
THE CONTEXTOR: A COMPUTATIONAL MODEL FOR
CONTEXTUAL INFORMATION

Gaëtan Rey, Joëlle Coutaz

CLIPS-IMAG
385 rue de la Bibliothèque

F-38041 Grenoble cedex 9, France
{Gaetan.Rey, Joelle.Coutaz}@imag.fr

James L. Crowley

Laboratoire GRAVIR, INRIA Rhône Alpes,
655 Ave de l’Europe, F-38330 Montbonnot, France

Jim.Crowley@ imag.fr

ABSTRACT
This position paper proposes the contextor as a computational
abstraction for modeling and computing contextual
information. Here, context must be understood as a state
vector of observables. An observable is a variable whose
value can be acquired through sensing technology and or
computed by the system. Contextors share a common I/O
structure including control channels and meta-data to ensure
and express QoS (e.g., precision, stability), as well as common
properties such as reflexivity and ramanence. They can be
combined as oriented graphs or encapsulated into higher
computational units. We show how they fit into the Arch
reference architectural model.

KEYWORDS : contextor, interaction context, context
modeling, software architecture modeling, Human Computer
Interaction, ubiquitous computing.

1. INTRODUCTION
Context is an old friend. The literature reveals a large body of
research based on the notion of context, typically in
Linguistics, AI, Computer Vision, and HCI. With the
emergence of ubiquitous computing, researchers are
rediscovering this notion, using different perspectives for
serving distinct purposes. It is not surprising then than no one
agrees on a common definition. From the seminal work
developed on context computing [Moran 02], one can draw
the following four lessons:
. Lesson 1: Context can only be defined in relation to a

purpose. In this position paper, context is defined for the
purpose of computational perception (e.g., perception of
user’s implicit actions, sensing physical environment,
self-discovery of local devices). Context is thus a state
vector of observables. An observable is a variable whose
value can be acquired and or computed by the system.

. Lesson 2: Context is an information space that serves
interpretation [Winograd 02]. In our work, interpretation
is performed by the system for perceiving for users’
benefits.

. Lesson 3: Context is a shared information space. In our
work, context sets a common ground between a system
and a user. It is therefore observable by humans.

. Lesson 4: Context is an open information space: it
evolves. As a result, we make a distinction between a
situation (i.e., a snapshot of observables) and the
composition of situations, which, in turn, defines a
context.

In [Crowley 02], we present an ontology of situation and
context for machine perception as well as a computational
model for perceptual processes. In this position paper, we

propose the contextor as a generalisation of the perceptual
processes, as well as of the context widget implemented in the
Context Toolkit [Salber 99]. Because in HCI it is good
practice to analyze a problem from at least two
complementary perspectives (the user and the system
perspectives), we need first to introduce the notions of use
rcontext and system context. We then present the contextor as
the building block for developing system context, and show
how contextors can be combined as richer computational
units. Finally, we present how federations of contextors fit
into the Arch reference architectural model.

2. SYSTEM CONTEXT AND USER
CONTEXT
As shown in Figure 1, the notions of user context and system
context are considered for a user U in relation to a task T. User
and system contexts are related to the gross and net contexts.
The gross context, contextU,T

G, covers the universal facts
(variables and their relations) that relate to U for performing
T. The system context, contextU,T

S , is the subset of the gross
context that concerns the system. Similarly, the user context
that relates to U for performing T, contextU,T

U , is the subset of
the gross context that concerns the user U for T. The net
context, contextU,T

N , is the subset of the gross context that the
user and the system have in common for T: it constitutes the
common ground mentioned in the introduction.

Gross Context
context U,T

G

System Context
context U,T

S

Observable/Observed

Net Context
context U,T

N

Observable/Observed

User Contex
context U,T

U

Observable/

Figure 1. Relations between Gross, Net, User and System contexts.

As shown in Figure 1, the adjectives "observable" and
"observed" make explicit the distinction between the design
phase and the run time phase of the development process. In
the design phase, designers specify the state variables that
should be observed at run time. Since the state variables are
potentially observed, we refer to the observable context. At
run time, the state variables, either are observed effectively or
not observed at all due, for example, to some system or user
failure or to a loss of conformity between the design and the
implementation phases. We then refer to the observed context.

The refinement of the notion of context (situation) as observed
or observable, the distinction between Gross, Net, System and
User contexts provide a means to define quality metrics for
context-aware computing. For example, the cardinality of the
Net Context is a way to measure the conformity of the
system’s sensitivity to users’ expectations. A cardinality close
to 0 would mean that the context sensitivity of the system is of
nearly no use to the user. Similarly, the cardinality of the
System Context compared to that of the Gross Context
expresses the intrinsic sensitivity of the system. A cardinality
of 0 denotes a context-unaware system. The comparison
between an observable context and its corresponding observed
context may provide some useful insights into the design
process and/or on the human and system behaviors.

3. THE NOTION OF CONTEXTOR
A contextor is a software abstraction that models a relation
between variables of the Observed System Context. From the
values of a set of variables of an Observed System Context, a
contextor returns the value of a variable (or of a set of
variables) that belongs to that context. As shown in Figure 1, a
contextor is composed of a functional core and of typed input
and output communication channels.

Data Out

Meta data Out

Data In

Meta data In

Functional
Core

Control In

Control Out

Figure 2. Graphical representation of a contextor.

The functional core of a contextor implements a relation
between variables of the Observed System Context.

The input channels of a contextor are of two types:
. Data-In corresponds to the variables of the Observed

System Context that are used as inputs by the functional
core of the contextor. Every input value is decorated with
a Meta-data-In that expresses the quality of the input
value.

. Control-In corresponds to commands received from other
contextors to set the internal parameters of the contextor.
These parameters concern the functional behavior of the
contextor as well as the non-functional behavior such as
the QoS (Quality of Service) expected by other
contextors. For example, a contextor may receive a
“switch off” command on its Control-In because it has
been recognized as faulty. Or, it may receive a QoS
request that expresses the level of precision of the values
required for the Data-out channel.

Symmetrically, the output channels of a contextor are of two
types:
. Data-Out corresponds to the values of some variables of

the Observed System Context returned by the contextor.
As for input, output data are decorated with Meta-data-

Out that describes the quality of the output produced by
the contextor (e.g., resolution, latency, sample rate,
stability, field of perception, field of action, autonomy,
etc.).

. Control-Out is used by the contextor to send control
commands to other contextors. For example, based on the
meta-data associated with the data received from a
contextor C, a contextor may decide to send a “switch
off” command to C.

In addition,
. A Data-In channel receives data from a Data-out channel

whose data type is compatible with that of the Data-In
channel. A Control-In channel receives data from a
Control-Out channel whose data type is compatible with
that of the Control-In channel.

. The connections between input and output channels may
be static (i.e., wired by the implementer) or semi-static
(i.e., computed at run time when the system is launched),
or transient (i.e., may be changed dynamically).

. Given a contextor C, a source contextor is a contextor
that provides C with Data-In values, and a sink contextor
is a contextor that receives Data-Out values from C.

. Implementation of contextors must ensure reflexivity and
remanence.

4. COMPOSING CONTEXTORS
Contextors may be composed in two ways: by connecting data
channels and by means of encapsulation.

4.1. Data Channels Connection
Data-In channels can be connected with compliant Data-Out
channels to form a federation. Two channels are compliant if
they convey data of the same type. As shown in Figure 3, the
resulting oriented graph forms a federationwhere source
interactors at the base of the graph are elementary contextors,
and where contextors at the top of the graph provide
applications with contextual data at the appropriate level of
abstraction. The Control-in channel of a contextor can be
connected to the Control-out channel of its sink contextors.
Consequently, the Control-out channel of a contextor is
connected to the Control-in channel of its source contextors.

Application 1 Application 2

DL = 0

DL = 1

DL = 2

Figure 3. A federationof contextors.

In a federation, a contextor can be characterized by a
dependence level (DL) that can be exploited to evaluate the
cost of the dynamic reconfiguration of the colony.

4.2. Encapsulation
Encapsulation is used to group a federationof contextors as a
new class of contextor whose internal composition is hidden
to other contextors. Figure 4 shows an example of an
abstraction contextor built from a federationof simpler
contextors.

Face
Detector
(color)

Kalman
Filter

Tracker

Eye
Detector

(correlation)

Blink
Detection

Video
Source

Face
Position

Figure 4. A federationof contextors encapsulated as a reusable class
of contextors.

Having presented the composition of contextors, let us see
how these compositions are integrated in the architecture of an
application using Arch as a reference model.

5. THE AUGMENTED ARCH MODEL
The Arch model is an efficient conceptual model for devising
the overall functional structure of an interactive system [Arch
92]. With PAC-Amodeus, we have extended, refined, and
exploited Arch in many ways for the development of
multimodal user interfaces [Nigay 95]. Similar in spirit to
Salber’s proposal and in accordance with the ontology
presented in [Crowley 02], we propose to extend Arch with a
four-layer “context branch” (See Figure 5).

Dialogue
Controller

Logical
Presentation

Physical
Presentation

Functional
Core

Functional
Core

Adaptor

Sensing

Transformation

Identification

Exploitation

Figure 5. The augmented Arch model for context-aware computing.

The Sensing layer is built from elementary contextors, i.e.,
contextors that encapsulate physical sensors. It is to context
what the Physical Presentation Component is to classic user
interfaces.

The Transformation layer, built from chains of contextors
and/or from encapsulation, provides contextual information
independent from the physical sensing technology and at the
“right” level of abstraction. It is to context what the Logical
Presentation Component is to classic user interfaces.

The Identification layer detects situation and context changes,
and identifies the current situation and context. This layer can

be implemented using a blackboard approach as in [Winograd
02].

The Exploitation layer acts as an adaptor between the
Dialogue Controller and the context-aware computing portion
of the system. For performance reasons, it may skip the
“Identification” layer and exchange information directly with
the "Transformation" and "Sensing" layers.

As in Arch, the slinky meta-model applies: some layers may
not exist, and functions may shift between layers. For multi-
modal interaction, each modality supported by the system
(e.g., direct manipulation, speech), gives rise to a branch. But
a run time mechanism, such as Nigay’s fusion engine,
manages the dependencies between the branches [Nigay 95].
Similarly, the "context branch", which appears as an
independent functional branch in Figure 5, calls upon a run
time mechanism to express relationships with its neighbour
branches. For example, a sensing layer that detects the
presence of multiple PDA screens aligned close to each other,
may inform the Physical Presentation Layer of the availability
of a large screen resource built from a mosaic of small
screens. The graphical user interface may then adapt
accordingly [Calvary 01]. Conversely, keyboard and mouse
inputs may be used by the “Sensing” layer to inform higher
layers of the “Context branch” that the user is currently active.

6. CONCLUSION
The models and principles presented in this position paper are
based on our experience in the development of multimodal
interaction as well as of computer vision-based sensing
technology. By analogy with interators, contextors are
motivated by the benefits of the object-oriented distributed
technology. We are currently implementing contextors for the
European project GLOSS using a P2P approach. As discussed
in Section 5, we do not promote a single uniform paradigm for
context computing. Instead, we suggest that the higher levels
of the “Context branch” should draw upon AI-based
techniques such as the blackboard.

7. REFERENCES
[Arch 92] UIMS Tool Developers' Workshop. A meta-model for

runtime architecture of an interactive system. SIGCHI Bulletin,
24(1):32{37, 1992.

[Calvary 01] G. Calvary, J. Coutaz, D. Thevenin. Supporting Context
Changes for Plastic User Interfaces: a Process and a
Mechanism, in Proc. HCI-IHM 2001, A. Blandford, J.
Vanderdonckt, P. Gray Eds.,BCS conference series, Springer
Publ., pp. 349-363.

[Coutaz 02] J. Coutaz, G. Rey Foundations for a theory of contextors.
In Proc CADUI02, ACM Publ., 2002, pp. 283-302.

[Crowley 02] J. L. Crowley, J. Coutaz, G. Rey. Perceptual
Components for Perceptual Computing. In Proc. Ubicom
(Ubiquitous Computing)2002.

[Moran 02] Moran, T. P. and Dourish, J. P. (editors). Special Issue on
Context-Aware Computing. Human Computer Interaction,
Volume 16, Numbers 2-4. Erlbaum.

[Nigay 95] L. Nigay, J. Coutaz. A Generic Platform for Addressing
the Multimodal Challenge, CHI’95, ACM New York, Denver,
May 1995, pp. 98-105.

[Salber 99] D. Salber, A.K. Dey, G. Abowd. The Context Toolkit:
Aiding the development of context-enabled Applications. In
Proc. CHI99, ACM Publ., 1999, pp. 434-441.

[Winograd 02] T. Winograd. Architecture for Context, Human
Computer Interaction, Lawrence Erlbaum Ed., Vol. 16, pp. 401-
419.

