
Multiple Visual Representation of Temporal Data

Chaouki Daassi1+2, Marie-Christine Fauvet2+3, and Laurence Nigay1

1Laboratoire CLIPS-IMAG BP 53-38041, Grenoble cedex 9, France
2Laboratoire LSR-IMAG BP 53-38041, Grenoble cedex 9, Grenoble, France

3The University of New South Wales, Sydney NSW 2052, Australia
[Chaouki.Daassi, Marie-Christine.Fauvet, Laurence.Nigay]@imag.fr

Abstract. Temporal data are abundantly present in many applications such
as banking, financial, clinical, geographical applications and so on. For a
long time, tools for data analysis have been only based on statistics. A
more recent and complementary research avenue involves visual data
analysis, which is dedicated to the extraction of valuable knowledge by ex-
ploiting human visual perception capabilities. Examples of visual data
analysis tasks, while manipulating temporal data, include correlating data
evolution and identifying patterns. In this paper we present an interactive
visualisation tool named INVEST, dedicated to visual analysis of temporal
data. INVEST includes different visualisation techniques in order to ad-
dress the variety of users' tasks.
Keywords: Visualisation Techniques, Temporal Data, Data Analysis.

1 Introduction

Data can be analyzed using statistical tools: many algorithms are developed to auto-
matically extract valuable information from a set of data. A promising and comple-
mentary research avenue involves visual data analysis, which relies on interactive
visualisation techniques. Adopting this approach, many studies focus on the design
of visualisation techniques for data analysis [5, 15], but few of them are dedicated to
temporal data [20, 8]. Our work focuses on visualisation techniques for temporal data
analysis.
A temporal data denotes the evolution of an object characteristic over a period of
time. The value of a temporal data is called a history. For the sake of simplicity, we
define a history as a collection of instant time-stamped or interval time-stamped data
items, although there are many other ways of representing a history [11, 9]. Fig. 1,
shows a history of numeric values, where each time-stamp denotes a month. The set
of timestamps is the temporal domain of the observed data.
In this paper we present the framework called INVEST (INteractive Visualisation and
Explorative System of Temporal data) that several complementary visualisation tech-
niques that have been designed with regard to user's tasks while manipulating tempo-
ral data. The paper is organized as follows: in section 2, we present two novel visu-
alisation techniques among five available in the INVEST. Section 3 presents the
results of an experimental evaluation of the INVEST that confirm the offered. Finally,

mailto:]@imag

section 4 describes the INVEST architecture and implementation while section 5
concludes..

2 Visualisation Techniques

Visualisation techniques could be classified into two categories depending on whether
they rely on item-based techniques or pixel-based ones. Within the first category
(item-based technique), data values are mapped onto graphical objects such as poly-
gons, circles, etc., drawn in 2D [12, 14] or 3D data spaces [1, 5]. Data values are
easily distinguishable from each other, so that the users can easily compare two ele-
ments. However, this representation mode reaches its limits when displaying a huge
amount of data. Consequently, these techniques must either be augmented with slid-
ers, or the data space must be deformed [16, 18]. The second category is made up of
the pixel-oriented techniques [14], in which each data value is mapped to a pixel
colored with some intensity: a huge amount of data can therefore be represented in a
limited screen area. The disadvantage of such techniques is that the users cannot com-
pare two elements, but rather have a global representation of the data space.
Our research focuses on the design of item-based and pixel-based visualisation tech-
niques in a 2D space. In the following two paragraphs, we present two INVEST visu-
alisation techniques, namely the concentric circles and the superposed histograms.

On the other hand, we have considered the design of visualisation techniques with
regard to users’ tasks. As pointed out by [3, 19, 7], the utility of any visualisation
technique is a function of the task that the technique is being used to support. In the
context of task-based design, we therefore empirically established a list of user 's
tasks that manipulate temporal data. These tasks concern data correlation, pattern
identification, identification of concentration point of particular values, etc. To do so,
we conducted interviews with geographers about the tasks they perform during a data
analysis process and about the interpretation they make based on graphical representa-
tions.

2.2 Concentric Circles Technique (CCT)

The Concentric Circles Technique is dedicated to the visualisation of one or two
quantitative histories. As shown in Fig. 2, its interface is made of a set of concentric
circles, each one denoting the evolution of the visualised history(ies) during a fixed-
length period of time. Values are denoted as rectangles adjacent to the circles. The
height of each rectangle and its color’s intensity are proportional to the value that it
denotes. Circles are arranged so as to reflect the time order associated with the data.

Fig. 2. The Concentric Circles Technique (CCT) .

We describe below the user's tasks addressed by the CCT. We compare our technique
with the spiral representation of periodic data proposed in [4] (see Fig. 3).

Fig. 3. Visualisation technique for serial periodic data [4].

The user's tasks addressed by the CCT are described below:
Navigate within a large data space. As shown in Fig. 3, in the spiral representa-
tion, the time axis is continuous and has a fixed origin. The size of the spiral is con-
sequently proportional to the number of periods. It is clear that with a large number
of periods (e.g. a hundred), the spiral representation cannot be applied, due to limita-
tion of screen space. We face the same problem in the CCT, since the number of
circles corresponds to the number of periods. To address this issue, the CCT’s inter-
face provides a time-slider, which allows the users to navigate through time. The
displayed circles correspond to the periods falling within the time interval defined by
the time-slider.
Correlate the evolution of two histories. The CCT supports the visualisation of two
quantitative histories at a time. One of the histories is represented as explained above,
while the other is represented with rectangles of a different color and oriented in an
opposite direction. For instance, in Fig. 2, the rectangles denoting the values of one

of the histories are blue-colored (dark gray in the gray scaled version) and oriented
away from the center, and the values of the second history are red-colored (light gray)
and oriented towards the center.
Compare periods. To facilitate the comparison of two elements positioned far from
each other on the screen, the CCT interface provides two visualisation areas. The first
one, located on the left in Fig. 2 and named the reference area, contains circles or-
dered in time. The second one located on the right and named the working area,
enables the user to place selected circles in an arbitrary order. Putting circles close to
each other facilitates the comparison of data values belonging to different periods. The
width of a rectangle is proportional to the number of rectangles per period and to the
radius of the circle. Only the height of a rectangle is proportional to the value that the
rectangle denotes. By placing two circles next to each other (radii are similar), rectan-
gles have nearly the same width, and comparison of their heights can be performed
more easily.
Identify general trends. With the spiral representation users must scour the data
space along the spiral to observe data evolution. As opposed to the spiral representa-
tion, with the CCT, the user can directly observe the evolution of the data during a
given period (e.g. a year or a month) as well as compare the evolution of the data
from one period to the next one. For instance, it can be seen in Fig. 3 that the values
reached in January tend to be higher than the rest of the year, and that every year, the
values tend to be low during June and December.

2.2 Superposed Histograms Technique (SHT)

Fig. 4 shows the superposed histograms technique (SHT) that offers a different ap-
proach for visual analysis of serial temporal data.

Month

Value Slider

Year

Fig. 4. Superposed Histograms Technique (SHT).

In SHT, data values have been mapped to 2.5 D objects (in the form of cubes). Time
is represented along two dimensions. For this reason, the SHT includes two time-
sliders, one vertical and one horizontal. Each data value is the result of a function f
with two parameters that are two regular time-units. One time-unit U1 is said to be
regular with regard to another time-unit U2, only if each value of U1 is composed of

a fixed number of U2. A concrete example of regular units is year and month. Each
year contains twelve months. In the example of Fig. 4, years and months are mapped
onto two axes: years along the vertical axis and months along the horizontal axis.
Each data value corresponds to f (year, month). The SHT addresses three user's tasks:
Navigate in time. The SHT provides two tools to navigate in time. Users can navi-
gate using the vertical time-slider or the horizontal one.
Study data evolution according to one reference value. The value-slider, repre-
sented on the left of Fig. 4, is used to fix a threshold of data values: Only values
greater than this threshold are visualised on the screen. The length of a given graphi-
cal object (cube) is the ratio of the corresponding data value minus the threshold, and
the maximum value minus the threshold.
Compare periods. Periods are represented in the form of superposed histograms.
Such a representation is well suited for the comparison of periods as explained in [2]:
if the user's task is to compare periods, it is recommended to superpose them or rep-
resent them in a circular form.

3. Usability Assessment

In this section we describe the protocol of the evaluation we have carried out. The
goal of the experiment was to evaluate the usability of the INVEST with regard to the
user's tasks. The usability of a given visualisation technique Vi with regard to a given
user's task Tj is defined as the value of the function F(Vi, Tj), which is in the range of
0 and 1. The experimental evaluation lets us empirically identify these values F(Vi,
Tj). To do so we asked six participants (Ph.D. and master students in Geography) to
use INVEST while manipulating their real data: a pollution measurement of NO and
NO2. All participants were familiar with temporal data manipulation and graphic
interpretation. Before starting an evaluation session, each participant had a document
that describes how to use the techniques and for which tasks the technique has been
designed. While manipulating the data, the participant could ask for help of the ex-
perimenter if s/he was facing a problem. At the end of the session, the participant has
been asked to fill up one form per technique.
First, the participant specified the results s/he has obtained for each task. For exam-
ple, for the task “trend observation”, the participant has been asked to describe how
the data evolve over time. Second, the participant has been asked to underline advan-
tages and disadvantages of each technique with regard to a given task. In addition,
s/he had to select a value between 0 and 20 to mark the usability of the technique
according to a given task. The average of these values correspond to the values F(Vi,
Tj). Fig. 5 reports the results of the experiment according to five user's tasks and the
two visualisation techniques CCT (light-grey) and SHT (dark-grey). Finally, the
participant has been asked to propose other tasks it was easy to achieve using
INVEST. By doing so, we could evaluate the completeness of our user's tasks list.
For each participant, the session has lasted three hours and thirty minutes in average.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Identify trendsCorrelate data Compare
periods

Navigate Dispose of a
referential

User tasks

Us
ab
ilit
y
fa
ct
or
s

CCT
SHT

Fig. 5. Usability evaluation for bo th techniques (CCT and SHT).

The experimental evaluation leads to two conclusions:
First, we have empirically identified the F(Vi, Tj) values. These values are embedded
in the code of each technique. Indeed, in INVEST, each visualisation technique main-
tains knowledge about its usability factors according to each user's task. In the next
section, we explain how we use these values at the implementation level.
Second, we experimentally prove that only one visualisation technique cannot fit all
user's tasks. As shown in Fig. 5, for a given user's task Tj, each visualisation tech-
nique (Vi) does not have the same usability factor F(Vi, Tj). For example, the SHT
technique is not useful (usability factor equal to zero) when the user's task is to corre-
late two data evolutions, while it is very effective when the task is to observe data
evolution according to a given referential. As a conclusion, visual data analysis sys-
tems should maintain a set of complementary visualisation techniques with regard to
user's tasks. In the next section, we explain how we implement the multiple visuali-
sation techniques within the software architecture model PAC-Amodeus.

4. Software architecture of the INVEST system

Software designers of interactive systems usually distinguish two parts in a system:
the interface and the functional core. The former defines the perceptual part of the
system that is manipulated by the user. The latter implements the internal compo-
nents that are dependent on the application domain. We clearly establish this distinc-
tion within the code of INVEST by applying the software architecture model PAC-
Amodeus [17]. It is an hybrid multi-agent software architecture model that represents
the organization of the components of interactive software. It is a blend of the five
software components advocated by the Arch model [21] and the PAC refining process
expressed in terms of agents [6]. Fig. 6 shows the five components of the PAC-
Amodeus model and the Dialogue Controller refined in terms of PAC agents.
The Functional Core (FC) implements domain specific concepts in a presentation
independent way. The FC hosts the temporal data. The Functional Core Adapter
(FCA) serves as a mediator between the Dialogue Controller (DC) and the domain-
specific concepts implemented in the FC. It is designed to absorb the effects of
changes in its direct neighbors. The FCA operates as a translator between the repre-
sentation of the temporal data in the FC and the data structure used in the DC. Data
exchanged with the DC are conceptual objects independent of the representation used

in the FC. This software design allows us to run INVEST using a temporal database
or a set of temporal data files. Moreover, by only modifying the FCA, a relational
database management system (new FC) can replace an object database management
system (old FC).
At the other end of the spectrum, the Presentation Techniques Component (PTC) acts
as a mediator between the DC and the Low Level Interaction Component (LLIC). The
LLIC corresponds to the underlying platform, both hardware and software. In
INVEST, this component corresponds to the AWT/Swing toolbox, INVEST being
developed using JAVA. Because the PTC is platform independent, it is generally
viewed as a logical LLIC. Presentation objects are translated in terms of interaction
objects by the PTC. The distinction between presentation objects and interaction
objects is subtle. A presentation object may correspond to an abstract interaction
object or may correspond to a new interaction technique made of several interaction
objects defined in the LLIC. Thus, the PTC defines a layer for portability, making
the DC independent of the LLIC, as well as a layer for extending the LLIC services.
For instance, each visualisation technique or part of it is defined by a JAVA bean, an
extension of the toolbox. Such new interaction techniques belong to the PTC.

Functional Core Adapter (FCA)

FC: Database or text files

PTC: Java Beans

LLIC: Swing /AWT

Query Query result

p

User Query

Query result
A Query

p A Root

pA Cement

 PA PA
V1 Vn

Fig. 6. INVEST architecture applying the PAC-Amodeus model.

The Dialogue Controller (DC) is the keystone of the model. It has the responsibility
for task-level sequencing. The DC is decomposed into a set of cooperative PAC
agents. The refinement of the DC in terms of PAC agents has multiple advantages
including explicit support for concurrency (multithread dialogue, one dialogue per
visualisation technique) and representation multiplicity (one representation per visu-
alisation technique). A PAC agent is composed of three facets:
the Presentation implements the perceivable behavior of the agent. Within PAC-
Amodeus, this facet is in direct contact with the Presentation Techniques Component
(PTC); the Abstraction facet defines the competence of the agent. Within PAC-
Amodeus, it is in direct contact with the Functional Core Adapter (FCA); the Control
facet maintains the link between its two surrounding facets (i.e., Presentation and
Abstraction) and the relationships with other agents.

Concretely, as shown in Fig. 6, the Dialogue Controller of INVEST is organized as a
three-level hierarchy of PAC agents. One agent manages the query: its Abstraction
facet communicates with the FCA to submit the query to the Temporal Database
Management System. Once the query is executed, the FCA receives the data, trans-

lates them into a given data structure and submits them to the Abstraction of the
Cement Agent. Each visualisation technique (Vi) is modeled as a PAC agent. The
Presentation facet of a Vi agent relies on the corresponding JAVA bean in the PTC.
Finally in order to establish communication between the Query agent and the Cement
agent we add a Root agent. Within the hierarchy, the Cement Agent plays two roles:
First, it selects a subset of visualisation techniques that matches user's tasks. Let N =
{N1, N2, .. , Nk} be the specified user's tasks. A given visualisation technique Vi is
selected if (∑ F(Vi, Nj) / card(N)) >= SelectivityFactor, where Nj ∈ N, j ∈ {1…k}
and SelectivityFactor ∈ [0-1]. Both user's tasks and the SelectivityFactor are specified
by the user, along with the query or the set of data.
Second, it maintains the visual consistency between the current selected visualisation
techniques. According to the software principle which stresses “mutual ignorance” to
enhance reusability, agents which implement visualisation techniques should not
know each other. Any action with a visual side effect on a view is reported to the
cement agent which broadcasts the update to the other siblings [17].

5. Conclusion and further work

The goal of the work presented here has been to gain understanding of the design of
visualisation techniques for temporal data. We have shown that different visualisation
techniques are necessary in order to address the variety of users' tasks. Adopting this
approach, we have presented INVEST, a multiple visualisation techniques platform to
visually analyze temporal data. Two INVEST visualisation techniques among five
supported by INVEST are presented and their experimental evaluation underlines the
fact that the two techniques are complementary because they do not address the same
user's tasks. We finally explained how the multiple visualisation techniques are im-
plemented by applying our PAC-Amodeus architecture model. The software design
guarantees the portability of INVEST with regard to the Functional Core component.
We are planning to extend INVEST so that it can communicate with several Func-
tional Cores including text files, XML files, and object database management system.
Finally we also plan to carry out further usability experiments with more participants
(colleagues of Geography Laboratory) in order to assess the usability of the visualisa-
tion techniques with regard to the user's tasks.

References

1. http://www.cs.auc.dk/3DVDM.
2. Bertin J., Graphics and Graphic Information Processing, Walter de Gruyter & Co,
Berlin, 1981.
3. Casner S.. A task-Analytic Approach to the Automated Design of Graphic Presen-
tations. ACM Transactions on Graphics, vol. 10, N° 2, April 1991, Pages 111-151.
4. Carlis J.V. and Konston J.A. Interactive Visualisation of Serial Periodic Data. In
Proc. of the ACM Conference on User Interface Software and Technologie UIST´98,
San Francisco, Ca, 1998.
5. Cook D., Virtual Reality: Real Ponderings,
http://www.public.iastate.edu/~di5/Chance/paper.ps.gz.

http://www.cs.auc.dk/3DVDM
http://www.public.iastate.edu/~di5/Chance/paper.ps.gz

6. Coutaz J., PAC-ing the Architecture of Your User Interface, DSV-IS´97, 4th Euro-
graphics Workshop on Design, Specification and Verification of Interactive Systems,
Springer Verlag Publ., P: 15-32.
7. Chuah Mei C., Roth Steven F., Mattis J. and Kolojejchick J. SDM: Selective
Dynamic Manipulation of Visualisations. In proceedings of UIST’95 Conference,
Pittsburgh PA USA, Pages 61-70.
8. Daassi C., Dumas M., Fauvet M-C, Nigay L. and Scholl P-C. Visual Exploration
of Temporal Object Databases, In proc. of BDA00 Conference, 24-27 October 2000,
Blois, France, P: 159-178.
9. Dumas M, Tempos: une plate-forme pour le développement d´application tem-
porelles au dessus de SGBD à objets. Thèse de Doctorat de l´Université Joseph-
Fourier, Grenoble, France, 2000.
10. Etzion E., Jajodia S. and Sripada S. M. (Ed.). Temporal Databases: Research and
Practice. Springer Verlag Pub. LNCS 1399, 1998.
11. Fauvet M-C. Dumas M., and Scholl P-C. A representation independent temporal
extension of ODMG´s Object Query Language. In proc. of BDA99 Conference, Bor-
deaux, France, October1999.
12. Fredrikson A., North C., Plaisant C, and Shneiderman B.: Temporal, Geographi-
cal, and Categorial Aggregations Viewed through Coordinated Displays: A Case
Study with Highway Incident Data. Workshop on New Paradigms in Information
Visualisation and Manipulation 1999: 26-34.
13. Gram C. and Cockton G. Design Principles for Interactive Software. St Ed-
mundsbury Press, 1996.
14. Keim D. Pixel-oriented Database Visualisation, SIGMOD Record, Special Issue
on Information Visualisation, December. 1996.
15. Keim D. Visual Data Mining, Conf. On Very Large Databases (VLDB´97), Ath-
ens, Greece, 1997.
16. Mackinlay J.D., Robertson G., and Card S.K. The Perspective wall: Detail and
Context smoothly integrated, Human factors in computing systems conference pro-
ceedings on Reaching through technology, 1991, Pages 173 – 176.
17. Nigay, L. and Coutaz, J. Software Architecture Modelling: Bridging Two Worlds
Using Ergonomics and Software Properties, pp 49-73 in Formal Methods in Human-
Computer Interaction, Palanque and Paterno (eds). Springer-Verlag, Berlin, 1997.
18. Nigay L. and Vernier F. Design Method of Interaction Techniques for Large In-
formation Spaces, AVI´98, May 24-27, 1998, p: 37-46.
19. Roth Steven F., Kolojejchick J., Mattis J. and Goldstein J. Interactive Graphic
Design Using Automatic Presentation Knowledge. In Proc. of CHI’94 conference,
Boston USA, Pages 112-118.
20. Shahar Y. and Cheng C. Intelligent Visualisation and Exploration of Time Ori-
ented Clinical Data. Technical Report TR SMI-98-0732, Stanford University, 1998.
21. The UIMS Workshop Tool Developers : A Metamodel for the Runtime Architec-
ture of an Interactive System, SIGCHI Bulletin, 1992.

