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Abstract

This paper describes an active-camera real-time system for tracking, shape description, and classi"cation of the human
face and mouth expressions using only a PC or equivalent computer. The system is based on use of 2-D blob features,
which are spatially compact clusters of pixels that are similar in terms of low-level image properties. Patterns of behavior
(e.g., facial expressions and head movements) can be classi"ed in real-time using hidden Markov models (HMMs). The
system has been tested on hundreds of users and has demonstrated extremely reliable and accurate performance. Typical
facial expression classi"cation accuracies are near 100%. ( 2000 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

This paper describes a real-time system for accurate
tracking and shape description, and classi"cation of
the human face and mouth using 2-D blob features and
hidden Markov models (HMMs). The system described
here is real-time, at 20}30 frames per second, and runs on
SGI Indy workstations or PentiumPro Personal Com-
puters1 without any special-purpose hardware.

In recent years, much research has been done on ma-
chine recognition of human facial expressions. Feature
points [1], physical skin and muscle activation models
[2}4], optical #ow models [5], feature based models
using manually selected features [6], local parametrized
optical #ow [7], deformable contours [8,9], combined
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1The active-camera face detection and tracking system has
been ported to a PentiumPro using Microsoft VisualC##

under Windows NT. It also works in real-time (30 fps).

with optical #ow [10] as well as deformable templates
[11}14] among several other techniques have been used
for facial expression analysis.

This paper extends these previous e!orts to real-time
analysis of the human face using our blob tracking
methodology. This extension required development of an
incremental Expectation Maximization method, a new
mixture-of-Gaussians blob model, and a continuous,
real-time HMM classi"cation method suitable for classi-
"cation of shape data.

The notion of `blobsa as a representation for image
features has a long history in computer vision [15}18],
and has had many di!erent mathematical de"nitions. In
our usage it is a compact set of pixels that share a visual
property that is not shared by the surrounding pixels.
This property could be color, texture, brightness, motion,
shading, a combination of these, or any other salient
spatio-temporal property derived from the signal (the
image sequence). In the work described in this paper
blobs are a coarse, locally adaptive encoding of the im-
ages' spatial and color/texture/motion/etc. properties.
A prime motivation for our interest in blob representa-
tions is our discovery that they can be reliably detected
and tracked even in complex, dynamic scenes, and that
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they can be extracted in real-time without the need for
special purpose hardware. These properties are parti-
cularly important in applications that require tracking
people, and recently we have used 2-D blob tracking for
real-time whole-body human interfaces [18] and real-
time recognition of American Sign Language hand ges-
tures [19].

Applications of this new system, called LAFTER [20]
(Lips and Face TrackER) include video-conferencing,
real-time computer graphics animation, and `virtual
windowsa for visualization. Of particular interest is our
ability for accurate, real-time classi"cation of the user's
mouth shape without constraining head position; this
ability makes possible (for the "rst time) real-time facial
expression recognition in unconstrained o$ce environ-
ments.

The paper is structured as follows: the general math-
ematical framework is presented in Section 2; LAFTER's
architecture is described in Section 3; the face detection
and tracking module appears in Section 4; Section 5 com-
prises the mouth detection and tracking; mouth expres-
sion recognition is in Section 7; results and applications
are contained in Section 8 and "nally the main con-
clusions and future work appear in Section 9.

2. Mathematical framework

The notion of grouping atomic parts of a scene to-
gether to form blob-like entities based on proximity and
visual appearance is a natural one, and has been of
interest to visual scientists since the Gestalt psychologists
studied grouping criteria early in this century [21].

In modern computer vision processing we seek to
group pixels of images together and to `segmenta images
based on visual coherence, but the `featuresa obtained
from such e!orts are usually taken to be the boundaries,
or contours, of these regions rather than the regions
themselves. In very complex scenes, such as those con-
taining people or natural objects, contour features often
prove unreliable and di$cult to "nd and use.

The blob representation that we use was developed by
Pentland and Kauth et al. [15,16] as a way of extracting
an extremely compact, structurally meaningful descrip-
tion of multi-spectral satellite (MSS) imagery. In this
method feature vectors at each pixel are formed by
adding (x, y) spatial coordinates to the spectral (or tex-
tural) components of the imagery. These are then clus-
tered so that image properties such as color and spatial
similarity combine to form coherent connected regions,
or `blobsa, in which all the pixels have similar image
properties. This blob description method is, in fact, a
special case of recent minimum description length (MDL)
techniques [22}25].

We have used essentially the same technique for real-
time tracking of people in color video [18]. In that

application the spatial coordinates are combined with
color and brightness channels to form a four-element
feature vector at each point (x, y, r8 , g8 )"(x, y, (r/(r#
g#b)), (g/(r#g#b))). These were then clustered into
blobs to drive a `connected-bloba representation of the
person.

By using the expectation}maximization [26] (EM) op-
timization method to obtain Gaussian mixture models
for the spatio-chrominance feature vector, very complex
shapes and color patterns can be adaptively estimated
from the image stream. In our system we use an in-
cremental version of EM, which allows us to adaptively
and continuously update the spatio-chromatic blob de-
scriptions. Thus not only can we adapt to very di!erent
skin colors, etc., but also to changes in illumination.

2.1. Blobs: a probabilistic representation

We can represent shapes in both 2-D and 3-D by their
low-order statistics. Clusters of 2-D points have 2-D
spatial means and covariance matrices, which we shall
denote q6 and C

q
. The blob spatial statistics are described

in terms of their second-order properties. For computa-
tional convenience we will interpret this as a Gaussian
model. The Gaussian interpretation is not terribly signi"-
cant, because we also keep a pixel-by-pixel support map
showing the actual occupancy.

Like other representations used in computer vision
and signal analysis, including superquadrics, modal anal-
ysis, and eigen-representations, blobs represent the glo-
bal aspects of the shape and can be augmented with
higher-order statistics to attain more detail if the data
supports it. The reduction of degrees of freedom from
individual pixels to blob parameters is a form of regular-
ization which allows the ill-conditioned problem to be
solved in a principled and stable way.

For both 2-D and 3-D blobs, there is a useful physical
interpretation of the blob parameters in the image space.
The mean represents the geometric center of the blob
area (2-D) or volume (3-D). The covariance, being sym-
metric semi-de"nite positive, can be diagonalized via an
eigenvalue decomposition: C"'¸'T, where ' is or-
thonormal and ¸ is diagonal.

The diagonal ¸ matrix represents the size of the blob
along uncorrelated orthogonal object-centered axes and
' is a rotation matrix that brings this object-centered
basis in alignment with the coordinate basis of C. This
decomposition and physical interpretation is important
for estimation, because the shape ¸ can vary at a di!erent
rate than the rotation '. The parameters must be separ-
ated so they can be treated appropriately.

2.2. Maximum likelihood estimation

The blob features are modeled as a mixture of Gaus-
sian distributions in the color (or texture, motion, etc.)
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space. The algorithm that is generally employed for
learning the parameters of such a mixture model is the
Expectation}Maximization (EM) algorithm of Dempster
et al. [26,27].

In our system the input data vector d is the normalized
R, G, B content of the pixels in the image, x"(r8 , g8 )"
(r/(r#g#b), g/(r#g#b)). Our own work [18], or that
of Schiele et al. or Hunke et al. [28,29] have shown that
use of normalized or chromatic color information (r8 , g8 )"
(r/(r#g#b), g/(r#g#b)) can be reliably used for "nd-
ing #esh areas present in the scene despite wide vari-
ations in lighting. The color distribution of each of our
blobs is modeled as a mixture of Gaussian probability
distribution functions (PDFs) that are iteratively esti-
mated using EM. We can perform a maximum likelihood
decision criterium after the clustering is done because
human skin forms a compact, low-dimensional (approx-
imately 1-D) manifold in color space. Two di!erent clus-
tering techniques, both derived from EM are employed:
an o!-line training process and an on-line adaptive learn-
ing process.

In order to determine the mixture parameters of each
of the blobs, the unsupervised EM clustering algorithm is
computed o!-line on hundreds of samples of the di!erent
classes to be modeled (in our case, face, lips and interior
of the mouth), in a similar way as is done for skin color
modeling in Ref. [30]. When a new frame is available the
likelihood of each pixel is computed using the learned
mixture model and compared to a likelihood threshold.
Only those pixels whose likelihood is above the threshold
are classi"ed as belonging to the model.

2.3. Adaptive modeling via EM

Even though general models make the system relative-
ly user-independent, they are not as good as an adaptive,
user-speci"c model would be. We therefore use adaptive
statistical modeling of the blob features to narrow the
general model, so that its parameters are closer to the
speci"c users' characteristics.

The "rst element of our adaptive modeling is to update
the model priors as soon as the user's face has been
detected. Given n independent observations x

i
"(r8

i
, g8

i
),

i"1,2, n of the user's face, we model them as being
samples of a Normal distribution in color space with
mean the sample mean k
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.
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Eq. (1) corresponds to the computation of the posterior
skin color probability distribution from the prior (gen-
eral) and the user's (learned from the current image
samples) models.

This update of skin model occurs only at the beginning
of the sequence, assuming that the blob features are not
going to drastically change during run time. To obtain
a fully adaptive system, however, one must also be able
to handle second-to-second changes in illumination and
user characteristics.

We therefore use an on-line Expectation}Maximiza-
tion algorithm [31,32] to adaptively model the image
characteristics. We model both the background and the
face as a mixture of Gaussian distributions with mixing
proportions n

i
and K components:

p(x/#)"
K
+
i

n
i

e~1@2(x~ki)T+ (~1)
i (x~ki)

(2n)d@2D+
i
D1@2

. (2)

The unknown parameters of such a model are the su$-
cient statistics of each Normal distribution (k

i
, +

i
), the

mixing proportions n
i
and the number of components of

the mixture K.
The incremental EM algorithm is data driven, i.e., it

estimates the distribution from the data itself. Two up-
date algorithms are needed for this purpose: A criterium
for adding new components to the current distribution as
well as an algorithm for computing the su$cient statis-
tics of each Normal Gaussian component.

The su$cient statistics are updated by computing an
on-line version of the traditional EM update rules. If
the "rst n data points have already been computed, the
parameters when data point (n#1) 2 is read are esti-
mated as follows: First, the posterior class probability
p(iDxn`1) or responsibility (credit) hn`1

i
for a new data

point xn`1 is computed:

hn`1
i

"

nn
i
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i
)

+
j
nn
j
p(xn`1/hn

j
)
. (3)

This responsibility can be interpreted as the probability
that a new data point xn`1 was generated by component
i. Once this responsibility is known, the su$cient statis-
tics of the mixture components are updated, weighted by
the responsibilities:

nn`1
i

"nn
i
#

hn`1
i

!nn
i

n
, (4)

kn`1
i

"kn
i
#

hn`1
i

n*wn
i

(xn`1!kn
i
), (5)

2Superscript n will refer in the following to the estimated
parameters when n data points have already been processed.
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where p
i
is the standard deviation of component i and

wn`1
i

is the average responsibility of component i per
point: wn`1

i
"wn

i
#(hn

i
!wn

i
)/n. The main idea behind

this update rules is to distribute the e!ect of each new
observation to all the terms in proportion to their re-
spective likelihoods.

A new component is added to the current mixture
model if the most recent observation is not su$ciently
well explained by the model. If the last observed data
point has a very low likelihood with respect of each of the
components of the mixture, i.e. if it is an outlier for all the
components, then a new component is added with mean
the new data point and weight and covariance matrix
speci"ed by the user. The threshold in the likelihood
can be "xed or stochastically chosen. In the latter case
the algorithm would randomly choose whether to add a
component or not given an outlier. There is a maximum
number of components for a given mixture as well.

The foreground models are initialized with the o!-line
unsupervised learned a priori mixture distributions de-
scribed above. In this way, the algorithm quickly con-
verges to a mixture model that can be directly related to
the a priori models' classes. The background models are
not initialized with an a priori distribution but learned
on-line from the image.

2.4. MAP segmentation

Given these models, a MAP foreground-background
decision rule is applied to compute support maps for each
of the classes, that is, pixel-by-pixel maps showing the
class membership of each model. Given several statistical
blob models that could potentially describe some par-
ticular image data, the membership decision is made by
searching for the model with the maximum a posteriori
(MAP) probability.

Once the class memberships have been determined,
the statistics of each class are then updated via the EM
algorithm, as described above. This approach can easily
be seen to be a special case of the MDL segmentation
algorithms developed by Darrell and Pentland [23,24]
and later by Ayer and Sawhney [25].

2.5. Kalman xltering

Kalman "lters have extensively been used in control
theory as stochastic linear estimators. The Kalman "lter
was "rst introduced by Kalman [33] for discrete systems
and by Kalman and Bucy [34] for continuous-time sys-
tems. The objective is to design an estimator that pro-
vides estimates of the non-observable estate of a system
taking into account the known dynamics and the mea-
sured data. Note here that the Kalman "lter provides the

optimal linear estimate of the state, but, if all noises are
Gaussian, it provides the optimal estimator.

In our system to ensure stability of the MAP segmen-
tation process, the spatial parameters for each blob
model are "ltered using a zero-order Kalman "lter. For
each blob we maintain two independent, zero-order "l-
ters, one for the position of the blob centroid and another
for the dimensions of the blob's bounding box. The MAP
segmentation loop now becomes:

1. For each blob predict the "lter state vector, XH"XK
and covariance matrix, CH"CK #(*t)2=, where the
matrix = measures the precision tolerance in the
estimation of the vector X and depends on the kin-
ematics of the underlying process.

2. For each blob new observations> (e.g., new estimates
of blob centroid and bounding box computed from
the image data) are acquired and the Mahalanobis
distance between these observations (>, C) and the
predicted state (XK , CK ) is computed. If this distance is
below threshold, the "lters are updated by taking into
account the new observations:

CK "[CH~1#C~1]~1, (7)

XK "CK [CH~1XH#C~1>]~1. (8)

Otherwise a discontinuity is assumed and the "lters
are reinitialized: XK "XH and CK "CH.

A generalized version of this technique is employed in
Ref. [35] for fusing several concurrent observations. This
Kalman "ltering process is used in the tracking of all of
the blob features. In our experience the stability of the
MAP segmentation process is substantially improved by
use of the Kalman "lter, specially given that LAFTER's
real-time performance yields small errors in the predicted
"lter state vectors. Moreover, smooth estimates of the
relevant parameters are crucial for preventing jittering in
the active camera, as described in Section 4.2.

2.6. Continuous real-time HMMs

Our approach to temporal interpretation of facial ex-
pressions uses Hidden Markov Models (HMMs) [36] to
recognize di!erent patterns of mouth shape. HMMs are
one of the basic probabilistic tools used for time series
modeling. A HMM is essentially a mixture model where
all the information about the past of the time series is
summarized in a single discrete variable, the hidden state.
This hidden state is assumed to satisfy a xrst-order Mar-
kov condition: any information about the history of the
process needed for future inferences must be re#ected in
the current state.

HMMs fall into our Bayesian framework with the
addition of time in the feature vector. They o!er dynamic
time warping, an e$cient learning algorithm and clear
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Fig. 2. LAFTER's architecture.

3The output probability is the probability of observing o
t
given state a

i
at time t.

Fig. 1. Graphical representation of real-time left-to-right hidden
Markov models.

Bayesian semantics. HMMs have been prominently and
successfully used in speech recognition and, more re-
cently, in handwriting recognition. However, their ap-
plication to visual recognition purposes is more recent
[37}40]. HMMs are usually depicted rolled-out in time,
as Fig. 1 illustrates.

The posterior state sequence probability in a HMM
is given by P(SDO)"P

s1
p
s1
(0

1
)<T
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st
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st
Ds
t~1
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S"Ma
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t
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ponds to the state at time t. P
i@j

GP
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is the state-
to-state transition probability (i.e. probability of being in
state a

i
at time t given that the system was in state a

j
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time t!1). In the following we will write them as P
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.
The prior probabilities for the initial state are expressed
as P
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t
)"p

st
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t
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the output probabilities for each state.3 The Viterbi algo-
rithm provides a formal technique for "nding the most
likely state sequence associated with a given observation
sequence. To adjust the model parameters (transition
probabilities A, output probabilities parameters B and
prior state probabilities n) such that they maximize the
probability of the observation given the model an iter-
ative procedure } such as the Baum}Welch algorithm
* is needed.

We have developed a real-time HMM system that
computes the maximum likelihood of the input sequence
with respect to all the models during the testing or
recognition phase. This HMM-based system runs in real
time on an SGI Indy, with the low-level vision processing
occurring on a separate Indy, and communications oc-
curring via a socket interface.

3. System's architecture

LAFTER's main processing modules are illustrated
in Fig. 2 and will be explained in further detail in the next
sections.
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Fig. 3. Face detection, per-pixel probability image computation and face blob growing.

4. Automatic face detection and tracking

Our approach to the face "nding problem uses coarse
color and size/shape information. This approach has
advantages over correlation or eigenspace methods, such
as speed and rotation invariance under constant illu-
mination conditions. As described in the mathematical
framework (Section 2), our system uses an adaptive
EM algorithm to accomplish the face detection process.
Both the foreground and background classes are
learned incrementally from the data. As a trade-o! be-
tween the adaptation process and speed, new models are
updated only when there is a signi"cant drop in the
posterior probability of the data given in the current
model.

Two to three mixture components is the typical num-
ber required to accurately describe the face. Mouth mod-
els are more complex, often requiring up to "ve compo-
nents. This is because the mouth model must include not
only lips, but also the interior (tongue) of the mouth and
the teeth.

4.1. Blob growing

After initial application of the MAP decision criterion
to the image, often isolated and spurious pixels are mis-
classi"ed. Thus local pixel information needs to be
merged into connected regions that correspond to each
of the blobs.

The transition from local to global information is
achieved by applying a connected component algorithm
which grows the blob. The algorithm we use is an speed-
optimized version of a traditional connected component
algorithm that considers for each pixel the values within
a neighborhood of a certain radius (which can be varied
at run-time) in order to determine whether this pixel
belongs to the same connected region.

Finally, these blobs are then "ltered to obtain the best
candidate for being a face or a mouth. Color information
alone is not robust enough for this purpose. The back-
ground, for instance, may contain skin colors that could
be grown and erroneously considered as faces. Addi-
tional information is thus required. In the current system,
geometric information, such as the size and shape of the

object to be detected (faces) is combined with the color
information to "nally locate the face. In consequence,
only those skin blobs whose size and shape (ratio of
aspect of its bounding box) are closest to the canonical
face size and shape are considered. The result is shown in
Fig. 3.

4.2. Active camera control

Because our system already maintains a Kalman "lter
estimate of the centroid and bounding box of each blob,
it is a relatively simple matter to use these estimates to
control the active camera so that the face of the user
always appears in the center of the image and with the
desired size. Our system uses an abstraction of the cam-
era control parameters, so that di!erent camera/motor
systems (currently the Canon VCC1 and Sony EVI-D30)
can be successfully used in a transparent way. In order to
increase tracking performance, the camera pan-tilt-zoom
control is done by an independent light-weight process
(thread) which is started by the main program.

The current estimation of the position and size of the
user's face provides a reference signal to a PD controller
which determines the tilt, pan and zoom of the camera
so that the target (face) has the desired size and is at the
desired location. The zoom control is relatively simple,
because it just has to be increased or decreased until
the face reaches the desired size. Pan and tilt speeds are
controlled by S

c
"(C

eHE#C
d
HdE/dt)/F

z
, where C

e
and

C
d
are constants, E is the error, i.e. the distance between

the face current position and the center of the image, F
z
is

the zoom factor, and S
c
is the "nal speed transmitted to

the camera.
The zoom factor plays a fundamental role in the cam-

era control because the speed with which the camera
needs to be adjusted depends on the displacement that
a "xed point in the image undergoes for a given rotation
angle, which is directly related to the current zoom factor.
The relation between this zoom factor and the current
camera zoom position follows a non-linear law which
needs to be approximated. In our case, a second order
polynomial provides a good approximation. Fig. 4 illus-
trates the processing #ow of the PD controller.
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Fig. 5. Multi-resolution mouth extraction, skin model learning. Head and mouth tracking with rotations and facial hair.

4The mouth extraction and processing is performed on a Region of Interest (ROI) extracted from a full resolution image (i.e. 640]480
pixels) whereas the face detection and processing is done on an image of 1/6 full resolution, i.e. 106]80 pixels.

Fig. 4. PD controller.

5. Mouth extraction and tracking

Once the face location and shape parameters are
known (center of the face, width, height and image rota-
tion angle), we can use anthropometric statistics to de"ne
a bounding box within which the mouth must be located.

The mouth is modeled using the same principles as
the face, i.e. through a second-order mixture model that
describes both its chromatic color and spatial distribu-
tion. However to obtain good performance we must also
produce a more "nely detailed model of the face region
surrounding the mouth. The face model that is adequate
for detection and tracking might not be adequate for
accurate mouth shape extraction.

Our system, therefore, acquires image patches from
around the located mouth4 and builds a Gaussian mix-
ture model. In the current implementation, skin samples
of three di!erent facial regions around the mouth are

extracted during the initialization phase and their statis-
tics are computed, as is depicted in Fig. 5. The second
image in the same "gure is an example of how the system
performs in the case of facial hair. The robustness of the
system is increased by computing at each time step the
linearly predicted position of the center of the mouth.
A con"dence level on the prediction is also computed,
depending on the prediction error. When the prediction
is not available or its con"dence level drops below a thre-
shold, the mouth's position is reinitialized.

5.1. Mouth shape

The mouth shape is characterized by its area, its spatial
eigenvalues (e.g., width and height) and its bounding box.
Fig. 6 depicts the extracted mouth feature vector. The use
of this feature vector to classify facial expressions has
been suggested by psychological experiments [41,42],
which examined the most important discriminative fea-
tures for expression classi"cation.

Rotation invariance is achieved by computing the
face's image-plane rotation angle and rotating the region
of interest with the negative of this angle. Therefore, even
though the user might turn the head the mouth always
appears nearly horizontal, as Fig. 5 illustrates.

6. Speed, accuracy, and robustness

Running LAFTER on a single SGI Indy with
a 200Mhz R4400 processor, the average frame rate for
tracking is typically 25 Hz. When mouth detection and
parameter extraction are added to the face tracking, the
average frame rate is 14 Hz.

To measure LAFTER's 3-D accuracy during head
motion, the RMS error was measured by having users
make large cyclic motions along the XM , >M , and Z-axis,
respectively, with the true 3-D position of the face being
determined by manual triangulation. In this experiment
the camera actively tracked the face position, with the
image-processing/camera-control loop running at
a nearly constant 18 hz. The image size was 1/6 full
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Fig. 7. Active camera tracking.

Fig. 6. Mouth feature vector extraction.

resolution, i.e. 106]80 pixels, and the camera control
law varied pan, tilt, and zoom to place the face in the
center of the image at a "xed pixel resolution. Fig. 7 illus-
trates the active-camera tracking system in action. The
RMS error between the true 3-D location and the sys-
tem's output was computed in pixels and is shown in
Table 1. Also shown is the variation in apparent head
size, e.g., the system's error at stabilizing the face image
size. As can be seen, the system gave quite accurate
estimates of 3-D position. Perhaps most important, how-
ever, is the robustness of the system. LAFTER has been
tested on hundreds of users at many di!erent events, each
with its own lighting and environmental conditions.
Examples are the Digital Bayou, part of SIGGRAPH 96',
the Second International Face & Gesture Workshop (Octo-
ber 96 ) or several open houses at the Media Laboratory
during the last two years. In all cases the system failed in
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Fig. 8. Open, sad, smile and smile-open recognized expressions.

Table 1
Translation and zooming active tracking accuracies

Translation
Range

X RMS
Error
(pixels)

Y RMS
Error
(pixels)

Static Face 0.0 cm 0.5247 0.5247
(0.495%) (0.6559%)

X translation $76 cm 0.6127 0.8397
(0.578%) (1.0496%)

Y translation $28 cm 0.8034 1.4287
(1.0042%) (1.7859%)

Z translation $78 cm 0.6807 1.1623
(0.6422%) (1.4529%)

Width Std
(pixels)

Height Std
(pixels)

Size change
(pixels)

Zooming 2.2206 2.6920 Max. size: 86]88
(2.09%) (3.36%) Min. size: 14]20

approximately 3}5% of the cases, when the users had
dense beard, extreme skin color or clothing very similar
to the skin color models.

7. Mouth-shape recognition

Using the mouth shape feature vector described above,
we trained "ve di!erent HMMs for each of the following
mouth con"gurations (illustrated in Fig. 8): neutral
or default mouth position, extended/smile mouth, sad
mouth, open mouth and extended#open mouth (such
as in laughing).

The neutral mouth acted to separate the various ex-
pressions, much as a silence model acts in speech recogni-
tion. The "nal HMMs we derived for the non-neutral
mouth con"gurations consisted of 4-state forward
HMMs. The neutral mouth was modeled by a 3-state
forward HMM.

Recognition results for a eight di!erent users making
over 2000 expressions are summarized in Table 2. The
data were divided into di!erent sets for training and
testing purposes. The "rst line of the recognition results
shown in Table 2 corresponds to training and testing
with all eight users. The total number of examples is
denoted by N, having a total N"2058 instances of the
mouth expressions (N"750 for training and N"1308
for testing). The second line of the same table corres-
ponds to person-speci"c training and testing. As can be
seen, accurate classi"cation was achieved in each case.

In comparison with other facial expression recognition
systems, the approach proposed by Matsuno et al. [2]
performs extremely well on training data (98.4% accu-
racy) but more poorly on testing data, with 80% accu-
racy. They build models of facial expressions from defor-
mation patterns on a potential net computed on training
images and subsequent projection in the so called Emo-
tion Space. Expressions of new subjects are recognized by
projecting the image net onto the Emotion Space. Black
et al. [7] report an overall average recognition of 92% for
six di!erent facial expressions (happiness, surprise, anger,
disgust, fear and sadness) in 40 di!erent subjects. Their
system combines deformation and motion parameters to
derive mid- and high-level descriptions of facial actions.
The descriptions depend on a number of thresholds and
a set of rules that need to be tuned for each expression
and/or subject. The system described in Ref. [43] has
a recognition rate of about 74% when using 118 testing
images of the seven psychologically recognized categories
across several subjects. They use #exible models for rep-
resenting appearance variations of faces. Essa et al. [44]
report 98% accuracy in recognizing "ve di!erent facial
expressions using both peak-muscle activations and
spatio-temporal motion energy templates from a data-
base of 52 sequences. An accuracy of 98.7% is reported
by Yael Moses et al. [9] on real-time facial expression
recognition. Their system detects and tracks the user's
mouth, by representing it by a valley contour based
between the lips. A simple classi"cation algorithm is then
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Fig. 9. The virtual window: Local head positions are detected by the active tracking camera and used to control a moving camera in the
remote site. The e!ect is that the image on the local monitor changes as if it were a window. The second image illustrates the virtual
window system in use.

Table 2
Recognition results: training and testing data

Test on:

Train on Training Testing

All users 97.73 95.95
Single user 100.00 100.00

used to discriminate between "ve di!erent mouth shapes.
They consider only confusions but not false negatives
(confusions of any expression to neutral) on two indepen-
dent samples of about 1000 frames each and of a prede-
termined sequence of "ve di!erent expressions plus the
neutral face. Padgett et al. [45] report 86 accuracy on
emotion recognition on novel individuals using neural
networks for classi"cation. The recognized emotions are
happy, sad, fear, anger, surprise, disgust or neutral across
12 individuals. Finally the method adopted by Lien et al.
[46] is the most similar to ours in the sense of the
recognition approach, because they also use HMMs. The
expression information is extracted by use of facial fea-
ture point tracking (for the lower face* mouth*) or by
pixel-wise #ow tracking (for the upper face * forehead
and eyebrows*) followed by PCA to compress the data.
Their system has an average recognition rate for the lower
face of 93 and for the upper face of 91% using FACS.

8. Applications

8.1. Automatic camera man

The static nature of current video communication sys-
tems induces extra articulatory tasks that interfere with

real world activity. For example, users must keep their
head (or an object of interest) within the "eld of the
camera (or of the microphone) in order to be perceived by
distant parties. As a result, the user ends up being more
attentive to the way how to using the interface than to the
conversation itself. The communication is therefore de-
graded instead of enriched.

In this sense, LAFTER, with its active camera face
tracking acts as an &automatic camera man' that is con-
tinuously looking at the user while he/she moves around
or gestures in a video-conference session. In informal
teleconferencing testing, users have con"rmed that this
capability signi"cantly improves the usability of the tele-
conferencing system.

8.2. Experiences with a virtual window system

Some of the limitations of traditional media spaces
* with respect to the visual information * are [47]:
restricted "eld of view on remote sites by the video,
limited video resolution, spatial discontinuity, medium
anisotropy and very restricted movement with respect to
remote spaces. Each of these negatively a!ects the com-
munication in a media space, with movement one of
the most in#uential, as Gibson emphasized in Ref. [48].
Motion allows us to increase our "eld of view, can
compensate for low resolution, provides information
about the three-dimensional layout and allow people to
compensate for the discontinuities and anisotropies of
current media spaces, among other factors. Therefore,
not only allowing movement in local media spaces is a
key element for desktop mediated communication and
video-conference systems * as we have previously em-
phasized*, but also the ability of navigating and explor-
ing the remote site.
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Fig. 11. Preferential coding: the "rst image is the JPEG #at encoded image (File size of 14.1 Kb); the second is a very low resolution
JPEG encoded image using #at coding (File size of 7.1 Kb); the third one is a preferential coding encoded image with high resolution
JPEG for the eyes and mouth but very low resolution JPEG coding for the face and background (File size of 7.1 Kb).

Fig. 10. Real-time computer graphics animation.

The Virtual Window proposed by Gaver [49] illus-
trates an alternative approach: as the user moves in front
of his local camera, the distant motorized camera is
moved accordingly: exploring a remote site by using head
movements opens a broad spectrum of possibilities for
systems design that allow an enriched access to remote
partners. Fig. 9 depicts an example of a virtual window
system.

One of the main problems that Gaver recognized in his
virtual window system was that its vision controller was
too sensitive to lighting conditions and to moving ob-
jects. Consequently, the tracking was unstable; users were
frustrated and missed the real purpose of the system
when experiencing it.

We found that by incorporating our face tracker into
a Virtual Window system, users could successfully obtain
the e!ect of a window onto another space. To the best of
our knowledge this is the "rst real-time robust implemen-
tation of the virtual window. In informal tests, users
reported that the LAFTER-based virtual window system
gives a good sense of the distant space.

8.3. Real-time computer graphics animation

Because LAFTER continuously tracks face location,
image-plane face rotation angle, and mouth shape, it is
a simple matter to use this information to obtain real-
time animation of a computer graphics character. This
character can, in its simplest version, constantly mimic
what the user does (as if it were a virtual mirror) or, in
a more complex system, understand (recognize) what the
user is doing and react to it. A `virtual mirrora version of
this system* using the character named Waldorf shown
in Fig. 10*was exhibited in the Digital Bayou section of
SIGGRAPH'96 in New Orleans.

8.4. Preferential coding

Finally, LAFTER can be used as the front-end to
a preferential image coding system. It is well known that
people are most sensitive to coding errors in facial fea-
tures. Thus it makes sense to use a more accurate (and
more expensive) coding algorithm for the facial features,
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and a less accurate (and cheaper) algorithm for the re-
maining image data [50}52]. Because the location of
these features is detected by our system, we can make use
of this coding scheme. The improvement obtained by
such system is illustrated in Fig. 11.

9. Conclusion and future work

In this paper we have described a real-time system for
"nding and tracking a human face and mouth, and recog-
nizing mouth expressions using HMMs. The system runs
on a single SGI Indy computer or PentiumPro Personal
Computer, and produces estimates of head position that
are surprisingly accurate.

The system has been successfully tested on hundreds
of naive users in several physical locations and used as
the base for several di!erent applications, including an
automatic camera man, a virtual window video com-
munications system, and a real-time computer graphics
animation system.

10. Summary

This paper describes an active-camera real-time system
for tracking, shape description, and classi"cation of the
human face and mouth using only a PC or equivalent
computer. The system is based on use of 2-D blob fea-
tures, which are spatially-compact clusters of pixels that
are similar in terms of low-level image properties. Pat-
terns of behavior (e.g., facial expressions and head move-
ments) can be classi"ed in real-time using Hidden
Markov Models (HMMs). The system has been tested on
hundreds of users and has demonstrated extremely
reliable and accurate performance. Typical facial expres-
sion classi"cation accuracies are near 100%. LAFTER
has been used as the base for several practical applica-
tions, including an automatic camera-man, a virtual
window video communications system, and a real-time
computer graphics animation system.
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