Position paper, IFIP WG2.7 workshop, CSCW2000, Philadelphia december 2000

Software Architecture Adaptivity
for Multisurface Interaction and Plasticity

J. Coutaz, C. Lachenal, G. Calvary, D. Thevenin

CLIPS-IMAG, BP 53, 38041 Grenoble cedex, France

http://iihm.imag.fr, {Joelle.Coutaz, Christophe.Lachanal, David.Thevenin}@imag.fr
This position paper addresses new requirements for software architecture adaptivity in relation to multisurface interaction and plasticity.

1. Multisurface interaction

Surfaces like walls, paper sheets, post-its, and computer screens of various sizes, serve as workspaces in daily activities. Some of them mix the physical and the virtual as in the Magic Board [Crowley 00]; Others are used in combination, as exemplified by the Hyper-palette [Ayatsuka 00] and the Pick-and-Drop [Rekimoto 97] systems. Although these systems demonstrate interesting ways of interacting with multiple surfaces, they are limited technically to the transfer of data between homogeneous platforms.

In our research group, we have implemented the "Painter metaphor" based on the simultaneous use of two surfaces. As shown in Figure 1, a palm-pilot, hold in the non-dominant hand, mimics the palette of graphical tools, whereas a large PC-controlled white board serves as the drawing surface for the dominant hand [Lachenal 00]. Thus, the user interface of the "Multisurface Painter " is physically distributed over an heterogeneous system environment. In addition, we would like the user to be able to dynamically transfer the palette of tools (and/or any part of the drawing area) between the large white board and the small Palm-Pilot, and vice versa. As a result, not only the user interface of the system is physically distributed over heterogeneous platforms, but it can be reconfigured dynamically.

[image: image1.wmf]
Figure 1. The Painter metaphor using a Palm palette and a PC-based drawing area.

As shown in Figure 2, we have applied the "cement pattern" of the PAC conceptual software architecture model. The palette agent runs on the PalmOS system, whereas the Drawing area agent is assigned to the PC. The top-level cement agent, which combines user's actions distributed over the sibling agents, is replicated on the two processors. Conceptually, the agents can migrate between the two platforms as the user reconfigures the user interface dynamically.
[image: image2.png]

[image: image3.png]

Figure 2. The conceptual software architecture of the Multisurface Painter using PAC.

2. Plasticity

Plasticity refers to the ability of a user interface to mould itself to a range of computational devices and environments, both statically and/or dynamically, whether it be automatically or with human intervention [Thevenin 99]. For example, a heating control system can be controlled at home, through a dedicated wall-mounted device or through a PDA connected to a wireless home-net; it. can be used in the office, through the Web, using a standard work station, or anywhere using a WAP-enabled mobile phone.

A typical user's task consists of consulting and modifying the temperature of a particular room. Figure 3 shows versions of the system for different computational devices.

[image: image4.jpg]

Figure 3. A home heating control system a) Large screen. The temperature of the rooms are available at a glance. b) Small screen. The temperature of a single room is displayed at a time.

We have developed a unifying model-based framework that structures the development process of plastic user interfaces through a combination of reification and translation [Calvary 00].

Having presented our two case studies, we need now to make explicit the problems encountered.
3. Problems and requirements

Multisurface interaction and plasticity both rely on mechanisms for the automatic adaptation of the software architecture. The Multisurface Painter requires migration of code as well as the adaptation of the user interface per se, which must shrink or expand based on the availability of interactional resources. Similar requirements hold for plastic user interfaces when the user can seamlessly switch on the fly between interactional devices. These general requirements must be pushed further when looking at implementation issues.

Considering the Multisurface Painter, PAC provided us with a straightforward answer for devising the conceptual software architecture of the system. However, we had no tool support for deriving the conceptual model into a running system. We used Java as the underlying unifying platform. Alas, Java virtual machines are not compatible across heterogeneous physical platforms such as those involved in the Multisurface Painter. Therefore it is not always possible to exploit the migration of Java objects. In addition, the set of interactors that implement the presentation facet of PAC agents differ between Java environments. As a result, one needs to implement abstract interactors that can be mapped dynamically to actual interactors of the target machines while preserving state. Migration as well as the dynamic choice of a target interactor would then be done through an "interactors server" whose role would be to identify the appropriate actual interactors that best match the abstract interactors referenced in the adaptation process for a particular target machine.

An interactor server is not enough. Our early experience with our framework for supporting plasticity indicates that computational resources put strong constraints on the implementational software architecture. For example, the two user interfaces shown in figure 2 have been generated through a reification process resulting in two executable JDK programs. Porting this code to a Palm Waba environment cannot be done as a one-to-one translation of the JDK classes into their Waba equivalent classes. The resulting program would not fit on the target computer!

In summary, the development of advanced interactive systems is hindered by the lack of operational, efficient, and effective multidevice infrastructure.
References

[Ayatsuka 00] Y. Ayatsuka, N. Matsushita, J. Rekimoto. HyperPalette: a Hybrid Computing Environment for Small Computing evices. In Proc. CHI2000 Extended Abstracts, Interactive Posters, ACM Publ., 2000, pp. 133-134.
[Calvary 00] G. Calvary, J. Coutaz, D. Thevenin. Embedding Plasticity in the development Process of Interactive Systems. 6th ERCIM Workshop "User Interface for All", Florence, CNR Firenze, 2000.

[Crowley 00] J. Crowley, J. Coutaz, F. Bérard. Things that See, Communication of the ACM, Vol 43 (3), March 2000, pp. 54-64.

[Lachenal 00] C. Lachenal, Surfaces d'interaction : utilisation simultanée d'un assistant personnel et d'un tableau électronique, Magistère Université Joseph Fourier, CLIPS-IMAG, 2000.

[Rekimoto 97] J. Rekimoto. Pick-and-Drop: A Direct Manipulation technique for Multiple Computer Environments. In Proc. UIST97, ACM Publ., 1997, pp. 31-39.

[Thevenin 99] D. Thevenin, J. Coutaz. Plasticity of User Interfaces: Framework and Research Agenda. In Proc. Interact99, Edinburgh, , A. Sasse & C. Johnson Eds, IFIP IOS Press Publ., 1999, pp.110-117.
Communication �� via serial port

 Java JDK 1.2.2

 Waba 1.0

Palette

Agent

Drawing area

Agent

Top level

Cement agent

� INCORPORER Word.Picture.8 ���

PAGE
4

[image: image5.jpg]

[image: image6..pict]_1033291371.doc
[image: image1..pict][image: image2..pict]

(a)

(b)

_1033043186.doc

[image: image1..pict]

