Bare-Hand Human-Computer Interaction

Christian von Hardenberg
Institut fir Elektronik
Technische Universitat Berlin
Einsteinufer 17, 10587 Berlin, Germany
+49-30-7889 5905
kiwahiga@linux.zrz.tu-berlin.de

ABSTRACT

In this paper, we describe techniques for barehanded interaction
between human and computer. Barehanded means that no device
and no wires are attached to the user, who controls the computer
directly with the movements of his’her hand.

Our approach is centered on the needs of the user. We therefore
define requirements for real-time barehanded interaction, derived
from application scenarios and usability considerations. Based on
those requirements a finger-finding and hand-posture recognition
algorithm is developed and eval uated.

To demonstrate the strength of the agorithm, we build three
sample applications. Finger tracking and hand posture recognition
are used to paint virtually onto the wall, to control a presentation
with hand postures, and to move virtual items on the wall during a
brainstorming session. We conclude the paper with user tests,
which were conducted to prove the usability of bare-hand human
computer interaction.

Categories and Subject Descriptors

H.5.2 [Information interfaces and presentation]: User interfaces
-Input devices and strategies; 1.5.5 [Pattern recognition]:
Implementation - Interactive systems.

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Computer Vision, Human-computer Interaction, Real-time, Finger
Tracking, Hand-posture Recognition, Bare-hand Control.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PUI 2001, Orlando FL, USA.

Copyright 2001 ACM 1-58113-000-0/00/0000...$5.00.

Francois Bérard
CLIPS-IMAG
BP 53, 38041 Grenoble Cedex 9
France
(+33)476 514 365

francois.berard@imag.fr

1. INTRODUCTION

For along time research on human-computer interaction has been
restricted to techniques based on the use of a graphic display, a
keyboard and a mouse. Recently this paradigm has changed.
Techniques such as vision, sound, speech recognition, projective
displays and context-aware devices allow for a much richer, multi-
modal interaction between man and machine.

Today there are many different devices available for hand-based
human-computer interaction. Some examples are keyboard,
mouse, track-ball, track-pad, joystick, electronic pens and remote
controls. More sophisticated examples include cyber-gloves, 3D-
mice (e.g. Labtec's Spaceball) and magnetic tracking devices (e.g.
Polhemus' Isotrack). But despite the variety of new devices,
human-computer interaction still differs in many ways from
human-to-human interaction. Natural interaction between humans
does not involve devices because we have the ability to sense our
environment with eyes and ears. In principle, the computer should
be able to imitate those abilities with cameras and microphones.

In this paper, we will take a closer look at human-computer
interaction with the bare hand. In this context, “bare” means that
no device has to be in contact with the body to interact with the
computer. The position of the hand and the fingers will be used to
control applications directly.

Our approach will be centered on the needs of the user.
Requirements derived from usability consideration will guide our
implementation, i.e. we will not try to solve general computer
vision problems, but rather find specific solutions for a specific
scenario.

In the next section of the paper, we will describe applications,
where bare-hand input is superior to traditional input devices.
Based on these application scenarios, we will set up functional and
non-functional requirements for bare-hand human-computer
interaction systems.

In the fourth section, there will be an overview about possible
approaches and related work to the problem. Because none of the
current hand-finding and -tracking systems sufficiently fulfill our
requirements, we developed our own algorithm, which will be
described in sections five and six. To demonstrate the strength of
the agorithm, we build three sample applications that are
presented in section seven. We conclude the paper with an
evaluation of the performance of our algorithm and describe user
tests, which were conducted to prove the usability of bare-hand
human-computer interaction.

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

2. APPLICATIONS

We found three main application scenarios for bare-hand human-
computer interaction. First, in many cases the bare hand is more
practical than traditional input devices:

¢ During apresentation, the presenter does not have to move back
and forth between computer and screen to select the next dlide.

¢ Remote controls for television sets, stereos and room lights
could be replaced with the bare hand.

e During video conferences, the cameras attention could be
acquired by stretching out a finger, smilar to a classroom
situation.

« Household robots could be controlled with hand gestures.

* Mobile deviceswith very limited space for user interfaces could
be operated with hand gestures.

Additionally, perceptual interfaces allow the creation of computers
that are not perceived as such. Without monitor, mouse and
keyboard, a computer can hide in many places, such as household
appliances, cars, vending machines and toys. The main advantage
of perceptual interfaces over traditional buttons and switches are as
follows:

« Systems can be integrated on very small surfaces.

¢ Systems can be operated from a certain distance.

e The number of mechanical parts within a system can be
reduced, making it more durable.

* Very deek designs are possible (imagine a CD-Player without a
single button).

« Systems can be protected from vandalism by creating a safety
margin between the user and the device.

e In combination with speech recognition, the interaction
between human and machine can be greatly simplified.

Finaly, there is a class of applications, which can be built in
combination with a projector. Virtual objects that are projected
onto the wall or onto atable can be directly manipulated with the
fingers. This setup can be useful in several ways:

e Severa persons can simultaneously work with the objects
projected onto the wall.

e Physica systems, such as a schedule on the wall, can be
replaced with digital counterparts. The digital version can be
easily stored, printed, and sent over the Internet.

e |If projector and camera are mounted in a place that is not
accessible for the user, an ailmost indestructible interface can be
built. To the user, the computer physically only consists of the
wall at which the interface is projected.

It has to be noted, that speech recognition systems might also be
able to provide some of the listed properties. Vision-based
techniques have the advantage that they do not disturb the flow of
conversation (e.g. during a presentation) and work well in noisy
environments (e.g. for public-space installations).

3. REQUIREMENTS

In this section, we will define requirements for real-time human-
computer interaction with bare hands that will guide our
implementation and evaluation later on.

3.1 Functional Requirements

Functional requirements can be described as the collection of
services that are expected from a system. For a software system,
these services can cover several layers of abstraction. In our
context, only the basic services are of interest.

We identify three essential services for vision-based human-
computer interaction: detection, identification and tracking. We
will briefly present the three services and describe how they are
used by our envisaged applications.

3.1.1 Detection

Detection determines the presence and position of a class of
objects in the scene. A class of objects could be body parts in
general, faces, hands or fingers. If the class contains only one
object type, and there is just one object present in the scene at a
time, detection suffices to build simple applications.

For example, if we detect the presence of fingertips and we
constrain our application to one fingertip at a time, the detection
output can be used to directly control a mouse pointer position. For
more complex applications, such as hand posture recognition and
multi-handed interaction, we will need an additional identification
and tracking stege.

3.1.2 Identification
The goal of identification is to decide which object from a given
class of objectsis present in the scene.

For bare-hand interaction, different identification tasks are
potentially interesting:

 Identification of a certain hand posture: Many applications can
be realized with the reliable identification of a stretched out
forefinger. Examples: Finger-driven mouse pointer, recognition
of space-time gestures, moving projected objects on awall, etc.

e Number of fingers visible: Applications often need only a
limited number of commands (e.g. simulation of mouse buttons,
“next dlide”/"previous slide” command during presentation).
Those commands can be controlled by the number of fingers
presented to the camera.

» 2D-positions of fingertips and the palm: In combination with
some constraints derived from the hand geometry, it is possible
to decide which fingers are presented to the camera. Theoret-
icaly, thirty-two different finger configurations can be detected
with this information. For non-piano players only a subset of
about 13 postures will be easy to use, though.

» 3D-position of al fingertips and two points on the palm: As
shown by [7], those parameters uniquely define a hand pose.
Therefore, they can be used to extract complicated postures and
gestures. An important application is automatic recognition of
hand sign languages.

All those identification tasks are solved in the literature, aslong as
the background is uniform and the speed of hand movement is
restricted (see section four). In order to limit the difficulty of the
problem, we limit ourselves to the first two points. This alows us
to built a system with a minimum number of constraints on the
user and the environment while still providing the required
services for our targeted applications.

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

a b C
Figure 1. Motion blurring. (a) Resting hand
(b) Normal movement (c) Fast Movement.

3.1.3 Tracking

In most cases, the identified objects will not rest in the same
position over time. If two objects of the same class are moving in
the scene, tracking is required to be able to tell which object
moved where between two frames.

There are two basic approaches to deal with the tracking problem.
Firgt, it is possible to remember the last known position of an
identified object. Given some known constraints about the possible
movements of an object between two frames, a tracking algorithm
can try to follow the object over time.

The second possibility is to re-run the identification stage for each
frame. While this approach might seem rather crude and also
requires a very fast identification algorithm, it might be the only
feasible tracking technique for unconstrained hand motion for two
reasons.

¢ Measurements show that hands can reach speeds of 5 m/s
during normal interaction. At a frame rate of 25 frameg/s the
hand “jumps” with steps of up to 20cm per frame.

e As shown in Figure 1, fast finger motion results in strong
mation burring. The blurred fingers are almost impossible to
identify and therefore lead to unknown finger positions during
fast motion.

The two effects combined typically result in distances of about one
meter between two identified finger positions, for fast hand
movements. This requires the tracking algorithm to search through
most of the image for each frame. By skipping the tracking stage
altogether one does not loose much processing speed, but gains a
lot of stability™.

3.2 Non-Functional Requirements
Non-functional requirements describe the minimum quality
expected from a service.

3.2.1 Latency

Latency is the time gap between an action of the user and the
system response. There is no system without latency, so the basic
question is what is the maximum acceptable latency for our
system.

Severa studies ([10], [18]) have shown that user performances
degrade significantly at high latencies. However, it is difficult to

1 Every tracker looses track from time to time (e.g. due to
occlusion) and has to be restarted. By “restarting” the system at
each frame, many tracking problems can be avoided.

derive a maximum acceptable lag from those studies because the
answer differs, depending on the chosen task and the performance
degradation is gradual .

We therefore take a different approach to the problem: the
described applications require rea-time interaction, which we
define as interaction without a perceivable delay. A classical
experiment conducted by Michotte and reported in [3] shows that
users perceive two events as connected by “immediate causality”,
if the delay between the eventsisless than 50ms. The perception of
immediate causality implies that the user does not notice a delay
between the two events. We therefore conclude that the minimum
acceptable latency for real-time applicationsisin the area of 50ms,
resulting in a required minimum processing frequency of 20Hz.

3.2.2 Resolution

The required spatial resolution depends on the application. For
point-and-click tasks, the smallest possible pointer movement
should be at most as large as the smallest selectable object on the
screen. For other applications, such as simple gesture interfaces,
the output resolution does not affect the quality of the service, but
detection and identification processes require a minimum input
resolution. For example, we found it difficult to identify fingers
with awidth below six pixelsin the image.

3.2.3 Sahility

A tracking method can be called stable if the measured position
does not change, as long as the tracked object does not move.
There are several possible sources of instability, such as changing
light conditions, motion of distracting objects and electrical noise.

The stability of a system can be measured by calculating the
standard deviation of the output data for a non-moving object over
ashort period.

As a necessary condition, the standard deviation has to be smaller
than the smallest object the user can select on a screen (eg. a
button). As a sufficient condition, it should be smaller than the
smallest displayable position change of the pointer to avoid
annoying oscillation of the pointer on the screen.

4. RELATED WORK

In the last ten years, there has been a lot of research on vision-
based hand gesture recognition and finger tracking. Interestingly
there are many different approaches to this problem with no single
dominating method. The basic techniques include color segmen-
tation [8], [12], infrared segmentation [13], blob-models [6],
contours [13], [9], [15], correlation [4], [11] and wavelets [17].

Typical sample applications are finger driven mice [11], [12],
finger driven drawing applications [4], [6], [9], bare-hand game
control [5], [15], and bare-hand television control [5].

Most authors use some kind of restriction, to simplify the
computer vision process:

* Non real-time calculations [17]

e Colored gloves[8]

» Expensive hardware requirements (e.g. 3D-camera or infrared-
camera) [13], [14]

» Restrictive background conditions [15]

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

« Explicit setup stage before starting the tracking [4]
¢ Resdtrictions on the maximum speed of hand movements [4],
(61, (9], [11]

Most systems additionally have problems in the case of changing
light conditions and background clutter. The systems described in
[6] and [9] seem to perform the best under such difficult
conditions.

None of the presented work provides a robust tracking technique
for rapid hand movements. In addition, most systems require some
kind of setup-stage before the interaction can start. Finally, none of
the reviewed systems alows simultaneous tracking of several
fingersin real-time.

Because we believe that those three points are crucial for most
bare-hand human-computer interaction applications, we decided to
develop an own finger-finding algorithm, which will be described
in the next two sections.

5.HAND SEGMENTATION

When processing video images, the basic problem lies in the
extraction of information from vast amount of data. The Matrox
Meteor frame grabber, for example, captures over 33 megabytes of
data per second, which has to be reduced to a simple fingertip
position value in fractions of a second.

The goal of the segmentation stage is to decrease the amount of
image information by selecting areas of interest. Due to processing
power congtraints, only the most basic calculations are possible
during segmentation. Typical hand segmentation techniques are
based on stereo information, color, contour detection, connected
component analysis and image differencing.

Each technique has its specific disadvantages:

Stereo image based segmentation requires a hardware setup that
currently only can be found in laboratories.

Color segmentation is sensitive to changes in the overal illumi-
nation [19]. In addition, it is prone to segmentation errors caused
by objects with similar colors in the image. It also fails, if colors
are projected onto the hand (e.g. during a presentation).

Contour detection tends to be unreliable for cluttered
backgrounds. Much stability is obtained by using a contour model
and post-processing with the condensation agorithm, but this
restricts the maximum speed of hand movement [2].

Connected component algorithms, tend to be heavy in computa-
tional requirements, making it impossible to search through the
whole image in real-time. Successful systems employ tracking
techniques, which again restrict the maximum speed of movement

[6].

Image differencing generally only works well for moving objects
and requires sufficient contrast between foreground and
background. The next sub-section will show how it nevertheless
can work quite reliably with the help of simple heuristics.

Looking a the failuremodes of the different segmentation
techniques, the obvious idea is to combine severa techniques to
get results that are more robust.

Figure2. Imagedifferencing with referenceimage. From left to
right: input image, reference image, output image.

Surprisingly, a quantitative comparison of low-level image
processing techniques” showed that all evaluated methods tend to
fail under similar conditions (fast hand motion, cluttered
background). For this reason, a combination of techniques does not
yield amuch better performance.

After comparing the different possible techniques qualitatively as
well as quantitatively, we decided to work with a modified image
differencing algorithm, which will be described in the next sub-
section.

5.1 Smart Image Differencing

Studies on human perception show that the visua system uses
changesin luminosity in many casesto set the focus of attention. A
change of brightness in one part of the visual field, such as a
flashing light, attracts our attention. |mage differencing follows the
same principle. It tries to segment a moving foreground from a
static background by comparing the gray-values of successive
frames.

Inter-frame image differencing is only useful if the foreground
object constantly moves. If we take the difference between the
actual image and a reference image instead, it is aso possible to
find resting hands (see Figure 2). To cope with changes in illumi-
nation the reference image is constantly updated with newly
arriving image using the following formula[16]:

DX,Dy R{(X! y) = %LERt_l(X! y)+%|:|(x, y) (1)

With R standing for the referenceimage and | for the newly arrived
frame. The formula calculates a running average over al frames,
with aweighting that decreases exponentially over time. For setups
in front of awall or white board, we found that the user practically
never rests with his hand in the same position for more than 10
seconds, which implies a value of about 500 for N.

The main problem with this type of reference image updating is
that dark, non-moving objects, such as the body are added to the
reference image. If the user moves his’her hand into regions with
dark objects in the reference image, there is not sufficient contrast
between foreground and background to detect a difference.

We found a simple but effective solution to this problem. In our
setup, the background is generally lighter than the foreground
(white walls, white boards). For this reason, we can update dark

2 Segmentation based on color, image differencing, connected
components and correlation was applied to a set of 14 different
hand label ed sequences

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

p Image Image Finger Shape Hand Posture Applicati
rocess Acquisition ’ Differencing ’ Finding Classification ’ pplication
Outout RGB Image Region Position & Hand Posture
utpu 384x288 pix. of interest Direction Type
Figure 3. Thefinger-finding and hand-posture recognition process.
regions slowly, but light regions instantly. The value N in formula Little Finger Thumb

(1) iscaculated asfollows:

for I,_4(% y)=1:(xy)<0

a
1
X0y N(xy) =
O =500 for I,_4(x,y)—1(xy)>0

O

With this modification, the agorithm provides the maximum
contrast between foreground and background at any time.

6. FINDING FINGERS AND HANDS

Figure 3 gives a schematic overview of the complete finger-finding
and hand-posture recognition process. The system searches for
fingertips first and uses the found positions to derive higher-level
knowledge, such as hand postures or gestures.

6.1 Fingertip Shape Finding

This section will present a simple, fast and reliable algorithm that
finds both the position of fingertips and the direction of the fingers,
given afairly clean segmented region of interest.

Figure 4 shows some typical finger shapes extracted by the image-
differencing process. Looking at these images, one can see two
overall properties of afingertip:

« The center of the fingertips is surrounded by a circle of filled
pixels. The diameter of the circle is defined by the finger width.

« Along a sguare outside the inner circle, fingertips are
surrounded by a long chain of non-filled pixels and a shorter
chain of filled pixels (see Figure 5).

To build an agorithm that searches these two features, several
parameters have to be derived first:

Diameter of the little finger (d1): Thisvalue usualy lies between 5
and 10 pixels and can be calculated from the distance between the
camera and the hand.

ﬁﬁﬁ

‘

|_—Inner Circle

AN

a1~ a2

Search Square

Figure5. A simple model of the fingertip.

O(x,y) O Region_of _Interest

di ameter d1 and center (X, YY)

Continue | oop

search square with diameter d3

Continue | oop

If (connected_filled_pixel_nb <

Conti nue | oop

Merorize (X, y) position

If (filled_pixel_nb < circle_area)

filled_pixel_nb — error_margin)

Add nunber of filled pixels in circle with

(1)

Cal cul ate nunber of filled pixels along

If (filled_pixel_nb < nmin_pixel) or
(filled_pixel_nb > nax_pixel)

(2)

(3)

Figure 6. Fingertip-finding algorithm

S L
e o

C

Figure 4. Typical finger shapes (a) Clean segmentation (b) Background clutter (c) Sparsely segmented fingers.

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

Diameter of the thumb (d2): Experiments show that the diameter is
about 1.5 times the size of the diameter of the little finger.

Sze of the search square (d3): The square has to be at least two
pixels wider than the diameter of the thumb.

Minimum number of filled pixels along the search sguare
(min_pixel): Asshown in Figure 5 the minimum number equalsthe
width of thelittle finger.

Maximum number of filled pixels along the search sguare
(max_pixel): Geometric considerations show that this vaue is
twice the width of the thumb.

Given those parameters, we wrote the straightforward fingertip
finding algorithm reported in Figure 6.

The agorithm performs three checks to find out whether a given
position (X, y) is afingertip.

(1) There has to be a sufficient number of filled pixels around the
close neighborhood of the position (X, y).

(2) There has to be the correct number of filled and un-filled
pixels along the described square around (X, y).

(3) The filled pixels along the square have to be connected in one
chain.

This basic algorithm runs easily at real-time and reliably finds

possible fingertips. We implemented two enhancements to further

improve the stability. Firgt, it is useful to define a minimum

distance between two fingertips to avoid classifying two pixels

next to each other as different fingertips. Second, the middle

position of the chain of inner pixels along the search square shows

the direction of the finger. This information can be used to

determine whether the found fingertip is connected to an

outstretched finger.

6.2 Hand posture Classification
The second part of the algorithm analyzes the rel ationship between
the found fingers.

As afirst step, a standard connected component analysis algorithm
is used to analyze which of the found fingers belong to the same
hand. As a by-product, the size of the hand-region is calculated.
This can be used to filter out small finger-shaped objects, such as
pens.

In a next step, the fingers are sorted into the right geometric order
(minimum distance between every pair). Afterwards the directions
and positions of fingers relative to each other allow calculating an
approximation for the center of the pam. Fingers can then be
classified by their position relative to the palm and their position to
each other.

6.3 Evaluation

In section three we set up requirements for real-time bare-hand
human computer interaction. While the functional requirements
have to be evaluated on a system level, we can already check at this
point if the non-functional requirements are met.

Our measurements were done one a Pentium Il 1000MHz
machine with 384x288 sized images. To test accuracy and
robustness we ran the finger finding algorithm on 12 sequences

Table 1. Dropped and misclassified frames (out of 25 frames)

Motion| B2 Light Condition Dropped) Misclas.
ground Frames | Frames
Diffuse Daylight 0 0
White | Daylight with Shadows 0 1
(S<|;Mé Diffuse Neon light 0 0
m/sl) Diffuse Daylight 0 0
Clutter | Daylight with Shadows 0 0
Diffuse Neon light 4 0
Diffuse Daylight 3 3
White | Daylight with Shadows 5 2
(2335 Diffuse Neon light 5 0
m/sl) Diffuse Daylight 7 0
Clutter | Daylight with Shadows 1 0
Diffuse Neon light 8 0

with varying light conditions (daylight, neon light, diffuse and
with shadows), different degrees of background clutter and
different speeds of movement. The output of the finger-tracker was
compared to hand-labeled ground truth data to calculate mean
error and error variance.

6.3.1 Latency

The total latency of the algorithm was between 26 and 34ms,
depending on the number of pixelsin the region of interest. Image
differencing alone takes about 10ms. The maximum latency is
therefore still well below the required maximum latency of 50ms.
We intentionally left some room for the latency of image
acquisition and graphical output.

6.3.2 Robustness
For each sequence two types of frames have been counted:

» Dropped frames: Framesin which no finger could be found

» Misclassified frames: Frames in which the finger position was
off by more than 10 pixels from the right position, or framesin
which the nearby finger-shadow has been tracked instead of the
finger itsalf.

Dropped frames usually occur if the finger moves very fast. In this
case they do not cause problems to most applications, because the
resting position of a finger is usually much more important than
the fast moving position. Misclassified frames, on the other hand,
are quite annoying. If the finger controls a pointer, for example,
this pointer might jump forth and back erratically between
correctly and misclassified finger positions.

Table 1 shows that the algorithm is quite robust for most circum-
stances. The occasional misclassified frames can be explained with
nearby shadows and body parts that resemble a finger. a simple
stabilization step, that always chooses the finger-position closest to
the last known position will eliminate most of those problems later
on.

6.3.3 Accuracy
The accuracy was calculated for all correctly classified frames. The

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

Figure 7. Finger classification

mean error for the evaluate sequences was between 0.5 and 1.9
pixels with variances between 0.1 and 2.0. As expected, fast finger
movements are tracked with lower accuracy than slow movements,
due to motion blurring. Taking into account the error margin of the
hand labeling process, the overall accuracy of the algorithm is
better than one pixel and therefore sufficient for precise point-and-
click tasks.

6.3.4 Finger Classification

Figure 7 shows two examples of the finger classification algorithm.
The finger positions (blue dots) and directions (red dots) are
reliably found for all fingers in front of a cluttered background.
Other finger-like objects such as the pen or the ball are ignored.
Additionally, the forefingers (yellow dots) of the two hands are
correctly found. The ten fingers are grouped into two different
hand objects (not visible in the pi cture)S.

7. SAMPLE APPLICATIONS

We developed three applications, named FingerMouse,
FreeHandPresent and BrainSorm for this paper. All of them aim
to improve the interaction between human and computer for a
specific scenario, and all demonstrate different capabilities of the
finger-finding and hand-posture recognition system.

7.1 Description of the applications

7.1.1 FingerMouse

The FingerMouse system allows control of the mouse pointer with
the bare hand. The user just moves an outstretched forefinger in
front of the camera, to position the mouse pointer on the screen.
Mouse-clicks are generated by keeping the finger in the same
position for one second. The mouse-wheel is activated by
stretching out all five fingers. In combination with a projector, the
system can be used to control Windows applications, such as the
Internet Explorer or Paint, directly on awall (see Figure 8aand b).
The finger replaces both a physical mouse as well as a mouse
pointer, allowing for fast and intuitive interaction.

7.1.2 FreeHandPresent

The second system is built to demonstrate how simple hand
postures can be used to control an application. A typical scenario
where the user needs to control the computer from a certain
distance is during a presentation. The FreeHandPresent system

3 Of course the two demonstrated cases are just examplesfor many
different possible conditions and hand states. MPEG movies of
the finger finder and of all described applications can be viewed
at http://ithm.imag.fr/hardenbe/Videos.htm

Figure 8. Bare-hand human-computer interaction.

(a) Finger controlled web browser (b) Painting with the finger
(c) Controlling a presentation with hand postures
(d) Multi-user spatial reorganization of text items.

makes it possible to replace existing remote-control solutions with
the bare hand. It uses the following hand postures to control a
presentation: two outstretched fingers for “next slide” (see Figure
8c), three outstretched finger for “previous dlide” and five
outstretched fingers to open a“slide menu”. The slide menu makes
it possible to jump to a specific slide quickly during a presentation,
by selecting one of the displayed side numbers with the finger.

7.1.3 Brainstorm

The last system was built to demonstrate multi-user/multi-hand
tracking capabilities of our system. The application scenario is a
brainstorming session. Normally such sessions consist of two
phases. first, a large number of ideas are collected from the
participants and pinned to the wall. Second, the items on the wall
are sorted and categorized.

With the BrainStorm system, users can type their ideas “to the
wall”, using a wireless keyboard. In the second phase, everyone
can walk up to the wall and rearrange items with his/her fingers.
An item is selected by resting on it with an outstretched finger for
half a second. Selected items can be moved freely on the wall. To
unselect an item, the user again makes a short pause with the
finger. Severa users can rearrange items in paralel (see Figure
8d). The main advantage of the virtual brain storming system is
that results can be saved, printed and send over the Internet at any
time.

7.2 Evaluation of the applications

All applications fulfilled the functional requirements defined in
section three. They worked in real-time (20-25Hz) and proved to
be sufficiently precise and robust to fulfill the chosen tasks.
Inexperienced users were able to use all of the applications after a
short explanation. Especially the selecting/clicking technique with
ashort pause of the finger proved to be very intuitive.

Nevertheless, we noticed one main problem during our evaluation:
the projected background usually changes alot during interaction.
The image-differencing layer therefore produces plenty of “false”

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

http://iihm.imag.fr/hardenbe/Videos.htm

Figure 9. User study (a) Physical objects (b) Virtual objects.
foreground objects, which might be accidentally classified as
fingers. There are two ways to cope with this problem.

« For applications such as FreeHandPresent the user can do his/
her hand sign at the side or above the presentation in a pre-
defined “control area’.

¢ Inall other cases, it is possible to eiminate the disturbing effect
of the projection by illumination the room (e.g. sun-light or a
strong lampy).

In principle, this problem could also be solved, with synchronized
camera-projector setups, which capture images during short
periods of blacked out projection.

To prove the usability of barehanded human-computer interaction
more formally, we arranged a user study with the BrainStorm
system. Eighteen inexperienced users had to group twenty
projected words on the wall into four categories (cities, countries,
colors and fruit). The same experiment was done with physical
objects (words glued to magnets, see Figure 9). Half of the users
did the physical object-sorting first, the other half started with the
virtual items.

On average, it took users 37 seconds to sort the physical objects
and 72 seconds for the virtual objects, resulting in a 95% increase
in time. The difference can be mainly explained with the selection
and un-selection pause of 0.5 seconds, which adds up to 20
seconds for the 20 items on the wall.

8. CONCLUSION

In this paper, we described how a computer can be controlled with
the bare hand. We developed a simple but effective finger finding
algorithm that runsin real-time at awide range of light conditions.
Other than in previous work, our system does not constrain the
hand movement of the user. Also, there is no set-up stage. Any user
can simply wak up to the wall and start interacting with the
system.

The described user tests show that the organization of projected
items on the wall can be easily accomplished with bare hand
interaction. Even though the system takes more time than its
physical counterpart, we think that it is still very useful: many
value-adding services, such as printing and storing, can only be
realized with the virtual representation.

Further research will be necessary to find a faster selection-
mechanism and to improve the segmentation with a projected
background under difficult light conditions.

9. REFERENCES

[1] Bérard, F. Vision par ordinateur pour I’ interaction homme-

machine fortement couplée, Doctoral Theses, Université
Joseph Fourier, Grenoble, 1999.

[2] Blake, A., Isard, M., and Reynard, D. Learning to track the
visual motion of contours, Artificial Intelligence, 78, 101-134,
19095.

[3] Card, S. Moran, T. Newell, A. The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates, 1983.

[4] Crowley, J.,, Bérard, F., and Coutaz, J. Finger tacking as an
input device for augmented reality, Automatic Face and
Gesture Recognition, Zirich, 195-200, 1995.

[5] Freeman, W., Anderson, D. and Beardsley, P. Computer
Vision for Interactive Computer Graphics, |EEE Computer
Graphics and Applications, 42-53, Mai-June 1998.

[6] Laptev, I. and Lindeberg, T. Tracking of Multi-State Hand
Models Using Particle Filtering and a Hierarchy of Mullti-
Scale Image Features, Technical report ISRN KTH/NA/P-00/
12-SE, September 2000.

[7] Lee, J. and Kunii, T. Constraint-based hand animation, in
Models and techniques in computer animation, 110-127,
Springer Verlag, Tokyo, 1993.

[8] Lien, C.and Huang, C. Model-Based Articulated Hand
Motion Tracking For Gesture Recognition, Image and Vision
Computing, vol. 16, no. 2, 121-134, February 1998.

[9] MacCormick, JM. and Isard, M. Partitioned sampling,
articulated objects, and interface-quality hand tracking,
European Conference on Computer Vision, Dublin, 2000.

[10] MacKenzig, |. and Ware, C. Lag as adeterminant of Human
Performance in Interactive Systems. Conference on Human
Factors in Computing Systems, 488-493, New York, 1993.

[11] O'Hagan, R. and Zelinsky, A. Finger Track - A Robust and
Real-Time Gesture | nterface, Australian Joint Conference on
Artificia Intelligence, Perth, 1997.

[12] Quek, F., Mysliwiec, T. and Zhao, M. Finger mouse: A
freehand pointing interface, International Workshop on
Automatic Face- and Gesture-Recognition, Zirich, 1995.

[13] Rehg, J. and Kanade, T. Digiteyes: Vision-based human hand
tracking, Technical Report CMU-CS-93-220, School of
Computer Science, Carnegie Mellon University, 1993.

[14] Sato, Y., Kobayashi, Y. and Koike, H. Fast Tracking of Hands
and Fingertipsin Infrared Images for Augmented Desk
Interface, International Conference on Automatic Face and
Gesture Recognition, Grenoble, 2000.

[15] Segen, J. GestureVR: Vision-Based 3D Hand Interface for
Spatia Interaction, ACM Multimedia Conference, Bristol,
1998.

[16] Stafford-Fraser, J. Video-Augmented Environments, PhD
theses, Gonville & Caius College, University of Cambridge,
1996.

[17] Triesch, J. and Malsburg, C. Robust Classification of Hand
Postures Against Complex Background, International
Conference On Automatic Face and Gesture Recognition,
Killington, 1996.

[18] Ware, C. and Balakrishnan, R. Researching for Objectsin VR
Displays: Lag and Frame Rate, ACM Transactions on
Computer-Human Interaction, vol. 1, no. 4, 331-356, 1994.

[19] Zhu, X., Yang, J. and Waibel, A. Segmenting Hands of
Arbitrary Color, International Conference on Automatic Face
and Gesture Recognition, Grenoble, 2000.

Proceedings of the ACM Workshop on Perceptive User Interfaces, Orlando, Florida, USA, Nov. 15-16 2001

	Bare-Hand Human-Computer Interaction
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords

	1.� Introduction
	2.� Applications
	3.� Requirements
	3.1� Functional Requirements
	3.1.1� Detection
	3.1.2� Identification
	3.1.3� Tracking

	3.2� Non-Functional Requirements
	3.2.1� Latency
	3.2.2� Resolution
	3.2.3� Stability

	4.� Related work
	5.� Hand segmentation
	5.1� Smart Image Differencing

	6.� Finding fingers and hands
	6.1� Fingertip Shape Finding
	6.2� Hand posture Classification
	6.3� Evaluation
	6.3.1� Latency
	6.3.2� Robustness
	6.3.3� Accuracy
	6.3.4� Finger Classification

	7.� Sample applications
	7.1� Description of the applications
	7.1.1� FingerMouse
	7.1.2� FreeHandPresent
	7.1.3� Brainstorm

	7.2� Evaluation of the applications

	8.� Conclusion
	9.� References

