or to adapt perceptual
processes to environmental conditions. An example of
a property vector is the estimate of the position, ori-
entation, and size of a face in an image, which can
then be used to steer the pan, tilt, and zoom of a cam-
era. Another example is a property vector that gives
the position and identity for a set of persons in a
room. A third example is the vector of position, ori-
entation, and velocity of an object such as a Brick [6].

The face tracking system [5], developed for the
media space CoMedi is an example of a reactive sys-
tem in which three complementary visual processes
are initialized and controlled by a supervisor based on
events. These processes are eye blink detection, skin
color detection, and cross-correlation, as shown in
Figure 5b. Eye blink detection provides an estimated
position of the face in the image that can be used to
initialize procedures for skin detection and cross-cor-
relation. Cross-correlation with a reference template
provides fast and accurate tracking, but fails when the
head turns or moves too fast. Skin color detection
provides robust face tracking, but is slower and less
precise than correlation. Both processes are easily
reinitialized by blink detection, providing a system
that continually adapts to users and their environ-
ments and is sufficiently robust and rapid to allow
“natural” displacements.

Trends and Challenges

So, where does convergence of perception, commu-
nication, and computation lead? Although details
are impossible to predict, we can predict general ten-
dencies based on the forces driving innovation and
technological evolution.

Perception of human action is expected to be a key
component in the next generation of tools for man-
machine interaction. Such methods may permit
humans to interact with machines in a natural man-
ner similar to the way that humans interact between
themselves. The key to perceptual user interfaces is
usability. Usability determines requirements for tech-
nological innovation. Interaction based on machine
perception will most likely evolve most rapidly in
areas where traditional GUI interfaces are inappropri-
ate. Kiosks for commercial and informational services
are an obvious example. Another area is intelligent
spaces that may evolve from video surveillance.

Socioeconomic conditions will drive initial devel-
opment in perceptual environments to areas where
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performance gains are most easily obtained, and
where resources are most easily rewarded with return
on investment. Commercial and office environments
provide a particularly fertile area for this technology.
Currently, the highest growth is in video surveillance
for security. Video surveillance can potentially pro-
vide operational feedback to commercial and business
managers permitting more effective design of product
presentations and pedestrian passages. It can also pro-
vide important information to product designers.
However, such applications will require that users be
assured of privacy protection. Perception of human
action can provide the means to extract commercially
interesting information about the way people interact
with products and displays without revealing identity
and without storing or communicating images.

Another area with near-term growth potential
occurs with the convergence of communications and
perception. In the media space, low-bandwidth video
communications allow geographically distant workers
to dynamically form work teams by providing con-
tinual informal communications. However privacy
protection and restrictions on movement make such
applications impractical. Perception of human actions
allows users to freely move about their environment
while also providing tools for protecting privacy.
Eventually, as such technology matures, media spaces
will allow geographically separated families, including
the aged, to share presence while protecting individ-
ual privacy. The long-term market size for domestic
applications of media spaces is a large percentage of
the human population.

In the long run, media spaces and commercial sur-
veillance services will be dwarfed by applications
related to intelligent spaces. When your office, car
and home know your habits and observe your activi-
ties, many common chores can be provided automat-
ically. For example, your car can tell your home to
turn on the heat, and begin preparations for dinner
when you head for home at the end of the day. Your
home can coordinate delivery of automatically
ordered products to occur while you are at home.
Automated cleaning devices can be triggered during
your absence. At work or play, any physical device can
be used to communicate to the digital world simply
by the way it is manipulated.

Conclusion

We have described existing machine vision tech-
niques for detecting events, measuring properties,
recognizing and tracking of humans and their
actions, and shown how such processes can be inte-
grated into an event-driven architecture. Neverthe-
less, an important gap remains between these
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techniques and “machines that see.” This gap can be
summarized by the word awareness.

A machine can be said to be aware when it main-
tains a description of the location, identity, and roles
of objects and actors in its environment. Awareness
goes beyond perception to include autonomy, adapta-
tion, and man-machine interaction. A machine per-
ception system will only be accepted as aware when it
can communicate in a functionally useful manner
with users. Machine awareness represents one of the
grand challenges for information technology, on a
scale with electric light, the telephone, or powered
flight. The long-term impact on human quality of life
may be enormous. B
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