
Context Awareness in Systems with Limited Resources

Ozan Cakmakci OZAN.CAKMAKCI@IMAG.FR
Joelle Coutaz JOELLE.COUTAZ@IMAG.FR
CLIPS (Human Computer Interaction Group), University of Joseph Fourier, B.P. 53, Grenoble, 38041, France
Kristof Van Laerhoven KRISTOF@COMP.LANCS.AC.UK
Hans-Werner Gellersen HWG@COMP.LANCS.AC.UK
Ubiquitous Computing (Ubicomp) Group, Lancaster University, LA1 Lancaster 4YR, United Kingdom

Abstract
Mobile embedded systems often have strong
limitations regarding available resources. In this
paper we propose a statistical approach which
could scale down to microcontrollers with scarce
resources, to model simple contexts based on
raw sensor data. As a case study, two
experiments are provided where statistical
modeling techniques were applied to learn and
recognize different contexts, based on
accelerometer data. We furthermore point out
applications that utilize contextual information
for power savings in mobile embedded systems.

Keywords: context awareness, statistical approach,
smart sensors

1. Introduction

This paper aims at high-lighting the benefits of using a
well-founded and traditional method from statistics to
model contexts, intending to bring the process of context
awareness closer to the sensor-level. We consider this
approach to be especially beneficial in applications where
power-, processing- and memory resources are meager,
such as in the domains of ubiquitous, mobile or wearable
computing. We start the introduction with giving an
overview of context awareness research, followed by
similar research in robotics. Finally, a short overview on
low-power design clears the way towards this paper’s
main case study.

1.1 Context Awareness

With the hope of assisting a user continuously throughout
the day, for example in aiding of human memory
(episodic, semantic or procedural), two major approaches
have been proposed. One is to spread the computation and
communication resources into the environment [11] and
the other is to carry all the computational and

communication resources on the body [15]. One could see
clothing and the devices we carry with us as a part of the
environment, although the resulting nuances of this view
are actively debated (i.e. infrastructure reliance and
privacy issues). The idea of spreading computation into
our environment in order to get it out of the way of the
user is often referred to under names such as ubiquitous
computing (ubicomp), pervasive computing or
disappearing computing.

In the Ubicomp approach, it is often necessary to build
ordinary artifacts that contain computation and
communication facilities in them (see [10] as an
example). Designing ordinary artifacts with electronics
embedded in them while avoiding modification of the
functional meaning of the object is a big challenge (due to
space and energy constraints). In parallel, advances in
microelectronics and low-power techniques (such as
frequency and voltage scaling [18] as well as more
innovative techniques like adiabetic charge recovery [17])
have led to the creation of computers that fit into the
wristwatch form factor.

Context awareness can loosely be defined as applications
or devices having a basic understanding of their user’s
location or activity over time. An overview on
understanding and using context is provided by Dey in
[21]. Early work in context awareness (in the mobile
computing community) focused on location aware
systems. Examples of location aware systems include the
Active Badges work at Olivetti [16] and Pepys automatic
diary generator by Lamming [19]. Most of these systems
relied on infrared transceivers to detect the physical
location.

More recent research is beginning to address more subtle
types of context such as trying to infer psychological state
from physiological measurements [8] and using various
sensors to infer activity of a user. Physical sensors play a
key role in collecting the data that leads to understanding
the user behavior. Typically, machine learning techniques
are utilized to extract context information from sensor
data. For a neural net based approach that uses low-level
sensors, see [1], for a hidden markov model based

approach that uses a combination of low-level sensors
with cameras and microphones, see [2].

1.2 Context in AI and Robotics

The robotics community has been working on similar
problems. Early work in context in artificial intelligence
goes back to Kant’s schemas, Minsky using frames [13]
for scene analysis, work by Hanson and Riseman [12] and
use of context for object recognition by Strat and Fischler
[14]. At the implementation level, when thinking about
extracting a user’s context from sensor data, we may
resort to a proposal made within the robotics community
(see [6]) where the authors suggest custom designed
sensors that preprocess the data and central processors
that operate on high-level features rather than raw data.

1.3 Low Power Design

The electronic systems we are building today to realize
the vision of ubiquitous devices rely heavily on CMOS
(Complementary Metal Oxide Semiconductor)
technology. Therefore, the characteristics of these systems
starting at the physical level directly influence higher
levels of design, for example the perceived user models of
a device, especially in mobile systems.

We will briefly discuss dynamic power consumption in
CMOS circuits and point out how contextual information
could help in reducing power. Dynamic power
consumption in CMOS circuits is characterized with:

E = CL*VDD2*f² (1)

with CL the load capacitance, VDD the operating voltage,
and f the frequency of operation. In order to lower
dynamic power, one could reduce the capacitance,
operating voltage, or the frequency. Heuristics such as
powering down parts of the chip that are not in use are
also utilized in order to save power. In fact, one could
view this paper as providing these higher level heuristics
linking system activity and actions to the user activity.

The remainder of this paper contains a theoretical
introduction explaining the Bayesian background of the
approach, after which a toy problem from the wearable
computers community should illustrate its use and
simplicity. Preliminary experiments in the form of a case
study serve as a starting point in the general class of
consumer electronics, especially on applications where
context information may result in power savings and
potentially other benefits that could enhance user
experience and interaction with these devices.

2. Statistical Modeling of Context

Fundamental to our approach is the modeling of contexts
with statistics from training data. We are characterizing
each context with samples of sensor data taken from each
context to estimate probability densities corresponding to

contexts. Once we have an estimate for the density
characterizing a context, we can proceed to compute the
probability of being in a certain context given sensor data,
i.e., p(context | sensor data). We know from Bayes’ rule
that

() =sensordatacontextp |
() ()

()sensordatap
contextpcontextsensordatap ∗| (2)

We will assume that each context can be characterized
with a normal density with mean µ and covariance matrix
Σ. It follows from this assumption that the maximum
likelihood estimates for parameters mean µ and
covariance matrix Σ is as follows [3]:

∧
µ = ∑

=

n

k
kx

n 1

1
(3)

∑
=

∧∧

 −

 −=Σ

n

k

T

kk xx
n 1

1ˆ µµ (4)

Once we have the
∧
µ and

∧
∑ estimates representing the

distributions of each sample class, we can compute the
Mahalanobis distance, in order to classify sensor data in
relation to the modeled data. Given sensor data, we will
choose the context class where the sensor data has a
maximal probability of belonging to that class, i.e.

()()sensordatacontextp kk
|max =

() ()()kkk
contextpcontextsensordatap ∗|max

(5)

At this point, we can substitute our previously assumed
normal density, i.e. p(sensordata | context) ~ N(µ,Σ), and
we will take the logarithm of both sides and classify by
taking the maximum for the log-like likelihood of each
context class. This will make the mathematical
manipulations easier (since a Gaussian is of form ex)
while not changing the meaning of the equation (in terms
of its maxima) due to the log function being monotonic.

()() =sensordatacontextp kk
|max

()
() () ()()

Σ

−Σ−− −

contextpe k
T

k xx

k

dk

µµ

π

1

2
1

2
1

22

1lnmax (6)

Which leads to:

 −−Σ−− −)()(
2
1

max 1 xx k
T

kk
µµ

+Σ−−)(ln||ln

2
1)2ln(

2
contextpd

kπ
(7)

We can ignore the additive constants in equation 6 such as
the (d/2)·ln(2π), ln p(context) in the case where all
contexts are equally likely, and the determinant of the
covariance matrix (1/2·ln|Σ|). We will be left with the
maximum of the negative Mahalanobis distance, or the
minimum Mahalanobis distance:

()() =sensordatacontextp kk
|max

())()(min 1 µµ −⋅∑⋅− − xx T
kk

(7)

3. Toy problem– detecting physical contexts such
as sitting, standing and walking

In order to clarify the technique, we first apply statistical
modeling to a toy problem where we try to distinguish the
physical contexts sitting, standing and walking. Figure 1
shows a plot of the acceleration data of 4500 acceleration
data points over time, where the subject mainly changes
between sitting, standing up, and walking (see [1] for
more details on the data set).

For training, we have used the first 1000 data points of the
initial data set where the user is sitting, standing and
walking (in that order). See Figure 2. We have computed
the mean

∧
µ and covariance

∧
∑ for sitting, standing and

walking regions, giving us the following values:

µsitting = [58.9533 71.2633]

Σ sitting = [0.3391 0.0229 ; 0.0229 0.3391]

µstanding = [70.3920 57.7807]

Σ standing = [0.3391 0.0229 ; 0.0229 0.7651]

µwalking = [67.3425 56.7845]

Σ walking = [131.0265 78.2076 ; 78.2076 64.7255]

Figure 1. Time series plot of the entire experiment.

Figure 2. First 1000 samples, used as training data.

We have computed the data shown in Figure 1 as a test
set, using the mean

∧
µ and covariances

∧
∑ for sitting,

standing and walking regions.

The data shown in Figure 1 was used to recognize the
contexts training set to calculate the Mahalanobis metric.
A table of recognition results is presented below in Table
1. For the sake of space, we have averaged the recognition
result of each activity. For example, if sitting occurred
five times during the experiment, we have checked with
what probability the sitting occurs in each of these regions
and averaged the results.

Table 1. Average probabilities per context

4. Case study – detecting when users glance at
their watch

We provide in this paper a case study where a user’s
context, related to a power saving application in this
instance, would be whether a user is looking at their
watch or not. Context information can be used to
automatically shut off subsystems (such as the display)
and could facilitate further power savings within the sleep
mode. If we can appropriately detect when the user is
glancing at their watch, we can automatically activate the
sub-systems (such as the display) and avoid user
annoyance when they look at their watch and not see it
there.

As noted by the designers of the IBM wristwatch
computer, several challenges exist in this form factor,
power being a major one. To take the IBM wristwatch as
a concrete example, it consists of the following sub-

Activity Recognition rate

Sitting (occurs 3 times
during the experiment)

95.66%

Standing (occurs 2 times
during the experiment)

80%

Walking (occurs 9 times
during the experiment)

93.11%

Figure 3. Evaluation set, used in a blind test experiment.

systems: an ARM7 processor, 8Mb flash memory, 8Mb of
DRAM, serial, IRDA, and expansion interfaces.
Designers have tested a reflective LCD as well as an
organic LED. We should note that IBM is designing the
newer version of their watch to include an accelerometer
sensor[. Their paper discusses several optimizations on
how to save power in active and sleep modes and
conclude in the future work section with “when the system
is in sleep mode, most of the power is consumed by the
display and the DRAM refresh”.

Looking at a watch gesture we will consider here consists
of lifting of the arm, holding the arm steady in order to
read the contents of the display, and then releasing of the
arm. Figure 3 shows real acceleration data for this process
while the user is standing.

It is important to mention that the current user model for a
watch includes replacing the battery of the watch in a time
scale of years. Information appliances such as PDAs or
laptops require charging of batteries almost on a daily
basis. Therefore, it is challenging to provide functionality
similar to a PDA or a laptop in the watch form factor
while retaining the user models.

4.1 Modeling the watch data

We have, in terms of modeling the data, collected
accelerometer data while a user is glancing at their watch
during various office settings such as when the user is
sitting or standing. The mean (µ) and the covariance
matrix (Σ) were collected over the whole dataset where a
user is glancing at their watch. Within the statistical
pattern recognition literature, this approach is known as
the single hypothesis case, where we have a single well
defined class while other classes are not [4]. We should
note that for low dimensional data (such as a single
accelerometer with 2 or 3 dimensions), a single
hypothesis scheme is expected to work well, however as
dimensions increase, the error of this technique increases
as well.

0 500 1000 1500 2000 2500 3000 3500 4000
380

400

420

440

460

480

500

Tim e

A
cc

el
er

at
io

n

Figure 4. A typical example of training data for looking
the watch gesture.

Our training dataset included five datasets of looking at
the watch gestures. Figure 4 depicts a plot of one of these
datasets. Three different regions in this dataset stand out:
The first region appears as a stable state while the arm
assumes posture as seen in Figure 6. The second region is
while the user is glancing at his watch and the third region
is back to the standing posture as seen in Figure 7.

0 0.5 1 1.5 2 2.5 3

x 104

350

400

450

500

550

600

Time

2D
ac

ce
l.

da
ta

0 0.5 1 1.5 2 2.5 3

x 104

0

0.5

1

1.5

2
x 10-3

Time

P
ro

ba
bi

lit
y

Figure 5. The results of the experiment: the first plot
(top) shows the probability of each point in the test set
(bottom) belonging to the looking at the watch class.
Only one dual-axis accelerometer was chosen from the
evaluation set in

Figure 3.

For modeling the data, we have extracted the middle
regions from each of the five datasets and computed the
statistics over the whole training samples. We can use
this learned distribution to evaluate the probability of
looking at the watch on a test set. Our test set is shown in
Figure 3, the probability of each point in the test set
belonging to the looking at the watch gesture is shown in
Figure 5, both taken at roughly 220 samples per second.

4.2 Assessment of results

Based on the experiment results in Figure 5, one can see
that the system can recognize properly when the user is
looking at their watch on the test set. However it gets
confused, for example, when the user is scratching his
head. We believe that we can make the recognition more
robust by computing statistics over features as opposed to
raw sensor values. Direct disadvantages of calculating
features for the kind of applications that we envision
would be the delay of recognition that such an approach
could bring along, and the harsher memory requirements.

We would furthermore like to note that this approach
proved to be reasonably robust when it was evaluated in
the case the user was standing up, or even lying down.
Prerequisite is that these are also trained beforehand and
incorporated by means of an additional mean and

covariance matrix. Real-life feasibility studies with
multiple users are likely to be required, however, to
evaluate the attractiveness of this particular application.

Figure 6. Typical office setting (not glancing at the
watch). Connected to the watch is a small board
containing the dual-axis ADXL202 accelerometer.

Figure 7. The wearer glancing at his watch.

As is stated in the future work section of [7], “by
definition we did not want the display to be turned off
since it is annoying to glance at your watch and not see
the time.”. This assumes that there is no robust higher
level knowledge whether the wearer is looking at the
watch. The results in this paper contest the unfeasibility of
this by using a combination of a microcontroller and
accelerometer that is comfortable in power consumption.

5. Implementation

We deem that parametric statistical modeling techniques
present some advantages that make them suitable for
implementation in systems with scarce resources. The
statistical techniques presented here, have been

implemented on a PIC microcontroller with limited
memory and computational capabilities.

We have evaluated the Mahalanobis distance using the
mean vector and covariance matrix from the training set,
and utilized the Analog Devices ADXL202 sensor in our
experiments. This sensor can measure both dynamic
acceleration (e.g., vibration) and static acceleration (e.g.,
gravity). The sensors ability to measure gravity gives us
the opportunity to discriminate in contexts where
acceleration may be zero (such as sitting and standing).
The sensors’ ability to measure dynamic acceleration
gives us the ability to have an idea about whether the user
is walking or running, but also hints when the user is
moving the watch to a glancing position.

5.1 Time and Space Complexity

In the general case, the number of parameters for
specifying a multivariate Gaussian distribution is
described as follows:

N parameters for a context = d +
2

)1(+∗ dd ,

where d stands for the number of dimensions. This
suggests that for 2 dimensional acceleration (acceleration
in X and Y directions) data we would expect to have 5
parameters. These parameter will include, in the two
dimensional case, a mean vector, i.e., µ = {µ1, µ2}, and a
covariance matrix, i.e.

=Σ 2

2

12

21

2
1

σ

σ

σ
σ

Since we need these parameters for modeling each
context, the total number of parameters will equal
(Nparameters* number of contexts). In our case study, we
have trained for just one contexts (glancing at a watch),
therefore we just need 5 parameters. The complexity
hence increases linearly as the number of modeled
contexts goes up.

In section 3, we have shown that once the contexts are
represented we would need the Mahalanobis distance in
order to classify given data to a context. In order to
compute the Mahalonobis distance on board, we require
mean and covariance matrix of training data. One could
calculate the mean and covariance per context on the
microprocessor as a calibration method, depending
linearly on the length of the interval. If the sensors are
adequately calibrated, however, these parameters could be
stored as constants.

5.2 Pseudo-code for micro implementation and cycle
cost estimates for different architectures

Assuming that the training was done beforehand, each
context’s model has to be stored as a mean vector, plus a
covariance matrix. In our experiment, we have only one

significant context, glancing at one’s watch, and just two-
dimensional input vectors to deal with, resulting in a
comfortable memory situation, even for today’s smaller
microcontrollers.

The source code itself is very trivial; without the necessity
of determining the Gaussian for the given input, and
instead calculating the Mahalanobis distance, we simply
need to concentrate on subtraction, addition and
multiplication:

// constant values for the means,
// acquired from training data:

const float mu1=441.9091;

const float mu2=456.1567;

// the elements of the inverse of the
// covariance matrix, also acquired
// from training data:

const float sig11=0.0079;

const float sig12=0.0045;

const float sig22=0.0184;

// elements of Mahalanobis formula:

float mx1, mx2;

mx1 = x1 – mu1;

mx2 = x2 – mu2;

// calculate 2d Mahalanobis:

mah_dist = mx1*(mx1*sig11+mx2*sig12)+

mx2*(mx1*sig12+mx2*sig22);

In case the calculation of the mean vectors and covariance
matrices is done on the microcontroller, additional
memory might be required as a storage medium to
increase reliability, but on-board processing produces no
real problems1 for current microcontrollers.

The basic (non-assembly-optimized) version of our
microcontroller software takes 892 bytes of memory,
mostly because it requires supporting routines for floating
points (this is just 11% of our microcontroller’s ROM). In
worst case (as calculated by the CSC C compiler), 41
bytes (or 23%) of the microcontroller’s RAM memory
will be used.

—————
1 Source code for the PIC16F877 in CCS C is available at
http://www.comp.lancs.ac.uk/~kristof/notes/ as this is too lengthy to
publish in this paper.

5.3 Power measurements

One of our claims has been that context information can
contribute to power savings. We will give in this section a
detailed contemplation of how our approach would
benefit and have an impact on mobile and wearable
applications, where power conservation is imperative. We
will do this again using the illustration of the watch.

Our current prototype is based on an off-the-shelf ADXL
evaluation board (i.e. MPLAB-ICD DEMO BOARD
revision 1). It draws .25mA@9VDC. In other words, due
to Power (Watts) = I (Ampere) * V (Voltage): 125mW.
We believe we would need to go down orders of
magnitude from this upper limit to provide useful
services. Several improvements to this figure are
possible. The current demo board includes a voltage
regulator, a PIC16F877 microcontroller, eight LEDs and a
maxim voltage level conversion chip. The microcontroller
in the demo board is clocking at 20Mhz.

If we take the current microcontroller and design a
custom board (running at 3V and clocking at 32Khz) only
with a PIC 16F877 an ADXL202 + passives, we could
readily improve this figure. The power consumption for
the PIC would go down to 60µW and we would need to
add the ADXL to this figure. Note that this particular
microcontroller will draw 20µA@3V, operating at 32Khz.
Each instruction will take 125µ sec at this operating
frequency.

This particular PIC microcontroller has a SLEEP mode
where it consumes less than 1uA at the given operating
voltage. We could assume 3V for the custom designed
board. When sampling at 20Hz., the resulting interval
between two samples would be 50ms. The PIC 16LF877
executes each instruction in a single cycle. Each cycle
consists of four clock oscillation periods. In the case of
32Khz, instruction execution time is 125µs (1/f*4). We
have compiled our code with the CCS C compiler and
seen that it requires approximately 800 instructions of
computation. Let’s define “C” as mean computation time
and we will have C = number of instructions * 125µs.

Evaluating the Mahalonobis distance on a new set of data
takes approximately 100ms. In order to meet our 20Hz
sampling specification, we need to either increase the
frequency or optimize our code through handwritten
assembly. Here we will present expected result by almost
tripling the frequency to 100Khz. The datasheets suggest
a linearly relation between current draw and frequency for
a given voltage, drawing 80µA@3V at the new
frequency. Therefore, the power consumption will be
around 240µW. The expected consumption should be less
than this due to utilizing the sleep modes while waiting
for the next sample to arrive, however, an exact
calculation requires knowledge of time frame of the
power measurement in (W/t) and we could not find this in
the datasheets.

6. Alternative Recognition Techniques

We have considered using the maximum likehood
estimates for the densities representing contexts. Several
alternative recognition techniques could be considered.
For example, in some previous experiments, we have
experimented with the self organizing map (SOM).
Though it is considered as a fast-acting algorithm with
few resource-constraints, implementing the SOM on a
microcontroller will limit its performance dramatically.
We achieved maximally a one-dimensional map of 25
units, which has proven to limit the capabilities of the
SOM especially in the number of target contexts.

One could also pose this problem as a recognition of the
sequences between the states, in which case models such
as hidden Markov models (HMM) could be useful. An
HMM is defined compactly with the parameters λ = (П,
A, B), where П represents the initial distribution, A
represents the transition matrix and B represents the
output probabilities at each state. For comparison
purposes, we can assume that the training of these model
parameters will be done beforehand and only the Viterbi
decoder will be implemented on the microcontroller.
Computational requirements for Viterbi decoding depends
on the length of the sequence and a simple decoder will
have a complexity of O(c2T), where c is the number of
states and T is the length of the sequence[3]. We have not
modeled this data using HMMs, however, our feeling (by
looking at problems HMMs have been applied to) is that
between 1-3 states should be sufficient to model this data
with HMMs. In the lower end of the state count, the
number of operations could be relatively similar;
however, the number of operations will increase as more
states are needed.

7. Conclusions

We believe that it is important to incorporate data
processing closer to the sensors in the signal flow path
between processor(s) and sensor(s) in order to save
power, cost and meet real-time operation requirements.
Using modeling techniques from standard statistics,
simple contexts can be distinguished at such a level.
Although this could be helpful to any application, it is
especially valid in the case of mobile or wearable
systems.

Given the clear trend in combining communication and
computation capabilities with sensors, see [5] and [9],
algorithms that are sensitive to power (both computational
and electrical) will play a role when we distribute several
smart sensors around our bodies or devices within our
environment. In this case, distributing computation will
also reduce the load on a central computer (if one exists)
and makes the system robust to failures. We have
presented some initial ideas on how contexts provide
added value to a system and discussed techniques to
achieve that efficiently.

Acknowledgements
We would like to thank Francois Berard, Jim Crowley,
Daniel Hahn, and Martin Strohbach, for their support, and
especially Albrecht Schmidt for assistance in the
hardware development. Kristof Van Laerhoven is funded
by the Equator IRC, supported by EPSRC. Ozan
Cakmakci is funded by GLOSS, supported by the EC’s
Disappearing Computer initiative.

References
[1] Van Laerhoven, K. and Cakmakci, O., "What Shall

We Teach Our Pants?," Proc. 4th Int'l Symp.
Wearable Computers (ISWC 00), IEEE CS Press,
Los Alamitos, Calif., 2000, 77-83.

[2] Clarkson, B., K. Mase and A. Pentland.
Recognizing User Context via Wearable Sensors.
Proc. 4th Int’l Symo. Wearable Computers (ISWC
00), IEEE CS Press, Los Alamitos, Calif., 2000.

[3] Duda, Hart and Stork. Pattern Classification.
Wiley. 2001.

[4] Fukunaga, K., Introduction to Statistical Pattern
Recognition. Morgan Kaufmann. 1990.

[5] Lee, K. “IEEE 1451: A standard in support of
smart transducer networking”. IEEE
Instrumentation and Measurement Technology
conference, Baltimore, MD, USA, May 2000.

[6] Etienne-cummings, R. “Intelligent robot vision
sensors in VLSI”. Autonomous Robots 7, 225-
237, 1999.

[7] Kamijoh, et.al. “Energy trade-offs in the IBM
Wristwatch computer”. Proc. 4th Int'l Symp.
Wearable Computers (ISWC 01), IEEE CS Press,
Los Alamitos, Calif., 2000, 133-140.

[8] R. Picard. Affective Computing. MIT Press, 1997.

[9] Holmquist, L.E., Mattern, F., Schiele, B.,
Alahuhta, P., Beigl, M. and Gellersen, H.W.
Smart-Its Friends: A Technique for Users to Easily
Establish Connections between Smart Artefacts,
Proc. of UBICOMP 2001, Atlanta, GA, USA,
Sept. 2001.

[10] Gellersen, H.W., Beigl, M, Krull, H. The
MediaCup: Awareness Technology embedded in
an Everyday Object. In H. Gellersen(Ed.)
Handheld and Ubiquitous Computing, Lecture
Notes in Computer Science No. 1707, Springer-
Verlag Heidelberg: 1999.

[11] Weiser, M. “The Computer for the 21st Century.”
Scientific American, Vol. 265, No. 3, September
1991.

[12] Belkna, R., Riseman, E., and Hanson, A. “The
information Fusion Problem and Rule-Based

Hypotheses Applied to Complex Aggregations of
Image Events”, Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, 227-
234, 1986.

[13] Minksy, M. The Psychology of Computer Vision,
P.Winston (Ed.), McGraw-Hill, 1975.

[14] Strat, T.M., and Fischler, M.A.,
Context-Based Vision: Recognizing Objects Using
Information from Both 2-D and 3-D Imagery,
PAMI(13), No. 10, October 1991, pp. 1050-1065.

[15] Starner, T.,S. Mann, S.,B. Rhodes, B.,J. Levine, J.,
Healey, J.,D. Kirsh, D.,R. Picard, R.,A. Pentland,
A., “Augmented Reality Through Wearable
Computing,” Presence: Teleoperator and Virtual
Environments, Vol. 6, No. 4, pp. 386-398, August
1997.

[16] Want, R.,A. Hopper, A.,V. Falcao, V., and J.
Gibbons, J. . “The active badge location system..”.
ACM Transactions on Information Systems,
10(1):91-102, January 1992.

[17] Athas, W.C., "Energy-recovery CMOS". In
Rabaey, Pedram (Eds), Low Power Design
Methodologies, Kluwer, 1996.

[18] Pouwelse, J., Langendoen, K., Sips, H., Voltage
scaling on a low-power microprocessor, J.
Pouwelse, K. Langendoen, H. Sips, Mobile
Computing Conference (MOBICOM), Jul 2001

[19] Lamming M. G. and W. M. Newman, "Activity-
based Information Retrieval: Technology in
Support of Personal Memory", in Proceedings of
12th World Computer Conference, 1992.

[20] IBM wristwatch computer project webpage. March
22,2002.
http://www.research.ibm.com/WearableComputing
/collaboration/ibmcitizen.html

[21] Dey, A.K.Understanding and Using Context
Personal and Ubiquitous Computing Journal, Vol.
5 (1), 2001, pp. 4-7.

