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Introduction

Introduction

Many users wonder why computers are still “dumb” despite the
constant increase in processing power. But how can we expect
“intelligence’ from machines that have almost no knowledge of what
is going on around them, because they can only sense keystrokes and
mouse movements?

Recently the price for digital video cameras has dropped
dramatically. For less than $50 every computer can now be equipped
with a powerful new sense: Vision. How can computer vision be
applied to make machines simpler and faster or just more useful?
This paper will try to answer this question with the example of the
bare hand as input device.

Motivation

For a long time research on human-computer interaction (HCI) has
been restricted to techniques based on the use of monitor, keyboard
and mouse. Recently this paradigm has changed. Techniques such as
vision, sound, speech recognition, projective displays and location-
aware devices allow for a much richer, multi-modal interaction
between man and machine.

But despite the variety of new input devices, there is still a deep
divide between the world of bits and the world of atoms. As Alex
Pentland, academic head of the M.I.T. Media Lab, puts it":

“Current machines are blind and deaf; they are unaware of us
or our desires unless we explicitly instruct them. Consequently,
only experts use most machines, and even they must spend most
of their time battling arcane languages and strange, clunky
interface devices.”

The main motivation of our research is to get rid of those “strange,
clunky interface devices.”

! From his homepage at http://sandy.www.media.mit.edu/people/sandy/




Introduction

Natural interaction between humans does not involve any devices
because we have the ability to sense our environment with eyes and
ears. In principle the computer should be able to imitate those
abilities with cameras and microphones. Such a “perceptual”
computer would have two great advantages. First, it could be built
very small because cameras and microphones take up much less
space than keyboards and mice. Second, it could be very easy to use.
Gestures, facial expressions and spoken words would serve as input
stream, much the same way as during natural communication
between humans.

Approach

In this paper we will take a closer look at human-computer
interaction with the bare hand. In this context, “bare” means that no
device has to be attached to the body to interact with the computer.
The position of the hand and the fingers is directly used to control
applications.

Hand positions can in principle be analyzed with different systems,
such as cyber-gloves, magnetic trackers, mechanical devices and
cameras. For us digital cameras are the system of choice because all
other techniques involve some kind of hardware device connected to
the hand and therefore cannot provide bare hand interaction.

Our approach will be centered on the needs of the user.
Requirements derived from usability considerations will guide our
implementation, i.e. we will not try to solve general computer vision
problems, but rather find specific solutions for a specific scenario.

The scope of the research will be limited to finger tracking (finding
finger positions on video images) and hand posture recognition
(identifying which posture from a pre-defined set of possible
postures is performed by the user). Hand gesture recognition will not
be covered in this paper. The difference between postures and
gestures is simply the additional dimension of time. Postures are
static (e.g. “thumb up”), while gestures are dynamic (e.g. tapping the
forehead with a finger).

Throughout the paper our guiding principle will be to create a system
that is usable in the real world. Sometimes it might be necessary to
adapt the environment to the needs of the computer (e.g. light
conditions), but those restrictions have to be made in a way that does
not compromise the overall usability requirements. To evaluate the
performance of our finger tracking and hand posture recognition
algorithms, we will choose concrete application scenarios and
develop simple demonstration systems for those scenarios.
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Applications

What are the possible applications for bare hand-based human-
computer interaction?

There are several cases in which the bare hand is more practical than
traditional input devices:

» During a presentation, the presenter does not have to move back
and forth between computer and screen to select the next slide.

* Mobile devices with very limited space for user interfaces could
be operated with hand gestures.

» Remote controls for television sets, stereos and room lights could
be replaced with the bare hand.

» During videoconferences the camera's attention could be
acquired by stretching out a finger, similar to a classroom
situation.

» Household robots could be controlled with hand gestures.

Additionally, perceptual interfaces allow the creation of computers
that are not perceived as such. Without monitor, mouse and
keyboard, a computer can hide in many places, such as household
appliances, cars, vending machines and toys. The main advantage of
perceptual interfaces over traditional buttons and switches are as
follows:

* In principal, systems can be integrated on very small surfaces.

» Systems can be operated from a certain distance.

»  The number of mechanical parts within a system can be reduced,
making it more durable.

» Very sleek designs are possible (imagine a CD-Player without a
single button).

» Systems can be protected from vandalism by creating a safety
margin between the user and the device.

* In combination with speech recognition, the interaction between
human and machine can be greatly simplified.

Finally, there is a class of applications, which can be built in
combination with a projector. Virtual objects that are projected onto
the wall or onto a table can be directly manipulated with the fingers.
This setup is useful in several ways:

* Multiple persons can simultaneously work with the objects
projected onto the wall.

» Physical systems, such as a schedule on the wall, can be replaced
with digital counterparts. The digital version can be easily stored,
printed, and sent over the Internet.

» If projector and camera are mounted in a place that is not
accessible for the user, an almost indestructible interface can be
built. To the user, the computer physically only consists of the
wall at which the interface is projected.

While some of these applications might seem to be futuristic, others
can be quite practical. Chapter six will present three applications in
detail and discuss their strengths and weaknesses.
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Structure of the Paper

In chapter one we will precisely define what we mean by “real-time
human-computer interaction”. Starting from this definition, we will
set up functional and non-functional requirements for real-time HCI
applications that will help to evaluate our results later. Also, we will
justify in detail why we chose computer vision to track fingers and
hand postures.

Chapter two will give a broad overview of existing work in the
fields of finger tracking and hand posture recognition.

In chapter three we will study several low-level vision techniques
for image segmentation and tracking. We use the term “low-level” to
group informally those computer vision methods that use only very
weak assumptions about the object of interest. They extract generic
features from the image and pass them on to high-level processes
which group or interpret those features according to higher-level
knowledge about the scene.

Chapter four will provide a detailed qualitative and quantitative
comparison of the methods introduced in chapter three and will allow
us to chose the optimal technique for our purposes.

Chapter five will describe how finger positions and hand postures
can be extracted from segmented images, using a shape-filtering
algorithm. With this data we will be able to build demonstration
applications such as a finger controlled mouse pointer or a Microsoft
PowerPoint presentation controlled by hand gestures. Those
applications will be presented and evaluated in chapter six.




Chapter One

Real-Time Human-Computer
Interaction

“Real-Time™ is a fuzzy word. How can time be real or non-real? In
this chapter we will try to define this word more precisely for our
purposes. Also it will be necessary to take a closer look at the
interaction between human and machine. What are the general
concepts and which requirements have to be met to make it “real-
time.” The requirements set up in this chapter will be useful for an
evaluation of our implementation later on.

Finally, we need to explain why we chose computer vision as a mean
for real-time human-computer interaction. We will describe the
specific strengths and weaknesses of computer vision and its
advantages over traditional input devices such as mouse and
keyboard.

Terms and Concepts

In the context of human-computer interaction, the term “real-time” is
often substituted with “tightly coupled”. Fitzmaurice describes this
concept in [Fitzmaurice 95] as follows:

“Tightly coupled systems have the physical and virtual
representations perfectly synchronized, the physical objects are
tracked continuously in real time.”

Again the term “perfectly synchronized” gives room for some
interpretation. In real-world applications there is always a delay
between a modification in the physical world and the adaptation of
the virtual representation. Just as there is no such thing as “real-
time”, a perfect synchronization is not possible. We define “tightly
coupled” therefore as synchronized without perceivable delay. In the
section “non-functional requirements” we will take a closer look at
human perception to get an estimation of minimum perceivable
delays.
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Figure 1.1: Control loop for mouse positioning movement (after [Ware 94])

Closed Control Loop Model

Tightly coupled human-computer interaction can be modeled with a
closed control loop [Ware 94] similar to those known in electrical
engineering for automation tasks.

Figure 1.1 shows the control loop for mouse movement guided by a
cursor. In this model, the user performs a series of micro-movements
to reach the desired position. The system generates a feed back for
each of the movements, allowing the user to gradually reduce the
difference between the desired and actual position of the pointer.
From the time the user starts moving the mouse, until the desired
position has been reached, human and machine form a tightly
coupled system, provided that the user does not perceive a delay
between his action and the response on the screen.

Note that there are three kinds of delays on the system side. Capture
and display delay are generated by the hardware of the input and
output devices (such as mouse, video-camera, frame-grabber,
graphics card) and are usually difficult to influence. The
measurement delay is negligible for mouse movements. In the case
of finger-tracking in contrast, it is quite difficult to measure the
fingertip position with an acceptable delay. In fact, most of this paper
will be dedicated to this part of the control loop.

Graspable and Digital Interfaces

What has been the big change in the way people interact with
computers in the last twenty years? The answer is easy: much of the
interaction has moved from the keyboard to the mouse. Today almost
all computers are equipped with graphical user interfaces and most
people use the keyboard exclusively for text-input.

Chapter One 6
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Figure 1.2: Classical, graspable and digital interfaces
(after [Bérard 99])

The great advantage of graphical interfaces is their simplicity.
Instead of entering abstract commands, the user can interact with
graphical metaphors for real-life objects, such as buttons and sliders.
Nevertheless, “expert users” tend to move back from the mouse to
the keyboard, to enter commands. Pressing “control-c” is
significantly faster than moving the hand to the mouse, moving the
mouse pointer to the menu and selecting the “copy” command.

There are two new forms of interfaces that try to combine advantages
of the keyboard and the mouse. Bérard classifies them as graspable
and digital interfaces (see Figure 1.2).

Graspable interfaces are everyday objects, such as Lego bricks
([Fitzmaurice 96]). If the user manipulates the physical object (e.g.
by moving it to another position), the computer senses this change
and manipulates a connected logical object accordingly. Basically a
mouse functions much in the same way: moving the physical mouse
causes a displacement of the logical pointer object. But other than the
mouse, which is exclusively bound to the pointer position, graspable
interfaces can be bound directly to any object on the screen.

There are several advantages over classical user interfaces:

e [Fast access: The time needed to move the mouse cursor to an
object on the screen can be saved.

* Multiple degrees of freedom: Several functions can be linked to
the graspable object, because many different manipulations are
possible (such as positioning on the table, rotation in x, y and z-
axes).

e Spatial multiplexing: Several graspable objects can be
manipulated in parallel.

Chapter One 7
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» Simple interfaces: Manipulation of graspable objects is much
simpler than pointing and clicking with a mouse. Also,
information can be attached to the object, making it self-
explanatory.

Digital interfaces take a somewhat opposite approach: instead of
merging physical and logical objects, they abolish the physical object
as intermediary and allow a direct control of the logical devices with
parts of the body. Rather than moving the mouse to move a pointer,
the finger itself now becomes the pointer. Touch-screen monitors are
a popular example for digital interfaces. The advantages are similar
to those of graspable objects:

e [Fast access: The time to move the hand to the mouse can be
saved.

*  Multiple degrees of freedom: Several functions can be linked to
hand postures and gestures.

o Spatial multiplexing: Multi-handed and multi-user interaction
possibilities allow parallel manipulation of several objects.

» Simple interfaces: Human beings are used to directly touch and
manipulate objects. Abolishing the mouse as intermediary allows
for much more natural interaction.

* Flexibility: One of the great strengths of the computer is its
flexibility. In contrast to graspable interfaces, digital interfaces
do not restrict the flexibility of software. The applications do not
even know that the mouse has been replaced with a finger.

While many of the computer vision algorithms described later in this
paper can also be used to construct graspable user interfaces, our
focus lies on digital interfaces. One of the goals of this paper will be
to build a working system to prove the validity of the listed
advantages. As a prerequisite, it will be necessary to define
requirements to such a system in greater detail.

Functional Requirements

Functional requirements can be described as the collection of
services that are expected from a system. For a software system these
services can cover several layers of abstraction. In our context only
the basic services are of interest. Bérard identifies three essential
services for vision-based human-computer interaction: detection,
identification and tracking ([Bérard 99]). We will briefly present the
three services and describe how they are used by our envisaged
applications.

Chapter One 8



Real-Time Human-Computer Interaction

Detection

Detection determines the presence of a class of objects in the image.
A class of objects could be body parts in general, faces, hands or
fingers. The output of the detection function expresses the existence
or absence of this class of objects in the image. If the class contains
only one object type, and there is just one object present in the scene
at a time, detection suffices to build simple applications.

For example, if we detect the presence of fingertips and we constrain
our application to one fingertip at a time, the detection output can be
used to directly control a mouse pointer position. For more complex
applications, such as hand posture recognition and multi-handed
interaction, we will need an additional identification and tracking
stage.

Typical simple detection techniques are based on color, movement
and connected component analysis. They will be described in chapter
three.

Identification

The goal of identification is to decide which object from a given
class of objects is present in the scene.

If, for example, the detection stage finds a face in the scene, the
identification stage could match the face with a database of known
faces to recognize a person in front of the camera.

Other examples are identification of symbols written on a whiteboard
([Stafford-Fraser 96]), identification of letters from a hand-sign-
language ([Starner 95]) or identification of spoken words in voice-
recognition systems.

In our case, the detection stage finds fingertips in the image. To
derive meaningful information about hand postures, we need to
attribute the fingers to one of the five possible finger types, which is
a typical identification task.

This finger-identification service can be used to build a variety of
applications, such as the finger-mouse and the finger-driven
presentation both described in chapter six.

Tracking

In most cases the identified objects will not rest in the same position
over time. One way to deal with this problem is to re-run the
identification stage for each frame. There are two cases in which this
is not possible:

» For difficult identification tasks, such as face recognition, the
identification stage can take seconds, making it impossible to run
it continuously in real-time.

» If there are several objects in the scene, which are identical to the
system (e.g. several right hands), it is not possible to attribute
them to the same logical object consistently over time.

Chapter One 9
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In both cases it is necessary to remember the last known position of
an identified object. Given some known constraints about the
possible movements of an object between two frames, a tracking
algorithm tries to follow the object over time.

We will need to provide tracking services in order to build multi-
handed applications, such as a multi-user brainstorming system.

Non-Functional Requirements

A given system could meet all functional requirements and would
still be useless if it took hours to accomplish its tasks. For this reason
it will also be necessary to define non-functional requirements,
which describe the minimum quality, expected from a service. We
will present some measures of quality relevant for our
implementations in this section.

Latency

Latency is the time gap between an action of the user and the system
response. As we said before, there is no system without latency, so
the basic question is, what is the maximum acceptable latency for our
system. One approach to this question is to look at the user
performance at different latencies.

Human beings can operate systems within a wide range of latencies.
When using a computer mouse, the small time gap in the order of
10ms between physical movements and pointer movements on the
screen is not perceivable. But a large system such as a ship, which
responds very slowly to the commands of the captain, can still be
controlled. The user just adapts the timing of the commands to the
expected latency.

Nevertheless, several studies ([Ware 94], [MacKenzie 93]) have
shown that user performances degrade significantly at high latencies.
MacKenzie found in his studies, for example, that the time needed to
move a pointer to a target is similar for lags of 8.3ms and 25ms, but
degrades by 16% for 75ms (compared to 8.3ms) and by 64% for
250ms. He therefore concludes that “lag must be taken seriously and
recognized as a major bottleneck for usability.”

It is difficult to derive a maximum acceptable lag from studies of
user performance because the answer might differ, depending on the
chosen task. Also, the performance degradation is gradual, making it
hard to set a fixed threshold value.

We therefore take a more pragmatic approach, following our
definition of real-time interaction in the first section of this chapter.
As we stated above, we are trying to achieve interaction without a
perceivable delay. But what is the minimum perceivable delay?

Chapter One 10
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Figure 1.3: Michotte’s Experiment (a) Simulated collision between two balls
(b) Results of the experiment (taken from [Card 83])

In a classical experiment conducted by Michotte, subjects had to
classify collisions between objects into three categories: immediate
causality, delayed causality and independent events ([Michotte 46]).
Figure 1.3 shows the results of the judgment as a function of the
interval separating the end of the first object’s motion and the
beginning of the second object’s motion. The subjects' perception of
immediate causality ends in the neighborhood of 100ms. Some
degradation of immediate causality begins for some subjects as early
as 50ms.

We can interpret this experiment for our purposes as such: If a
subject classifies two events, such as the movement of a physical
mouse and the movement of the mouse cursor, as connected by
“immediate causality” as opposed to “delayed causality,” there was
no perceivable delay between the two events. According to the
experiments of Michotte, the maximum delay for two events to be
classified as “immediate causality” by more then 90% of the subjects
is about 50ms.

Thus we require our system to have a maximum latency of 50ms,
which translates into a frame rate of 20Hz.

Resolution

The digital world is discrete. Continuous values, such as a finger
position in space, have to be converted into discrete values to
represent them within the computer. Resolution can be defined as the
smallest variation of a continuous value that can be represented
within the discrete world of the computer. For our application we
have to define the necessary temporal and spatial resolution.

Chapter One 11
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The temporal resolution of a system is equal to the time it takes to
process a given input image.” For example, if one processing cycle
takes 100ms, the system will discretize a continuous motion into
steps of at least 100ms.

For real-time systems, we want to represent a continuous physical
motion with a perceived continuous motion on the screen. As is well
known from cinema, the illusion of continuous motion can be created
by showing a sequence of images at frequencies higher than 20-
25Hz. We therefore set the required temporal resolution to
approximately 50ms, which corresponds well to the maximum
latency.

The required spatial resolution depends on the application. For
precise mouse movements, it should correspond to the resolution of
the screen. In other words the number of different finger positions
measurable should be at least as large as the number of possible
mouse pointer positions (e.g. 1280x960). For simple applications, the
number of different necessary output values might be much smaller
(e.g. a simple gesture interface to control a slider with the three
gestures left, right and stop). In such cases the necessary resolution is
determined by the requirements of the detection and identification
processes, which depend on the chosen technique.

Stability

A tracking method can be called stable if the measured position does
not change, as long as the tracked object does not move. There are
several possible sources of instability, such as:

» Changing light conditions
» Motion of other distracting objects in the fore- and background

» Electrical noise influencing the camera and the video acquisition
hardware

The stability of a system can be measured by calculating the standard
deviation of the output data for a non-moving object over a short
period of time.

Bérard uses the helpful distinction between necessary and sufficient
condition for the maximum standard variation of an input device
such as a mouse pointer ([Bérard 99]):

As a necessary condition, the standard deviation has to be smaller
than the smallest object the user can select on a screen (e.g. a button).
As a sufficient condition, it should be smaller than the smallest
displayable position change of the pointer to avoid annoying
oscillation of the pointer on the screen.

2 This is only true for a continuous input stream. In reality the temporal
resolution is constrained by the speed of the frame grabber, which is 50Hz
for image fields in our case.

Chapter One 12
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Computer Vision for Real-Time Human-Computer
Interaction

There are many different devices available for hand-based human-
computer interaction. Some examples are keyboard, mouse, track-
ball, track-pad, joystick and remote controls. More sophisticated
examples include cyber-gloves, 3D-mice (e.g. Labtec’s Spaceball)
and magnetic tracking devices (e.g. Polhemus’ Isotrack).

Most of these devices are cheaper, more reliable and easier to set up
than a system based on computer vision. So what are the specific
strengths of computer vision, which nevertheless make us confident
that this technique will be widely used for human-computer
interaction in the future?

Advantages of Computer Vision

First of all, computer vision is a potentially cheap input device. A
digital camera can be integrated into a single chip®. Mass-production
is therefore much easier to realize than for other input-devices with
mechanical parts, such as the cyber-glove. Also, the costs for image
processing hardware can be saved, as the main processors of most
computers are now fast enough to take over this task themselves.

More importantly, computer vision is versatile. While other input
devices such as mouse, joystick and track-pad are limited in scope to
a specific function, computer vision offers a whole range of possible
future applications — not only in the field of human-computer
interaction, but also in areas such user authentification, video-
conferencing and distant-learning. Those applications will make it
very interesting for hardware manufacturers to include cameras in
products such as screens, notebooks, cell-phones and projectors in
the future.

From our point of view, the most important advantage of computer
vision is its non-intrusiveness. Similar to microphones, cameras are
open input devices, which do not need direct contact with the user to
sense actions. The user can interact with the computer as he is,
without wires and without manipulating intermediary devices.

For the same reason, we will try to develop vision algorithms that do
not need any equipment attached to the body (e.g. markers, colored
gloves). Such markers would simplify many vision problems
significantly but they would also destroy the biggest advantages of
computer vision, its non-intrusiveness.

Ideally the technical parts of the system should be hidden from the
user, who would use gestures, facial expressions and other body
movements to communicate with the system. In conjunction with
voice recognition, one can easily imagine a computer that allows
much more natural forms of interaction than the current screen-
keyboard-mouse-systems.

® In fact Casio offers a digital camera integrated into a watch, complete with
memory for 100 low-resolution images, for $199.

Chapter One 13
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Clearly, this goal is easier to imagine than to realize. Despite
intensive research over the past decades, computer vision had only
small commercial success so far.

Challenges of Computer Vision

Many computer vision problems, such as detecting and tracking a
hand in front of a mostly uniform background, seem to be trivial.
Children can do the same thing without even concentrating. But what
seems simple to us is, in fact, the result of many highly complex
vision processes performed by the brain.

The human retina has approximately 125 million receptive cells
([Hecht 97]). Nevertheless, we are able to tell at a rate of about 25Hz
whether there is a hand in our visual field. To match this
performance with a computer, more than 3GHz of processing power
for every single instruction performed on the input data would be
necessary.

Even if we reduce the number of input values to “only” about
100.000 (384x288 pixel), the basic problem of computer vision is
still obvious: the large amount of input data. A computer does not
have the immense parallel processing capabilities of the brain.
Therefore only the most basic operations can be applied in the first
stage of the computer vision process. Due to their simplicity, those
operations are prone to errors.

Another problem of vision is unreliability and instability, caused
among other things by changing light conditions, occlusion, motion
blurring and electrical noise. The human visual system uses several
visual clues in parallel (e.g. color, motion, edge detection) in
combination with high-level knowledge to deal with this instability.
Matching those capabilities is a non-trivial task.

Finally there is always ambiguity involved in the interpretation of an
image. An example is the visual similarity of a hand and its shadow
in the background. Humans do not only rely on the “output” of the
retina, but also use lots of “world-knowledge” to correct errors and
resolve ambiguity. A shadow might be recognized through the
unconscious use of knowledge about the 3D-position of the hand and
the light-source, and about the propagation of light rays in space.

To build reliable computer vision systems it is necessary to
incorporate such “world-knowledge” into the algorithms. In our case,
for example, it is necessary to include information about finger
shapes, possible finger positions relative to the hand, and so on.

For this reason it is impossible to build generic systems that work
with all kinds of objects, in all kinds of environments. We have to be
modest and greatly restrict the problem space to be able to build
working systems.
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Chapter Two

Example Systems and Related
Work

In the last ten years there has been lots of research on vision-based
hand posture and gesture recognition. Interestingly many different
approaches to this problem exist with no one dominating technique.
We will present representative examples in the first part of this
chapter.

Finger tracking, on the other hand, has attracted only a little
research interest. Nevertheless, the existing systems are of great
interest to us, because they had to fight with the same problems of
hand segmentation and real-time tracking that we encountered
during our work. Also they demonstrate possible applications of
finger tracking, such as digital painting or television control. The
second part of the chapter will present some promising systems.

Hand Posture Recognition

According to [Pavlovic 97], hand posture recognition systems can be
classified into two categories: 3D-model-based and appearance
based.

3D-Model Based Hand Posture Recognition

The basic assumption for models of this type is that all relevant hand
posture information can be expressed by a set of parameters, which is
derived from the hand skeleton.

The human hand skeleton consists of 27 bones, divided into three
groups: carpals (wrist bones — 8), metacarpals (palm bones — 5) and
phalanges (finger bones — 14).

The joints connecting the bones naturally exhibit different degrees of
freedom (DoF). For instance, the palm joints have very limited
freedom of movement, the upper two joints of the fingers have one
DoF (extension/flexion), and so on. Figure 2.1 shows all 23 relevant
degrees of freedom of the human hand.
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Figure 2.1: Degrees of freedom of the human hand (from [Sturman 92]).

A complete 3D hand model will need to include all those DoF
resulting in 23 different dynamic parameters (in addition to static
parameters, such as bone lengths). Given those 23 parameters, every
possible hand posture should be recognizable. But how to extract the
parameters from video-images?

Most of the 3D hand model-based systems employ successive
approximation methods for their parameter computation. The basic
idea is to vary model parameters until a set of features extracted from
the hand model matches the ones obtained from the data image.

Lien and Huang, for example, use gloves with colored markers to
find the position of fingertips and wrist ([Lien 98]). As a second step,
a 23 DoF hand model is varied iteratively, taking into account the
physical constraints of a hand skeleton to find the best match
between the extracted data and the 3D model of the hand.

Rehg and Kanade take a similar approach. Instead of colored
markers, they use contour and stereo information to extract finger
positions ([Regh 93]). Figure 2.2 shows the results of the matching
process. Even though an impressive accuracy is achieved at a rate of
10Hz, it has to be noted that a bright hand in front of a perfectly
black background will be hard to find in real life.

Other authors skip the feature extraction stage and directly match a
number of 2D projections of the 3D hand model with the input image
(e.g. [Shimada 00]). Due to the large number of possible hand
shapes, sizes and positions, real-time performance can only be
achieved under very restricted conditions.
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Figure 2.2: Results from Rehg and Kanade (a) Original image with
overlaid skeleton (b) 3D hand model derived from extracted parameters

In general, 3D-model-based systems are able to extract a large
number of parameters, given the rough position and orientation of
the hand. They are not well suited to find hands in a scene or to track
fast hand movements.

While there are some applications for complete 3D parameterized
hand models (e.g. motion capture for animation), in most cases only
a small part of the available parameters will actually be used by the
application. Also, Lee and Kunii proved that 3D locations of the
fingertips, together with two additional characteristic points on the
palm, uniquely define a hand pose ([Lee 95]). In other words, a 23
DoF hand model is highly redundant.

Appearance-Based Models

The second group of models uses parameters that are derived directly
from the appearance of the image. Instead of trying to find the
position of the hand skeleton, a more pragmatic path is chosen: only
those parameters are extracted from the image data that are necessary
for the envisaged application.

A large variety of models belong to this group. They are based on
parameters such as fingertip positions, contours and edges, color
blob models, image moments, eigenvectors and Gabor wavelets, to
name a few. The techniques can be roughly divided into low-level
and high-level systems.
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Figure 2.3: Simple appearance-based gesture recognition (from [Freeman 98]) (a) Robot
control with image moments (b) Image differencing (c) Orientation histograms

Low-Level Appearance-Based Systems

Freeman et al. describe several techniques that allow simple gesture
recognition even with extremely limited hardware capabilities (e.g.
for toys). Figure 2.3 shows three examples of their work.

Hands that are close to the camera can be analyzed with image
moments. A few simple sum calculations yield the location,
orientation and dimension of a bright foreground object. This
information is sufficient to control the movements of a toy robot with
hand gestures (see Figure 2.3a).

Image differencing, as described in detail in chapter three, was used
to control a computer game. The center of mass of the difference
image shows the general direction of the hand gesture (Figure 2.3b).

Finally, Freeman applied orientation histograms to recognize a set of
10 different gestures (Figure 2.3c). For each pixel in the image, an
orientation value was calculated in the complex space using the
following formula:

O(x,y) =arctan[1(x,y) = 1(x =L y),1(x,y) - 1(x,y —1)]

with I(x,y) denoting the image intensity at the point x, y. Experiments
show that an orientation representation is much more robust to light
variations than the original gray-value representation. To further
reduce the complexity of the input data, a histogram over all possible
orientation angles is calculated. This histogram (shown in Figure
2.3c) serves as a parameter set for simple gesture recognition.

Also, Starner showed impressive results with relatively simple
techniques. Color detection, connected component analysis and
image moment calculation were sufficient to build a system that
reliably recognizes 40 words of the American Sign Language
([Starner 95]).
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Figure 2.4: Contour-based hand tracking (a) Hand contour extraction (from [Heap 95])
(b) Sequences from a Doom game controlled by hand (from [Segen 98])

Sato et al. greatly simplified the hand-finding process by using an
infrared camera. Infrared cameras can detect light emitted from a
surface with a certain temperature range. By setting this range to
approximate human body temperature, the hand region can be
segmented with near perfect accuracy ([Sato 00]).

High-Level Appearance-Based Systems

For more complex hand postures, it is necessary to analyze the local
features of the hand and fingers. Several authors use the hand
contour to extract hand posture information ([Heap 95], [Segen 98],
[Hall 99]). Contour-extraction by itself is a widely researched
computer vision topic. A whole array of techniques, from simple
gradient-based methods to balloons and smart snakes, is available to
find contours of the hand.

Segen and Kumar, for example, describe a contour based system that
utilizes a set of heuristics to detect several different hand postures in
real-time ([Segen 98]). The resulting information is used to control a
virtual crane, fly through 3D-landscapes and to play the “Doom”
game, as shown in Figure 2.4b".

Contour-based hand posture recognition tends to be unstable in the
case of unfavorable backgrounds or difficult lighting conditions. An
alternative is region-based algorithms.

Laptev and Lindeberg developed an algorithm that reliably detects
hand position, orientation and scale, as well as finger configuration at
a rate of 10Hz ([Laptev 00]). The basic approach is the following:

1) Create a hypothesis about the hand position and state, based on a
training set and a probability distribution of possible positions in
the image.

2) Use the hypothesis to build a hand model, consisting of two-
dimensional Gaussian functions (blobs)

3) Calculate the similarity between the hand model and the image
data

* Impressive videos of all three applications can be downloaded at
http://www1.acm.org/sigs/sigmm/mm98/electronic_proceedings/segen
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Figure 2.5: DrawBoard application — A blob model is used to find palm, fingers and fingertips. The hand
states signify commands to the computer such as ““select tool”” or “zoom” (from [Laptev 00])

The three steps are repeated with several different possible
hypotheses, and the best match is taken as new hand position. The
algorithm was applied to build a simple drawing application called
DrawBoard. Figure 2.5 shows two screen shots of this application.

Next to contour and region based methods, it is also possible to look
for characteristic feature points on the hand. The features have to
be collected from a set of training data and are represented with a
labeled graph (see Figure 2.6a). Triesch and v. Malsburg build an
elastic graph matching system that adapts size, orientation and
structure of the trained graph to the input image to find the best
matching hand posture ([Triesch 96]).

Instead of directly matching gray-values, the response of Gabor
filters is compared for each graph node. Gabor filters resemble the
receptive fields of neurons in the primary visual cortex, and have
proven to reliably detect skin features in other applications, such as
face recognition.

Triesch used the system to classify ten different gestures against
complex backgrounds (see Figure 2.6b) and achieved a recognition
rate of 86 percent.

Figure 2.6: Hand representation with labeled graphs (a) Labeled training
data (b) Recognition using elastic graph matching (from [Triesch 96])
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Finger Tracking

Most finger-tracking systems aim to replace pointing and clicking
devices like the mouse with the bare hand. Such applications require
a robust localization of the fingertip plus the recognition of a limited
number of hand postures for “clicking-commands”.

Finger-tracking systems can be viewed as a specialized type of hand
posture/gesture recognition system. The typical specializations are:

*  Only the most simple hand postures are recognized

» The hand usually only covers a small part of the scene

» The finger positions are being found in real-time

» ldeally, the system works with all kinds of backgrounds

* ldeally, the system does not restrict the speed of hand
movements

In principle, finger-tracking systems use the techniques described in
the last section, except that the real-time constraints currently do not
allow sophisticated approaches such as 3D-model matching or Gabor
wavelets. For the most part, one of the three following techniques is
being applied: color tracking, correlation tracking and contour-based
tracking.

Color Tracking Systems

Queck build a system called “FingerMouse”, which allows control of
the mouse pointer with the fingertip ([Queck 95]). To perform a
mouse-click the user has to press the shift key on the keyboard.
Queck argues that 42% of the mouse-selection-time is actually used
to move the hand from the keyboard to the mouse and back. Most of
this time can be saved with the FingerMouse system. The tracking
works at about 15Hz and uses color look-up tables to segment the
finger (see Figure 2.7). The pointing posture and the fingertip
position are found by applying some simple heuristics on the line
sums of the segmented image.

Figure 2.7: (a) The FingerMouse setup (b) Color segmentation result
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Wu et al. also use color detection to find body parts in images that
show a teacher in a classroom ([Wu 00b]). A combination of
connected component analysis, size filtering and image differencing
yields the hand-areas of the image. The pointing finger is found by
simply following the contour of the hand area and calculating the
point of highest curvature. The finger-tracker was applied for a hand-
driven 3D-visualization system.

Although skin color is certainly a strong clue for body part
segmentation, research such as [Kulessa 96] shows that it is very
hard to find a light-invariant color model of the skin. Systems that
segment hands solely based on color will be prone to classification
errors in real-life setups.

Correlation Tracking Systems

As shown in chapter four, correlation yields good tracking results, as
long as the background is relatively uniform and the tracked object
moves slowly.

Crowley and Bérard used correlation tracking to build a system
called “FingerPaint,” which allows the user to “paint” on the wall
with the bare finger ([Crowley 95]). The system tracks the finger
position in real-time and redisplays it with a projector to the wall (see
Figure 2.8a). Moving the finger into a trigger region initializes the
correlation. Mouse down detection was simulated using the space bar
of the keyboard.
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Figure 2.8: (a) FingerPaint system (from [Crowley 95]) (b) The Digital Desk (from [Well 93])
(c) Television control with the hand (from [Freeman 95])
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FingerPaint was inspired by the “digital desk” described in [Well
93], which also uses a combination of projector and camera to create
an augmented reality (see Figure 2.8b). Well’s system used image
differencing to find the finger. The big drawback is that it does not
work well if the finger is not moving.

Correlation works somewhat opposite to image differencing because
it performs well with slow movements; but it can only search a small
part of the image and therefore fails if the finger is moving too fast.

O’Hagan tried to solve this problem by adapting the search region to
the direction of the finger motion ([O’Hagan 97]). His system
calculates a motion vector for two successive frames and uses
heuristic interpolation to find the probable finger positions in the
next frame.

While this approach increases the maximum trackable finger speed,
it introduces new error possibilities in case of rapid direction changes
of the finger.

Freeman used correlation to track the whole hand and to discriminate
simple gestures. He applied the system to build a gesture based
television control ([Freeman 95]). In his setup the search region was
simply restricted to a fixed rectangle. As soon as the user moves his
hand into this rectangle, the television screen is turned on. Some
graphical controls allow manipulation of the channel and volume
with a pointer controlled by the hand (Figure 2.8c).

Contour-Based Tracking Systems

Contour-based finger trackers are described in [Heap 95], [Hall 99]
and [MacCormick 00]. The work of MacCormick and Blake seems
to be the most advanced in this field. The presented tracker works
reliably in real-time over cluttered background with relatively fast
hand motions. Similar to the DrawBoard application from [Laptev
00], the tracked finger position is used to paint on the screen.
Extending the thumb from the hand generates mouse clicks and the
angle of the forefinger relative to the hand controls the thickness of
the line stroke (see Figure 2.9).

Figure 2.9: Contour-based tracking with condensation (a, b) Hand contour recognition against
complex backgrounds (b) Finger drawing with different line strengths (from [MacCormick 00])
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MacCormick uses a combination of several techniques to achieve
robustness. Color segmentation yields the initial position of the hand.
Contours are found by matching a set of pre-calculated contour
segments (such as the contour of a finger) with the results of an edge
detection filter of the input image. Finally, the contours found are
tracked with an algorithm called condensation.

Condensation is a statistical framework that allows the tracking
objects with high-dimensional configuration spaces without
incurring the large computational cost that would normally be
expected in such problems. If a hand is modeled, for example, by a
b-spline curve, the configuration space could be the position of the
control points.

Instead of varying those control points to all possible positions until
an optimal match with the input data is found, a condensation
algorithm can be applied to find the most probable new parameter
set, given the last known position of the hand.

To be able to perform valid predictions, the condensation algorithm
has to be trained with a sufficient amount of representative samples.
From those samples the typical movement patterns are automatically
extracted.

Even though the condensation-based contour tracking shows
impressive results, there are some drawbacks to this method:

* The algorithm only performs a local search, which works well
for predictable movement patterns but fails for fast random
movements.

* The algorithm is not able to find the initial hand position. Other
techniques, such as color segmentation, have to be applied for
this step.

» The algorithm tracks one specific contour. It is not well suited
for hand posture recognition.

* The algorithm has to be trained with a number of typical
movements (e.g. 500 image frames). The contour finding for
those frames has to be performed with a different method.
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Chapter Three

Low-Level Image Processing

When processing video images, the basic problem lies in the
extraction of information from vast amount of data. The Matrox
Meteor frame grabber, for example, captures images of 768 x 576
pixels. With three bytes per pixel and 25 images per second, this
amounts to over 33 megabytes of data per second. Even with
processing power in the gigaherz range, only a limited number of
calculations per pixel are possible. The goal of the low-level vision
processing stage is therefore to reduce the amount of data with a
restricted number of simple operations. The result of this data
reduction can take several forms, such as regions of interest,
probability maps, connected components and so on.

Color

Color information can be used to segment interesting parts of the
image from the background. The basic approach is straightforward:
First, one or more samples of the object are taken to build a color
model, i.e. a function that classifies color values either as part of the
object or as part of the background. With this color model, all pixels
in successive frames can be classified quickly as object or non-object
pixels.

Figure 3.1 shows a simple approach for color segmenting. All pixel-
color-values in the rectangle in frame one are added to a look-up
table. In successive frames pixels of the same color can be found
with a simple and fast look-up operation.

By looking at the segmented images one can see the weaknesses of
this approach. Several areas in the background are incorrectly
classified as skin color. In contrast, the hand, which to the human eye
seems to have a color very similar to the face color, is not
segmented.

To improve the performance of the color segmentation, it is
necessary to build a generalized color model from the values of the
sample pixels. We will briefly describe three possible approaches to
this problem.
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Figure 3.1: Simple color segmenting with a lookup-table
(a) Reference image: pixels inside the rectangle are used to
build the color model. (b) Model applied to a different image.

Color-Space Transformation

In real-life applications, light conditions can change significantly
over time. Clouds pass in front of the sun, people move in front of
the light sources, and the brightness of an object can also change if it
moves around inside the scene. To achieve stability over time, a
generalized color model therefore should be invariant to changes in
luminosity.

Most image acquisition hardware codes colors in the rgh-space. In
this representation the same color is assigned to different values of
red, green and blue if the illumination changes. Schiele and Waibel
propose to normalize each color value by its luminosity to achieve an
invariant model ([Schiele 95]). A simple approximation for
luminosity is the sum of the three color components. A normalized
representation can therefore be calculated by the following
transformation:

r
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To achieve further robustness it is necessary to additionally allow a
certain amount of variation in saturation and color. This can be
achieved by transforming the sample pixels from the rgb-color space

to the hue-saturation-luminosity-space. (For the transformation
algorithm see [Foley 82]).
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Figure 3.2: Generalized color models (a) Color space transformation (b) Gaussian function

In the HLS-representation the distributions of color and saturation of
the sample pixels are calculated. Based on those distributions, we can
set valid ranges for object-color and -saturation. All color-values that
are within those ranges have to be transformed back into the rgb-
representation to allow a quick look-up during run time. Figure 3.2a
shows the results of the described algorithm with the same data
samples that were used for Figure 3.1.

Gaussian Model

For the calculation of color, saturation and luminosity ranges as
described in the previous section, it is necessary to pick a number of
more or less arbitrary thresholds that define the borders of each
range. Bérard describes an alternative approach using two-
dimensional Gaussian functions that only requires a single threshold
([Bérard 99]).

In this approach, the pixels are normalized by their luminosity (see
section above), thus reducing the complexity of the input data to two
dimensions. Next, it is assumed that the distribution of skin color
values can be approximated by a two-dimensional Gaussian curve in
the normalized color space. The sample values are used to calculate
the parameters of this function (mean and matrix of covariance).

Once constructed, the function yields a probability for every possible
color value. This probability is a useful measure for the certainty that
a pixel belongs to the object (e.g. the hand). Figure 3.2b shows the
result of Gaussian color segmentation, again with the same input data
that was used in Figure 3.1.

Segmentation with Bayes Decision Theory

Zhu, Yang and Waibel ([Zhu 00]), as well as Kulessa and Hoch
([Kulessa 96]), describe a color segmentation strategy based on
Bayes decision theory. This color model requires a representative
number of sample pictures that must be segmented by hand into
object and background pixels.

A given color c at the coordinates x and y should be classified as
object color if

P(object | ¢, x, y) > P(background | c, X, y) 1)
Applying Bayes theorem, we get
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P(c|object, x, y) OP(object|x,y)
P(clx,y)

It can be assumed that c is conditionally independent of x and v, i.e.
P (c | object, x, y) = P (c | object), leading to

P(c|object) CIP(object| x, y)
P(clx,y)

The same steps can be applied to calculate P (background | c, X, y).
Because of P (object | x, y) + P (background | x, y) = 1, (1) becomes

P(c|object) O P(object|x,y) >
P(c | background) [ (1- P(object|x,y))

P(object| c,x, y) =

P(object|c,x,y) =

()

(2) serves as a decision criterion, for building a color look-up table.
To apply the formula, three models have to be computed. P (c |
object) is the color histogram of one or more hand-segmented objects
normalized to one. P (c | background) is calculated respectively for
the sample-background. P (object | x, y) is the spatial probability
distribution of the object, i.e. how likely is a pixel (x, y) a hand pixel.
This can be estimated by averaging the object-pixel positions of a
large number of sample images.

The basic advantage of the approach is that it adds robustness against
backgrounds with colors similar to the object color and that all
thresholds are automatically calculated from the training data. The
disadvantage is that the performance of the system is very dependent
on the quality of the training images. If the background situation
changes the algorithm has to be retrained

Although segmentation with Bayes decision theory increases the
robustness against distractive pixels in the background, it still does
not adapt to changing light conditions. Zhu, Yang and Waibel
propose a restricted expectation maximization (EM) algorithm to
adapt the color model dynamically. An alternative approach, using
self-organizing maps (SOM), is described in [Wu 00a].

Correlation

Correlation is a pattern matching technique that calculates a measure
of similarity between a sample pattern and any given test pattern. In
this context, correlation is used to track objects such as fingers or
hands.

The basic principle for object tracking with correlation is simple. A
sample image of the object is taken in the first frame and searched
for in the following frames. The search is conducted by taking test
patterns at all possible object locations and applying the correlation
algorithm to them. The search result is the position in the test image
with the highest correlation score (see Figure 3.3).
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Figure 3.3: Correlation search (a) Searched image with sample pattern
(b) Correlation scoremap (NCC)

Similarity Measures

To find the sample pattern in the following frames, it is necessary to
calculate a measure of similarity (the “correlation score”). Martin
and Crowley describe a number of different algorithms and evaluate
their performance ([Martin 95]). One possibility for comparing two
images is the calculation of the sum of squared differences (SSD)
between corresponding pixels.

If we define S as the sample pattern of the size u x v (e.g. 32x32
pixel) and | as the image to be compared at the position x, y we get:

sDD(x, y)= ;(S(u,v)— H(x+u,y +v)f

The SSD can be interpreted as the distance between two vectors in a
u x v — dimensional space. A small value of SSD therefore means a
high correlation between the two compared images. If the images are
identical this value will be zero.

SSD is sensible to variations in global light conditions. If the hand
moves, for example, into a dark region of the scene, the gray-value
difference to corresponding pixels in the previous frame will be large
for all pixels. The sum of squared differences will therefore also be
large, resulting in a low correlation score. To avoid this effect it is
necessary to normalize the image samples by their luminosity.

The normalized cross-correlation (NCC) takes into account this
problem by dividing the correlation value by the overall luminosity:

S sv)alx+u,y+v)
NCC(x,y)=—2"

\/gsz(u,v)Dglz(x+u,y+v)
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The numerator of this formula is the dot product of the two sample
image vectors in a u x v-dimensional space. The result can loosely be
interpreted as the cosine of the “angle” between those two vectors.
For similar images the angle is small, resulting in a cosine value
close to one.

Even though Martin and Crowley note in their paper that SSD is
more stable to noise than NCC, we prefer the latter for its invariance
to light variations.

Search Window Size

Correlation search is computationally expensive. An exhaustive
search of the whole image is not possible with current processing
power. It is therefore necessary to define a certain search region
around the last known position of the object.

A prediction algorithm that uses the last few positions of the object
to calculate velocity and acceleration could provide an estimate for
this search region. For finger tracking, such an algorithm would not
be useful, though, because fast finger movements cannot be tracked
with correlation, due to strong motion blurring (see chapter 4 for
example images). In this case the prediction would fail because of
the lack of intermediary position values. For slow movements a
prediction is not necessary because the finger position will be close
to the position of the last frame. For this reason, we use a square
centered on the last known position as search region.

The maximum size of the search rectangle depends on the number of
processed images per second. A calculation in [Crowley 95] shows
that it is more efficient to use small search regions with a high update
frequency, than vice versa. The reason for this effect can be
explained as follows: If we double the update frequency given a
fixed object speed, the inter-frame displacement of the object will be
halved. The necessary search area is therefore reduced by four,
resulting in a net increase in processing speed by approximately two.

For real systems the update frequency is limited by the speed of the
frame grabber, which is 25 Hz for PAL-Systems. By directly
accessing the interlaced half-images (called fields), this maximum
frequency can be pushed further to 50 Hz. See Appendix A for
implementation details of field-rate tracking.

Adapting the Sample Pattern

Correlation tracking suffers from one major fault: by definition, the
algorithm searches for objects that are similar from the sample
pattern. It fails if the object in the searched image is different to the
sample object. There are three main reasons for those differences:

»  Movement over non-uniform background

» Rotation or scaling of the object

» Shape changes of the object (e.g. a tracked hand with moving
fingers)
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Figure 3.4: Correlation tracking with rotation (a) Original (middle) and rotated
sample patterns. (b) The found object most resembles the left-rotated pattern.

In our application we can provide a non-cluttered background,
scaling is not an issue, because the distance between camera and user
is more or less fixed; and shape changes can be used as a feature to
stop the tracking function. Only rotational invariance is a “must” for
a useful finger tracker.

In [Crowley 95] a solution to the rotation problem is proposed: as
soon as the correlation value drops below a certain threshold, the
sample pattern should be updated with the search image at the
current position of the finger. The problem with this approach is that
for low correlation values the position of the fingertip is no longer
precisely known. The updated patterns therefore tend to drift away
towards the background.

Our solution for achieving rotational invariance is quite simple: we
take the original sample pattern and rotate it to create an array of 16
images (each rotated by 22.5 degrees). When tracking the finger, a
correlation score is calculated both for the original sample pattern
and for the two neighboring rotations of the pattern. The pattern with
the maximum score is chosen as the new reference object (see Figure
3.4).

There are two disadvantages to the described approach. First, the
necessary processing steps are multiplied by three, reducing the

maximum size of the s