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Abstract .  In this paper we propose an ontology and a software architecture
for observing and modeling context and situation. We are especially con-
cerned with the perceptual components for context awareness. We propose a
model in which a user’s context is described by a set of roles and relations.
Different configurations of roles and relations correspond to situations
within the context. We define an ontology for context awareness from both
a bottom up system’s perspective and a top-down users’ perspective. As we
define each element, we describe the corresponding components of a proc-
ess-based software architecture. Using these components, a context is trans-
lated into a federation of observational processes. This model leads to an ar-
chitecture in which reflexive elements are dynamically composed to form
federations of processes for observing and predicting the situations that
make up a context.

1   Introduction

Available technologies increasingly enable computing and communication to migrate
out of the “gray box” and into ordinary objects. An inevitable result is a multiplica-
tion of digitally controlled devices with increasingly complex capabilities. In too
many cases, the designers of such devices are forced to rely on the human capacity to
learn. While standardization of interaction techniques may provide some help, ordinary
humans are increasingly required to divert attention to “futzing with the device”. There
is an obvious need for methods for building systems that model the activities a human
users and anticipate their needs. Much of the work on such systems focuses on defin-
ing and modeling “context” for interaction.

In this paper, we propose an ontology and a software architecture for modeling con-
text and situation. A key aspect of our approach is that we recognize that a context
aware system must be able to sense users and their activities. Unlike much of the



previous work on context aware systems, we are especially concerned with the percep-
tual components for context awareness.  We propose a data-flow architecture based on
dynamically assembled federations  [1], [2]. Our model builds on previous work on
process-based architectures for machine perception and computer vision [3], [4], as
well as on data flow models for software architecture [5].  

We define an ontology for context awareness by proceeding top down, from the us-
ers’ perspective, as well as bottom up, from the perspective of the system. As we
define each element, we describe the corresponding components of a process-based
software architecture.  We propose a model in which a users context is described by a
set of roles and relations. A context is translated into a federation of observational
processes. Different configurations of roles and relations correspond to situations
within the context.  This model leads to an architecture in which reflexive elements
are dynamically composed to form federations of processes for observing and predict-
ing the situations that make up a context. As context changes, the federation is re-
structured. Within a context, the federation can adapt so as to provide services that are
appropriate and invariant over a range of situations. Throughout the paper, we illus-
trate the components of the architecture with a system that observes and tracks faces.
The result is both a clear, well-defined ontology for describing context and situation
and a software architecture for building real systems.  This architecture provides a
foundation for the design of systems that act as a silent partner to assist humans in
their activities in order to provide appropriate services without explicit commands and
configuration.

2. A Brief history of context

Winograd [6] points out that the word “Context” has been adapted from linguistics.
Composed of “con” (with) and “text”, context refers to the meaning that must be
inferred from the adjacent text. Such meaning ranges from the references intended for
indefinite articles such as “it” and “that” to the shared reference frame of ideas and
objects that are suggested by a text. Context goes beyond immediate binding of arti-
cles to the establishment of a framework for communication based on shared experi-
ence. Such a shared framework provides a collection of roles and relations with which
to organize meaning for a phrase.

Early researchers in both artificial intelligence and computer vision recognized the
importance of a symbolic structure for understanding. The “Scripts” representation [7]
sought to provide just such information for understanding stories.  Minsky’s Frames
[8] sought to provide the default information for transforming an image of a scene into
a linguistic definition.  Semantic Networks [9] sought to provide a similar foundation
for natural language understanding. All of these were examples of what might be
called “schema” [10]. Schema provided context for understanding, whether from im-
ages, sound, speech, or written text. Recognizing such context was referred to as the
“Frame Problem” and became known as one of the hard unsolved problems in AI. The
inadequacy of the purely linguistic basis for meaning provided by schema was ulti-
mately recognized as the problem of “grounding”.  Recognition of the “grounding-



problem” was responsible for turning a generation of AI researchers away from a
purely linguistic theory of AI towards a theory of intelligence based on action and
perception [11]. Purely symbolic context is now recognized as inadequate for intelli-
gence. Intelligence requires the ability to perceive and to act.

In computer vision, the tradition of using context to provide a framework for mean-
ing paralleled and drew from theories in artificial intelligence.  The “Visions System”
[12] expressed and synthesized the ideas that were common among leading researchers
in computer vision in the early 70’s. A central component of the “Visions System”
was the notion of a hierarchical pyramid structure for providing context.  Such pyra-
mids successively transformed highly abstract symbols for global context into succes-
sively finer and more local context terminating in local image neighborhood descrip-
tions that labeled uniform regions. Reasoning in this system worked by integrating
top-down hypotheses with bottom-up recognition.   Building a general computing
structure for such a system became a sort of “Holy Grail” in computer vision. Succes-
sive generations of such systems, such as the “Schema System”[13] and “Condor”
[14] floundered on problems of unreliable image description and computational com-
plexity. Interest in the 1990’s turned to achieving real time systems using “active
vision” [15], [16]. Many of these ideas were developed and integrated into a context
driven interpretation using a process architecture using the approach “Vision as Proc-
ess” [17].  The methods for sensing and perceiving context for interaction described
below draws from this approach.

The term “Context  Aware” was first introduced to the mobile computing commu-
nity by Schilit and Theimer [18]. In their definition, context is defined as “the location
and identities of nearby people and objects and changes to those objects”.  While this
definition is useful for mobile computing, it defines context by example, and thus is
difficult to generalize and apply to other domains. Other authors, such as [19] [20] and
[21] have defined context in terms of the environment or situation. Such definitions
are essentially synonyms for context, and are also difficult to apply operationally.
Cheverest  [22] describes context in anecdotal form using scenarios from a context
aware tourist guide. His system is considered one of the early models for a context
aware application.

Pascoe [23] defines context to be a subset of physical and conceptual states of in-
terest to a particular entity. This definition has sufficient generality to apply to a
recognition system. Dey [24] reviews definitions of context, and provides a definition
of context as “any information that can be used to characterize situation”.  We are in
agreement with Dey in his identification of “situation” as the current state of the envi-
ronment and “context” as the elements by which situation is defined.  However, to
apply context in the composition of perceptual processes, we need to complete a clear
semi-formal definition with an operational theory.

3. Fundamental Concepts

In order to provide an operational theory of context awareness, in this section, we
develop an ontology for context and situation. As we develop each term of the ontol-



ogy, we give the term computational meaning by describing the corresponding archi-
tectural components. As in other domains, an ontology for context awareness requires
both top-down and bottom up components. Bottom up components are tied to what-
ever the system can sense and interpret.  The top down elements are derived from users
and their tasks.

3.1 The user’s context

The    context    of which the system should be    aware    is that of one or more    humans   .
Let us refer to these human agents using the common computer science term of    user   .
We assume that in most cases users are driven by one of more    goals   , although often
not in the purely rational single-minded manner that is assumed by most AI planning
systems. The user may have many possible goals, sometimes in parallel, and he may
switch among these goals in a dynamic manner that may be difficult to predict.  In
most cases, interacting directly with the system is NOT the goal of the user.  Thus, as
the system designer, we must endeavor to make the system disappear into the envi-
ronment in order to assist users without drawing their attention away from their cur-
rent tasks. To design such systems we need to have a clear notion of goal, task and
activity.

A rational system chooses its actions to accomplish its goals [25]. The HCI and
mobile computing communities tend to criticize the concept of rationality used in
planning in Artificial Intelligence as too single-minded to properly model users. How-
ever, such definitions can provide a formal basis for discussing tasks and activities.  

The fundamental concept for a formal definition of task is that of    state    [26].  A
state is defined using a predicate expression. The logical functions that make up this
expression are functions of    properties    observed in the world.  Each possible combina-
tion of predicates (or their negation) defines a state.  A    universe    is a graph in which
states are connected by arcs that represent    actions   .  At any instant in time the universe
is in a state called the    current       state   .  The user may desire to bring the universe to
another state called a    goal    state. To attain a goal state, the user must perform some
sequence of actions. To determine possible sequences of actions he must search the
graph of states for a path to the desired state [27]. The association of a current state
and a goal state is a    task   .  Unlike some work in HCI, we insist that a task does not
explicitly determine the sequence of user’s actions. The set of action sequences that a
user may choose is an open set that may be determined “on the fly”.

Real humans are rarely obsessed with a single task. In most situations, humans re-
act opportunistically, switching among a set of possible goals, abandoning and adding
new goals in response to events and opportunities. One of the most difficult chal-
lenges in designing context aware systems is to recognize and allow for such unpre-
dictable behavior.  We call a composition of states and actions for the user a    domain   .
The current set of tasks is the user’s    activity   . We assume that at any instant, the user
is pursuing a task from this set. The other tasks may be referred to as    background   



tasks   . Together, the current task, and the background tasks define the set of things that
the user may attend to, and the set of actions that he may undertake.

3.2 The system’s context

The system’s context is composed of a model of the user’s context plus a model of its
own internal context. The system’s model of the user’s context provides the means to
determine what to observe and how to interpret the observations. The system’s model
of its own context provides a means to compose the federation of components that
observe the user’s context.

At the lowest level, the system’s view of the world is provided by a collection of
sensors. These sensors generate values for    observable       variables   . Observable variables
may be numeric or symbolic entities. They may be produced as a synchronous stream
of data or as asynchronous events.  In order to determine meaning from observable
variables the system must perform some series of transformations. The fundamental
component for our software architecture is an observational process, as shown in
figure 1.
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Fig .  1 .  An observational process transforms data and events into data and events.

An observational process has two functional facets: A transformation component
and a supervisory controller. The supervisory controller enables reflexive control of
observational processes and thus provides a number of important functions. The con-
trol component receives commands and parameters, supervises the execution of the
transformation component, and responds to queries with a description of the current
state and capabilities. The characteristics of the control component are developed be-
low.

The input data to the transformational component is generally composed of some
raw numerical values, generally arriving in a synchronous stream, accompanied by
meta-data. Meta data includes information such as a time-stamp, a confidence factor, a
priority or a description of precision. An input event is a symbolic message that can
arrive asynchronously and that may be used as a signal to begin or terminate the trans-
formation of the input data. Output data and the associated meta-data is a synchronous
stream produced from the transformation of the input data. We also allow the possibil-
ity of generating asynchronous output messages that may serve as events for other
processes.  This model is similar to that of a contextor [28], which is a conceptual
extension of the context widget implemented in the Context Toolkit [29].



3.3 Examples: processes for observing, grouping and tracking

A very simple example of a observational process is provided by a transformation that
uses table look-up to convert a color pixel represented as an RGB vector into a prob-
ability of skin, as illustrated in figure 2.  Such a table can easily be defined using the
ratio of a histograms of skin colored pixels in a training image, divided by the histo-
gram of all pixels in the same image [30].
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Fig  2 .  An observational process for detecting skin colored pixels

Let us define the chrominance vector  (C1,C2) for each pixel  as the red and green
component normalized by luminance. Such a chrominance vector is a color signature
that depends on both the skin pigment of an individual and the source color of the
illumination [31]. Because of luminance normalization, the skin pixels for an individ-
ual in a scene will all exhibit the same chrominance vector and can be used to detect
the hands or face of that individual.

C1 = Round(Q ⋅
R

R + G + B
) C2 = Round(Q ⋅ G

R + G + B
)

The chrominance values can be converted to integers in the range of [0,Q], by mul-
tiplying by Q and rounding. If chrominance is suitably quantized, a probability density
function for the chrominance of the entire image can be compiled by compiling a
histogram of chrominance. A value of Q=32 will generally work well, but this can be
a run time parameter. A probability density function for skin colored regions can be
approximated by identifying the skin colored regions by some outside means in a set
of calibration images. Histograms of the chrominance from all pixels htot(C1,C2) and
from all skin colored pixels hskin(C1,C2) may then be compiled. 

∀(i,j) ∈ Image :

h tot(C1(i,j),C 2(i,j)):= h tot (C1(i,j),C 2(i,j)) +1;

M tot := Mtot +1;

   
∀(i,j) ∈ SkinRegion :

h skin(C1(i,j),C 2(i,j)):=hskin (C1(i,j),C 2(i,j)) +1;

M skin := M skin +1;

Provided that the number of sample pixels, Mskin and MTot are larger than 10·Q2, the
histogram htot(C1,C2) provides an estimate for the probability density function for
chrominance p(C1,C2) while  hskin(C1,C2) provides an estimate of the conditional den-
sity function for chrominance given skin, p(C1,C2 | skin).

pTot (C1,C2) ≈
1

M Tot

hTot (C1,C2 ) p(C
1
,C

2
|skin) ≈

1

MSkin

h
Skin

(C
1
,C

2
)



Baye's rule shows that the ratio of the two histograms provides a look up table that
gives conditional probability for skin at each pixel given its chrominance.  This tech-
nique has provided the basis for a very fast (video rate) process that converts an RGB
color image into image of the probability of skin using the look-up table Tratio(C1,C2).

p(skin|C 1,C2 ) =
p(C1,C2 |skin)p(skin)

p(C1,C2 )
≈

hskin (C1,C2 )

hTot(C1,C2)
= Tratio(C1 ,C2)

To further reduce the computation time for this process, we provide the possibility
that processing is restricted to a rectangular “Region of Interest” or ROI.

∀(i,j) ∈ ROI : w(i,j):= Tratio(C1(i,j),C2 (i,j))

The ROI is an example of control information provided via a supervisory controller.
A fundamental aspect of interpreting sensory observations is grouping observations

to form    entities   .  While entities may generally be understood as corresponding to
physical objects, from the perspective of the system, an entity is an association of
correlated observable variables. This association is commonly provided by an observa-
tional process that groups variables based on spatial co-location. Correlation may be
based on temporal location or other, more abstract relations.

Thus, an    entity    is a predicate function of one or more observable variables.

Entity-process(v1, v 2, …, vm)  ⇒ Entity(Entity-Class, ID, CF, p1, p 2,…, pn)

Entities may be composed by a entity grouping processes, as shown in figure 3.
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Fig  3 .  Entities and their properties are detected and described by a special class of
observational processes.

The input data is typically a set of streams of numerical or symbolic data. The out-
put of the transformation is a stream including a symbolic token to identify the kind
of the entity, accompanied by a set of numerical or symbolic properties. These proper-
ties allow the system to define relations between entities. The detection or disappear-
ance of an entity may, in some cases, also generate asynchronous symbolic signals
that are used as events by other processes.



 (Blob, ID, CF,x, y, sx, sy, θ)
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Fig  4 .  A observational process for grouping skin colored regions.

A simple example of an entity detection process is provided by a process that
groups adjacent skin colored pixels into regions (commonly called blobs), as shown in
figure 4. Such a process can be easily defined based on moments. The zeroth moment
is the sum of the probabilities in the ROI.  Let us suppose that the ROI is composed
of R rows and C columns to provide N pixels. The ratio of the sum of probability
pixels M over the number or pixels in the ROI, N provides a measure of the confi-
dence that a skin colored region has been observed.  
N = R ⋅ C

M = w(i,j)
i,j ∈ ROI

∑

CF = M
N

The first moment of w(i, j) is the center of gravity in the row and column directions
(x, y). This is a robust indicator of the position of the skin colored blob.

x = 1
M

w(i,j)
i,j∈ROI

∑ ⋅ i y =
1

M
w(i,j)

i,j∈ROI

∑ ⋅ j

The second moment of w(i, j) is a covariance matrix. The square root of the principle
components are the length and breadth of the region. The principal vector indicates the
dominant direction of the region.

σ ii
2 =

1

M
w(i,j)

i,j∈ ROI

∑ ⋅ (i− x)
2 σ jj

2 =
1

M
w(i,j)

i,j∈ ROI

∑ ⋅ (j − y)
2

σ ij
2 = 1

M
w(i,j)

i,j∈ROI

∑ ⋅ (i − x) ⋅ (j − y)

Principal components analysis of the covariance matrix formed from σii
2, σjj

2,and σjj
2

yield the length and breadth of the blob (sx, sy) as well as its orientation θ.
A fundamental aspect of interpreting sensory observations is determining relations

between entities.     Relations    can be formally defined as a predicate function of the prop-
erties of entities.  Relations that are important for describing context include 2D and
3D spatial relations, as well as temporal relations [Allen 83]. Other sorts of relations,
such as acoustic relations (e.g. louder, sharper), photometric relations (e.g. brighter,
greener), or even abstract geometric relations may also be defined. As with observable
variables and with entities, we propose to observe relations between entities using



observational processes. Observational processes transform entities into relations
based on their properties.
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Fig  5 .   Relations between entities are detected by relation detection processes

As before, this transformation may be triggered by and may generate asynchronous
symbolic messages that can serve as asynchronous events.

Relation-process(E1, E2, …, Em)  ⇒ (Relation-Class, ID, E1, E2,…, En)

An example of relation detector is provided by a process that associates the output
from two eye detectors and a skin blob detector to detect the left and right eyes of a
face.  Eyes may be detected using a process based on receptive field vectors [33] that
goes beyond the scope of this paper. Each eye-entity is labeled with a position and
size. The eye pair detector uses the relative positions and sizes to determine if two
possible eye entities can be eyes, and to determine which entity is the left eye, and
which is the right eye.
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Fig  6 .   An Eye pair detector uses size and position to determine pairs of possible
eye entities that satisfy the relation “eye-pair”.

Tracking       processes    provide a number of important properties for observing context.
A tracking system conserves information about entities over time. Thus, for example,
it is only necessary to recognize an entity once. Tracking makes it possible to know
the identity of a blob that is currently observed based on an earlier recognition. Track-
ing also makes it possible to compose a history of the positions of an entity.
Changes in position can be important indicators of changes in the user’s situation or
context. Finally, tracking is very useful for optimizing processing by focusing atten-
tion. The ROI’s used in skin color detection, and skin blob detection may be provided
by the position of the blob from a previous observation by a tracking process.  

Tracking is a process of recursive estimation. A well-known framework for such
estimation is the Kalman filter. A complete description of the Kalman filter [34] is



beyond this paper. A general discussion of the use of the Kalman filter for sensor
fusion is given in  [35]. The use of the Kalman filter for tracking faces is described in
[36]. For face tracking we commonly use a simple zeroth order Kalman filter, in
which the observation and estimation state vectors are each composed of (x, y, sx, sy,
θ). 

A simple example of a federation of observation processes shown in figure 7. This
process takes in color images and produces the current position of a skin blob. Each
process. However, as presented , this federation lacks a mechanism to initiate the
tracking, to initialize the parameters , and to globally adapt parameters to maintain a
desired quality of service. These functions can be provided by using a higher-level
supervisory controller to initiate and supervise the federation, as described  in the next
section.
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Fig .  7  A process federation for observing skin colored blobs

3.4 A supervisory controller for observational processes

A federation of observational processes may be composed using a hierarchy of reflex-
ive supervisor controllers.  Each supervisory controller invokes and controls lower
level controllers that perform the required transformation.  At the lowest level are
observational processes that observe variables, group observational variables into
entities, track entities and observe the relations between entities.

State and Capabilities
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Control Out
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State and Capabilities

Figure 8.  A supervisory controller uses observational process to associate entities
with roles and to determine the relations between entities.

The skin blob tracker provides an example of such a controller. The supervisory con-
troller, labeled as “skin region tracker” in figure 9 invokes and coordinates observa-



tional processes for skin detection, pixel moment grouping and tracking.  This federa-
tion provides the transformation component for a composite observation process. The
skin region tracker provides the supervisory control for this federation.
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Fig  9  A federation of processes for observing skin colored blobs. A second level
supervisory controller invokes the first level observational processes, and supervises
their execution.

4. Context and situation.

From the user’s perspective we have definitions for task and activity. From the sys-
tem’s perspective, we have definitions for observable variables, entities and relations.
These definitions meet to provide a model of situation and context.

4.1 Formal Definition of Context and Situation

The    context    for a user U and task T is a composition of situations. These situations
all share the same set of roles and relations. Thus a context determines the collection
of roles and relations to observe. These are the roles and relations that are relevant to
the task.

Context(U,T) ⇒  {Role1, Role2,…,Rolen; Relation1,…,Relationm}

A    role    is a function relative to a task. A role may be satisfied by one or more entities
in the user’s environment. An entity is judged to be capable of providing a role if it
passes an acceptance test on its properties. For example, a horizontal surface may
serve as a seat if it is sufficiently large and solid to support the user, and is located at a
suitable height above the floor. An object may serve as a pointer if it is of a graspable



size and appropriately elongated. In the user’s environment, pens, remote controls, and
even a wooden stick may all meet this test and be potentially used by the user to serve
the role of a pointer.

The set of entities that can provide a role may be open ended. A user determines if
an entity can satisfy a role for a task by applying the acceptance test. This test is a
predicate function defined over entities and their properties.

Role(E1, E2, …, Em) ⇒ (Role-Class, ID, CF, E1, E2,…, En)

When the test is applied to multiple entities, the most suitable entity may be selected
based on a confidence factor, CF.

The set of entities is not bijective with the set of roles. One or more entities may
play a role. A role may be played by one or several entities. What’s more the assign-
ment of entities to roles may (often will) change dynamically. Such changes provide
the basis for an important class of events.

The user’s    situation    is a particular assignment of entities to roles completed by a
set of relations between the entities. Situation may be seen as the “state” of the user
with respect to his task.  The predicates that make up this state space are the roles and
relations determined by the context. If the relations between entities changes, or if the
binding of entities to roles changes, then the situation within the context has changed.
The context and the state space remains the same.

Thus a context can be seen as a network of situations defined in a common state
space. A change in the relation between entities, or a change in the assignment of
entities to roles is represented as a change in situation. Such changes in situation
constitute an important class of events that we call Situation-Events. Situation-Events
are data driven. The system is able to interpret and respond to them using the context
model. They do not require a change in the federation of observational processes.

4.2 Example: A video based collaborative work environment

As a simple example of a user’s context, consider a video based collaborative work-
ing environment. Two or more users are connected via high bandwidth video and audio
channels. Each user is seated at a desk and equipped with a microphone, a video com-
munications monitor and an augmented work surface. Each user’s face and eyes are
observed by a steerable pan-tilt-zoom camera. A second steerable camera is mounted
on the video display and maintains a well-framed image of the user’s face. The aug-
mented workspace is a white surface, observed by a third video camera mounted over-
head.

The entities that compose the user’s context are 1) the writing surface, 2) one or
more pens, 3) the other users, and 4) the other users’ writing surfaces. The roles of the
user’s context are 1) the current focus of attention, 2) the drawing tool, and 3) the
pointer. The focus of attention may be “assigned” by the user to the drawing surface,
to another user, or to another user’s workspace. Relations for entities include “looking
at”, “pointing at”, “talking to”, and “drawing on”. Situations include “user speaking”,



“user listening”, “user drawing”, “user pointing while speaking”, and “user drawing
while speaking”.  If the system can properly evaluate and respond to the user’s situa-
tion, then other objects, such as the video display, disappear  from the users focus of
attention.

The system’s model of context includes the users and the entities that make up
their contexts. It also includes three possible views of the user: a well-centered image
of the user’s face, user’s workspace or an image of the user and his environment.
Observable variables include the microphone signal strength, and a coarse resolution
estimation of the user’s face orientation.  The system context includes the roles
“speaker” and “listener”.  At each instant, one of the users is assigned the role of the
“speaker”.  The other users are assigned the role of “listener”. The system uses a test
on the recent energy level of the microphones to determine the current speaker.

Each user may place his attention on the video display, or the drawing surface or
“off into space”. This attention is manifested by the orientation of his face, as meas-
ured by positions of his eyes relative to the center of gravity of his face (eye-gaze
direction is not required). When the user focuses attention on the video display, his
output image is the well-framed image of his face. When a user focuses attention on
the work surface, his output image is his work-surface. When the user looks off “into
space”, the output image is a wide-angle view of the user’s environment. All listeners
receive the output image of the speaker. The speaker receives the mosaic of output
images of the listeners.

This system uses a simple model of the user’s context completed by the system’s
context to provide the users with the appropriate video display. Because the system
adapts its display based on the situation of the group of users, the system, itself, fades
from the user’s awareness.

5. Observing Context with Process Federations.

In this section we describe how to construct a hierarchical federations of observational
processes.  We develop a set of software properties that permit processes to be dy-
namically composed into federations to robustly observe and predict user actions. We
then describe a meta-process that dynamically composes process federations based on
the system context and the user context.

The system context provides a method to compose a    federation    of observation proc-
esses for observing the roles and relations relevant to the user’s context. In order to
compose these processes, we define a reflexive supervisory controller that recruits
lower observational processes to form local federations.  The roles and relations speci-
fied by a system context are used by supervisory controllers to construct a “federation”
of observational processes. This federation determines and tracks the entities that may
play roles in the users context, determines the assignment of roles to entities to roles,
and determines the relations between theses entities.

Just as the user may select entities to perform a role, so the system may also select
observational processes to satisfy observational roles. The systems task is to observe
the roles and relations of the user’s context. This defines a system context in which



observational processes perform functions, and thus may be said to assume roles. A
supervisor controller observes the state and capabilities of observational processes to
determine if they are most appropriate at the current time to provide the required func-
tion.

Similarly the system’s situation is the current federation of processes that have
been assembled to observe the user’s context. Observational processes serve roles in
the systems context. If the observational processes for serving a system role changes,
the systems situation changes, but the system context remains the same. Whenever
the set of relevant roles or relations changes, the system must reorganize the federation
in order to accommodate the required observations. Thus a change in context is a sepa-
rate class of event, a Context-Event. Recognizing context events constitutes a special
challenge in designing a context aware system.

5.1 Properties for Observational Processes

In order to dynamically assemble and control observational processes, the system must
have information about the capabilities and the current state of component processes.
Such information can be provided by assuring that supervisory controllers have the
reflexive capabilities of auto-regulation, auto-description and auto-criticism.

A process is    auto-regulated    when processing is monitored and controlled so as to
maintain a certain state. For example, processing time and precision are two important
state variables for a tracking process. These two may be traded off against each other.
The skin region tracking process described above requires a certain number of opera-
tions per pixel. Let us call this number P. The time for processing a ROI, T, is thus
directly proportional with the number of pixels in the ROI, N.

T = N·P.
Video rate processing requires placing a bounds Tmax on T. The size of the ROI  is

determined by the size of the target in the previous image. If the number of pixels in
the ROI exceeds, Tmax/P then some pixels must be skipped. A simple means to reduce
the number of pixels is to treat only one out of S pixels. The resulting observation is
still valid, but its precision will have been degraded by a factor of S.  Let us refer to S
as the “step size” used in computing the probability of skin and in grouping the skin
colored pixels. The supervisory controller may be instructed to give priority to either
the processing rate (increasing S so as to maintain a time less than Tmax) or precision,
increasing Tmax so as to maintain S. The choice of priority is dictated by a more ab-
stract supervisory controller.

A second level supervisory controller may be coordinating several skin-region
trackers. The time available for each tracker will depend, in part on the number of
regions to be tracked. Thus the second level controller must dynamically inform each
observation process of the required Tmax. Furthermore, the relative priorities of time
and precision may vary according to the role that has been assigned to each blob. Thus
a hierarchy of more abstract controllers may be involved in providing the reference
commands for an observational process. Such coordination of such a hierarchy requires



that the processes be capable of describing both their current state and their capabili-
ties.

An    auto-descriptive    controller can provide a symbolic description of its capabilities
and state. The description of the capabilities includes both the basic command set of
the controller and a set of services that the controller may provide to a more abstract
controller. Thus when applied to the systems context, our model provides a means for
the dynamic composition of federations of controllers. In this view, the observational
processes may be seen as entities in the system context. The current state of a process
provides its observational variable. Supervisory controllers are formed into hierarchical
federations according to the system context. A controller may be informed of the pos-
sible roles that it may play using a meta-language, such as XML.

An    auto-critical     process maintains an estimate of the confidence for its outputs.
For example, the skin-blob detection process maintains a confidence factor based on
the ratio of the sum of probabilities to the number of pixels in the ROI. Such a confi-
dence factor is an important feature for the control of processing.  Associating a confi-
dence factor to all observations allows a higher-level controller to detect and adapt to
changing observational circumstances.  When supervisor controllers are programmed
to offer “services” to higher-level controllers, it can be very useful to include an esti-
mate of the confidence for the role. A higher-level controller can compare these re-
sponses from several processes and determine the assignment of roles to processes.

5.2 A federation for observing faces orientation

A skin colored region of a certain size, aspect ratio and orientation, may potentially
be a face. To determine if such a region is a face, a face detection controller may apply
a test to the length, breadth and orientation of the skin colored region. A confidence
that the region is a face can be used by a supervisory controller to detect and initiate
tracking of the user’s face.

If the regions properties pass the acceptance test, then a observational processes for
detecting eyes may be applied within the ROI defined for the face. Detected eye entities
are fed to a relation test for an “eye-pair” detector.  The eye-pair detector and the skin
blob are then fused to form a face entity. This face entity is tracked using a Kalman
filter based entity tracker.  The result is a face detection controller that recruits skin
colored regions to play the role of face, and then applies a further test to validate the
face hypothesis, as shown in figure 10.  

Face Tracker
Supervisory Controller

Eye Detector

Eye Detector

Skin Blob
Detector

Face
Shape

Eye-Pair
detector Face

fusion

Entity
Tracker

Fig  10  A second level federation that tracks faces. The skin blob detector is provided



by the federation described in figure 9. The dark line indicate data and meta-data flow
between processes.

5.3 Creating process federations for observing context

A crucial problem with this model is how to provide a mechanism for dynamically
composing federations of supervisory controllers that observe the entities and relations
relative to the user’s context. Our approach is to propose a “meta-controller”.  The
meta-controller  is designed for a specific domain. As described above, the domain is
composed of a network of possible user contexts, and the associated systems contexts.
The meta-controller  maintains a model of the current user’s context. This model
includes information about adjacent contexts that may be attained from the current
context, as well as the user and system context events that may signal such a change.

The meta-controller may be seen as a form of reactive expert system. For each user
context, it invokes and revokes the corresponding highest-level supervisory control-
lers. These controllers, in turn, invoke and revoke lower level controllers, down to the
level of the lowest level observational processes. Supervisory controllers may evoke
competing lower-level processes, informing each process of the roles that it may play.
The selection of process for a role can then be re-assigned dynamically according to the
quality of service estimate that each process provides for its parent controller.  

6. Conclusions

A context is a network of situations concerning a set of roles and relations. Roles are
services or functions relative to a task. Roles may be “satisfied” with one or more
“entities”.  A relation is a predicate defined over the properties of entities. A situation
is a particular assignment of entities to roles completed by the values of the relations
between the entities. Entities and relations are predicates defined over observable vari-
ables.

This ontology provides the basis for a software architecture for the observational
components of context aware systems. Observable variables are provided by reflexive
observational processes whose functional core is a transformation. Observational
processes are invoked and organized into hierarchical federations by reflexive supervi-
sory controllers. A model of the user’s context makes it possible for a system to
provide services with little or no intervention from the user. Applying the same on-
tology to the system’s context provides a method to dynamically compose federations
of observational processes to observe the user and his context.
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