

Fingertracking and
Handposture Recognition for
Real-Time Human-Computer
Interaction

Fingertracking und Gestenerkennung für Mensch-Maschine-
Interaktion in Echtzeit

Freie wissenschaftliche Arbeit zur Erlangung des Grades des

Diplom-Wirtschaftsingenieurs

Am Fachbereich Elektrotechnik und Informatik

der Technischen Universität Berlin

Institut für Elektronik und Lichttechnik

Prof. Dr.-Ing. R. Orglmeister

eingereicht von

cand.-ing. Christian von Hardenberg

Berlin, 20. Juli 2001

ii

Preface

This work was prepared at the CLIPS laboratory (Communication
Langagièr et Interaction Personne-Système) at the Joseph Fourier
University, Grenoble.
I am very grateful to the IIHM working group for their support, both
in terms of finance and encouragement. I would especially like to
thank Joëlle Coutaz for creating a gentle and very motivating
atmosphere that was perfect for intense research work.
François Bérard deserves a great deal of thanks; he provided the
right amount of assistance at the right time – I could not have wished
for a better supervisor.
I also would like to thank Prof. Orglmeister and Steffen Zeiler for
supporting this work from Germany and for letting me work on a
fascinating topic.
Special thanks to Christophe Lachenal and Gaëtan Rey for ideas and
discussions, to Jessica Nash for proofreading and to Christiane for
making me happy.

Table of Contents

INTRODUCTION 1
Motivation 1
Approach 2
Applications 3
Structure of the Paper 4

REAL-TIME HUMAN-COMPUTER INTERACTION 5
Terms and Concepts 5

Closed Control Loop Model 6
Graspable and Digital Interfaces 6

Functional Requirements 8
Detection 9
Identification 9
Tracking 9

Non-Functional Requirements 10
Latency 10
Resolution 11
Stability 12

Computer Vision for Real-Time Human-Computer Interaction 13
Advantages of Computer Vision 13
Challenges of Computer Vision 14

EXAMPLE SYSTEMS AND RELATED WORK 15
Hand Posture Recognition 15

3D-Model Based Hand Posture Recognition 15
Appearance-Based Models 17
Low-Level Appearance-Based Systems 18
High-Level Appearance-Based Systems 19

Finger Tracking 21
Color Tracking Systems 21
Correlation Tracking Systems 22
Contour-Based Tracking Systems 23

LOW-LEVEL IMAGE PROCESSING 25
Color 25

Color-Space Transformation 26
Gaussian Model 27
Segmentation with Bayes Decision Theory 27

Correlation 28
Similarity Measures 29
Search Window Size 30
Adapting the Sample Pattern 30
Possible Further Improvements 31

Image Differencing 32
Thresholding Difference Images 33
Image Subtraction 34
Background as Reference Image 34
Selective Updating Techniques 35

Thresholding 36
Region Growing 38

Homogeneity Criteria 38
The Region-Growing Algorithm 39
Real-time Region-growing 40

COMPARISON OF LOW-LEVEL TECHNIQUES FOR

FINGER-FINDING AND –TRACKING 42
Qualitative Comparison 42

Color 42
Correlation 43
Image Differencing 44
Region Growing 45

Quantitative Comparison 46
Setup 47
Processing Speed 47
Accuracy 48
Robustness 49

Conclusions 50
Image Differencing as Preferred Technique 50
Necessary External Conditions 51

FINGERTIP FINDING 52
Motivation 52
The Fingertip Finding Algorithm 53

Fingertip Shape Finding 54
Finger Classification 56

Evaluation 57
Remaining Problems 59

APPLICATIONS 60
Motivation and System Description 60

FingerMouse 60
FreeHandPresent 61
BrainStorm 62

Implementation Details 63
System Overview 63
Programming Language 64
Stabilization and Calibration 64
Mouse Driver Simulation and Control of PowerPoint 65
Finite State Machines 65

Evaluation 66
The FingerMouse 66
FreeHandPresent 68
BrainStorm 69

CONCLUSION AND OUTLOOK 71
Summary and Contributions 71
Outlook 72

APPENDIX 74
REFERENCES 77

v

List of Figures

Figure 1.1: Control loop for mouse positioning movement 6
Figure 1.2: Classical, graspable and digital interfaces 7
Figure 1.3: Michotte’s Experiment 11
Figure 2.1: Degrees of freedom of the human hand 16
Figure 2.2: Results from Rehg and Kanade 17
Figure 2.3: Simple appearance-based gesture recognition 18
Figure 2.4: Contour-based hand tracking 19
Figure 2.5: DrawBoard application 20
Figure 2.6: Hand representation with labeled graphs 20
Figure 2.7: FingerMouse setup and color segmentation result 21
Figure 2.8: FingerPaint, Digital Desk and Television control 22
Figure 2.9: Contour-based tracking with condensation 23
Figure 3.1: Simple color segmenting with a lookup-table 26
Figure 3.2: Generalized color models 27
Figure 3.3: Correlation search 29
Figure 3.4: Correlation tracking with rotation 31
Figure 3.5: Image differencing 32
Figure 3.6: Thresholded difference images 33
Figure 3.7: Image subtraction 34
Figure 3.8: Image differencing with reference image 35
Figure 3.9: Thresholding 37
Figure 3.10: Region growing at various image resolutions 40
Figure 3.11: Hand finding with motion-triggered region growing 41
Figure 4.1: Skin colors under varying light condition 43
Figure 4.2: Motion Blurring 44
Figure 4.3: Problems with region growing 45
Figure 4.4: Test sequences with labeled fingers 47
Figure 5.1: The finger-finding process 53
Figure 5.2: Typical finger shapes 54
Figure 5.3: A simple model of the fingertip 54
Figure 5.4: The finger classification sub-processes 56
Figure 5.5: Finger-finding results 58
Figure 6.1: The FingerMouse on a projected screen 61
Figure 6.2: The BrainStorm System 62
Figure 6.3: System overview 63
Figure 6.4: Finite state machine for FreeHandPresent 66
Figure 6.5: Controlling Windows Paint with the bare finger 67
Figure 6.6: The FreeHandPresent system 68
Figure 6.7: The BrainStorm user experiment 69
Figure A.1: Interlaced images 74
Figure A.2: Object structure for region growing 76

1

Introduction

Introduction

Many users wonder why computers are still “dumb” despite the
constant increase in processing power. But how can we expect
“intelligence” from machines that have almost no knowledge of what
is going on around them, because they can only sense keystrokes and
mouse movements?
Recently the price for digital video cameras has dropped
dramatically. For less than $50 every computer can now be equipped
with a powerful new sense: Vision. How can computer vision be
applied to make machines simpler and faster or just more useful?
This paper will try to answer this question with the example of the
bare hand as input device.

Motivation
For a long time research on human-computer interaction (HCI) has
been restricted to techniques based on the use of monitor, keyboard
and mouse. Recently this paradigm has changed. Techniques such as
vision, sound, speech recognition, projective displays and location-
aware devices allow for a much richer, multi-modal interaction
between man and machine.

But despite the variety of new input devices, there is still a deep
divide between the world of bits and the world of atoms. As Alex
Pentland, academic head of the M.I.T. Media Lab, puts it1:

“Current machines are blind and deaf; they are unaware of us
or our desires unless we explicitly instruct them. Consequently,
only experts use most machines, and even they must spend most
of their time battling arcane languages and strange, clunky
interface devices.”

The main motivation of our research is to get rid of those “strange,
clunky interface devices.”

1 From his homepage at http://sandy.www.media.mit.edu/people/sandy/

Introduction

2

Natural interaction between humans does not involve any devices
because we have the ability to sense our environment with eyes and
ears. In principle the computer should be able to imitate those
abilities with cameras and microphones. Such a “perceptual”
computer would have two great advantages. First, it could be built
very small because cameras and microphones take up much less
space than keyboards and mice. Second, it could be very easy to use.
Gestures, facial expressions and spoken words would serve as input
stream, much the same way as during natural communication
between humans.

Approach
In this paper we will take a closer look at human-computer
interaction with the bare hand. In this context, “bare” means that no
device has to be attached to the body to interact with the computer.
The position of the hand and the fingers is directly used to control
applications.

Hand positions can in principle be analyzed with different systems,
such as cyber-gloves, magnetic trackers, mechanical devices and
cameras. For us digital cameras are the system of choice because all
other techniques involve some kind of hardware device connected to
the hand and therefore cannot provide bare hand interaction.

Our approach will be centered on the needs of the user.
Requirements derived from usability considerations will guide our
implementation, i.e. we will not try to solve general computer vision
problems, but rather find specific solutions for a specific scenario.

The scope of the research will be limited to finger tracking (finding
finger positions on video images) and hand posture recognition
(identifying which posture from a pre-defined set of possible
postures is performed by the user). Hand gesture recognition will not
be covered in this paper. The difference between postures and
gestures is simply the additional dimension of time. Postures are
static (e.g. “thumb up”), while gestures are dynamic (e.g. tapping the
forehead with a finger).

Throughout the paper our guiding principle will be to create a system
that is usable in the real world. Sometimes it might be necessary to
adapt the environment to the needs of the computer (e.g. light
conditions), but those restrictions have to be made in a way that does
not compromise the overall usability requirements. To evaluate the
performance of our finger tracking and hand posture recognition
algorithms, we will choose concrete application scenarios and
develop simple demonstration systems for those scenarios.

Introduction

3

Applications
What are the possible applications for bare hand-based human-
computer interaction?

There are several cases in which the bare hand is more practical than
traditional input devices:

• During a presentation, the presenter does not have to move back
and forth between computer and screen to select the next slide.

• Mobile devices with very limited space for user interfaces could
be operated with hand gestures.

• Remote controls for television sets, stereos and room lights could
be replaced with the bare hand.

• During videoconferences the camera's attention could be
acquired by stretching out a finger, similar to a classroom
situation.

• Household robots could be controlled with hand gestures.

Additionally, perceptual interfaces allow the creation of computers
that are not perceived as such. Without monitor, mouse and
keyboard, a computer can hide in many places, such as household
appliances, cars, vending machines and toys. The main advantage of
perceptual interfaces over traditional buttons and switches are as
follows:

• In principal, systems can be integrated on very small surfaces.
• Systems can be operated from a certain distance.
• The number of mechanical parts within a system can be reduced,

making it more durable.
• Very sleek designs are possible (imagine a CD-Player without a

single button).
• Systems can be protected from vandalism by creating a safety

margin between the user and the device.
• In combination with speech recognition, the interaction between

human and machine can be greatly simplified.

Finally, there is a class of applications, which can be built in
combination with a projector. Virtual objects that are projected onto
the wall or onto a table can be directly manipulated with the fingers.
This setup is useful in several ways:

• Multiple persons can simultaneously work with the objects
projected onto the wall.

• Physical systems, such as a schedule on the wall, can be replaced
with digital counterparts. The digital version can be easily stored,
printed, and sent over the Internet.

• If projector and camera are mounted in a place that is not
accessible for the user, an almost indestructible interface can be
built. To the user, the computer physically only consists of the
wall at which the interface is projected.

While some of these applications might seem to be futuristic, others
can be quite practical. Chapter six will present three applications in
detail and discuss their strengths and weaknesses.

Introduction

4

Structure of the Paper
In chapter one we will precisely define what we mean by “real-time
human-computer interaction”. Starting from this definition, we will
set up functional and non-functional requirements for real-time HCI
applications that will help to evaluate our results later. Also, we will
justify in detail why we chose computer vision to track fingers and
hand postures.

Chapter two will give a broad overview of existing work in the
fields of finger tracking and hand posture recognition.

In chapter three we will study several low-level vision techniques
for image segmentation and tracking. We use the term “low-level” to
group informally those computer vision methods that use only very
weak assumptions about the object of interest. They extract generic
features from the image and pass them on to high-level processes
which group or interpret those features according to higher-level
knowledge about the scene.

Chapter four will provide a detailed qualitative and quantitative
comparison of the methods introduced in chapter three and will allow
us to chose the optimal technique for our purposes.

Chapter five will describe how finger positions and hand postures
can be extracted from segmented images, using a shape-filtering
algorithm. With this data we will be able to build demonstration
applications such as a finger controlled mouse pointer or a Microsoft
PowerPoint presentation controlled by hand gestures. Those
applications will be presented and evaluated in chapter six.

5

Chapter One

Real-Time Human-Computer
Interaction

“Real-Time” is a fuzzy word. How can time be real or non-real? In
this chapter we will try to define this word more precisely for our
purposes. Also it will be necessary to take a closer look at the
interaction between human and machine. What are the general
concepts and which requirements have to be met to make it “real-
time.” The requirements set up in this chapter will be useful for an
evaluation of our implementation later on.
Finally, we need to explain why we chose computer vision as a mean
for real-time human-computer interaction. We will describe the
specific strengths and weaknesses of computer vision and its
advantages over traditional input devices such as mouse and
keyboard.

Terms and Concepts
In the context of human-computer interaction, the term “real-time” is
often substituted with “tightly coupled”. Fitzmaurice describes this
concept in [Fitzmaurice 95] as follows:

“Tightly coupled systems have the physical and virtual
representations perfectly synchronized, the physical objects are
tracked continuously in real time.“

Again the term “perfectly synchronized” gives room for some
interpretation. In real-world applications there is always a delay
between a modification in the physical world and the adaptation of
the virtual representation. Just as there is no such thing as “real-
time”, a perfect synchronization is not possible. We define “tightly
coupled” therefore as synchronized without perceivable delay. In the
section “non-functional requirements” we will take a closer look at
human perception to get an estimation of minimum perceivable
delays.

Real-Time Human-Computer Interaction

Chapter One 6

Closed Control Loop Model

Tightly coupled human-computer interaction can be modeled with a
closed control loop [Ware 94] similar to those known in electrical
engineering for automation tasks.

Figure 1.1 shows the control loop for mouse movement guided by a
cursor. In this model, the user performs a series of micro-movements
to reach the desired position. The system generates a feed back for
each of the movements, allowing the user to gradually reduce the
difference between the desired and actual position of the pointer.
From the time the user starts moving the mouse, until the desired
position has been reached, human and machine form a tightly
coupled system, provided that the user does not perceive a delay
between his action and the response on the screen.

Note that there are three kinds of delays on the system side. Capture
and display delay are generated by the hardware of the input and
output devices (such as mouse, video-camera, frame-grabber,
graphics card) and are usually difficult to influence. The
measurement delay is negligible for mouse movements. In the case
of finger-tracking in contrast, it is quite difficult to measure the
fingertip position with an acceptable delay. In fact, most of this paper
will be dedicated to this part of the control loop.

Graspable and Digital Interfaces

What has been the big change in the way people interact with
computers in the last twenty years? The answer is easy: much of the
interaction has moved from the keyboard to the mouse. Today almost
all computers are equipped with graphical user interfaces and most
people use the keyboard exclusively for text-input.

Figure 1.1: Control loop for mouse positioning movement (after [Ware 94])

Real-Time Human-Computer Interaction

Chapter One 7

The great advantage of graphical interfaces is their simplicity.
Instead of entering abstract commands, the user can interact with
graphical metaphors for real-life objects, such as buttons and sliders.
Nevertheless, “expert users” tend to move back from the mouse to
the keyboard, to enter commands. Pressing “control-c” is
significantly faster than moving the hand to the mouse, moving the
mouse pointer to the menu and selecting the “copy” command.

There are two new forms of interfaces that try to combine advantages
of the keyboard and the mouse. Bérard classifies them as graspable
and digital interfaces (see Figure 1.2).

Graspable interfaces are everyday objects, such as Lego bricks
([Fitzmaurice 96]). If the user manipulates the physical object (e.g.
by moving it to another position), the computer senses this change
and manipulates a connected logical object accordingly. Basically a
mouse functions much in the same way: moving the physical mouse
causes a displacement of the logical pointer object. But other than the
mouse, which is exclusively bound to the pointer position, graspable
interfaces can be bound directly to any object on the screen.

There are several advantages over classical user interfaces:

• Fast access: The time needed to move the mouse cursor to an
object on the screen can be saved.

• Multiple degrees of freedom: Several functions can be linked to
the graspable object, because many different manipulations are
possible (such as positioning on the table, rotation in x, y and z-
axes).

• Spatial multiplexing: Several graspable objects can be
manipulated in parallel.

Figure 1.2: Classical, graspable and digital interfaces
(after [Bérard 99])

Real-Time Human-Computer Interaction

Chapter One 8

• Simple interfaces: Manipulation of graspable objects is much
simpler than pointing and clicking with a mouse. Also,
information can be attached to the object, making it self-
explanatory.

Digital interfaces take a somewhat opposite approach: instead of
merging physical and logical objects, they abolish the physical object
as intermediary and allow a direct control of the logical devices with
parts of the body. Rather than moving the mouse to move a pointer,
the finger itself now becomes the pointer. Touch-screen monitors are
a popular example for digital interfaces. The advantages are similar
to those of graspable objects:

• Fast access: The time to move the hand to the mouse can be
saved.

• Multiple degrees of freedom: Several functions can be linked to
hand postures and gestures.

• Spatial multiplexing: Multi-handed and multi-user interaction
possibilities allow parallel manipulation of several objects.

• Simple interfaces: Human beings are used to directly touch and
manipulate objects. Abolishing the mouse as intermediary allows
for much more natural interaction.

• Flexibility: One of the great strengths of the computer is its
flexibility. In contrast to graspable interfaces, digital interfaces
do not restrict the flexibility of software. The applications do not
even know that the mouse has been replaced with a finger.

While many of the computer vision algorithms described later in this
paper can also be used to construct graspable user interfaces, our
focus lies on digital interfaces. One of the goals of this paper will be
to build a working system to prove the validity of the listed
advantages. As a prerequisite, it will be necessary to define
requirements to such a system in greater detail.

Functional Requirements
Functional requirements can be described as the collection of
services that are expected from a system. For a software system these
services can cover several layers of abstraction. In our context only
the basic services are of interest. Bérard identifies three essential
services for vision-based human-computer interaction: detection,
identification and tracking ([Bérard 99]). We will briefly present the
three services and describe how they are used by our envisaged
applications.

Real-Time Human-Computer Interaction

Chapter One 9

Detection

Detection determines the presence of a class of objects in the image.
A class of objects could be body parts in general, faces, hands or
fingers. The output of the detection function expresses the existence
or absence of this class of objects in the image. If the class contains
only one object type, and there is just one object present in the scene
at a time, detection suffices to build simple applications.

For example, if we detect the presence of fingertips and we constrain
our application to one fingertip at a time, the detection output can be
used to directly control a mouse pointer position. For more complex
applications, such as hand posture recognition and multi-handed
interaction, we will need an additional identification and tracking
stage.

Typical simple detection techniques are based on color, movement
and connected component analysis. They will be described in chapter
three.

Identification

The goal of identification is to decide which object from a given
class of objects is present in the scene.

If, for example, the detection stage finds a face in the scene, the
identification stage could match the face with a database of known
faces to recognize a person in front of the camera.

Other examples are identification of symbols written on a whiteboard
([Stafford-Fraser 96]), identification of letters from a hand-sign-
language ([Starner 95]) or identification of spoken words in voice-
recognition systems.

In our case, the detection stage finds fingertips in the image. To
derive meaningful information about hand postures, we need to
attribute the fingers to one of the five possible finger types, which is
a typical identification task.

This finger-identification service can be used to build a variety of
applications, such as the finger-mouse and the finger-driven
presentation both described in chapter six.

Tracking

In most cases the identified objects will not rest in the same position
over time. One way to deal with this problem is to re-run the
identification stage for each frame. There are two cases in which this
is not possible:

• For difficult identification tasks, such as face recognition, the
identification stage can take seconds, making it impossible to run
it continuously in real-time.

• If there are several objects in the scene, which are identical to the
system (e.g. several right hands), it is not possible to attribute
them to the same logical object consistently over time.

Real-Time Human-Computer Interaction

Chapter One 10

In both cases it is necessary to remember the last known position of
an identified object. Given some known constraints about the
possible movements of an object between two frames, a tracking
algorithm tries to follow the object over time.

We will need to provide tracking services in order to build multi-
handed applications, such as a multi-user brainstorming system.

Non-Functional Requirements
A given system could meet all functional requirements and would
still be useless if it took hours to accomplish its tasks. For this reason
it will also be necessary to define non-functional requirements,
which describe the minimum quality, expected from a service. We
will present some measures of quality relevant for our
implementations in this section.

Latency

Latency is the time gap between an action of the user and the system
response. As we said before, there is no system without latency, so
the basic question is, what is the maximum acceptable latency for our
system. One approach to this question is to look at the user
performance at different latencies.

Human beings can operate systems within a wide range of latencies.
When using a computer mouse, the small time gap in the order of
10ms between physical movements and pointer movements on the
screen is not perceivable. But a large system such as a ship, which
responds very slowly to the commands of the captain, can still be
controlled. The user just adapts the timing of the commands to the
expected latency.

Nevertheless, several studies ([Ware 94], [MacKenzie 93]) have
shown that user performances degrade significantly at high latencies.
MacKenzie found in his studies, for example, that the time needed to
move a pointer to a target is similar for lags of 8.3ms and 25ms, but
degrades by 16% for 75ms (compared to 8.3ms) and by 64% for
250ms. He therefore concludes that “lag must be taken seriously and
recognized as a major bottleneck for usability.”

It is difficult to derive a maximum acceptable lag from studies of
user performance because the answer might differ, depending on the
chosen task. Also, the performance degradation is gradual, making it
hard to set a fixed threshold value.

We therefore take a more pragmatic approach, following our
definition of real-time interaction in the first section of this chapter.
As we stated above, we are trying to achieve interaction without a
perceivable delay. But what is the minimum perceivable delay?

Real-Time Human-Computer Interaction

Chapter One 11

In a classical experiment conducted by Michotte, subjects had to
classify collisions between objects into three categories: immediate
causality, delayed causality and independent events ([Michotte 46]).
Figure 1.3 shows the results of the judgment as a function of the
interval separating the end of the first object’s motion and the
beginning of the second object’s motion. The subjects' perception of
immediate causality ends in the neighborhood of 100ms. Some
degradation of immediate causality begins for some subjects as early
as 50ms.

We can interpret this experiment for our purposes as such: If a
subject classifies two events, such as the movement of a physical
mouse and the movement of the mouse cursor, as connected by
“immediate causality” as opposed to “delayed causality,” there was
no perceivable delay between the two events. According to the
experiments of Michotte, the maximum delay for two events to be
classified as “immediate causality” by more then 90% of the subjects
is about 50ms.

Thus we require our system to have a maximum latency of 50ms,
which translates into a frame rate of 20Hz.

Resolution

The digital world is discrete. Continuous values, such as a finger
position in space, have to be converted into discrete values to
represent them within the computer. Resolution can be defined as the
smallest variation of a continuous value that can be represented
within the discrete world of the computer. For our application we
have to define the necessary temporal and spatial resolution.

a

b

Figure 1.3: Michotte’s Experiment (a) Simulated collision between two balls
(b) Results of the experiment (taken from [Card 83])

Real-Time Human-Computer Interaction

Chapter One 12

The temporal resolution of a system is equal to the time it takes to
process a given input image.2 For example, if one processing cycle
takes 100ms, the system will discretize a continuous motion into
steps of at least 100ms.

For real-time systems, we want to represent a continuous physical
motion with a perceived continuous motion on the screen. As is well
known from cinema, the illusion of continuous motion can be created
by showing a sequence of images at frequencies higher than 20-
25Hz. We therefore set the required temporal resolution to
approximately 50ms, which corresponds well to the maximum
latency.

The required spatial resolution depends on the application. For
precise mouse movements, it should correspond to the resolution of
the screen. In other words the number of different finger positions
measurable should be at least as large as the number of possible
mouse pointer positions (e.g. 1280x960). For simple applications, the
number of different necessary output values might be much smaller
(e.g. a simple gesture interface to control a slider with the three
gestures left, right and stop). In such cases the necessary resolution is
determined by the requirements of the detection and identification
processes, which depend on the chosen technique.

Stability

A tracking method can be called stable if the measured position does
not change, as long as the tracked object does not move. There are
several possible sources of instability, such as:

• Changing light conditions

• Motion of other distracting objects in the fore- and background

• Electrical noise influencing the camera and the video acquisition
hardware

The stability of a system can be measured by calculating the standard
deviation of the output data for a non-moving object over a short
period of time.

Bérard uses the helpful distinction between necessary and sufficient
condition for the maximum standard variation of an input device
such as a mouse pointer ([Bérard 99]):

As a necessary condition, the standard deviation has to be smaller
than the smallest object the user can select on a screen (e.g. a button).
As a sufficient condition, it should be smaller than the smallest
displayable position change of the pointer to avoid annoying
oscillation of the pointer on the screen.

2 This is only true for a continuous input stream. In reality the temporal
resolution is constrained by the speed of the frame grabber, which is 50Hz
for image fields in our case.

Real-Time Human-Computer Interaction

Chapter One 13

Computer Vision for Real-Time Human-Computer
Interaction
There are many different devices available for hand-based human-
computer interaction. Some examples are keyboard, mouse, track-
ball, track-pad, joystick and remote controls. More sophisticated
examples include cyber-gloves, 3D-mice (e.g. Labtec’s Spaceball)
and magnetic tracking devices (e.g. Polhemus’ Isotrack).

Most of these devices are cheaper, more reliable and easier to set up
than a system based on computer vision. So what are the specific
strengths of computer vision, which nevertheless make us confident
that this technique will be widely used for human-computer
interaction in the future?

Advantages of Computer Vision

First of all, computer vision is a potentially cheap input device. A
digital camera can be integrated into a single chip3. Mass-production
is therefore much easier to realize than for other input-devices with
mechanical parts, such as the cyber-glove. Also, the costs for image
processing hardware can be saved, as the main processors of most
computers are now fast enough to take over this task themselves.

More importantly, computer vision is versatile. While other input
devices such as mouse, joystick and track-pad are limited in scope to
a specific function, computer vision offers a whole range of possible
future applications – not only in the field of human-computer
interaction, but also in areas such user authentification, video-
conferencing and distant-learning. Those applications will make it
very interesting for hardware manufacturers to include cameras in
products such as screens, notebooks, cell-phones and projectors in
the future.

From our point of view, the most important advantage of computer
vision is its non-intrusiveness. Similar to microphones, cameras are
open input devices, which do not need direct contact with the user to
sense actions. The user can interact with the computer as he is,
without wires and without manipulating intermediary devices.

For the same reason, we will try to develop vision algorithms that do
not need any equipment attached to the body (e.g. markers, colored
gloves). Such markers would simplify many vision problems
significantly but they would also destroy the biggest advantages of
computer vision, its non-intrusiveness.

Ideally the technical parts of the system should be hidden from the
user, who would use gestures, facial expressions and other body
movements to communicate with the system. In conjunction with
voice recognition, one can easily imagine a computer that allows
much more natural forms of interaction than the current screen-
keyboard-mouse-systems.

3 In fact Casio offers a digital camera integrated into a watch, complete with
memory for 100 low-resolution images, for $199.

Real-Time Human-Computer Interaction

Chapter One 14

Clearly, this goal is easier to imagine than to realize. Despite
intensive research over the past decades, computer vision had only
small commercial success so far.

Challenges of Computer Vision

Many computer vision problems, such as detecting and tracking a
hand in front of a mostly uniform background, seem to be trivial.
Children can do the same thing without even concentrating. But what
seems simple to us is, in fact, the result of many highly complex
vision processes performed by the brain.

The human retina has approximately 125 million receptive cells
([Hecht 97]). Nevertheless, we are able to tell at a rate of about 25Hz
whether there is a hand in our visual field. To match this
performance with a computer, more than 3GHz of processing power
for every single instruction performed on the input data would be
necessary.

Even if we reduce the number of input values to “only” about
100.000 (384x288 pixel), the basic problem of computer vision is
still obvious: the large amount of input data. A computer does not
have the immense parallel processing capabilities of the brain.
Therefore only the most basic operations can be applied in the first
stage of the computer vision process. Due to their simplicity, those
operations are prone to errors.

Another problem of vision is unreliability and instability, caused
among other things by changing light conditions, occlusion, motion
blurring and electrical noise. The human visual system uses several
visual clues in parallel (e.g. color, motion, edge detection) in
combination with high-level knowledge to deal with this instability.
Matching those capabilities is a non-trivial task.

Finally there is always ambiguity involved in the interpretation of an
image. An example is the visual similarity of a hand and its shadow
in the background. Humans do not only rely on the “output” of the
retina, but also use lots of “world-knowledge” to correct errors and
resolve ambiguity. A shadow might be recognized through the
unconscious use of knowledge about the 3D-position of the hand and
the light-source, and about the propagation of light rays in space.

To build reliable computer vision systems it is necessary to
incorporate such “world-knowledge” into the algorithms. In our case,
for example, it is necessary to include information about finger
shapes, possible finger positions relative to the hand, and so on.

For this reason it is impossible to build generic systems that work
with all kinds of objects, in all kinds of environments. We have to be
modest and greatly restrict the problem space to be able to build
working systems.

15

Chapter Two

Example Systems and Related
Work

In the last ten years there has been lots of research on vision-based
hand posture and gesture recognition. Interestingly many different
approaches to this problem exist with no one dominating technique.
We will present representative examples in the first part of this
chapter.
Finger tracking, on the other hand, has attracted only a little
research interest. Nevertheless, the existing systems are of great
interest to us, because they had to fight with the same problems of
hand segmentation and real-time tracking that we encountered
during our work. Also they demonstrate possible applications of
finger tracking, such as digital painting or television control. The
second part of the chapter will present some promising systems.

Hand Posture Recognition
According to [Pavlovic 97], hand posture recognition systems can be
classified into two categories: 3D-model-based and appearance
based.

3D-Model Based Hand Posture Recognition

The basic assumption for models of this type is that all relevant hand
posture information can be expressed by a set of parameters, which is
derived from the hand skeleton.

The human hand skeleton consists of 27 bones, divided into three
groups: carpals (wrist bones – 8), metacarpals (palm bones – 5) and
phalanges (finger bones – 14).

The joints connecting the bones naturally exhibit different degrees of
freedom (DoF). For instance, the palm joints have very limited
freedom of movement, the upper two joints of the fingers have one
DoF (extension/flexion), and so on. Figure 2.1 shows all 23 relevant
degrees of freedom of the human hand.

Example Systems and Related Work

Chapter Two 16

A complete 3D hand model will need to include all those DoF
resulting in 23 different dynamic parameters (in addition to static
parameters, such as bone lengths). Given those 23 parameters, every
possible hand posture should be recognizable. But how to extract the
parameters from video-images?

Most of the 3D hand model-based systems employ successive
approximation methods for their parameter computation. The basic
idea is to vary model parameters until a set of features extracted from
the hand model matches the ones obtained from the data image.

Lien and Huang, for example, use gloves with colored markers to
find the position of fingertips and wrist ([Lien 98]). As a second step,
a 23 DoF hand model is varied iteratively, taking into account the
physical constraints of a hand skeleton to find the best match
between the extracted data and the 3D model of the hand.

Rehg and Kanade take a similar approach. Instead of colored
markers, they use contour and stereo information to extract finger
positions ([Regh 93]). Figure 2.2 shows the results of the matching
process. Even though an impressive accuracy is achieved at a rate of
10Hz, it has to be noted that a bright hand in front of a perfectly
black background will be hard to find in real life.

Other authors skip the feature extraction stage and directly match a
number of 2D projections of the 3D hand model with the input image
(e.g. [Shimada 00]). Due to the large number of possible hand
shapes, sizes and positions, real-time performance can only be
achieved under very restricted conditions.

Figure 2.1: Degrees of freedom of the human hand (from [Sturman 92]).

Example Systems and Related Work

Chapter Two 17

In general, 3D-model-based systems are able to extract a large
number of parameters, given the rough position and orientation of
the hand. They are not well suited to find hands in a scene or to track
fast hand movements.

While there are some applications for complete 3D parameterized
hand models (e.g. motion capture for animation), in most cases only
a small part of the available parameters will actually be used by the
application. Also, Lee and Kunii proved that 3D locations of the
fingertips, together with two additional characteristic points on the
palm, uniquely define a hand pose ([Lee 95]). In other words, a 23
DoF hand model is highly redundant.

Appearance-Based Models

The second group of models uses parameters that are derived directly
from the appearance of the image. Instead of trying to find the
position of the hand skeleton, a more pragmatic path is chosen: only
those parameters are extracted from the image data that are necessary
for the envisaged application.

A large variety of models belong to this group. They are based on
parameters such as fingertip positions, contours and edges, color
blob models, image moments, eigenvectors and Gabor wavelets, to
name a few. The techniques can be roughly divided into low-level
and high-level systems.

Figure 2.2: Results from Rehg and Kanade (a) Original image with
overlaid skeleton (b) 3D hand model derived from extracted parameters

Example Systems and Related Work

Chapter Two 18

Low-Level Appearance-Based Systems

Freeman et al. describe several techniques that allow simple gesture
recognition even with extremely limited hardware capabilities (e.g.
for toys). Figure 2.3 shows three examples of their work.

Hands that are close to the camera can be analyzed with image
moments. A few simple sum calculations yield the location,
orientation and dimension of a bright foreground object. This
information is sufficient to control the movements of a toy robot with
hand gestures (see Figure 2.3a).

Image differencing, as described in detail in chapter three, was used
to control a computer game. The center of mass of the difference
image shows the general direction of the hand gesture (Figure 2.3b).

Finally, Freeman applied orientation histograms to recognize a set of
10 different gestures (Figure 2.3c). For each pixel in the image, an
orientation value was calculated in the complex space using the
following formula:

)]1,(),(),,1(),(arctan[),(−−−−= yxIyxIyxIyxIyxθ
with I(x,y) denoting the image intensity at the point x, y. Experiments
show that an orientation representation is much more robust to light
variations than the original gray-value representation. To further
reduce the complexity of the input data, a histogram over all possible
orientation angles is calculated. This histogram (shown in Figure
2.3c) serves as a parameter set for simple gesture recognition.

Also, Starner showed impressive results with relatively simple
techniques. Color detection, connected component analysis and
image moment calculation were sufficient to build a system that
reliably recognizes 40 words of the American Sign Language
([Starner 95]).

Figure 2.3: Simple appearance-based gesture recognition (from [Freeman 98]) (a) Robot
control with image moments (b) Image differencing (c) Orientation histograms

Example Systems and Related Work

Chapter Two 19

Sato et al. greatly simplified the hand-finding process by using an
infrared camera. Infrared cameras can detect light emitted from a
surface with a certain temperature range. By setting this range to
approximate human body temperature, the hand region can be
segmented with near perfect accuracy ([Sato 00]).

High-Level Appearance-Based Systems

For more complex hand postures, it is necessary to analyze the local
features of the hand and fingers. Several authors use the hand
contour to extract hand posture information ([Heap 95], [Segen 98],
[Hall 99]). Contour-extraction by itself is a widely researched
computer vision topic. A whole array of techniques, from simple
gradient-based methods to balloons and smart snakes, is available to
find contours of the hand.

Segen and Kumar, for example, describe a contour based system that
utilizes a set of heuristics to detect several different hand postures in
real-time ([Segen 98]). The resulting information is used to control a
virtual crane, fly through 3D-landscapes and to play the “Doom”
game, as shown in Figure 2.4b4.

Contour-based hand posture recognition tends to be unstable in the
case of unfavorable backgrounds or difficult lighting conditions. An
alternative is region-based algorithms.

Laptev and Lindeberg developed an algorithm that reliably detects
hand position, orientation and scale, as well as finger configuration at
a rate of 10Hz ([Laptev 00]). The basic approach is the following:

1) Create a hypothesis about the hand position and state, based on a
training set and a probability distribution of possible positions in
the image.

2) Use the hypothesis to build a hand model, consisting of two-
dimensional Gaussian functions (blobs)

3) Calculate the similarity between the hand model and the image
data

4 Impressive videos of all three applications can be downloaded at
http://www1.acm.org/sigs/sigmm/mm98/electronic_proceedings/segen

Figure 2.4: Contour-based hand tracking (a) Hand contour extraction (from [Heap 95])
(b) Sequences from a Doom game controlled by hand (from [Segen 98])

Example Systems and Related Work

Chapter Two 20

The three steps are repeated with several different possible
hypotheses, and the best match is taken as new hand position. The
algorithm was applied to build a simple drawing application called
DrawBoard. Figure 2.5 shows two screen shots of this application.

Next to contour and region based methods, it is also possible to look
for characteristic feature points on the hand. The features have to
be collected from a set of training data and are represented with a
labeled graph (see Figure 2.6a). Triesch and v. Malsburg build an
elastic graph matching system that adapts size, orientation and
structure of the trained graph to the input image to find the best
matching hand posture ([Triesch 96]).

Instead of directly matching gray-values, the response of Gabor
filters is compared for each graph node. Gabor filters resemble the
receptive fields of neurons in the primary visual cortex, and have
proven to reliably detect skin features in other applications, such as
face recognition.

Triesch used the system to classify ten different gestures against
complex backgrounds (see Figure 2.6b) and achieved a recognition
rate of 86 percent.

Figure 2.5: DrawBoard application – A blob model is used to find palm, fingers and fingertips. The hand
states signify commands to the computer such as “select tool” or “zoom” (from [Laptev 00])

Figure 2.6: Hand representation with labeled graphs (a) Labeled training
data (b) Recognition using elastic graph matching (from [Triesch 96])

Example Systems and Related Work

Chapter Two 21

Finger Tracking
Most finger-tracking systems aim to replace pointing and clicking
devices like the mouse with the bare hand. Such applications require
a robust localization of the fingertip plus the recognition of a limited
number of hand postures for “clicking-commands”.

Finger-tracking systems can be viewed as a specialized type of hand
posture/gesture recognition system. The typical specializations are:

• Only the most simple hand postures are recognized
• The hand usually only covers a small part of the scene
• The finger positions are being found in real-time
• Ideally, the system works with all kinds of backgrounds
• Ideally, the system does not restrict the speed of hand

movements

In principle, finger-tracking systems use the techniques described in
the last section, except that the real-time constraints currently do not
allow sophisticated approaches such as 3D-model matching or Gabor
wavelets. For the most part, one of the three following techniques is
being applied: color tracking, correlation tracking and contour-based
tracking.

Color Tracking Systems

Queck build a system called “FingerMouse”, which allows control of
the mouse pointer with the fingertip ([Queck 95]). To perform a
mouse-click the user has to press the shift key on the keyboard.
Queck argues that 42% of the mouse-selection-time is actually used
to move the hand from the keyboard to the mouse and back. Most of
this time can be saved with the FingerMouse system. The tracking
works at about 15Hz and uses color look-up tables to segment the
finger (see Figure 2.7). The pointing posture and the fingertip
position are found by applying some simple heuristics on the line
sums of the segmented image.

Figure 2.7: (a) The FingerMouse setup (b) Color segmentation result

Example Systems and Related Work

Chapter Two 22

Wu et al. also use color detection to find body parts in images that
show a teacher in a classroom ([Wu 00b]). A combination of
connected component analysis, size filtering and image differencing
yields the hand-areas of the image. The pointing finger is found by
simply following the contour of the hand area and calculating the
point of highest curvature. The finger-tracker was applied for a hand-
driven 3D-visualization system.

Although skin color is certainly a strong clue for body part
segmentation, research such as [Kulessa 96] shows that it is very
hard to find a light-invariant color model of the skin. Systems that
segment hands solely based on color will be prone to classification
errors in real-life setups.

Correlation Tracking Systems

As shown in chapter four, correlation yields good tracking results, as
long as the background is relatively uniform and the tracked object
moves slowly.

Crowley and Bérard used correlation tracking to build a system
called “FingerPaint,” which allows the user to “paint” on the wall
with the bare finger ([Crowley 95]). The system tracks the finger
position in real-time and redisplays it with a projector to the wall (see
Figure 2.8a). Moving the finger into a trigger region initializes the
correlation. Mouse down detection was simulated using the space bar
of the keyboard.

Figure 2.8: (a) FingerPaint system (from [Crowley 95]) (b) The Digital Desk (from [Well 93])
(c) Television control with the hand (from [Freeman 95])

Example Systems and Related Work

Chapter Two 23

FingerPaint was inspired by the “digital desk” described in [Well
93], which also uses a combination of projector and camera to create
an augmented reality (see Figure 2.8b). Well’s system used image
differencing to find the finger. The big drawback is that it does not
work well if the finger is not moving.

Correlation works somewhat opposite to image differencing because
it performs well with slow movements; but it can only search a small
part of the image and therefore fails if the finger is moving too fast.

O’Hagan tried to solve this problem by adapting the search region to
the direction of the finger motion ([O’Hagan 97]). His system
calculates a motion vector for two successive frames and uses
heuristic interpolation to find the probable finger positions in the
next frame.

While this approach increases the maximum trackable finger speed,
it introduces new error possibilities in case of rapid direction changes
of the finger.

Freeman used correlation to track the whole hand and to discriminate
simple gestures. He applied the system to build a gesture based
television control ([Freeman 95]). In his setup the search region was
simply restricted to a fixed rectangle. As soon as the user moves his
hand into this rectangle, the television screen is turned on. Some
graphical controls allow manipulation of the channel and volume
with a pointer controlled by the hand (Figure 2.8c).

Contour-Based Tracking Systems

Contour-based finger trackers are described in [Heap 95], [Hall 99]
and [MacCormick 00]. The work of MacCormick and Blake seems
to be the most advanced in this field. The presented tracker works
reliably in real-time over cluttered background with relatively fast
hand motions. Similar to the DrawBoard application from [Laptev
00], the tracked finger position is used to paint on the screen.
Extending the thumb from the hand generates mouse clicks and the
angle of the forefinger relative to the hand controls the thickness of
the line stroke (see Figure 2.9).

Figure 2.9: Contour-based tracking with condensation (a, b) Hand contour recognition against
complex backgrounds (b) Finger drawing with different line strengths (from [MacCormick 00])

Example Systems and Related Work

Chapter Two 24

MacCormick uses a combination of several techniques to achieve
robustness. Color segmentation yields the initial position of the hand.
Contours are found by matching a set of pre-calculated contour
segments (such as the contour of a finger) with the results of an edge
detection filter of the input image. Finally, the contours found are
tracked with an algorithm called condensation.

Condensation is a statistical framework that allows the tracking
objects with high-dimensional configuration spaces without
incurring the large computational cost that would normally be
expected in such problems. If a hand is modeled, for example, by a
b-spline curve, the configuration space could be the position of the
control points.

Instead of varying those control points to all possible positions until
an optimal match with the input data is found, a condensation
algorithm can be applied to find the most probable new parameter
set, given the last known position of the hand.

To be able to perform valid predictions, the condensation algorithm
has to be trained with a sufficient amount of representative samples.
From those samples the typical movement patterns are automatically
extracted.

Even though the condensation-based contour tracking shows
impressive results, there are some drawbacks to this method:

• The algorithm only performs a local search, which works well
for predictable movement patterns but fails for fast random
movements.

• The algorithm is not able to find the initial hand position. Other
techniques, such as color segmentation, have to be applied for
this step.

• The algorithm tracks one specific contour. It is not well suited
for hand posture recognition.

• The algorithm has to be trained with a number of typical
movements (e.g. 500 image frames). The contour finding for
those frames has to be performed with a different method.

25

Chapter Three

Low-Level Image Processing

When processing video images, the basic problem lies in the
extraction of information from vast amount of data. The Matrox
Meteor frame grabber, for example, captures images of 768 x 576
pixels. With three bytes per pixel and 25 images per second, this
amounts to over 33 megabytes of data per second. Even with
processing power in the gigaherz range, only a limited number of
calculations per pixel are possible. The goal of the low-level vision
processing stage is therefore to reduce the amount of data with a
restricted number of simple operations. The result of this data
reduction can take several forms, such as regions of interest,
probability maps, connected components and so on.

Color
Color information can be used to segment interesting parts of the
image from the background. The basic approach is straightforward:
First, one or more samples of the object are taken to build a color
model, i.e. a function that classifies color values either as part of the
object or as part of the background. With this color model, all pixels
in successive frames can be classified quickly as object or non-object
pixels.

Figure 3.1 shows a simple approach for color segmenting. All pixel-
color-values in the rectangle in frame one are added to a look-up
table. In successive frames pixels of the same color can be found
with a simple and fast look-up operation.

By looking at the segmented images one can see the weaknesses of
this approach. Several areas in the background are incorrectly
classified as skin color. In contrast, the hand, which to the human eye
seems to have a color very similar to the face color, is not
segmented.

To improve the performance of the color segmentation, it is
necessary to build a generalized color model from the values of the
sample pixels. We will briefly describe three possible approaches to
this problem.

Low-Level Image Processing

Chapter Three 26

Color-Space Transformation

In real-life applications, light conditions can change significantly
over time. Clouds pass in front of the sun, people move in front of
the light sources, and the brightness of an object can also change if it
moves around inside the scene. To achieve stability over time, a
generalized color model therefore should be invariant to changes in
luminosity.

Most image acquisition hardware codes colors in the rgb-space. In
this representation the same color is assigned to different values of
red, green and blue if the illumination changes. Schiele and Waibel
propose to normalize each color value by its luminosity to achieve an
invariant model ([Schiele 95]). A simple approximation for
luminosity is the sum of the three color components. A normalized
representation can therefore be calculated by the following
transformation:

⋅

++

=

b

g

r

bgr
b

g

r

n

n

n
1

To achieve further robustness it is necessary to additionally allow a
certain amount of variation in saturation and color. This can be
achieved by transforming the sample pixels from the rgb-color space
to the hue-saturation-luminosity-space. (For the transformation
algorithm see [Foley 82]).

Figure 3.1: Simple color segmenting with a lookup-table
(a) Reference image: pixels inside the rectangle are used to
build the color model. (b) Model applied to a different image.

Low-Level Image Processing

Chapter Three 27

In the HLS-representation the distributions of color and saturation of
the sample pixels are calculated. Based on those distributions, we can
set valid ranges for object-color and -saturation. All color-values that
are within those ranges have to be transformed back into the rgb-
representation to allow a quick look-up during run time. Figure 3.2a
shows the results of the described algorithm with the same data
samples that were used for Figure 3.1.

Gaussian Model

For the calculation of color, saturation and luminosity ranges as
described in the previous section, it is necessary to pick a number of
more or less arbitrary thresholds that define the borders of each
range. Bérard describes an alternative approach using two-
dimensional Gaussian functions that only requires a single threshold
([Bérard 99]).

In this approach, the pixels are normalized by their luminosity (see
section above), thus reducing the complexity of the input data to two
dimensions. Next, it is assumed that the distribution of skin color
values can be approximated by a two-dimensional Gaussian curve in
the normalized color space. The sample values are used to calculate
the parameters of this function (mean and matrix of covariance).

Once constructed, the function yields a probability for every possible
color value. This probability is a useful measure for the certainty that
a pixel belongs to the object (e.g. the hand). Figure 3.2b shows the
result of Gaussian color segmentation, again with the same input data
that was used in Figure 3.1.

Segmentation with Bayes Decision Theory

Zhu, Yang and Waibel ([Zhu 00]), as well as Kulessa and Hoch
([Kulessa 96]), describe a color segmentation strategy based on
Bayes decision theory. This color model requires a representative
number of sample pictures that must be segmented by hand into
object and background pixels.

A given color c at the coordinates x and y should be classified as
object color if

),,|(),,|(yxcbackgroundPyxcobjectP > (1)

Applying Bayes theorem, we get

Figure 3.2: Generalized color models (a) Color space transformation (b) Gaussian function

Low-Level Image Processing

Chapter Three 28

y)x,P(c|

x,y)P(object y) object, x,P(c|
y)x,c,P(object|

|∗=

It can be assumed that c is conditionally independent of x and y, i.e.
P (c | object, x, y) = P (c | object), leading to

)(

)()(
)(

yx,c|P

yx,object|Pobjectc|P
yx,c,object|P

∗=

The same steps can be applied to calculate P (background | c, x, y).
Because of P (object | x, y) + P (background | x, y) = 1, (1) becomes

))(1()(

)()(

object|x,yP- oundc | backgrP

 x, yobject| P objectc|P

∗
>∗

(2)

(2) serves as a decision criterion, for building a color look-up table.
To apply the formula, three models have to be computed. P (c |
object) is the color histogram of one or more hand-segmented objects
normalized to one. P (c | background) is calculated respectively for
the sample-background. P (object | x, y) is the spatial probability
distribution of the object, i.e. how likely is a pixel (x, y) a hand pixel.
This can be estimated by averaging the object-pixel positions of a
large number of sample images.

The basic advantage of the approach is that it adds robustness against
backgrounds with colors similar to the object color and that all
thresholds are automatically calculated from the training data. The
disadvantage is that the performance of the system is very dependent
on the quality of the training images. If the background situation
changes the algorithm has to be retrained

Although segmentation with Bayes decision theory increases the
robustness against distractive pixels in the background, it still does
not adapt to changing light conditions. Zhu, Yang and Waibel
propose a restricted expectation maximization (EM) algorithm to
adapt the color model dynamically. An alternative approach, using
self-organizing maps (SOM), is described in [Wu 00a].

Correlation
Correlation is a pattern matching technique that calculates a measure
of similarity between a sample pattern and any given test pattern. In
this context, correlation is used to track objects such as fingers or
hands.

The basic principle for object tracking with correlation is simple. A
sample image of the object is taken in the first frame and searched
for in the following frames. The search is conducted by taking test
patterns at all possible object locations and applying the correlation
algorithm to them. The search result is the position in the test image
with the highest correlation score (see Figure 3.3).

Low-Level Image Processing

Chapter Three 29

Similarity Measures

To find the sample pattern in the following frames, it is necessary to
calculate a measure of similarity (the “correlation score”). Martin
and Crowley describe a number of different algorithms and evaluate
their performance ([Martin 95]). One possibility for comparing two
images is the calculation of the sum of squared differences (SSD)
between corresponding pixels.

If we define S as the sample pattern of the size u x v (e.g. 32x32
pixel) and I as the image to be compared at the position x, y we get:

() () ()()∑ ++−=
vu

vyuxIvuSyxSDD
,

2,,,

The SSD can be interpreted as the distance between two vectors in a
u x v – dimensional space. A small value of SSD therefore means a
high correlation between the two compared images. If the images are
identical this value will be zero.

SSD is sensible to variations in global light conditions. If the hand
moves, for example, into a dark region of the scene, the gray-value
difference to corresponding pixels in the previous frame will be large
for all pixels. The sum of squared differences will therefore also be
large, resulting in a low correlation score. To avoid this effect it is
necessary to normalize the image samples by their luminosity.

The normalized cross-correlation (NCC) takes into account this
problem by dividing the correlation value by the overall luminosity:

() ()

() ()∑ ∑

∑
++⋅

++⋅
=

vu vu

vu

vyuxIvuS

vyuxIvuS

yxNCC

, ,

22

,

,,

,,

),(

Figure 3.3: Correlation search (a) Searched image with sample pattern
(b) Correlation scoremap (NCC)

Low-Level Image Processing

Chapter Three 30

The numerator of this formula is the dot product of the two sample
image vectors in a u x v-dimensional space. The result can loosely be
interpreted as the cosine of the “angle” between those two vectors.
For similar images the angle is small, resulting in a cosine value
close to one.

Even though Martin and Crowley note in their paper that SSD is
more stable to noise than NCC, we prefer the latter for its invariance
to light variations.

Search Window Size

Correlation search is computationally expensive. An exhaustive
search of the whole image is not possible with current processing
power. It is therefore necessary to define a certain search region
around the last known position of the object.

A prediction algorithm that uses the last few positions of the object
to calculate velocity and acceleration could provide an estimate for
this search region. For finger tracking, such an algorithm would not
be useful, though, because fast finger movements cannot be tracked
with correlation, due to strong motion blurring (see chapter 4 for
example images). In this case the prediction would fail because of
the lack of intermediary position values. For slow movements a
prediction is not necessary because the finger position will be close
to the position of the last frame. For this reason, we use a square
centered on the last known position as search region.

The maximum size of the search rectangle depends on the number of
processed images per second. A calculation in [Crowley 95] shows
that it is more efficient to use small search regions with a high update
frequency, than vice versa. The reason for this effect can be
explained as follows: If we double the update frequency given a
fixed object speed, the inter-frame displacement of the object will be
halved. The necessary search area is therefore reduced by four,
resulting in a net increase in processing speed by approximately two.

For real systems the update frequency is limited by the speed of the
frame grabber, which is 25 Hz for PAL-Systems. By directly
accessing the interlaced half-images (called fields), this maximum
frequency can be pushed further to 50 Hz. See Appendix A for
implementation details of field-rate tracking.

Adapting the Sample Pattern

Correlation tracking suffers from one major fault: by definition, the
algorithm searches for objects that are similar from the sample
pattern. It fails if the object in the searched image is different to the
sample object. There are three main reasons for those differences:

• Movement over non-uniform background
• Rotation or scaling of the object
• Shape changes of the object (e.g. a tracked hand with moving

fingers)

Low-Level Image Processing

Chapter Three 31

In our application we can provide a non-cluttered background;
scaling is not an issue, because the distance between camera and user
is more or less fixed; and shape changes can be used as a feature to
stop the tracking function. Only rotational invariance is a “must” for
a useful finger tracker.

In [Crowley 95] a solution to the rotation problem is proposed: as
soon as the correlation value drops below a certain threshold, the
sample pattern should be updated with the search image at the
current position of the finger. The problem with this approach is that
for low correlation values the position of the fingertip is no longer
precisely known. The updated patterns therefore tend to drift away
towards the background.

Our solution for achieving rotational invariance is quite simple: we
take the original sample pattern and rotate it to create an array of 16
images (each rotated by 22.5 degrees). When tracking the finger, a
correlation score is calculated both for the original sample pattern
and for the two neighboring rotations of the pattern. The pattern with
the maximum score is chosen as the new reference object (see Figure
3.4).

There are two disadvantages to the described approach. First, the
necessary processing steps are multiplied by three, reducing the

maximum size of the search rectangle by 3 . Next, the algorithm
does not recover easily once it loses track of the finger and the
sample image is rotated away from the actual orientation of the
finger. Nevertheless, the system has been successfully applied for
several interactive demo applications, such as a virtual ping-pong
game.

Possible Further Improvements

To build a more robust correlation tracker, it is necessary to update
the sample pattern at run-time. This can only be accomplished if the
position of the fingertip is exactly known. Some sort of supervisory
algorithm has to decide whether this is the case. Obviously the
correlation tracker cannot supervise itself, but it can provide input
data to a fingertip-finding heuristic such as the Rigid Contour Model
described in [Hall 99]. Such an algorithm could make it possible to
adapt the tracker to non-sudden changes of the object appearance.

Figure 3.4: Correlation tracking with rotation (a) Original (middle) and rotated
sample patterns. (b) The found object most resembles the left-rotated pattern.

Low-Level Image Processing

Chapter Three 32

Another possible improvement is outlined in [Darrell 98]. A so-
called radial cumulative similarity transform is used to track fingers
and other objects over varying backgrounds colors. The algorithm
uses edge detection to suppress background pixels in the correlation
calculation. Even though the article shows some promising results,
the computational requirements are, for the moment, too high for
real-time tracking of fast finger movements.

Image Differencing
Studies on human perception show that the visual system uses
changes in luminosity in many cases to set the focus of attention
([Gibson 50]). A change of brightness in one part of the visual field,
such as a flashing light, attracts our attention.

Image differencing follows the same principle. It tries to segment a
moving foreground from a static background by comparing the gray-
values of successive frames. The comparison is achieved by a simple
subtraction:

),(),(),(, 1 yxIyxIyxDyx ttt −−=∀∀

with Dt standing for the differenced image at time t and It for the
original image. The algorithm calculates the differences between
gray-values and discards color information. This is similar to the
human visual system, which detects object movement primarily by
the difference in intensity between them and the background, rather
than by chromatic variations ([Longuet-Higgins 80]).

Figure 3.5: Image differencing (a) Result for large movements (between the first and
second frame) (b) Result for small movements (between second and third frame)

Low-Level Image Processing

Chapter Three 33

The gray value can be calculated either by adding the three color
components together or by processing only one color channel. We
found that the blue color channel is especially discriminative for the
detection of skin in front of a bright background.

Figure 3.5 shows the results of a simple image differencing
operation. Light regions stand for large differences, dark regions for
small differences. Two observations can be made from those images:
First, image differencing can only detect movement if there is
sufficient contrast between foreground and background. In image (a)
the background lines behind the arm are not part of the resulting
picture, and in image (b) no movement is detected in the middle of
the arm because there is no difference in gray-value between the
successive frames. The second observation is that differencing does
not only show where objects occurred, but also where they
disappeared (note the two hands in Figure 3.5b).

Thresholding Difference Images

There are always minor pixel differences between two video images,
even if they seem identical to the eye. They result from things such
as ([Stafford-Fraser 96]):

• Small variations in daylight illumination
• The slight flicker of electric lighting
• Vibration induced e.g. by the fans of nearby equipment
• The electronic limitations of the camera and frame grabber
• Electrical noise induced in the video circuitry

All those noise sources merely introduce small variations in gray-
values and can therefore be eliminated with a simple threshold
operation. The threshold has to be large enough to remove noise, but
small enough to detect the difference between the skin gray-value
and the gray-value of dark background regions (see Figure 3.6). We
found that a fixed threshold of approximately 20%5 works well under
a wide range of light conditions.

5 A 20% threshold means that only pixel differences larger than 20% of the
maximum possible difference are processed.

Figure 3.6: Thresholded difference images (a) Insufficient threshold of 5% shows
background noise (b) “Right” threshold of 25% (b) Threshold of 75% cuts off the hand

Low-Level Image Processing

Chapter Three 34

Image Subtraction

In our application of finger tracking we will be working with
backgrounds such as tables, whiteboards or walls. In all cases, the
hand will be darker than the background. This constraint allows us to
change the thresholded image-differencing algorithm a little bit:

.),(),(for

.),(),(for

0

1
),(,

1

1

threshyxIyxI

threshyxIyxI
yxDyx

tt

tt
t <−

>−

=∀∀
−

−

Instead of considering pixels with gray-value different from the
previous frame, we now only look for pixels that are darker than in
the previous frame. As shown in Figure 3.7, the resulting image only
shows the new position of the object. The “shadow” of the last
position has disappeared.

Even though the proposed method works well for large
displacements of the object (due to fast movement or slow frame
rates), we still get only sparsely segmented images for slow
movement (see Figure 3.7b). The only possibility of avoiding this
effect is to calculate the difference not between two successive
frames, but between the current frame and a reference image of the
background.

Background as Reference Image

To create a reference image, some applications require the capture of
a “clean” frame at system startup. Providing a clear view for the
camera can be difficult. (Stafford-Fraser describes how he had to
crawl under the desk before clicking the mouse button to start an
office-monitoring system.) Also, longer-running applications have to
deal with the fact that in real-life there is no such thing as a stable
background. Objects are placed on the table, doors open and close,
the lighting condition changes, the camera changes its position
slightly, and so on.

To cope with such an active background, we need to adapt our model
of the background slowly over time. A simple algorithm called
Running Video Average is provided in [Stafford-Fraser 96] to
achieve this task: every time a new frame I arrives, the reference
(background) frame R is updated, using the following rule:

Figure 3.7: Image subtraction. In contrast to Figure 3.5
only one hand is segmented.

a b

Low-Level Image Processing

Chapter Three 35

),(
1

),(
1

),(, 1 yxI
N

yxR
N

N
yxRyx tt ⋅+⋅−=∀∀ −

The algorithm calculates a running average over all frames, with a
weighting that decreases exponentially over time. For large values of
N we get a slow adaptation of the reference image; for N = 1 the
reference image is updated entirely with every new frame, resulting
in the original inter-frame differencing algorithm. If we make N a
power of 2, we can improve the processing speed by using bit-
shifting instead of multiplication and division:

NxRxRIR x
tttt =>>−<<+= −− 2with))((11

The first two rows of Figure 3.8 show the results of the algorithm.

Selective Updating Techniques

When applying the running video average formula, we have to
choose how fast the reference image is to be updated with the
information from arriving frames. There are two possibilities:

Figure 3.8: Image differencing with reference image (a) Input image (b) Reference image
(c) Difference image. Note how the difference image disappears after 20s without movement
and how the reference image is immediately updated with the brighter background.

Low-Level Image Processing

Chapter Three 36

a) We can choose a slow update speed, e.g. about one minute to
incorporate a scene change into the reference image. This way
we make sure that foreground objects are not accidentally added
to the background. A hand will hardly rest for one minute in
exactly the same place. The disadvantage is a slow adaptation to
scene changes.

Small scene changes, such as a book that is placed on the table,
do not harm the segmentation result. But if a cloud moves in
front of the sun, and suddenly the general gray-level of the scene
changes, the algorithm will not work until the reference is
updated (e.g. for about one minute).

b) Alternatively, we can choose a fast update time to achieve
robustness against global scene changes. The obvious problem
with this approach is that we will not be able to segment the
object once it stops moving for a couple of seconds.

Both alternatives have advantages and disadvantages, and the right
update time depends on the requirements of the application (e.g. with
indoor light, a slow update speed is feasible).

Ideally we should update the background quickly, but selectively.
There are different possibilities for a selective update. We tried, for
example, to update only objects that are not connected to the border.
This works fine for many cases with hand-tracking because there are
no hands without arms. It fails, though, as soon as the user wears a
white shirt, which does not contrast sufficiently with the table, to
trigger an image differencing output.

Another technique, which proved to work more reliably, is to update
dark regions slowly, but light regions instantly. This way the
reference image is updated immediately if a dark object or the hand
is moved from the relatively brighter background (see Figure 3.8, last
row).

Finally, it might be interesting to use high-level knowledge to
influence the output of the low-level vision layer. If the hand
detection algorithms described in chapter five and six find hands
reliably, they can feed the position information back to the image-
differencing layer. This layer could then use the information to
prevent the hand from being added to the background reference
image, even if it is not moving for some time.

Thresholding
Thresholding is the simplest and most widely used method for object
segmentation. In the previous section we required that the finger-
tracking application works with bright backgrounds to provide
sufficient contrast to the relatively dark hand in the foreground. The
obvious question for this setting is why we do not use a simple
thresholding operation, such as shown in Figure 3.9a, to separate the
foreground from the background.

Low-Level Image Processing

Chapter Three 37

There are two problems with thresholding:

First, the automatic choice of the right threshold is a non-trivial
problem. Looking at the histogram of Figure 3.9a, one can see that
even though there are distinct peaks for the different parts of the
image (from left to right clothing, skin and background area), the
choice of the correct “valley” between them is not obvious.

The second problem is illustrated by Figure 3.9b. The peak of the
hand histogram is very close to the peak of the overall background
histogram. In this case it is impossible to find a global threshold that
segments the foreground from the background. The threshold has to
be chosen on a local level to be sufficiently distinctive (see Figure
3.9c).

There are many sophisticated adaptive thresholding techniques, such
as maximizing the measure of class separability ([Otsu 79]),
interpolation between several local thresholds ([Castleman 79]) or
calculating running averages in different directions ([Wellner 93]).

We decided instead to use the framework of region growing and
merging, which can be seen as a generalized form of adaptive
thresholding.

Figure 3.9: Thresholding (a) The foreground can be cleanly segmented with one threshold (arrow)
(b) Overlapping histograms of hand and background (c) Distinctive histogram peaks on the local level

Low-Level Image Processing

Chapter Three 38

Region Growing
Region growing tries to cluster an image into connected homogenous
regions. It improves on simple thresholding in two ways: First, it is
locally adaptive. Parameter values for the homogeneity are
calculated for each region and are updated every time a pixel is
added to the region. Second, it calculates several distinct image-
regions, which can be processed independently on a higher level. If
there are, for example, two hands in the scene, each hand will
generally be segmented as one independent object.

Since the early seventies, there has been quite an amount of research
on the optimal region-growing algorithm. There are two basic
variants. Split-and-merge techniques start with the whole image and
divide it iteratively into homogenous sub-regions ([Chen 91]).
Seeded techniques take the opposite direction, starting with one or
more seed points that are grown to connected regions ([Adams 94]).
In both cases the algorithms are very dependent on the homogeneity
criterion used.

Homogeneity Criteria

Those criteria are basically decision rules for determining, whether
two neighboring regions (or a neighboring pixel of a region) are
similar enough to merge them into one single region. To make this
decision, we obviously need a measure of difference between two
regions. The simplest definition for a difference δ between a point p
and a region A is ([Adams 94]):

[]grey
Ax

grey xmeanpp
∈

−=)(δ

With pgrey denoting the gray-value of the pixel. Similarly the
Euclidean distance can be calculated for color values ([Tremeau
96]):

[]() []()
[]()2

222)(

b
Ax

b

g
Ax

gr
Ax

r

xmeanp

xmeanpxmeanpp

∈

∈∈

−+

−+−=δ

Both formulas can also be applied to region merging by taking the
differences between the respective means.

If we assume the gray-values of each region to follow a Gaussian
distribution, it is reasonable to include the variance of the
distribution into the decision. A popular choice for calculating the
difference between two regions is Fisher’s test ([Zhu 96]). Given two

regions, where 2
2

2
12121 ˆ,ˆ,ˆ,ˆ,, σσµµnn are the respective sizes,

sample means and sample variances, we can decide whether or not to
merge them using the squared Fisher distance:

2
22

2
11

2
2121

ˆˆ
)ˆˆ)((

)(
σσ

µµδ
nn

nn
p

+
−+=

Low-Level Image Processing

Chapter Three 39

To add a single pixel to a large region, we can use the same test,
which becomes

2
2

2

ˆ

)ˆ(
)(

σ

µ
δ

−
= grayp

p for n1= 1 and n2 >> n1

Again a multi-dimensional generalization exists (called Hotelling’s
test) to apply the formula to color images.

An interesting extension to the criterion is rules that try to enforce
smooth contours. Several authors (see for example [Zhu 96]) have
tried to integrate contour-based techniques, such as snakes and
balloons, into region growing to “get the best of the two worlds.”

The Region-Growing Algorithm

Due to real-time constraints, we are using a very basic algorithm
similar to the one described in [Adams 94], which consists of the
following step:

1. Create seed points
2. Create one object for each seed point
3. For each object:

Add all 8-connected neighbors to the “neighbor-list”
4. For all neighbors of all objects: Find the pixel p with minimum

difference to the connected object
5. Add p to the object, remove it from the neighbor-list and re-

calculate the object properties
6. For all 8-connected neighbors of p:

If they belong to no object, add them to the neighbor-list.
If they belong to a different object, try to merge the two objects.

7. Go to step 4 until all neighbor-lists are empty or the minimum
difference calculated in point 4 is above a certain threshold.

Some explanations to the algorithm:

• Seed points have to be chosen in a way so that there is at least
one seed in every object of interest. This can be simply achieved
by using a grid of seeds, with a grid distance smaller than the
smallest possible object size.

• The difference between a pixel and an object can be calculated
with any one of the homogeneity criteria described above. For
performance reasons we chose the gray-value difference.

• Steps 4 and 5 are heavy in terms of computational costs. See
annex A for a description of a very fast implementation of this
part which uses lots of memory (about 40 MB in our case).

• The object merging part would take a lot of time if we would try
to merge two different regions each time their properties change.
Our not so elegant, but working, solution is to apply the merging
function only once, when a certain number of common border
pixels has been reached (e.g. 20).

Low-Level Image Processing

Chapter Three 40

Real-time Region-growing

Even with some heavy optimization, the described algorithm still
takes around 0.2 seconds per 384x288 frame on a Pentium 1000
MHz processor. This is too slow for interactive applications. We
found two different solutions to achieve substantially higher frame-
rates.

A simple solution is to reduce the size of the input image by two,
which nearly quadruples the processing speed. See Figure 3.10 for
segmentation results with different resolutions of the input image.
Unfortunately we have to pay for the better temporal resolution with
a loss in spatial resolution. The necessary spatial resolution depends
on the application. A finger-mouse, for example, which is calculated
on a 192x144 pixel input image and should work on a 1280x960
sized screen will always jump 7 pixels at a time. This might not be
sufficient for controlling a standard application.

Region growing divides the whole image into sub-regions, such as
foreground-objects or the background region. The second
optimization, we propose, tries to restrict the region growing process
to “interesting” objects. But what defines interesting?

When humans look at complex scenes, the visual system, in fact,
only processes a small part of the image seen. Our focus of attention
is moved either willingly (e.g. when reading a book) or by low-level
vision triggers (such as a flashing light).

Figure 3.10: Region growing at various image resolutions. From top left to bottom right:
768x576, 384x288, 192x144, 128 x 96 and 96x72 pixels. Note that a size filter is used to remove
very small and very large objects (such as the background).

Low-Level Image Processing

Chapter Three 41

We implemented a similar approach. A simple thresholded image-
differencing step (see section above) provides regions of interest. For
each connected region of interest we search the point with the
strongest difference, which is then used as seed point for the region-
growing algorithm. To find hands that do not move between two
successive frames, we could use the knowledge of the hand-finding
layer. This would work similar to the human visual system that
willingly sets the focus of attention to a position where it expects an
object to be. Figure 3.11 shows the process of the motion-triggered
hand-tracker.

Figure 3.11: Hand finding with motion-triggered region growing. The right side has not been
implemented. Note how low- and high-level vision layers cooperate in the search process to achieve
high robustness.

42

Chapter Four

Comparison of Low-Level
Techniques for Finger-Finding
and –Tracking

The previous chapter explained the most basic techniques for finding
interesting regions of an image. All those techniques, in principle,
can serve as a pre-processing step for finger- and hand-finding
heuristics. To decide which method is most suited for our envisaged
application, we will now analyze the specific strengths and
weaknesses of each in detail. In the first part of this chapter there
will be a general qualitative assessment of the techniques. The
second part will contain a comparison based on measured data such
as processing speed, accuracy and robustness.

Qualitative Comparison
In chapter one we defined functional and non-functional
requirements for real-time human-computer interaction. While all
requirements have to be evaluated on the system level, we can
already check at this point whether the non-functional requirements
are met. We therefore will compare the described techniques (except
for thresholding) regarding their latency, resolution and stability.

Color

Color tracking has low latency because it is fast. Once the look-up
table has been constructed, the segmentation is just a matter of one
comparison per pixel. By far the largest part of the total latency is
therefore generated by the input and output devices (frame grabber
and graphics card).

The resolution of color segmentation is potentially high because fast
processing speed allows applying it on image sizes up to 768x576
pixels. Nevertheless the measured accuracy was comparatively low,
due to weak segmentation results at the border of the object.

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 43

Our experiments showed a very low stability of color segmentation.
We found it hard to construct a robust color model for several
reasons:

• If the illumination changes the colors change. Normalizing the
color model by the overall luminosity adds some stability, but it
is very hard to find a general color model for different kinds of
light sources ([Kulessa 96], [Zhu 00]). Figure 4.1 demonstrates
the problem: Two hand pictures, one taken in daylight, another
with indoor light, produce very different peaks in the color
histogram.

• Skin color is multi-modal. Modeling it with a single Gaussian
function might be an insufficient approximation.

• Skin color varies from one person to the next due to different
skin types and degrees of pigmentation.

For these reasons the overall stability of skin-color segmentation is
low. Under controlled light-conditions, with a carefully build set of
samples, it is nevertheless possible to produce useful segmentation
results.

Correlation

The latency of correlation depends on the size of the search window.
The smaller the window the lower is the latency (as low as 10 ms for
a 50x50 pixel search window). The disadvantage of small search
windows is a decrease in robustness. A finger will not be found if it
moves further than the search-window size between two successive
frames.

Correlation has a high resolution. As opposed to segmentation
techniques, where the maximum accuracy is always given by the
resolution of the input image, correlation tracking can be performed
with sub-pixel accuracy. To achieve this, a quadratic polynomial can
be fitted to a small region surrounding the maximum correlation
value. The maximum position of this polynomial is not bound to the
discrete pixel-grid, thus permitting sub-pixel accuracy.

Figure 4.1: Skin colors under varying light conditions (taken from
[Zhu 00]). (a) Indoor light with low hue and medium saturation
(b) Outdoor light with high hue and low saturation.

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 44

Regarding stability, correlation shows a mixed picture. It is very
robust to camera noise, because the result is always calculated from
many pixels at a time, thus averaging out single pixel variations. This
leads to a very stable tracking result. Also global light variations do
not affect the correlation result negatively, due to the normalization
factor in the calculation.

The main reasons for loss of tracking with correlation are fast finger
movements. Even if the finger does not move out of the search
window, it still is often unrecognizable due to motion blurring (see
Figure 4.2). Because correlation tracking searches only a small part
of the image, it might not find the finger again once it loses track of
it. Especially the rotation invariant algorithm (see chapter 3) does not
recover well. Once the finger has been lost, it rotates into an arbitrary
position and will only lock onto the finger again if the finger is also
rotated in this position.

Another problem with correlation is the sensitivity to objects similar
to the searched correlation pattern. Possible candidates are shadows,
pens and line strokes on a whiteboard. If there are strong shadows,
the correlation tracker tends to jump back and forth between the
finger and its shadow.

Above all, correlation is computationally very expensive. At a search
size of 50x50 pixels, the rotational invariant correlation tracker uses
most of the processing power of a 1000 MHz Pentium III to track a
single finger. Correlation is therefore not well suited for the tracking
of several fingers or hands simultaneously.

Image Differencing

Image differencing by itself is extremely fast (just one line of code
per pixel). The extensions described above, such as adaptive
reference image updating, take some additional time, but all in all the
latency is still negligible.

As with color segmentation the resolution depends on the size of the
input image.

Figure 4.2: Motion Blurring (a) Resting hand (b) Normal movement
(c) Fast movement

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 45

The stability of image differencing is in principle quite good,
because the process does not depend on pre-selected samples or
certain light conditions. The running average update mechanism also
adds robustness to slow scene changes. But image differencing fails
if there are rapid scene changes, such as:

• Camera motion
• Sudden changes of illumination (e.g. a cloud that moves in front

of the sun)
• Significant amount of background movement, such as flickering

screens, trees that move in the wind and fluttering curtains
• Projected backgrounds that change due to user interaction

It is important to note that image differencing recovers from those
problems as soon as the background scene is stable for some time,
due to constant updating of the reference image. Unfortunately this
update mechanism also makes it impossible to detect objects that do
not move for a long time.

Region Growing

The main problem with region growing is its large latency.
Interactive applications can only be achieved on image sizes of
192x144 pixels, which yield a low spatial resolution. For most
applications it is therefore necessary to combine region growing with
other techniques such as image differencing, which add additional
layers of complexity and additional error possibilities.

Also region growing is not the most stable technique. Two problems
are common:

1) Overspill: If there is no clear boundary between the foreground
and the background or if the contrast between the two is very
low, the object might be accidentally merged with the
background. The problem is that a single “leak” in the contour of
the object can cause this effect.

Figure 4.3: Problems with region growing (a) Overspill (b) Object dissection

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 46

2) Object dissection: To minimize overspill, it is necessary to limit
the region-growing process to very coherent objects. This can
have the effect that hands with strong differences in shading
become dissected into multiple objects (see Figure 4.3b). In later
process stages it will be difficult to recognize the two objects as
one single hand.

Even though region growing is a bit tricky, it has two basic
advantages. First, there is no setup necessary, and the process works
under a wide range of conditions. Second, region growing is the only
one of the described techniques that extracts objects from a scene.
This is very useful for the tracking of multiple hands, where it is
necessary to decide which finger belongs to which hand.

Table 4.1 shows a comparison of the four techniques presented with
regard to their features, latency, resolution and stability under
different conditions.

 Table 4.1: Comparison of low-level vision techniques

Color Correlation Image Diff. Region Growing

Features

 Initialization necessary? yes yes no No

 Tracking of multiple fingers yes no yes Yes

 Object separation no no no Yes

Latency low low low High

Resolution low high medium Medium

Stability

 Changing light conditions low high medium High

 Fast hand movement high low high High

 No movement high high low high

 Cluttered background medium medium high low

 Change of camera position high high low high

 Projector main light source low medium low low

Quantitative Comparison
In this section we will compare the described low-level vision
techniques with regard to their execution speed, their accuracy and
their robustness.

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 47

Setup

The tests are conducted with the following hardware setup:

• Intel Pentium III processor, 1000 MHz, 256 MB Ram
• Matrox Meteor frame grabber, grabbing images at half resolution

(384x288 pixels)
• Sony EVI-D31 camera

For the tests of accuracy and robustness, a set of 14 image sequences,
25 frames (1 second) each, have been recorded and hand-labeled. In
all sequences a single hand is moved in front of a whiteboard, with
the following variations:

• Variations in light conditions: Diffuse daylight, daylight with
shadows/bright spots, neon light with shadows and a projector as
main light source

• Variation in the speed of movement: Normal movements (up to
2.1 m/s) vs. fast hand movements (up to 4.5 m/s)

• Variations in background clutter: Plain white background vs. line
strokes/painted areas

In all cases the hand movement is random with the forefinger
stretched out. The width of the filmed area was about 1.2m x 0.9m
with some variation. See Figure 4.4 for some examples of the
recorded sequences.

All program parameters have been chosen by hand to be “as nice as
possible,” but the same set of parameters is used for all sequences. In
the case of color and correlation tracking, a setup by hand is
performed for each sequence.

Processing Speed

The processing speed is in all cases independent from the chosen
parameters and the content of the image. Therefore we can calculate
it for any arbitrary scene. For the case of correlation, we calculated
the maximum speed of the fingertip for a simple correlation tracker
and for a rotation invariant tracker.

Figure 4.4: Test sequences with labeled fingers (a) White background, diffuse sunlight (b) Sunlight
with shadows and highlights (c) Cluttered background, neon light, fast movement (d) Projected
background

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 48

 Table 4.2a: Results of processing speed measurement

Segmentation Technique Processing Speed

Color segmentation 135 Hz

Image differencing 85 Hz

Region growing 7 Hz

Table 4.2b: Maximum fingertip speed6 for correlation tracking

Correlation Maximum fingertip speed
(rotation invariant algorithm)

Sample size 6x6 pixels 14 m/s (7.8 m/s)

Sample size 12x12 pixels 8.6 m/s (5.5 m/s)

Sample size 24x24 pixels 5.8 m/s (4.1 m/s)

Sample size 36x36 pixels 5.9 m/s (4.4 m/s)

Accuracy

The accuracy of the four tracking methods was tested by applying a
fingertip finder, which will be described in the next chapter, to the
segmented images. In the case of correlation, the peak of the
correlation map was chosen as the best estimate for the finger
position.

The found finger position was compared with the hand-labeled
ground truth, to calculate mean error and error variance. The results
are listed in table 4.3.

It is important to note that only fingers found correctly were used for
the accuracy calculation (misclassified and dropped frames were not
considered). To make the mean and variance comparable, we took
only the 15 best results from each experiment for the computation.

All in all it can be concluded from the data that image differencing
has the highest accuracy and color segmentation the lowest. But all
results achieved quite good values (mean errors around 2 pixels),
considering that the hand-labeled fingertip positions are prone to
errors in the order of 1 pixel.

As expected, fast finger movements are tracked with lower accuracy
than slow movements, due to motion blurring (see Figure 4.2). The
accuracy is similar for all light conditions, because only the correctly
classified frames have been included into the calculation.

6 For a definition of 320 pixels per meter (1.2m x 0.9m field of view with
384x288 pixel resolution) at a recording rate of 50Hz.

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 49

 Table 4.3: Comparison of the Accuracy of Low-level Hand-segmentation techniques7

Robustness

To evaluate robustness the results of the accuracy test have been
further analyzed. For each sequence two types of frames have been
counted:

• Dropped frames: Frames in which no finger could be found
• Misclassified frames: Frames in which the finger position was

off by more than 10 pixels from the right position, or frames in
which the nearby finger-shadow has been tracked instead of the
finger itself.

Dropped frames usually occur if the finger moves very fast. In this
case they do not cause problems for most applications, because the
resting position of a finger is usually much more important than the
fast-moving position. Misclassified frames, on the other hand, are
quite annoying. If the finger controls a pointer, for example, this
pointer might jump back and forth erratically between correctly and
falsely classified finger positions.

Table 4.4 summarizes the results of the robustness calculation.
Interestingly the results are quite similar to those in the previous
section. Again image differencing performs most robustly with
regard to misclassified frames, and color segmentation produces by
far the most errors.

7 Only the 15 best frames are taken. Empty results mean that there have
been less than 15 correctly classified frames. Best results are printed in
bold.

Mean Error Variance

Motion Backgr. Light Condition Color R.Grow Correl I.Diff Color R.Grow Correl I.Diff

Diffuse Daylight 1,7 1,3 0,8 1,7 0,5 0,4 0,2 0,8

Daylight with Shadows and Highlights 2,3 0,8 1,3 0,5 0,1 0,2 0,4 0,3White

Diffuse Neonlight - 1,7 1,1 1,5 - 0,6 0,4 0,4

Diffuse Daylight 1,3 1,0 1,4 0,8 0,4 0,6 0,3 0,2

Daylight with Shadows and Highlights - 1,3 1,0 0,9 - 0,4 0,1 0,1

Diffuse Neonlight - 1,4 0,7 0,5 - 0,4 0,2 0,3

Slow

Cluttered

Projector Light - - 1,3 - - - 0,5 -

Diffuse Daylight - 2,5 2,5 1,5 - 1,3 2,0 0,7

Daylight with Shadows and Highlights - - 1,7 1,4 - - 0,5 0,4White

Diffuse Neonlight - 2,7 2,5 1,9 - 1,5 1,3 0,7

Diffuse Daylight - 2,5 - 1,9 - 1,6 - 0,8

Daylight with Shadows and Highlights 1,6 1,7 2,1 1,3 0,8 1,1 1,8 0,5

Diffuse Neonlight 1,5 2,1 1,1 1,8 2,0 0,6 0,4 0,5

Fast

Cluttered

Projector Light - - - 1,3 - - - 0,5

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 50

 Table 4.4: Comparison of the Robustness of Low-level Hand-segmentation techniques8

All methods perform quite well under controlled (diffuse) light
conditions. Also background clutter such as line-strokes and small
colored areas on the whiteboard do not cause much distraction. On
the other hand, shadows and highlights, as well as projected light,
can seriously decrease the performance of all techniques. Correlation
performs best under difficult conditions, as long as the finger
movement is relatively slow. Image differencing is the better choice
for fast movements.

Conclusions
This chapter allows us to draw two different conclusions. First, it is
now possible to choose the optimal hand-segmentation technique for
our envisaged applications. Second, it allows us to define the
external conditions necessary to create a robustly working system.

Image Differencing as Preferred Technique

Correlation and image differencing showed the best quantitative
results with regard to accuracy and robustness. We decided to use
image differencing for our further applications for two reasons. First,
it does not require a setup stage. The user can just walk in front of
the camera and start interacting with the computer.

8 The correlation tracker does not drop frames. It calculates a probability
map, where the position with the highest probability always represents the
“best guess” for the finger position.

Dropped Frames Misclassified Frames

Motion Backgr. Light Condition Color R.Grow Correl I.Diff Color R.Grow Correl I.Diff

Diffuse Daylight 2 0 - 0 0 1 0 0

Daylight with Shadows and Highlights 9 0 - 0 0 3 0 1White

Diffuse Neonlight 8 0 - 0 0 0 0 0

Diffuse Daylight 3 0 - 0 0 0 0 0

Daylight with Shadows and Highlights 11 2 - 0 0 0 0 0

Diffuse Neonlight 10 1 - 4 9 0 0 0

Slow

Cluttered

Projector Light 0 0 - 9 14 11 2 2

Diffuse Daylight 15 3 - 3 4 3 8 3

Daylight with Shadows and Highlights 12 14 - 5 5 3 3 2White

Diffuse Neonlight 8 3 - 5 6 1 4 0

Diffuse Daylight 11 7 - 7 0 2 12 0

Daylight with Shadows and Highlights 7 4 - 1 0 0 7 0

Diffuse Neonlight 9 3 - 8 4 1 5 0

Fast

Cluttered

Projector Light 9 6 - 5 7 10 19 3

Total: 114 43 - 47 49 35 60 11

Comparison of Low-Level Techniques for Finger-Finding and –Tracking

Chapter Four 51

Second, it is computationally less expensive and therefore suited for
multi-finger and multi-hand tracking. This allows much more
interesting applications than “one-finger-per-processor” correlation
tracking.

In the case of projected backgrounds that rapidly change due to user
interaction (e.g. a web-browser projected to a wall), correlation
performs more robustly than image differencing as long as the finger
moves slowly. If a simple method for the setup and re-initialization
for loss-of-track can be found, correlation could prove quite useful
for this kind of scenario.

Even though region growing has the most promising characteristics
of all presented techniques. It proved to be too unreliable in the
quantitative comparison for the use in real-world applications. More
research will be necessary to find solutions to the problems of
overspill and object dissection.

Necessary External Conditions

As shown by table 4.4 image differencing does not perform very well
with sunlight, shadows or projected light. It is not sensitive to the
type of light source, but there should be a more or less balanced
illumination of the scene. If a projector is used, there has to be
sufficient additional light (ideally sunlight) to minimize the effects of
background distraction. Also, the overall lightning should not change
suddenly. Gradual changes cause no harm, though.

Finally, there should be sufficient contrast between fore- and
background. In other words the background should be either light or
dark, but not of a gray value similar to the skin color.

While these conditions might seem restrictive, they still allow real-
world setups (no special lamps, cameras, gloves, etc. are necessary),
and a number of interesting applications can be realized. In chapter
six, we will present three different applications that show the
strength of the relatively simple image-differencing segmentation
technique.

52

Chapter Five

Fingertip Finding

In the previous two chapters we described how to find “regions of
interest” in video images. The logical next step is to take a closer
look at those regions and to extract relevant information about hand
features and positions. This chapter will present a simple, fast and
reliable algorithm that finds both the position of fingertips and the
direction of the fingers, given a fairly clean segmented region of
interest.

Motivation
The literature review in chapter two demonstrated that there is no
single best approach to the problem of hand feature extraction from
video images. In contrast, a whole array of computer vision
techniques, from elaborate 3D-models, shape and region based
approaches up wavelet transformations, have been tried by other
research groups. So which method is most appropriate for our
problem?

First of all, the method we choose has to work in real-time, which
eliminates 3D-models and wavelet-based techniques. Secondly, it
should only extract parameters that are interesting for human-
computer interaction purposes. Of course many parameters could
possibly be of interest for HCI-applications. To clarify the term
“interesting,” it is helpful to list possible parameters in order of
importance for HCI:

• Position of the pointing finger over time: Many applications only
require this simple parameter. Examples: Finger-driven mouse
pointer, recognition of space-time gestures, moving projected
objects on a wall, etc.

• Number of fingers present: Applications often need only a
limited number of commands (e.g. simulation of mouse buttons,
“next slide”/”previous slide” command during presentation). The
number of fingers presented to the camera can control those
commands.

Fingertip Finding

Chapter Five 53

• 2D-positions of fingertips and the palm: In combination with
some constraints derived from the hand geometry, it is possible
to decide which fingers are presented to the camera.
Theoretically thirty-two different finger configurations can be
detected with this information. For non-piano players only a
subset of about 13 postures will be easy to use, though.

• 3D-position of all fingertips and two points on the palm: As
shown by [Lee 95], those parameters uniquely define a hand
pose. Therefore they can be used to extract complicated postures
and gestures. An important application is automatic recognition
of hand sign languages.

The list above shows that most human-computer interaction tasks
can be fulfilled with the knowledge of 12 parameters: the 2D
positions of the five fingertips of a hand plus the position of the
center of the palm.

Several algorithms described in chapter two achieve this goal. But all
of them are prone to one or more problems, which we try to avoid
with our algorithm:

• Expensive hardware requirements (e.g. 3D-camera or infrared-
camera), ([Regh 93], [Sato 00])

• Very restrictive background conditions ([Segen 98])
• Explicit setup stage before starting the tracking ([Crowley 95])
• Performs only local search; fast hand movements can cause loss

of tracking ([Laptev 00], [Crowley 95], [O’Hagan 97])
• Works only with a specific hand posture ([Queck 95],

[MacCormick 00])

For those reasons we decided to implement a different algorithm,
similar to the one of [Sato 00], which is fast and robust and does not
need any setup stage. The algorithm works in two stages. The first
stage finds features in the region of interest that have the shape of a
fingertip. The second stage filters out fingertips that are not
connected to a hand and classifies the fingers found as thumb,
forefinger, etc.

The Fingertip Finding Algorithm
Figure 5.1 gives a schematic overview of the complete finger-finding
process. The next two sections will describe the third and fourth
steps in the process in detail.

Figure 5.1: The finger-finding process

Fingertip Finding

Chapter Five 54

Fingertip Shape Finding

Figure 5.2 shows some typical finger shapes extracted by the image-
differencing process. Looking at these images, one can see two
overall properties of a fingertip:

1) A circle of filled pixels surrounds the center of the fingertips.9

The diameter d of the circle is defined by the finger width.

2) Along a square outside the inner circle, fingertips are surrounded
by a long chain of non-filled pixels and a shorter chain of filled
pixels (see Figure 5.3).

To build an algorithm, which searches these two features, several
parameters have to be derived first:

• Diameter of the little finger (d1): This value usually lies between
5 and 10 pixels and can be calculated from the distance between
the camera and the hand.

• Diameter of the thumb (d2): Experiments show that the diameter
is about 1.5 times the size of the diameter of the little finger.

9 For fingertip finding we only process a binary image. Filled pixels are
those that have been segmented by the previous low-level vision stage.

Figure 5.2: Typical finger shapes (a) Clean segmentation (b) Background clutter (c) Sparsely segmented
fingers

Figure 5.3: A simple model of the fingertip

Fingertip Finding

Chapter Five 55

• Size of the search square (d3): The square has to be at least two
pixels wider than the diameter of the thumb.

• Minimum number of filled pixels along the search square
(min_pixel): As shown in Figure 5.3, the minimum number
equals the width of the little finger.

• Maximum number of filled pixels along the search square
(max_pixel): Geometric considerations show that this value is
twice the width of the thumb.

Given those parameters, writing an algorithm that finds fingertips
based on the two criteria defined above is straightforward:

Listing 5.1: The fingertip-finding algorithm

The algorithm basically performs three checks to find out whether a
given position (x, y) is a fingertip.

There has to be a sufficient number of filled pixels in the close
neighborhood of the position (x, y).

There has to be the right number of filled and un-filled pixels
along the described square around (x, y).

The filled pixels along the square have to be connected in one
chain.

This basic algorithm runs easily at real-time and reliably finds
possible fingertips. We implemented two enhancements to further
improve the stability. First, it is useful to define a minimum distance
between two fingertips to avoid classifying two pixels next to each
other as different fingertips. Second, the middle position of the chain
of inner pixels along the search square shows the direction of the
finger. This information can be used to determine whether the found
fingertip is connected to an outstretched finger.

∀ (x, y) ∈ Region_of_Interest

Calculate the number of filled pixels in circle with
diameter d1 and center (x , y)

 If (filled_pixel_nb < (circle_area – error_margin))

Continue loop

Calculate number of filled pixels along search square
with diameter d3 and center (x, y)

 If (filled_pixel_nb < min_pixel) or (filled_pixel_nb >
 max_pixel)

Continue loop

 If (connected_filled_pixel_nb < filled_pixel_nb –
error_margin)

Continue loop

Memorize (x, y) position

Fingertip Finding

Chapter Five 56

Finger Classification

The first part of the algorithm searches the image for positions of
objects with the shape of a fingertip. Under controlled conditions
(e.g. a whiteboard as background) this can be enough to build useful
applications. But there are several cases in which it is necessary to
take a closer look at the local context of the found fingertips.

• Tracking of multiple hands: To determine whether two fingers
belong to the same hand or to two different hands close to each
other.

• Cluttered background: To filter out finger-like objects that are
not connected to a hand.

• Hand posture recognition: To determine which fingers of the
hand are stretched out.

In all of those cases, it is necessary to analyze the relationship
between the found fingers. This is the objective of the second stage
of the finger-finding algorithm.

As shown in Figure 5.4, the finger classification process is composed
of four distinct sub-processes. As a first step, a standard connected
component analysis algorithm is used to analyze which of the found
fingers belong to the same hand. Two goals are achieved with this
calculation. First, it is now possible to build multi-hand applications,
because previously unrelated finger positions have been grouped into
hands. Second, as a byproduct, some metrics about the hand are
calculated, which will be used in the next step.

In the second step finger shaped objects that are not fingers, such as
pens, are filtered out. In the previous stage we calculated the region
connected to the found finger positions. In the case of a real finger,
this region should be a hand. Faulty finger positions can be identified
with two simple heuristics:

1) The “hand” region is too small (e.g. a pen laying on the table).

2) The “hand” region is too large (e.g. a large object with a finger-
shaped dent)

Figure 5.4: The finger classification sub-processes

Fingertip Finding

Chapter Five 57

The first case can be detected by comparing the number of hand-
pixels to a hand-sized threshold. The second case is slightly more
complicated. An easy solution is to fit a square of twice the hand-size
diameter around the fingertip position and count the number of
points where the “hand” region touches this square.

Steps three and four aim at classifying the found fingers of a hand.
Step three simply sorts them into the right geometric order
(minimum distance between every pair). Step four uses a set of
heuristics to decide which fingers were found. The direction and
positions of the found fingers allow calculation of an approximation
for the center of the palm. Fingers can then be classified by their
position relative to the palm and to each other. While this part of the
algorithm does not succeed in all cases, it is robust enough to detect
some simple hand postures and therefore sufficient for our needs.

Evaluation
In chapter four we used the fingertip-finding algorithm to evaluate
low-level image segmentation techniques. For the quantitative
analysis of precision and robustness we therefore refer to the results
of the previous chapter. In principle it is also possible to measure
performance for the high-level technique alone, using perfectly hand-
segmented images. But we do find this kind of analysis rather
artificial, because the algorithm is built to cope with the weaknesses
of the low-level segmentation stage.

It is useful, though, to evaluate the latency of the finger-finding stage
on pre-segmented images. Our measurements were done on a
Pentium III 1000MHz machine with 320x240-sized images.
Depending on the number of segmented image pixels, the
measurement results show latencies between 10 and 20ms. Image
differencing alone takes about 7.5ms. The total maximum latency of
27.5ms is therefore still well within the requirements set up in
chapter one.10

A qualitative evaluation of the finger-finding algorithm can be
derived from Figure 5.5 (see next page). The four images show
different properties of the algorithm:

• Figure 5.5a: The finger positions (blue dots) and directions (red
dots) are reliably found for all fingers in front of a cluttered
background. Other finger-like objects, such as the pen or the ball,
are ignored.

• Figure 5.5b: The forefingers (yellow dots) of the two hands are
correctly found. The ten fingers are grouped into two different
hand objects (not visible in the picture).

10 The maximum latency of 50ms would in principle allow to process much
larger images. Nevertheless we use small image sizes to leave some room
for the latency of image acquisition and graphical output.

Fingertip Finding

Chapter Five 58

• Figure 5.5c: Moving objects (paper, notebook, pen, ball) around
in the scene does not disturb the finger finding process.

• Figure 5.5d: Different hand gestures do not affect the process.
The forefingers are correctly classified.

Of course the four demonstrated cases are just examples for
thousands of possible different conditions and hand states. A
QuickTime movie of the finger finder with lots of additional hand
postures can be viewed at http://iihm.imag.fr/hardenbe/.

All in all it can be stated that the finger tracker fulfills the
requirements we have set above for building HCI-applications,
although (as always in computer vision) some problems remain.

Figure 5.5: Finger-finding results. See text for description.

Fingertip Finding

Chapter Five 59

Remaining Problems

From experiments with the finger tracker some of the typical failure
modes and possible solutions for further work can be described:

Shadows: With unfavorable light conditions, self-shadowing of the
hand can become a problem. In this case the image-differencing
stage adds the shadow to the hand object, making it impossible to
find finger contours. An additional color segmentation stage could be
useful to discriminate between hand and hand-shadow.

Fast movements: Due to motion blurring, fingers might not be found
during fast movements. A high-level process, described in the next
chapter, is necessary to assign found fingers that disappear and
reappear shortly after in a different place, to the same internal object.

Movements in z-direction: The only parameter the finger-finding
algorithm depends on is the finger size in pixels. If the user moves in
z-direction relative to the camera, the size of the fingers changes
typically between 4 and 25 pixels. The algorithm only tolerates
finger-size variations in the order of 5 pixels, and therefore fails for
hands that are moved close to the camera. A simple solution is to use
a camera with a long focal length, place it a couple of meters away
from the user and zoom to the scene of interest. More advanced
methods could measure the tracked finger width over time and adapt
the search parameter dynamically.

Objects similar to fingers: If large objects such as the body of the
user move in front of the camera, there is always the risk that some
part of the object might resemble a finger. The described size filter
can handle some of these cases, but there are still instances where
image artifacts cause false classifications. More intelligent hand
shape-recognizing techniques are necessary to cope with those
problems.

60

Chapter Six

Applications

Throughout the paper we stressed the importance of building a real-
world system to prove that computer vision techniques such as finger
tracking can be applied to human-computer-interaction tasks. In this
chapter we will describe three applications that demonstrate
different capabilities of the finger-tracking system. The chapter will
shortly explain the three systems, show how they have been
implemented and describe their strengths and weaknesses derived
from informal usability tests.

Motivation and System Description
Three applications, named FingerMouse, FreeHandPresent and
BrainStorm, have been developed for this project. All of them aim to
improve the interaction between human and computer for a specific
scenario, and all demonstrate different capabilities of the finger
tracking and hand posture recognition system.

FingerMouse

The FingerMouse system makes it possible to control a standard11

mouse pointer with the bare hand. If the user moves an outstretched
forefinger in front of the camera, the mouse pointer follows the
finger in real-time. Keeping the finger in the same position for one
second generates a single mouse click. An outstretched thumb
invokes the double-click command; the mouse-wheel is activated by
stretching out all five fingers (see Figure 6.1).

The application mainly demonstrates the capabilities of the tracking
mechanism. The mouse pointer is a simple and well-known feedback
system that permits us to show the robustness and responsiveness of
the finger tracker. Also, it is interesting to compare the finger-based
mouse-pointer control with the standard mouse as a reference. This
way the usability of the system can easily be tested.

11 The system has been implemented for Windows 2000 and Macintosh
operating systems.

Applications

Chapter Six 61

There are two scenarios where tasks might be better solved with the
FingerMouse than with a standard mouse:

Projected Screens: Similar to the popular touch-screens, projected
screens could become “touchable” with the FingerMouse. Several
persons could work simultaneously on one surface and logical
objects, such as buttons and sliders, could be manipulated directly
without the need for a physical object as intermediary.

Navigation: For standard workplaces it is hard to beat the point-and-
click feature of the mouse. But for other mouse functions, such as
navigating a document, the FingerMouse could offer additional
usability. It is easy to switch between the different modes by
(stretching out fingers), and the hand movement is similar to the one
used to move around papers on a table (larger possible magnitude
than with a standard mouse).

FreeHandPresent

The second system is built to demonstrate how simple hand gestures
can be used to control an application. A typical scenario where the
user needs to control the computer from a certain distance is during a
presentation. Several projector manufacturers have recognized this
need and built remote controls for projectors that can also be used to
control applications such as Microsoft PowerPoint.

Our goal is to build a system that can do without remote controls.
The user's hand will become the only necessary controlling device.

The interaction between human and computer during a presentation
is focused on navigating between a set of slides. The most common
command is “Next Slide”. From time to time it is necessary to go
back one slide or to jump to a certain slide within the presentation.
The FreeHandPresent system uses simple hand gestures for the three
described cases. Two fingers shown to the camera invoke the “Next
Slide” command; three fingers mean “Previous Slide”; and a hand
with all five fingers stretched out opens a window that makes it
possible to directly choose an arbitrary slide with the fingers.

Figure 6.1: The FingerMouse on a projected screen (a) Moving the mouse pointer (b) Double-clicking
with an outstretched thumb (c) Scrolling up and down with all five fingers outstretched

Applications

Chapter Six 62

Again we can easily evaluate our system by comparing it to a
standard slide presentation. Also, it is possible to demonstrate the
reliability of our algorithms, because a presentation is a situation in
which the user does not tolerate many mistakes.

BrainStorm

The last system was built to demonstrate the multi-user/multi-hand
tracking capabilities of our system. The application scenario is a
brainstorming session with several participants. Normally such
sessions consist of two phases: In the first phase, a large number of
ideas for a given problem are collected from the participants. The
ideas are usually presented and pinned to the wall to give everyone
an overview of the generated thoughts. In the second phase the items
on the wall are sorted and categorized. The goal of this step is to
group previously unrelated ideas into a logical order.

The BrainStorm system is built for the described scenario. During
the idea generation phase, users can type their thoughts into a
wireless keyboard and attach colors to their input. The computer
automatically distributes the user input on the screen, which is
projected onto the wall. The resulting picture on the wall resembles
the old paper-pinning technique but has the big advantage that it can
be saved at any time.

For the second phase of the process, the finger-tracking system
comes into action. To rearrange the items on the wall the participants
just walk up to the wall and move the text lines around with the
finger. Figure 6.2b-d show the arranging process. First an item is
selected by placing a finger next to it for a second. The user is
notified about the selection with a sound and a color change.
Selected items can be moved freely on the screen. To let go of an
item the user has to stretch out the outer fingers as shown in Figure
6.2d.

Figure 6.2: The BrainStorm System (a) Idea generation phase with projected screen and wireless
keyboard (b) Selecting an item on the wall (b) Moving the item and (c) Unselecting the item

Applications

Chapter Six 63

In many ways, BrainStorm resembles the FingerMouse system, but it
adds additional functionalities. First, it allows multiple pointers at the
same time, which is not possible with a mouse-event-based system.
Second, the screen content (item position, colors) is synchronized
with the user actions in such a way that no mouse-pointer is
necessary for the manipulation of the objects. While FingerMouse
only made the physical mouse dispensable, the BrainStorm
application also gets rid of the logical mouse pointer representation.
Now the finger itself becomes the mouse and mouse pointer at the
same time.

Implementation Details
In this part of the chapter, we will answer some remaining questions
about implementation issues: what is the overall structure of the
system, which programming languages were used, how can a
PowerPoint slide show be controlled from another application, how
to simulate a mouse driver and so on.

System Overview

Figure 6.3 shows the layered architecture of the system. Defined
interfaces between all layers allow a quick exchange of one module
for another. For our tests in chapter four, for example, we could
easily replace the image-differencing module with color detection or
region growing.

Figure 6.3: System overview (a) Modules implemented in C++ (b) Tcl/Tk Modules

a b

Applications

Chapter Six 64

Programming Language

The systems have been implemented with two programming
languages. All performance-relevant functions, such as image
processing and analysis, were written in ANSI C++. The user
interface and general control flow were coded with Tcl/Tk. Tcl (Tool
Command Language) is a simple scripting language that allows
creation of powerful applications with a minimum amount of code.

The main advantages of Tcl/Tk are:

• Platform independence
• Simplicity
• Interpretation at run-time allows flexible testing
• Clear division of functional core (C++ functions) and user

interface

Listing 6.1 demonstrates the simplicity of Tcl/Tk programming.
Only seven lines of code are necessary to grab an image from a
DirectShow device, apply a thresholding operation and display the
result in a window.

Listing 6.1: A thresholding operation with Tcl/Tk

Stabilization and Calibration

The applications do not directly access the results of the hand-finding
process, but are provided with stabilized and calibrated values.

Stabilization allows us avoiding two problems. First, there are
always misclassified and dropped frames from time to time, mostly
due to pixel noise from the camera. Second, fast finger movements
are usually not recognized because of motion blurring.

Create canvas for result bitmap
tvCanvas .c -bitmapName cbm -width 320 -height 240
pack .c

Create grabber object
tvDirectShowGrabber g -bitmapName gbm -width 320 - height 240

Create thresholding object
tvThreshold t cbm

Get image from grabber
g lockFrame

Apply thresholding operation
t apply -fromBitmap gbm -threshold 0.4 -channel b

Update screen
.c update

Applications

Chapter Six 65

To avoid flickering effects, the stabilization layer makes the
assumption that fingers do not disappear suddenly. A “time-to-live”
value is attached to each found finger position and decreased, if the
finger is not found in the nearby neighborhood in the next frame. As
long as the time-to-live value is non-zero, the stabilization layer
displays the finger position at the last known location.

Calibration is necessary to transform camera image coordinates to
screen coordinates. If the calibration works correctly, a finger-
controlled pointer displayed by a projector, for example, should
overlay the real finger at all points of the screen.

Bérard describes a technique for automatically calibrating a
projector-camera setup. A number of black and white squares are
displayed with the projector, and the difference between the
displayed and the recorded image is calculated. With this system a
matrix describing the planar camera-to-screen-coordinate projection
can be calculated [Bérard 99]. For our application we simply use
hand set scale- and offset-values to calculate a similar projection.

Mouse Driver Simulation and Control of PowerPoint

For the FingerMouse system it is necessary to simulate a mouse to
the operation system. Fortunately, the Windows platform SDK
provides functions for moving the mouse pointer and simulating
mouse clicks and mouse wheel movement, by generating the same
mouse events used by the standard mouse driver. Those mouse
events are automatically passed onto the active window and
processed by any Windows application12.

A similar approach was used to control the Microsoft PowerPoint
program. Instead of mouse events, FreeHandPresent generates
keyboard events. Left- and right-arrow key events move to the
previous and next slide and the number-enter key combination
allows jumping direct to a certain slide.

Finite State Machines

At several places in the application finite state machines are used to
represent the different possible interaction modes and their
transitions. We will describe the function of a state machine briefly
with the example of FreeHandPresent (see Figure 6.4). The system
starts in state one and waits until the number of reported fingers is 2,
3 or 5. In this case it steps into state 2, where it waits for 5
consecutive frames with the same finger number.

State 2 makes the system more stable, because only hand gestures
that last for at least a fifth of a second are considered. For example,
users who try to make a “three-finger-gesture” often briefly show
two fingers to the camera before the third finger becomes visible.
State 2 makes sure that this kind of gesture is not misinterpreted.

12 The mouse and keyboard event driver for TCL was programmed by
Christophe Lachenal.

Applications

Chapter Six 66

In state 3 the selection is effected. For the “next slide” and “previous
slide” gestures we are done and can return to the idle state. To make
sure the same gesture is not interpreted again immediately the
process is paused for one second.

If five fingers are shown, the slide selector is opened (state 4) and
remains open until the position of the shown fingers does not change
significantly for one second. Before returning to the initial state, the
transition from state five to one checks, whether the user cancelled
the selection menu by hiding his fingers (see Figure 6.6 for a
demonstration of the selection process).

Evaluation
All three applications fulfilled the requirements defined in chapter
one. Fingers were reliably detected, identified and tracked in real-
time (20-25Hz). With controlled light conditions resolution and
robustness were sufficient for the envisaged scenarios. In the
following section we will detail our evaluation for each system by
describing how it performed under realistic conditions.13

The FingerMouse

Usability tests of the FingerMouse yielded a mixed picture. Even
though, the mouse pointer control (finger finding and tracking) and
simple mouse clicks worked very reliably, most users did not show
interest in using it for real work.

Nowadays, most people are able to operate a mouse very efficiently.
Controlling the mouse pointer with the bare finger therefore does not
simplify human-computer interaction tasks significantly.

13 Short videos of all three applications in action can be downloaded at:
http://iihm.imag.fr/hardenbe/.

Figure 6.4: Finite state machine for FreeHandPresent. Underlined text denotes conditions for state
transition.

Applications

Chapter Six 67

Also, most users had difficulties performing the “double-click”. It is
hard to stretch out the thumb without moving the pointing forefinger
at the same time. Both forefinger and thumb are partly controlled by
the same muscles, and some practice is necessary to move the thumb
in a way that does not influence the forefinger position.

All in all most users liked the desktop-based system as a novelty, but
preferred the classic mouse for real work. The mouse-wheel
command with five outstretched fingers was considered as most
useful because it allows faster navigation in documents than does the
hardware mouse-wheel.

For projected surfaces the FingerMouse is easier to use because the
fingertip and mouse-pointer are always in the same place. Figure 6.5
shows such a setup. A user can “paint” directly onto the wall with
his/her finger by controlling the Windows Paint application with the
FingerMouse.

However there is one problem with this kind of setup. The projected
background usually changes a lot during interaction. The image-
differencing layer therefore produces plenty of false “foreground”
objects, which might be accidentally classified as fingers.

There are two ways to cope with this problem.

• Illuminating the room can eliminate the disturbing effect. Bright
sunlight is sufficient, but a powerful lamp creates more
predictive conditions.

• The type of application can be restricted in such a way that the
background is mostly black and does not change significantly.

In principle, the problem could also be solved with a synchronized
camera-projector setup, which captures images during short periods
of blacked-out projection. Such a system could work fast enough to
be invisible to the user and provide images without the disturbing
noise of the projection.

Figure 6.5: Controlling Windows Paint with the bare finger.

Applications

Chapter Six 68

FreeHandPresent

The presentation control worked very reliably. Most users were able
to navigate back and forth in a presentation after a short explanation.
In fact, we are confident enough in this system to apply it for the
final presentation of this paper.

Figure 6.6 shows the system in action. The presenter can move
around freely in front of the presentation. A simple gesture with
forefinger and thumb shown to the camera moves the presentation to
the next slide. If the presenter shows five fingers to the camera the
selection window slides open from the side (Figure 6.6b-c). By
moving the finger up and down, the user chooses a slide number. If
the user rests on a number for one second, the slide selector closes
and the respective slide is shown on the screen.

We found that the changing background of the presentation can
disturb the finger-finding process, if the projector is the main source
of illumination in the room. In such cases, problems can be avoided
by simply defining a control area on a white background next to or
above the projected surface. This avoids interference with the
projected images and also allows zooming the camera closer to the
user. Only a small part of the overall scene has to be filmed and the
finger-finding process is therefore provided with larger and less
ambiguous hand images.

Test users quickly learned how to use the system and actually had
fun with it. Especially the slide selector was considered useful
because it provides a function, which cannot be achieved with
current remote control systems.

There is one common problem with inexperienced users. If the
gestures are shown in the wrong place or at the wrong angle to the
camera, the fingers cannot be found correctly. Especially the five-
finger gesture has to be shown perpendicular to the camera to avoid
overlapping fingers.

Further research is necessary to formally prove the usability of the
system and to find an optimal set of hand postures and gestures for
controlling a presentation intuitively and robustly.

Figure 6.6: The FreeHandPresent system (a) "Next Slide" command (b) Opening the slide selector
to jump to a certain slide (c) Screenshot of PowerPoint presentation with activated slide selector.

a b c

Applications

Chapter Six 69

BrainStorm

The BrainStorm system worked reliably in most cases. Moving items
on the wall by touching them is an astonishing experience. The
selection technique (finger resting on an item for 0.5 seconds) proved
to be very intuitive and easy to use. Also, the application allows for
some degree of error, because a misplaced item on the screen can be
easily corrected.

In some cases shadows and reflections caused errors, and the light
conditions had to be adapted (e.g. lowering window shades). Also
the maximum size of the working area has to be restricted to about
1.5m x 1m to get stable results. Larger working areas lead to smaller
relative finger sizes. The smaller the finger size in pixel, the more
susceptible the application becomes to noise. We found that fingers
smaller than 5 pixels cannot be reliably distinguished from
background noise. A solution to this problem is to increase the
resolution of the input images, which is technically not a problem but
currently not possible due to processing power restrictions. The
upcoming 2GHz processor generation should bring relief.

To prove the usability of the system more formally, we conducted a
user experiment (see Figure 6.7). Eighteen persons without any prior
experience with the system had to group twenty words on the wall
into four categories (cities, countries, colors and fruit). The
experiment was done with physical objects (words glued to magnets)
as well as virtual objects (words projected to the wall). Half of the
users arranged the physical objects first, the other half started with
the virtual items. On average, it took users 37 seconds to sort the
physical objects and 72 seconds for the virtual objects, resulting in a
95% increase in time. The difference can be mainly explained with
the selection and un-selection pause of 0.5 seconds, which adds up to
20 seconds for the 20 items on the wall.

Figure 6.7: The BrainStorm user experiment (a) Setup with physical objects
(b) Setup with virtual objects

a b

Applications

Chapter Six 70

The tests show that organization of projected items on the wall can
be easily accomplished with barehanded interaction. Even though the
system takes more time than its physical counterpart, we think that it
is still very useful. Other than the previous two examples, it provides
a service that cannot be accomplished with other brainstorming
techniques: the result on the wall can principally be stored, printed or
sent by e-mail at any time.

Further research should be conducted to find other “added-value”
functions to justify the expensive setup. Several BrainStorm-systems
could possibly be connected over the Internet, allowing cooperative
problem solving of work-groups around the globe. Also, the
MagicBoard described in [Bérard 99] could supplement the
BrainStorm system for graphical input.

71

Chapter Seven

Conclusion and Outlook

Motivated by the overall goal to make human-computer interaction
more natural and to get rid of the “strange, clunky interface
devices,” in this paper we studied techniques for bare-hand real-
time interaction with the computer. The concluding chapter will
briefly summarize our contributions and discuss possible further
work to be done.

Summary and Contributions
This work presented a new approach for finger tracking and hand-
posture recognition that is based on image differencing and
constrained finger-shape filtering. Three demonstration applications
were implemented and evaluated to prove that our algorithm works
under real-world conditions. Especially the BrainStorm system
demonstrated, how finger tracking can be used to create “added
value” for the user.

One important conclusion is that computer vision can actually work
on standard PCs with cheap cameras.14 We think that the key to
success is to give up on searching for the perfect generic algorithm,
and instead search for scenarios in which computer vision can be
useful and build algorithms tailored to those situations.

In the course of our work we built a finger-tracking system with the
following properties:

• The system works on light background with small amounts of
clutter.

• The maximum size of the search area is about 1.5 x 1m but can
easily be increased with additional processing power.

• The system works with different light situations and adapts
automatically to changing conditions.

• No set-up stage is necessary. The user can just walk up to the
system and use it at any time.

• There are no restrictions on the speed of finger movements.

14 We used the Philips ToUcam USB camera, which costs only about $30.

Conclusion and Outlook

Chapter Seven 72

• No special hardware, markers or gloves are necessary.
• The system works at latencies of around 50ms, thus allowing

real-time interaction.
• Multiple fingers and hands can be tracked simultaneously.

We are not aware of other systems that currently fulfill the same
requirements, even though the work of Laptev and MacCormick is
close and a direct comparison would be very interesting ([Laptev
00], [MacCormick 00]).

We are also not aware of other systems that allow bare-hand
manipulation of items projected to a wall, as done with BrainStorm,
or presentation control with hand postures, as done with
FreeHandPresent. It is possible, though, that the same applications
could have been built with other finger-tracking systems presented in
chapter two.

Another contribution of this paper is the detailed comparison of four
low-level image segmentation methods, based on color, correlation,
region growing and image differencing. We have found that image
differencing, especially with the described additions, can serve quite
well for segmenting foreground objects from a light background.

Many interesting applications for finger tracking can be realized in
combination with a projected background, because the visual
feedback is generated at the same place at which the interaction takes
place. In this way the finger can become mouse and mouse-pointer at
the same time, making human-computer interaction much more
direct. Unfortunately this kind of setup entails some extra problems
from the computer vision perspective:

• Quickly changing and often unpredictable background
conditions

• Colors projected on top of the foreground objects
• Dimmed overall light leading to low foreground-to-background

contrast
• Reflective backgrounds such as whiteboards
• Large working areas implying low signal-to-noise-ratios

Consequently our tracking system has not proved satisfactory in
general on projected surfaces. Nevertheless it was possible to find a
setup (bright ambient light), in which useful applications such as
BrainStorm could be realized.

Outlook
Computer vision is a tricky thing. Systems have to deal with
ambiguity, uncertainty and an almost infinite problem space.
Nevertheless the human brain shows us that vision can work reliably
even under the most difficult circumstances.

Conclusion and Outlook

Chapter Seven 73

We therefore believe that computer vision can profit a lot from
research on the human visual system. How do low-level and high-
level layers work cooperatively to resolve ambiguities? How are the
results of color-, shape-, motion- and local-feature detection
coordinated and merged to one consistent image in the brain?

Research on the human brain is on the way to find answers to those
questions. At the same time the processing power of standard PCs
approaches a level, at which several vision processes can actually be
calculated in parallel. Those two developments make us confident
that finger tracking will be an “easy” task for most computers in the
near future.

Also human-computer interaction is a tricky topic. Humans usually
just do not work the way the computer expects them to. The problem
becomes even more complicated with perceptive interfaces. Now the
computer has to understand expressions, gestures, and subtle
movements, instead of simple keystrokes. Certainly this adds a lot of
new potential for misunderstanding between human and computer.

More profound research will therefore be necessary to find a set of
gestures and hand postures that is as natural as possible to the user
and as unambiguous as necessary to the computer.

Interaction between humans is always multi-modal. Gestures are just
a small part of the overall communication stream, which among
others includes facial expressions, body posture and speech. To
fulfill the promise of “natural” interaction, results of several research
groups have to be integrated into a comprehensive framework.

With such a framework we could build a truly new generation of
computers. Those machines would be ubiquitous, small in size, fun
to use, and hopefully would make life a little bit easier for everyone
of us.

74

Appendix

Appendix

The appendix contains additional implementation details for the
interested reader.

Field Rate Tracking
Video images in PAL or NTSC format are interlaced. This means
that each frame is in fact a combination of two different images,
called odd and even field. The first line of the image belongs to the
odd field, the second to the even field, the third to the odd field, and
so on. Originally the idea behind this was to reduce the flickering of
TV-images without increasing the bandwidth.

Fields are acquired with 50 Hz for PAL and 60 Hz for NTSC, which
is twice the frame rate of the video flow. Due to the high frequency,
the two interlaced fields are perceived as one single image by the
human eye.

For computer vision, interlacing is both a problem and an
opportunity at the same time. Figure A.1 demonstrates the problem:
As soon as there is significant movement in the scene, the position of
objects in the two fields of the interlaced image does not match and
an undesired comb-like structure is created.

Figure A.1: (a) Interlaced image (b) Enlargement of the fingertip

Appendix

Appendix 75

But interlaced images also pose an opportunity: by directly accessing
the fields, we can work with twice the frame rate. This reduces the
necessary search region for a given maximum displacement of the
object (see chapter 3), and it also reduces the latency of the
application.

How much is the reduction in latency? The answer is simple: image-
processing functions can start working, as soon as the image has
been acquired. If we do the processing after the first field has arrived,
instead of waiting for the whole frame, the overall latency will be
reduced by the inter-field time gap, which is 16ms for NTSC and
20ms for PAL.

The fields can be accessed directly on the original buffer, by setting
the image-pointer to the first byte of the first image-line for odd
fields and to the first byte of the second image-line for even fields.
The line-offset for the fields has to be set to twice the value of the
offset of the original bitmap.

Fast Region Growing
Region growing (see chapter 3) is computationally quite expensive.
Objects are grown by adding one pixel at a time. From a list of all
neighbor pixels, the algorithm chooses the one with the minimum
difference. Each time a pixel is added, the properties (mean,
variance) of the object change slightly, making it necessary to resort
to the whole neighboring pixel list, which can contain thousands of
pixels.

In [Adams 94] the process is speeded up by simply ignoring the
change of object properties. We would like to present a more precise
method for region growing without sorting and with only minimal
searching effort.

We use a modified form of the neighbor pixel list, which uses up lots
of memory, but allows us to skip the sorting step in the algorithm
described by Adams. There is one queue for every possible gray-
value (see Figure A.2). We do not mind the 30Mbytes used up by
this form of memory allocation, because nowadays memory is very
cheap compared to processing power.

Appendix

Appendix 76

To find the “best” neighboring pixel we start with the current mean
gray-value of the object and search to the left and right of this value
for the fist pixel queue that is not empty. There are a maximum of
255 comparisons involved in this step (usually much less) to find the
best pixel out of thousands of possible neighbors. Because all pixels
in a gray-value queue have the same distance from the mean, we just
remove the last value from the queue and add it to the object.

Figure A.2: Object structure for region growing

77

References

References

[Adams 94] Adams, R. and Bischof, L., Seeded Region Growing, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 16, no. 6, pp. 641-647, 1994.

[Bérard 99] Bérard, F., Vision par ordinateur pour l’interaction homme-machine
fortement couplée, Doctoral Thesis, Université Joseph Fourier,
Grenoble, 1999.

[Card 83] Card, S., Moran, T. and Newell, A., The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates, 1983.

[Castleman 79] Castleman, K., Digital Image Processing, Prentice-Hall Signal
Processing Series, 1979.

[Chen 91] Chen, S-Y., Lin, W-C. and Chen, C-T., Split-and-merge image
segmentation based on localized feature analysis and statistical test,
Graphical Models and Image Processing, vol. 53, no. 5, pp. 457-475,
1991.

[Crowley 95] Crowley, J., Bérard, F., and Coutaz, J., Finger tracking as an input
device for augmented reality, International Workshop on Automatic
Face and Gesture Recognition (AFGR), Zürich, pp. 195-200, 1995.

[Darrell 98] Darrel, T., A radial cumulative similarity transform for robust image
correspondence, Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 656-662, Santa Barbara, 1998.

[Fitzmaurice 95] Fitzmaurice, G., Ishii, H. and Buxton, W., Bricks: Laying the
Foundations of Graspable User Interfaces, ACM conference on
Computer-Human Interaction (CHI), 1995.

[Foley 82] Foley, J. and van Dam, A., Fundamentals of Interactive Computer
Graphics, Addison-Wesley, 1982.

[Freeman 95] Freeman, W. and Weissman, C., Television control by hand gestures,
International Conference on Automatic Face and Gesture
Recognition (IWAFGR), June, 1995.

[Freeman 98] Freeman, W., Anderson, D. and Beardsley, P., Computer Vision for
Interactive Computer Graphics, IEEE Computer Graphics and
Applications, pp. 42-53, May-June 1998.

References

References 78

[Gibson 50] Gibson, J., The Perception of the Visual World, The Riverside Press,
1950.

[Hall 99] Hall, D. and Crowley, J., Tracking Fingers and Hands with a Rigid
Contour Model in an Augmented Reality, International Workshop on
Managing Interactions in Smart Environments, Dublin, 1999.

[Heap 95] Heap, T., Real-Time Hand Tracking and Gesture Recognition using
Smart Snakes, Proceedings of Interface to Real and Virtual Worlds,
Montpellier, June 1995.

[Hecht 97] Hecht, E., Optics, 3rd Ed, Addison Wesley, 1997.

[Kulessa 96] Kulessa, T. and Hoch, M., Efficient Color Segmentation under
Varying Illumination Conditions, IEEE Image and Multidimensional
Digital Signal Processing Workshop (IMDSP), Alpbach, 1998.

[Laptev 00] Laptev, I. and Lindeberg, T., Tracking of Multi-State Hand Models
Using Particle Filtering and a Hierarchy of Multi-Scale Image
Features, Technical report ISRN KTH/NA/P-00/12-SE, September
2000.

[Lee 95] Lee, J. and Kunii, T., Constraint-based hand animation, in Models
and techniques in computer animation, pp. 110-127, Springer Verlag,
Tokyo, 1993.

[Lien 98] Lien, C., Huang, C., Model-Based Articulated Hand Motion Tracking
For Gesture Recognition, Image and Vision Computing, vol. 16, no.
2, pp. 121-134, February 1998.

[Longuet-Higgins 80] Longuet-Higgins, H.C. and Prazdny, K., The interpretation of moving
retinal images, Proceedings of the Royal Society, vol. B 208, pp.
385-387, 1980.

[MacCormick 00] MacCormick, J.M. and Isard, M., Partitioned sampling, articulated
objects, and interface-quality hand tracking, European Conference
on Computer Vision, Dublin, 2000.

[MacKenzie 93] MacKenzie, I., Ware, C., Lag as a determinant of Human
Performance in Interactive Systems. Conference on Human Factors
in Computing Systems (INTERCHI), pp. 488-493, New York, 1993.

[Martin 95] Martin J. and Crowley, J., Experimental Comparison of Correlation
Techniques, International Conference on Intelligent Autonomous
Systems (IAS-4), Karlsruhe, 1995.

[Michotte 46] Michotte A., La Perception de la Causalité. Publications
Universitaires de Louvain, Louvain, 1946.

[O’Hagan 97] O'Hagan, R., Zelinsky, A., Finger Track - A Robust and Real-Time
Gesture Interface, Australian Joint Conference on Artificial
Intelligence, Perth, 1997.

[Otsu 79] Otsu, N., A threshold selection method from gray level histograms,
IEEE Transactions on System, Man and Cybernetics, vol. 9, pp. 62-
66, 1979.

References

References 79

[Pavlovic 97] Pavlovic, V., Sharma, R. and Huang, T., Visual Interpretation of
Hand Gestures for Human-Computer Interaction: A Review, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 19, no. 7, pp. 667-695, July 1997.

[Quek 95] Quek, F., Mysliwiec, T. and Zhao, M., Finger mouse: A freehand
pointing interface, International Workshop on Automatic Face- and
Gesture-Recognition, Zurich, 1995.

[Regh 93] Rehg, J. and Kanade, T., Digiteyes: Vision-based human hand
tracking, Technical Report CMU-CS-93-220, School of Computer
Science, Carnegie Mellon University, 1993.

[Sato 00] Sato, Y., Kobayashi, Y. and Koike, H., Fast Tracking of Hands and
Fingertips in Infrared Images for Augmented Desk Interface,
International Conference on Automatic Face and Gesture
Recognition, Grenoble, 2000.

[Schiele 95] Schiele, B. and Waibel, A., Gaze Tracking Based on Face Color,
International Workshop on Automatic Face and Gesture Recognition
(AFGR), Zürich, 1995.

[Segen 98] Segen, J., GestureVR: Vision-Based 3D Hand Interface for
Spatial Interaction, ACM Multimedia Conference, Bristol, 1998.

[Shimada 00] Shimada, N., Kimura, K. Shirai Y. and Kuno Y., Hand Posture
Estimation by Combining 2-D Appearance-Based and 3-D Model-
Based Approaches, International Conference on Pattern Recognition
(ICPR), Barcelona, 2000.

[Stafford-Fraser 96] Stafford-Fraser, J., Video-Augmented Environments, PhD thesis,
Gonville & Caius College, University of Cambridge, 1996.

[Starner 95] Starner, T. and Pentland, A., Real-time American Sign Language
recognition from video using hidden Markov models, International
Symposium on Computer Vision, Coral Gables, USA, 1995.

[Sturman 92] Sturman, D., Whole hand input, PhD thesis, MIT Media Lab,
Massachusetts Institute of Technology, 1992.

[Tremeau 96] Tremeau, A. and Borel, N., A Region Growing and Merging
Algorithm to Color Segmentation, Pattern Recognition, vol. 30, no. 7,
pp. 1191-1203, 1997.

[Triesch 96] Triesch, J. and Malsburg, C., Robust Classification of Hand Postures
Against Complex Background, International Conference On
Automatic Face and Gesture Recognition, Killington, 1996.

[Ware 94] Ware, C. and Balakrishnan, R., Researching for Objects in VR
Displays: Lag and Frame Rate, ACM Transactions on Computer-
Human Interaction (TOCHI), vol. 1, no. 4, pp. 331-356, 1994.

[Wellner 93] Wellner, P., Interacting with paper on the DigitalDesk,
Communication of the ACM, no. 7, pp. 87-96, July, 1993.

[Wren 97] Wren, C., Azarbayejani, A., Darrell, T. and Pentland A., Pfinder:
Real-Time Tracking of the Human Body, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 19, no. 7, pp.
780-785, 1997.

References

References 80

[Wu 00a] Wu, Y., Liu, Q. and Huang, T., An Adaptive Self Organizing Color
Segmentation Algorithm with Application to Robust Real-time
Human Hand Localization, IEEE Asian Conference on Computer
Vision (ACCV), pp. 1106-1111, Taiwan, 2000.

[Wu 00b] Wu, A., Shah, M. and da Vitoria Lobo, N., A Virtual 3D Blackboard:
3D Finger Tracking using a single camera, International Conference
on Automatic Face and Gesture Recognition, Grenoble, 2000.

[Zhu 96] Zhu, S. and Yuille, A., Region Competition, IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 18, no. 9, pp.
416-423, 1995.

[Zhu 00] Zhu, X., Yang, J., and Waibel, A.. Segmenting Hands of Arbitrary
Color, International Conference on Automatic Face and Gesture
Recognition (AFGR), Grenoble, 2000.

