
Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

A Unifying Reference Framework for the Development
of Plastic User Interfaces

Gaëlle Calvary, Joëlle Coutaz, and David Thevenin

CLIPS-IMAG,
BP 53, 38041 Grenoble Cedex 9, France

{Joelle.Coutaz, Gaelle.Calvary, David.Thevenin}@imag.fr

Published at the IFIP Working Conference, EHCI 2001, May 2001, Toronto

Abstract . The increasing proliferation of computational devices has in-
troduced the need for applications to run on multiple platforms in different
physical environments. Providing a user interface specially crafted for each
context of use is extremely costly and may result in inconsistent behavior.
User interfaces must now be capable of adapting to multiple sources of varia-
tion. This paper presents a unifying framework that structures the develop-
ment process of plastic user interfaces. A plastic user interface is capable of
adapting to variations of the context of use while preserving usability. The
reference framework has guided the design of ARTStudio, a model-based tool
that supports the plastic development of user interfaces. The framework as
well as ARTStudio are illustrated with a common running example: a home
heating control system.

1 Introduction

Recent years have seen the introduction of many types of computers and devices. In
order to perform their tasks, people now have available a wide variety of computa-
tional devices ranging over cellular telephones, personal digital assistants (PDA’s),
Internet enabled televisions (WebTV) and electronic whiteboards powered by high end
desktop machines. While the increasing proliferation of fixed and mobile devices fits
with the need for ubiquitous access to information processing, this diversity offers
new challenges to the HCI software community. These include:

− constructing and maintaining versions of single applications across multiple de-
vices;

− checking consistency between versions for guaranteeing a seamless interaction
across multiple devices;

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

− building into these versions the ability to dynamically respond to changes in the
environment such as network connectivity, user’s location, ambient sound or light-
ing conditions.

These requirements induce extra cost in development and maintenance, and complicate
the configuration management. In [20], we presented a first attempt at optimising the
development process of user interfaces using the notion of plasticity as a foundational
property. Plasticity refers to the ability of a user interface to mould itself to a range of
computational devices and environments, both statically and/or dynamically, whether
it be automatically or with human intervention. In this paper, we go one step further
with the presentation of a reference framework for supporting the structured develop-
ment of plastic user interfaces. In the following section, we present the EDF home
heating control system as our running example to illustrate the concepts and princi-
ples of the framework. We then recall the definition of our notion of plasticity before
describing the framework and ARTStudio, a tool that supports the development of
plastic user interfaces.

2 An example: the EDF Home Heating Control System

The heating control system envisioned by EDF (the French Electricity Company) will
be controlled by users situated in diverse contexts of use. These include:

− At home, through a dedicated wall-mounted device or through a PDA connected to a
wireless home-net;

− In the office, through the Web, using a standard work station;
− Anywhere using a WAP-enabled mobile phone.

A typical user's task consists of consulting and modifying the temperature of a par-
ticular room. Figures 1 and 2 show versions of the system for different computational
devices:

− In 1 a), the system displays the current temperature for each of the rooms of the
house (the bedroom, the bathroom, and the living room). The screen size is com-
fortable enough to make observable the entire system state;

− In 1 b), the system shows the temperature of a single room at a time. A thumbnail
allows users to switch between rooms. In contrast with 1a), the system state is not
observable, but browsable [10]: additional navigational tasks, e.g., selecting the
appropriate room, must be performed to reach the desired information.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

(a) (b)

F i g . 1 . a) Large screen. The temperature of the rooms are available at a glance. b) Small
screen. The temperature of a single room is displayed at a time.

Figure 2 shows the interaction trajectory for setting the temperature of a room with a
WAP-enabled mobile phone.

− In 2a), the user selects the room (e.g., "le salon" – the living room).
− In 2b), the system shows the current temperature of the living room.
− By selecting the editing function ("donner ordre"), one can modify the temperature

of the selected room (2c).

When comparing with the situation depicted in Figure 1a), two navigation tasks (i.e.,
selecting the room, then selecting the edit function) must be performed in order to
reach the desired state. In addition, a title has been added to every deck (i.e., a WML
page) to recall the user with the current location within the interaction space.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

F i g . 2 . Modifying the temperature using a WAP-enabled mobile phone.

All of these alternatives have been produced using our reference framework devised for
supporting plasticity.

3 Plasticity and related concepts

The term plasticity is inspired from the property of materials that expand and contract
under natural constraints without breaking, thus preserving continuous usage.

Applied to HCI, plasticity is the "capacity of an interactive system to withstand
variations of context of use while preserving usability". In the following subsections,
we successively develop the key elements of our definition: context of use, usability,
and the process for adapting to changes.

3.1 Plasticity and Context of Use

A context of use for a plastic user interface is defined by two classes of physical enti-
ties:

− The physical and software platform(s), that is, the computational device(s) used for
interacting with the system.

− The physical environment where the interaction takes place.

A platform is modeled in terms of resources which, in turn, determine the way infor-
mation is computed, transmitted, rendered, and manipulated by users. Typically,
memory size, network bandwidth and interactional devices motivate the choice for a
set of input and output modalities and, for each modality, the amount of information
made available. For example, screen size is a determining factor in the design of the
EDF Heating Control System.

(a) (b) (c)

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

An environment covers "the set of objects, persons and events that are peripheral to
the current task(s) but that may have an impact on the system and/or the user's behav-
ior, either now or in the future". According to this definition, an environment may
encompass the entire world. In practice, the boundary is set up by domain analysts
whose role is to elicit the entities that are relevant to the case at hand. These include
observation of users' practice [2, 5] as well as consideration for technical constraints.
For example, surrounding noise should be considered in relation to sonic feedback.
Lighting condition is an issue when it may influence the robustness of a computer
vision-based tracking system. User's location provides context for information rele-
vance: Tasks that are central in the office (e.g., writing a paper) may become secon-
dary, or even irrelevant, in a train. For example, programming the EDF heating sys-
tem is available on the central wall-mounted device only: according to the domain
analysts, this task would not make sense, or would be too complex to be performed
with current telephone technology.

In summary,

− a context of use, which consists of the association of a platform with an environ-
ment, is definitely anchored in the physical world. Therefore, it does not cover the
user's mental models;

− plasticity is not only about condensing and expanding information according to the
context of use. It also covers the contraction and expansion of the set of tasks in
order to preserve usability.

3.2 Plasticity and Usability

The quality of an interactive system is evaluated against a set of properties selected in
the early phases of the development process. "A plastic user interface preserves usabil-
ity if the properties elicited at the design stage are kept within a predefined range of
values as adaptation occurs to different contexts of use". Although the properties de-
veloped so far in HCI [10] provide a sound basis for characterizing usability, they do
not cover all aspects of plasticity. We propose additional metrics for evaluating the
plasticity of user interfaces.

Figure 3 makes explicit the association of a platform with an environment to de-
fine a context of use. We suppose that platforms and environments can be ranked
against some criteria computed from their attributes. For example, screen size, compu-
tational power and communication bandwidth, are typical attributes of a platform.
Using these attributes, a PC would be ranked lower than a PDA since it imposes less
constraints on the user interface. Similarly an environment with no noise would be
ranked lower than the open street. Then:

− the plasticity of a user interface can be characterised by the sets of contexts it is
able to accommodate,

− contexts at the boundaries of a set define the plasticity threshold of the user inter-
face for this set,

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

− the sum of the surfaces covered by each set, or the sum of the cardinality of each
set, defines an overall objective quantitative metrics for plasticity. In other word,
this sum can be used to compare solutions to plasticity: A user interface U1 is
more plastic than a user interface U2 if the cardinality of the set of contexts covered
by U1 is greater than that of U2.

We suggest additional metrics to refine the overall measure of plasticity in relation to
discontinuity [9]. These include:

− The size of the largest surface: large surfaces denote a wide spectrum of adaptation
without technical rupture.

− The number of distinct sets: a large number of sets reveals multiple sources for
technical discontinuities. Are these discontinuities compatible with user's expecta-
tion? Typically, GSM does not work everywhere. This situation translates as a dis-
continuity when moving along the environment axis of figure 3. The solution de-
veloped for EDF works for the Palm and the mobile phone, but not for the Psion.
In this case, there is a discontinuity when moving along the platform axis.

− Surface shapes: a convex surface denotes a comfortable continuous space (cf. Figure
3a). Conversely, concave curvatures may raise important design issues (cf. Figure
3b). Typically, ring shape surfaces indicate that the interior of the ring is not cov-
ered by the user interface. It expresses a technical discontinuity for contexts that are
contiguous in the ranking scheme. Is this inconsistency, a problem from the user's
perspective? A hole within a surface depicts the case where the user interface is
nearly plastic over both sets of contexts, but not quite. Is this "tiny" rupture in
context coverage expected by the target users?

Platform

Environment
Plasticity thresholds

(a)

(b)

(c)

: Contexts : Coverage of contexts

F i g . 3 . Measuring plasticity from the system's perspective. Greyed areas represent the
sets of contexts that a particular technical solution covers. Environments and platforms are
ranked against the level of constraints they impose on the user interface.

Intuitively, from a technical point of view, a large unique convex surface characterises
a "good" plastic user interface whereas a large number of small concave surfaces de-

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

notes a large number of technical discontinuities. Although size, shape, cardinality,
and topology of surfaces, are useful indicators for reasoning about the plasticity of a
particular technical solution, we need to consider a complementary perspective: that of
users. To this end, we suggest two indicators: context frequency and migration cost
between contexts.

− Context frequency expresses how often users will perform their tasks in a given
context. Clearly, if the largest surfaces correspond to the less frequent contexts
and/or if a multitude of small surfaces is related to frequent contexts, then designers
should revise their technical solution space: the solution offers too much potential
for interactional ruptures in the interactional process.

− Migration cost measures the physical, cognitive and conative efforts [6] users have
to pay when migrating between contexts, whether these contexts belong to the
same or different surfaces (cf. Figure 4). Although this metrics is difficult to grasp
precisely, the notion is important to consider even in a rough way as informal
questions. For example, do users need (or expect) to move between contexts that
belong to different surfaces? If so, discontinuity in system usage will be perceived.
Designers may revise the solution space or, if they stick to their solution for well-
motivated reasons, the observability of the technical boundaries should be the focus
of special attention in order to alleviate transitions costs.

As plasticity threshold characterises the system capacity of continuous adaptation to
multiple contexts, so migration cost threshold characterises the user's tolerance to
context switching. The analysis of the relationships between the technical and the
human thresholds may provide a useful additional perspective to the evaluation of
plastic user interfaces.

(j)(i)

Context 2

Context 1 Context 3

: Migration cost from Context i to Context j

F i g . 4 . Measuring plasticity from the human perspective. An arrow expresses the capac-
ity of migrating between two contexts. Its thickness denotes human cost.

Having considered plasticity from the usability perspective, we need now to describe
the process through which plastic adaptation may occur.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

3.3 Plasticity and the adaptation process

As any evolutive phenomenon, plastic adaptation is structured as a five step process:

− detection of the conditions for adaptation (here, variations in the context of use),
− identification of candidate user interfaces appropriate to the new context of use,
− selection of a user interface,
− transition from the current user interface to the newly selected solution,
− execution of the new user interface until next conditions for adaptation occur.

Each of the five steps involved in the plasticity process (detection, identification,
selection, transition, execution) is performed either by the system, or by the user, or
as a mixture of both. At the two extremes,

− The system is able to handle the five steps without human intervention. In this
case, the system is capable of adaptative plasticity.

− The user performs the five steps manually. The system supports adaptable plastic-
ity.

− Mixed plasticity covers a combination of both human and system intervention.

Let's now consider the five steps of the adaptation process from a technical perspec-
tive.

− System detection requires the capacity of sensing the physical environment as well
as the capacity of modelling the physical platforms it is supposed to support. Our
current implementation of the EDF heating control system includes a platform
model. Although environmental conditions define the ontology of the system,
these are not exploited yet at the user interface level. Conversely, the Hyperpalette
[1], which allows users to "scoop and spread" information between PDA's and a
computerised table, is able to detect conditions for compressing or expanding in-
formation layout, using an electromagnetic sensing tracker. On the other hand, the
HyperPalette does not handle any explicit description of the computational plat-
forms.

− System identification of candidate solutions may be either computed on the fly, or
selected from a pre-computed set of user interfaces, or from a predefined set of ad-
hoc user interfaces. As discussed in Section 6, the EDF heating control system
uses a pre-computed set of user interfaces. The Hyperpalette has available a prede-
fined set of two ad-hoc user interfaces dedicated to a single platform (i.e., a PC or a
PDA).

− System selection of a particular solution relies on a problem solving strategy. The
system may be assisted in this task by the user.

− System transition between states has been analysed since the early developments of
HCI. Norman's evaluation gap, Mackinlay's et al. use of graphical animation for
transferring cognitive load to the perceptual level [17], the notion of visual discon-
tinuity [10] etc., have all demonstrated the importance of transitions. Transition be-
tween the use of two user interfaces is therefore a crucial point that deserves spe-
cific research. The sources of discontinuities identified in Section 3 should provide
a sound starting point.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

− System execution of the newly selected user interface may be launched from scratch
or may preserve the system state. For example, the MacOS Location Manager sup-
ports switching to a different network protocol without interrupting the running
applications. (On the other hand, the detection of the new context of use, as well as
the selection step, are performed by the user). Preserving system state, which alle-
viates discontinuities, requires specific technical mechanisms.

Adaptation

performed by

Adaptative
Half-plasticity

Research on Resource

sensitive UI

Adaptative
Half-plasticity

Research on Context

sensitive UI

Adaptative

Full-plasticity

Mixed
Half-plasticity

Mixed
Half-plasticity

Mixed
Full-plasticity

Adaptable
Half-plasticity

Adaptable
Half-plasticity

Adaptable
Full-plasticity

Adaptation

to

the
System

the
Human

&System

the

Human

Platform Environment Platform&Environment

F i g . 5 . A classification space for plastic user interfaces. Lines indicate the authors of the
adaptation (system only, human only, both). Columns correspond to the coverage of the
adaptation (platform only, environment only, both). Mixed plasticity may in turn be ana-
lysed according to the steps the system covers in the adaptation process.

Whether it be adaptative, adaptable or mixed, plasticity covers adaptation to both
physical environments and platforms. In current main stream research on adaptation,
the focus is either on environmental changes, or on platforms. Context-sensitive
systems [18] address environmental conditions whereas resource-sensitive systems [11]
exemplified by the development of XML-based standards, address adaptation to compu-
tational devices. Although adaptative, these systems and mechanisms demonstrate
half-plasticity. The framework presented next is intended to cover all sorts of plastic-
ity: half-full, adaptative-adaptable-mixed (see figure 5 for a simplified classification
space).

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

4 A Reference Framework for Plasticity

Our framework is intended to serve as a reference instrument to help designers and
developers to structure the development process of plastic interactive systems. We
adopt a model-based approach [16] similar to [7]. Modelling techniques support sound
design methods (e.g., MAD[8], ADEPT[12,13], MUSE [14]) and pave the way to the
development of appropriate tools such as Trident [21] and Mastermind [19].

As shown in Figure 6, the framework:

− builds upon known models such as the domain concepts model and the tasks
model, but improves them to accommodate variations of contexts of use;

− explicitly introduces new models and heuristics that have been overlooked or ig-
nored so far to convey contexts of use: the platform, the interactors, the environ-
ment and the evolution models.

Task-oriented
specification

Running system
System in ConFor Context1

Concrete

Interface

Abstract

Interface

Concepts

Tasks

Platform

Environment

Interactors

Evolution

Context 1 Context 2

: Reification : Translation : ReferenceHuman Intervention

Concepts

Tasks

Platform

Environment

Interactors

Evolution

Task-oriented
specification

Running system
System in ConFor Context2

Concrete

Interface

Abstract

Interface

F i g . 6 . The reference development process for supporting plastic user interfaces. The
picture shows the process when applied to two distinct contexts: context1 and context2.
Grayed boxes denote initial models.

The Concepts model describes the concepts that the user manipulates in any context of
use. When considering plasticity issues, the domain model should cover all the con-
texts of use envisioned for the interactive system. By doing so, designers obtain a

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

global reusable reference model that can be specialised according to the sets of contexts
discussed in Section 3. A similar design rationale holds for task modelling.

The Platform Model and the Environment Model define the contexts of use intended
by the designers based on the reasoning developed in Section 3. The Evolution model
specifies the change of state within a context as well as the conditions for entering and
leaving a particular context. The Interactors Model describes "resource sensitive mul-
timodal widgets" available for producing the concrete interface. These models are
specified by the developer. They are said initial models in contrast to transient and
final models that are inferred by the developer and/or the system through the develop-
ment process. A transient model is an intermediate model (e.g., the abstract and con-
crete user interfaces), necessary for the production of the final executable user interface.
All of the above models are referenced along the development process from the task
specification to the running interactive system. The process is a combination of verti-
cal reification and horizontal translation. Vertical reification covers the derivation
process, from top level abstract models to run time implementation. Horizontal deri-
vations, such as those performed between HTML and WML content descriptions,
correspond to translations between models at the same level of reification. Reification
and translation may be performed automatically from specifications, or manually by
human experts. Because automatic generation of user interfaces has not found wide
acceptance in the past [15], our framework makes possible manual reifications and
translations. Such operations are manual when the tools at hand cannot preserve the
usability criteria discussed in Section 3.

Automaticity, however, conveys interesting properties that may not be maintained
when introducing manual operations within the development process: Let Reification

ctxt (M) be the reification of model M in context ctxt, and Translation ctxt, ctxt'(M) be the
translation of M from the source context ctxt to the target context ctxt', then:

− Identity results from the combination of a translation with its inverse:

∀ ctxt, ctxt' Translation ctxt, ctxt' o Translation ctxt', ctxt = I

− Identity results from the combination of a reification and its inverse:

∀ ctxt Reification ctxt o Reification ctxt
-1 = I

− Reification and translation are commutative:

∀ ctxt, ctxt' Translation ctxt, ctxt'o Reification ctxt' = Reification ctxt o Translation ctxt, ctxt'

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

: Reification : Translation : Reference

(a) : Independant reifications (b) : Reification before a final translation

(d) : Interleaving of reifications/translations(c) : Initial translation before reification

F i g . 7 . Instantiations of the reference framework.

As shown in Figure 7, our reference framework can be instantiated in many ways:

− In 7a), two running user interfaces are reified in parallel where the initial models are
specified for each context of use. This configuration, which depicts current practice,
forces to check and maintain consistency manually between the multiple versions.

− 7b) corresponds to the ideal situation: reification is used until the very last step.
Consistency maintenance is here minimal. This approach has been used for the
Heating Control System shown in Figure 2 for Java-enabled target platforms. All
of the interfaces shown in Figure 2 have been derived automatically using
ARTStudio presented in Section 6.

− In 7c), the task-oriented specification is translated to fit another context. From
there, reifications are performed in parallel. This approach has been adopted for the
Heating Control System for WAP mobile phones. Sub trees that correspond to in-
frequent tasks have been pruned from the original task tree developed for the Java-
enabled platforms. Because ARTStudio does not support Web-based techniques yet,
the reification steps have been done manually by a human expert.

− 7d) shows a mix of interleaving between reification and translation.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

5 ARTStudio

ARTStudio (Adaptation by Reification and Translation) is a tool designed to support
the reference framework for plasticity. We first discuss its actual implementation in
relation to the framework then describe how a designer should proceed to produce a
plastic user interface such as the EDF heating control system.

5.1 ARTStudio and the Plasticity Reference Framework

As shown in Figure 8, the current implementation of ARTStudio addresses the reifica-
tion process only, and does not include the environment and the evolution models.
According to the reference framework, the concepts and the task models serve the task-
oriented specification which, in turn, leads to the automatic generation of the abstract
user interface. Then, the platform model and the interactors model come into play for
the automatic generation of the concrete user interface. Each of the transient models
(i.e., Task-oriented specification, Abstract and Concrete User Interfaces) may be tuned
by the designer to override the "defaults" options used by ARTStudio.

Technically, ARTStudio is implemented in Java and uses the CLIPS rule-based
language for generating the concrete user interface. Initial models as well as transient
models are saved as XML files. So far, final executable user interfaces are expressed in
Java. As a result, the current version of ARTStudio does not support XML-based
executables.

Concepts

Tasks

 Platform

Interactors

Task-Oriented
Specification

Platform-
Specific

Application

Concrete User

Interface

Abstract User
Interface

Evolution

Environment

F i g . 8 . The actual functional coverage of ARTStudio in relation to the plasticity reference
framework: translation as well as the environment and evolution models are not currently
supported. The "human" symbol denotes the capacity for the designer to tune transient
models.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

5.2 ARTStudio and the development of a plastic user interface

We first present an overview of the use of ARTStudio then discuss the models it
supports.

Overview. Within ARTStudio, the development of a plastic user interface forms a
project (see Fig. 9). In the current implementation, a project includes the task and the
concepts model, the context model and the abstract, the concrete and the executable
user interfaces.

By clicking on the "Contexte" thumbnail of Figure 9, the developer has access to
the platform and interactors models. The "règles" thumbnail gives access to the gen-
eration rules used by ARTStudio during the reification process. These rules, which
address presentation issues, can be adapted by the designer to the case at hand. In the
current implementation, the rules are not editable. Let's now discuss the process and
the associated models for producing a plastic user interface.

F i g . 9 . In ARTStudio, a plastic user interface is developed within a project. The frame of
the left end-side gives access to the sets of models. The picture shows the task model for a
simplified version of the EDF Heating Control System.

The Task Model. An ARTStudio task model is a ConcurrTaskTree [3] structure
where:

− The leaves correspond to interaction tasks such as reading, selecting, and specify-
ing. As shown in Figure 9, tasks Bedroom, Bathroom, Living room, and Rythm,
respectively correspond to the specification of the level of comfort for the bed
room, the bath room, the living room, and the rythm of living. The rythm of liv-
ing expresses the default setting of room temperature based on periods of presence
at home.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

− The nodes, denoted by a "cloud" symbol, are abstract tasks. They structure the
interaction space into sets of logically connected tasks. As such, abstract tasks offer
a sound basis for the generation of the abstract user interface. In Figure 9, which
shows a simplified version of the EDF Heating Control System, Prog groups to-
gether the tasks that permit the user to override the default temperature of the
rooms. The task rythm, which has a specific status in the tasks space, is separated
from the "overriding" tasks.

− The vertices express temporal and logical relationships between tasks. For exam-
ple, in Figure 9, all of the tasks can be performed in an interleaved way (Cf. sym-
bol ///).

The ARTStudio task editor allows the designer to add, cut and paste tasks by direct
manipulation. As shown in Figure 10, additional parameters are specified through
form filling. These include:

− Specifying the name and the type of a task. For interaction tasks, the designer has
to choose among a predefined set of "universal" interaction tasks such as "selec-
tion", "specification", "activation". This set may be extended to fit the work do-
main (e.g., "Switching to out of frost").

− Specifying a prologue and an epilogue, that is, providing function names whose
execution will be launched before and after the execution of the task. At run time,
these functions serve as gateways between the Dialogue Controller and the Func-
tional Core Adaptor [10] of the interactive system. For example, for the task "set-
ting the temperature of the bedroom", a prologue function is used to get the current
value of the room temperature from the functional core. An epilogue function is
specified to notify the functional core of the temperature change.

− Referencing the concepts involved in the task and ranking them according to their
level of importance in the task. This ordering is useful for the generation of the ab-
stract and concrete user interfaces: typically, first class objects should be observable
whereas second class objects may be browsable if observability cannot be guaran-
teed due to the lack of physical resources.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

F i g . 1 0 . Task specification through form filling.

The Concepts Model. Concepts are modeled as UML objects using form fill in.
In addition to the standard UML specification, a concept description includes the
specification by extension of its domain of values. For example, the value of the
attribute name of type string of the room concept may be one among Living room,
Bed room, etc. The type and the domain of values of a concept are useful information
for identifying the candidate interactors involved in the concrete user interface. In our
case of interest, the room concept may be represented as a set of strings (as in Figure
1a), as a thumbnail (as in Figure 1b), or as dedicated icons.

The Abstract User Interface. The abstract user interface is modeled as a
structured set of workspaces isomorphic to the task model: there is a one-to-one
correspondence between a workspace and a task. In addition, a workspace that
corresponds to an abstract task includes the workspaces that correspond to the subtasks
of the abstract task: it is a compound workspace. Conversely, a leaf workspace is
elementary. For example, Figure 11 shows three elementary workspaces (i.e., the
Bedroom, the Bathroom and the Living Room) encapsulated in a common compound
workspace. This parent workspace results from the Prog task of the task model. In
turn, this workspace as well as the Rythm elementary workspace, are parts of the top
level workspace.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

F i g . 1 1 . The Abstract User Interface generated by ARTStudio from the Task Model of
Figure 9. Thick line rectangles represent compound workspaces whereas thin line rectan-
gles correspond to elementary workspaces.

By direct manipulation, the designer can reconfigure the default arrangements shown in
Figure 11. For example, given the task model shown on the top of figure 12, the
designer may decide to group the Rythm workspace with the Room workspaces (Fig-
ure 12 a) or, at the other extreme, suppress the intermediate structuring compound
workspace (Figure 12 b).

(a) (b)

Bedroom

|||
Rhythm

Bathroom Living room
||| |||

F i g . 1 2 . ARTStudio allows the designer to reconfigure the relationships between work-
spaces.

3 elementary workspaces

1 compound workspace

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

ARTStudio completes the workspace structure with a navigation scheme based on the
logical and temporal relationships between tasks. The navigation scheme expresses the
user's ability to migrate between workspaces at run time.

The Platform Model. The platform model is a UML description that captures the
following characteristics:

− The size and the depth of the screen,
− The programming language supported by the platform (e.g., Java).

In its present form, the platform model is very primitive but is sufficient for demon-
strating the key concepts of our reference framework.

The Interactor Model. In [20] interactor modelling is discussed from a theoretical
perspective in terms of representational capacity, interactional capacity and usage cost.
In ARTStudio, our abstract interactor model boils down to the following simplified
technical solution:

− Representational capacity: an interactor can either serve as a mechanism for switch-
ing between workspaces (e.g., a button, a thumbnail), or be used to represent do-
main concepts (e.g., a multi-valued scale as in Figure 1). In the latter case, the in-
teractor model includes the specification of the data type it is able to render.

− Interactional capacity: the tasks that the interactor is able to support (e.g., specifi-
cation, selection, navigation).

− The usage cost, which measures the system resources as well as the human re-
sources the interactor requires, is expressed as the "x,y" footprint of the interactor
on a display screen and its proactivity or reactivity (i.e., whether it avoids users to
make mistakes a priori or a posteriori [4]).

The Concrete User Interface. As shown in Figure 8, the generation of the
Concrete User Interface uses the Abstract User Interface, the platform and the
interactors models, as well as heuristics. It consists of a set of mapping functions:

− between workspaces and display surfaces such as windows and canvases,
− between concepts and interactors,
− between the navigation scheme and navigation interactors.

The root workspace of the Abstract User Interface is mapped as a window. Any other
workspace is mapped either as a window or as a canvas depending on the navigation
interactor used for entering this workspace. Typically, a button navigation interactor
opens a new window whereas a thumbnail leads to a new canvas.

Mapping concepts to interactors is based on a constraint resolution system. For
each of the concepts, ARTStudio matches the type and the domain of valuesof the
concepts with the interactors representational capacity, the interactors interactional
capacity and their usage cost.

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

Figure 13 shows the Concrete User Interfaces that correspond to the running user
interfaces shown in Figure 1. Fig. 13a) targets large screens (e.g., Mac and PC work-
stations) whereas Fig. 13b) targets small screens (e.g., PDAs).

F i g . 1 3 . In a), the concrete user interface generated for the system when running on the
large screen display of Figure 1a. In b), the concrete user interface that corresponds to
Figure 1b for the Palm Pilot.

(a)

(b)

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

As for the Abstract User Interface, the Concrete User Interface generated by ARTStu-
dio is editable by the designer. The layout arrangement of the interactors can be modi-
fied by direct manipulation. In addition, the designer can override the default naviga-
tion scheme.

6 Conclusion

Although the prospective development of interactive systems may be fun and valuable
in the short run, we consider that the principles and theories developed for the desktop
computer should not be put aside. Instead, our reply to the technological push is to
use current knowledge as a sound basis, question current results, improve them, and
invent new principles if necessary. This is the approach we have adopted for support-
ing plasticity by considering model-based techniques from the start. These techniques
have been revised and extended to comply with a structuring reference framework.
ARTStudio, a tool under development, provides a concrete, although incomplete,
application of the framework. Plasticity is a complex problem. This article makes
explicit our first steps towards a systematic high quality development of plastic user
interfaces.

Acknowledment

This work is being supported by EDF, France. We are very grateful to Nicholas Gra-
ham for the intensive discussions held in Grenoble about the notion of plasticity.

References

1. Ayatsuka, Y., Matsushita, N. Rekimoto, J.: Hyperpalette: a hybrid Computing Envi-
ronment for Small Computing Devices. In: CHI2000 Extended Abstracts, ACM Publ.
(2000) 53–53

2. Beyer, H., Holtzblatt K.: Contextual Design, Morgan Kaufmann Publ. (1998)
3. Breedvelt-Schouten, I.M., Paterno, F.D., Severijns, C.A.: Reusable structure in task

models. In: Proceedings of DSVIS'97, Design, Specification and Verification of Interac-
tive System, Horrison, M.D., Torres, J.C. (Eds) (1997), 225–240

4. Calvary, G.: Proactivité et réactivité: de l’Assignation à la Complémentarité en Concep-
tion et Evaluation d’Interfaces Homme-Machine, Phd of the University Joseph-Fourier-
Grenoble I, Speciality Computer Science, (1998)

5. Cockton, G., Clarke S., Gray, P., Johnson, C.: Literate Development: Weaving Human
Context into Design Specifications. In: Critical Issues in User Interface Engineering, P.
Palanque & D. Benyon (Eds), Springer-Verlag: London Publ., ISBN 3-540-19964-0,
(1995)

6. Dowell, J., Long, J.: Toward a conception for an engineering discipline of human fac-
tors, Ergonomics, Vol. 32 (11), (1989), 1513–1535

Présenté à Engineering HCI, Toronto, May 2001, Springer Verlag Publ., L. Nigay Eds.

7. Eisenstein J., Vanderdonckt, J. Puerta, A.: Adapting to Mobile Contexts with User-
Interfaec Modeling. In: Proc. of 3rd IEEE Workshop on Mobile Computing Systems and
Applications WMCSA 2000 (Monterey, December 7-8, 2000), IEEE Press, Los Alami-
tos, (2000)

8. Gamboa,-Rodriguez, F., Scapin, D.: Editing MAD* Task Descriptions for Specifying
User Interfaces at both Semantic and Presentation Levels. In: DSV-IS'97, Springer
Computer Science, (1997), 193–208

9. Graham, T.C. N., Watts, L., Calvary, G., Coutaz, J., Dubois, E., Nigay, L.: A Dimension
Space for the Design of Interactive Systems within their Physical Environments,
DIS2000, ACM Publ. New York, (2000), 406–416

10. Gram, C., Cockton, G. Ed. : Design Principles for Interactive Software. Chapman &
Hall, (1996)

11. HUC 2K, First workshop on Resource Sensitive Mobile Human-Computer Interaction,
(2000)

12. Johnson, P. Wilson, S., Markopoulos, P., Pycock, Y.: ADEPT-Advanced Design Envi-
ronment for Prototyping with Task Models. In: InterCHI’93 proceedings, (1993), 66

13. Johnson, P. Johnson, H. Wilson, S.: Rapid Prototyping of User Intefaces Driven by
Task Models, Scenario-based design: envisioning work and technology in system de-
velopment, J. Carroll (ed.), John Wiley&Sons, (1995)

14. Lim, K. Y., Long, J.: The MUSE Method for Usability Engineering, Cambridge Univ.
Press, (1994)

15. Myers, B., Hudson, S., Pausch, R.: Past, Present, Future of User Interface Tools. Trans-
actions on Computer-Human Interaction, ACM, 7(1), March (2000), 3–28

16. Paternò, F.: Model-based Design and Evaluation of Interactive Applications, Springer
Verlag, (1999)

17. Robertson, G., Mackinlay, J., Card, S.: Cone Trees: Animated 3D Visualizations of
Hierarchical Information. In: Proc. CHI90, ACM Publ., (1991), 189–194

18. Salber, D., Dey, A. K., Abowd, G. D.: The Context Toolkit: Aiding the Development of
Context-Enabled Applications. In: the Proceedings of the 1999 Conference on Human
Factors in Computing Systems (CHI '99), Pittsburgh, PA, May 15–20, (1999), 434-441

19. Szekely P.: Retrospective and Challenges for Model-Based Interface Development,
Computer-Aided Design of User Interfaces. In: Proceedings of CADUI'96, J. Vander-
donckt (eds), Presses Universitaires de Namur, (1996)

20. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research
Agenda. In: Proc. Interact99, Edinburgh, A. Sasse & C. Johnson Eds, IFIP IOS Press
Publ., (1999), 110–117

21. Vanderdonckt, J.: Knowledge-Based Systems for Automated User Interface Generation;
The TRIDENT Experience. RP-95-010, Fac. Univ. de N-D de la Paix, Inst. d'Infor-
matique, Namur, B, (1995)

