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Abstract This article proposes an operational definition of the notion of context for the
design and development of context-sensitive systems. Our definition draws
upon the distinction between the notion of an instant snapshot of observables
(a situation) and the composition of these observables over time (a context).
Observables and their relationships, which are elicited at the design stage of
the development process, can be mapped, at the implementation phase, as
colonies of contextors. A contextor is a software abstraction that models rela-
tionships between observables. Contextors share a common 1/O structure in-
cluding control channels and meta-data to ensure and express QoS (e.g., preci-
sion, stability), as well as common properties such as reflexivity and rema-
nence. They can be combined as oriented graphs or encapsulated into higher
computational units.
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1. INTRODUCTION

Since the mid-eighties, context has been considered as an important ele-
ment in the design process of interactive systems. However, context was as-
similated to the workplace and the workplace served as the foundation for
contextual design [3]. With the advent of mobile devices and the availability
of worldwide digital networks, the workplace is no longer limited to the con-
fined space observed at design time. Tasks that have been modeled for a par-
ticular environment may now be accomplished in multiple settings using dif-
ferent interaction devices. From context-confined, interactive systems are
progressively becoming context-sensitive and/or context-aware.
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Early experiences show that context-sensitivity is a tricky problem. For
example, Cheverst et al. report that using context to simplify users’ tasks is
sometimes perceived by users as system preemption [7]. If the research
community aims at developing context-sensitive systems that are effective
for humans, we need to devise an operational model for the notion of context
that can be used and refined at every step of the development process. The
framework developed by Thevenin et al. is an example of how such a con-
text model can be used in the development process of plastic user interfaces
[5,6,21].

Although many papers in the literature make reference to context, there is
no clear widely agreed definition [24]. In the next section, we present a brief
analysis of the state of the art in context-aware computing that elicits the key
concepts related to context. From these concepts, we then elaborate our own
definition in Section 3. This conceptual abstract definition is then refined in
Section 4 from an external user-centered perspective into an internal compu-
tational model called a contextor.

2. ANALYSIS OF THE STATE OF THE ART

In 1994, Schilit and Theimer define context as the location and the iden-
tity of “the collection of nearby people and objects, as well as changes to
those objects over time” [18]. According to Schilit et al., context analysis
boils down to answering the Quintilian questions such as “Where are you,
Who you are with, Which resources are nearby? When this happens? Etc.”
[1,19]. Environmental entities including the season of the year, time of the
day, and room temperature, are part of the context [4]. From these early
studies, we observe that state and time are two key underlying concepts for
context awareness [22].

Later, Pascoe introduces the notion of relevance: context is a subset of
physical and conceptual states that may be “relevant to a particular entity”
[15]. According to Dey, an entity is “a person, place, or object that is consid-
ered relevant to the interaction between a user and an application, including
the user and the applications themselves” [8, 9]. Surprisingly, it is only re-
cently that relevancy is considered in relation to the user’s task.

In summary, the state of the art related to context-aware computing brings
in the following key concepts: state, time, relevancy to user’s task and enti-
ties of which location and physical environment are first class components
[10, 12, 22]. None of the definitions makes it explicit the composition of
states over time and none of them explicitly considers the user as central.

We propose an operational definition for the notion of context that bun-
dles the key concepts drawn from the literature, but where the user and the
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task are first class entities, and where relevant states are composed over
time. Instead of referring loosely to context (without specifying its purpose),
we consider more appropriate to use the term context of interaction. Thus,
our definition of context is with respect to interaction.

3. THE NOTION OF CONTEXT

We elaborate our own definition of context in five points:

— The definition per se in general terms,

— The refinement of the definition in terms of gross and net contexts, of
user and system contexts, and of observed and observable contexts,

— The notion of peripheral state variables, one of the key items of a context,

— The composition function used to express the effect of past on context,

— A generalization of our definition of context in relation to ubiquitous
computing, extending our user-centered perspective to an agent view
whether agents are humans or artefacts.

3.1 Definition

Our definition of context draws upon the notion of situation. A situation
at time t is a state vector, that is a set of observables at t. Context at t is a
composition of multiple situations over a period of time. In addition, a situa-
tion as well as a context do not exist as autonomous things: they are always
related to something. In the case of interest, they are related to users in-
volved in a particular task. More precisely:

Given a set of users, U, a task, T, and two instants of observation, t, and
t, where t, is the temporal reference for observations, the Context at t that re-
lates to U for performing T, is the composition of the Situations observed be-
tween t, and t that relate to U for performing T.

context """ (t) = COMPOSITION (situation """ (), ... , situation "' (1))
where :

situation " (t) is the Situation at t that relates to U for performing T.

The Situation, situation ”" (t), is the set of the values observed (or ob-
servable) at t of the peripheral state variables that relate to U for performing
T, as well as their relations.

Peripheral state variables denote the entities that are not central to U at t
for performing T, but that may have an impact on T, now (i.e., at t) and/or in
the future(i.e., at t+dt).

The impact of peripheral state variables on a task may be one of the fol-
lowing;:

— The task is aborted,
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— The task is suspended, then resumed,

— The task is carried out but the nominal expected quality of the task is
likely to be altered (for better or for worse). The quality of the task exe-
cution may be measured in terms of the quality of its product, the dura-
tion, the robustness (e.g., the number of user and/or system errors), etc.
The choice of U, the selection of the instants of observation t, and t, the

granularity of the task and time, as well as the nature of the peripheral state

variables are left opened: It is up to the designers to make the decision de-
pending on the step in the design process as well as on the level of precision
required. For example,

— U may denote a single user, a class of users, multiple classes of users, the
whole humanity. The choice depends on the degree of precision that the
designers are seeking for;

— tp, which is the temporal reference for elaborating a context, may denote
the starting time of the session. It may correspond to the beginning of the
execution of the task, to a new day or year, or to any event relevant to the
case at hand;

— The granularity of a task can be measured by its depth within the task
model that the computer system is supposed to support. (A computer sys-
tem is composed of multiple software components that interoperate. It
ranges from closed applications as we now them today, up to world-wide
computing as envisioned by Weiser [23]) In classic HCI, a task model is
a hierarchical decomposition of tasks where a task is defined by the cou-
ple “goal, procedure”. The goal describes the system state that the user
desires, and the procedure corresponds to the plan(s) available to reach
the goal. The designer may decide that only specific subtasks of the task
tree should be concerned with context-sensitivity. Conversely, the root of
the tree will be considered if, from the analysis of the users’ needs, con-
text-sensitivity applies to the whole system.

— The granularity of time intervals ([t,, t], dt) depends on the types of the
state variables to be observed and/or the quality requirements defined
early in the development process. For example, considering changes of
light conditions, a time interval of 1 minute is reasonable for supporting
the self-calibration of a computer vision algorithm, whereas 15 minutes is
appropriate to automatically control the lights in the home.

— Peripheral state variables are discussed next.

3.2 Peripheral state variables
The peripheral state variables that relate to a user U for performing a

task T are those variables that are not central but that may have an impact on
the task, now or in the future. The central state variables that relate to U for
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performing T denote the concepts that U necessarily manipulates (literally or
mentally) for achieving T.

For example, consider the task of withdrawing money from a teller ma-
chine. The amount of money to be withdrawn and the state of the bank ac-
count are central to the task, whereas people waiting in line are peripheral.
However, because the line is long, one may decide to skip the subtask that
consists of checking the money left in the bank account. The peripheral state
variable, length of the line, has an impact on the execution of the task. In our
example, a subtask of T, checking the bank account, is not accomplished.
The impact of the length of the line is the immediate abortion of T.

Note that state variables that are peripheral for T and U may be central for
another task and/or for another set of users. Central and peripheral states
variables are identified by the designers using sound design approaches such
as Suchman’s Situated Action approach [20], Activity Theory [2], Distrib-
uted Cognition [11], or Contextual Design [3, 13]). Central variables are
subsequently conveyed in task models (e.g., GOMS, ADEPT, DIANE), as
task parameters or objects. Unfortunately, peripheral state variables are not
explicitly expressed in current task models. As a result, they are lost during
the development process. In ARTstudio, a software tool that supports the de-
velopment process of plastic user interfaces, we have extended ConcurTask-
Tree [14] by ordering state variables so that when screen estate is insuffi-
cient, secondary variables are not observable but browsable [5].

Variablen _
Variable 7
Variable 6
Variable 5
Variable 4
Variable 3
Variable 2

Variable 1 _

Physi‘cal Soc Eal Sys t‘cm Us‘cr

vi ro nme nt Environme nt Environme nt Environme nt

[es}

Figure 1. A simple classification space for eliciting and organizing peripheral state variables.

Because peripheral state variables potentially cover the entire universe, it
is important that they be identified early in the design process. To assist the
identification and classification process, we suggest to use the design space
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shown in Figure 1. A peripheral state variable V; may belong to one or sev-

eral of the following classes:

— The physical environment covers the peripheral state variables that char-
acterize the physical spaces and places [12] where task T is likely to be
performed by users U. Such characteristics include light conditions, tem-
perature, and noise level. They cover architectural characteristics such as
connectedness, as well as social values (a house is distinct from “home™).
They also include real world objects such as chairs, pencils, and toys.

— The social environment denotes the people that are in the physical envi-
ronment in relation to T and U: people waiting in line, colleagues that
may come in, friends that we are likely to meet at the airport, family
members, a companion robot, etc.

— The system environment covers the computational, communicational and
interactional resources available or potentially available to U for accom-
plishing T (e.g., a PDA versus a PC or a mobile phone, or any augmented
object.

— The user environment corresponds to the characteristics of U with regard
to the task T (e.g., expert in the domain covered by the task, special needs
and preferences in relation to T, etc.).

33 Refinement: System and User Contexts, Gross and
Net Contexts, Observed and Observable Contexts

In HCI, it is good practice to analyze a problem from at least two com-
plementary perspectives: that of the user and that of the system. For exam-
ple, one should check whether the dialogue controller of a running system is
compliant to the task model defined during the design phase. For this reason,
we need to consider the context and the situation both from the user and the
system perspectives. As shown in Figure 2, we introduce the notions of user
context and of system context and relate them to the gross and net contexts.
The same lines of reasoning hold for situations.

The gross context at t that relates to U for performing T, context "¢ (1),
is the composition of all of the gross situations that have been observed be-
tween t, and t and that relate to U for performing T.

The gross situation at t that relates to U for performing T, situation “’
(t), includes all of the universal facts (variables and their relations) observed
(or observable) at t that relate to U for performing T.

The system context at t that relates to U for performing T at t, context *’s
(1), is the subset of the gross context, context ”’ (%), that the system is con-
cerned with at t.
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Similarly, the user context at t that relates to U for performing T, context
YT, (¥), is the subset of the gross context, context U’ (f), that the user U is
concerned with at t.

The net context at t that relates to U for performing T, context Y7y (¥), is
the subset of the gross context, context ur . (1), that the user and the system
have in common at t. Thus, by definition:

— context ", (0) = situation *"; (0) for 0i O[G,S,U,N]

— 0t>0, context '; (t) = situation ""; (t) O context ' (t-1) where [ de-
notes the composition operator and i [G,S,U,N]

— Ot=0, situation "'y (t) = situation """y (t) N situation "'g (t) = situation

YTs (t) n situation "'y (1)

Gross @ntext
caext ; (1)

Systm Gnext "

context wv( (] e

ObsavableOlserved cattext " (1)
Obsavable/Obered

Figure 2. Relations between Gross, Net, User and System contexts.

As shown in Figure 2, the adjectives « observable » and « observed »
make explicit the distinction between the design phase and the run time
phase of the development process. In the design phase, designers specify the
peripheral state variables that should be observed at run time. We then refer
to the observable context and to the observable situation. They are poten-
tially observed. At run time, they are effective: peripheral state variables, ei-
ther are observed effectively or not observed at all due, for example, to some
system or user failure or to a loss of conformity between the design and the
implementation phases.

The refinement of the notion of context (situation) as observed or observ-
able, the distinction between Gross, Net, System and User contexts provide a
means to define quality metrics for context-aware computing. For example,
the cardinality of the Net Context is a way to measure the conformity of the
system context sensitivity to users’ expectation. A cardinality close to 0
would mean that the context sensitivity of the system is nearly of no use to
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the user. Similarly, the cardinality of the System Context compared to that of
the Gross Context expresses the intrinsic sensitivity of the system. A cardi-
nality of 0 denotes a context-unaware system. The comparison between an
observable context and its corresponding observed context may provide
some useful insights into the design process and/or on the human and system
behaviors.

Having defined the foundations for our notion of context, we need to pre-
sent one of its key components: the peripheral state variables.

3.4 Composing Situations

According to our definition, a context that relates to users U for a task T
results from the composition of a set of situations. As shown in Figure 3, the
composition can be modeled as a two-step process:

— For every situation S considered as part of the context, the peripheral
state variables of S are labeled with the time of S. Then the situations
considered in the context are combined using the Union operator on sets.
So far, the relationships between state variables are kept unchanged.

— The second step consists of modifying the relations between state vari-
ables: new relations are created whereas others may be deleted.

<Va t> <V t>

R » <V, t>
¢ Compositigy ompositiol >
' <V|, tj> <V2, tj> <V14 tj> <V24 tj>
|l|] V3’ > I[ <V3< t>
<Vs > tep 2 <Vs, t>
<V7.t> <V t>

Situation S; Situation §;

Composition §; S;

Figure 3. Capitalizing Situations to elaborate a Context.

For example, in Figure 3, Variables V; and V; express the temperature of
the room in Farenheit and Celsius respectively. In the situation S;, relation R;
indicates that at t;, V; is derived from V; whose value is produced by a
physical sensor (e.g., a thermometer). At t; (t>t;), because the Celsius ther-
mometer is out of order, V; does not belong to S; anymore. However, an-
other device has been able to record the value of V5 at time t;. This value is
represented by V7 in S;. In addition, at t;, a Farenheit thermometer has re-
placed the faulty Celsius device, hence the presence of V, in S;. The right-
most picture of Figure 3 shows the set that describes the context at t; after the
composition function has been applied to S; and S;: the faulty thermometer
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has been replaced by a new one, hence the presence of the couple “V, t;”.
Because the value of V; at t; may be useful in the future, it is kept in the con-
text. Relation R; between V; and V; at t; has been suppressed and replaced
by a relation between V; and V.

Composition is a kind of history function that involves the emergence of
new relations and peripheral state variables as well as the destruction of old
ones. Although the concept of composition is easy to grasp, it requires well-
thought design methods as well as sophisticated run time mechanisms. Run
time mechanisms must be able to support the dynamic creation of relation-
ships as well as the capacity to synthesize new peripheral state variables.
Conversely, they must be able to eliminate (“garbage collect”) useless state
variables and relations. The risk is to erase information that may be useful in
the future.

3.5 Generalization of the Notion of Context

We believe that context and situation can only be defined with respect to
an entity for a given purpose. So far, we have developed the concept of con-
text (and situation) in relation to a particular class of entities, the “user”, for
a particular class of purposes, the users’ “task”.

One way to generalize our definitions is to extend the scope of our first
class entity to that of agents. An agent may be a human or a computational
artefact such as an augmented physical object that interacts with the world,
including humans. Thus:

Given a set of agents, A, a task, T, and two instants of observation, t, and
t, where t, is the temporal reference for observations, the Context at t that re-
lates to A for performing T, is the composition of the Situations observed be-
tween t, and t that relate to A for performing T:

context ' (t) = COMPOSITION (situation ™" (t,), ..., situation " (1))

This generalization opens new issues including:

— Agents have different time scales. How can these be reconciled?

— What are the appropriate agents?

— What are the relationships between agent contexts?

— From an ethical perspective, how can we insure that the human agent has
control over the computational world that is supposed to serve him?

In the following section, we describe the notion of contextor, a computa-
tional model we have derived from our definition of context.
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4. CONTEXTOR: A COMPUTATIONAL MODEL
FOR CONTEXT

Our notion of contextor is a conceptual extension of the context widget
implemented in the Context Toolkit [17]. We first present the definition of a
contextor followed in 4.2 by a taxonomy based on the functional aspect of
contextors. Then, in 4.3, we show how contextors can be combined into
richer computational units. Whether contextors are simple or composed,
their properties, described in 4.3, have an impact on implementation mecha-
nisms illustrated in 4.4.

4.1 Definition

A contextor is a software abstraction that models a relation between vari-
ables of an Observed System Context. As defined in Section 3.3, the Ob-
served System Context is the composition of situations as observed by the
system. From the values of a set of variables of an Observed System Con-
text, a contextor returns the value of a variable (or of a set of variables) that
belongs to that context.

As shown in Figure 4, a contextor is comprised of a functional core and
of typed input and output communication channels.

Cont rol -In

Data -In
Data -Out

Functional
Cor e

Metada ta-Ou t
Metada ta-In

Cont rol-Out

Figure 4. A graphical representation of a contextor.

The functional core of a contextor implements a relation between vari-
ables of the Observed System Context. For example, in Figure 3, relation R1
between variables V1 and V3 of situation Si can be computationally repre-
sented by a contextor whose functional core consists of translating Farenheit
data into Celsius representation.

The input channels of a contextor are of two types:

— Data-In corresponds to the variables of the Observed System Context
that are used as inputs by the functional core of the contextor. Every in-
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put value is decorated with a Meta-data-In that expresses the quality of
the input value.

Control-In corresponds to commands received from other contextors to
set the internal parameters of the contextor. These parameters concern the
functional behavior of the contextor as well as the non-functional behav-
ior such as the QoS (Quality of Service) expected by other contextors.
For example, a contextor may receive a “switch off” command on its
Control-In because it has been recognized as faulty by another one. Or, it
may receive a QoS request that expresses the level of precision of the
values delivered on the Data-out channel.

Symmetrically, the output channels of a contextor are of two types:
Data-Out corresponds to the values of some variables of the Observed
System Context returned by the contextor. As for input, output data are
decorated with Meta-data-Out that describes the quality of the output
produced by the contextor.

Control-Out is used by the contextor to send control commands to other
contextors. For example, based on the meta-data associated with the data
received from a contextor C, a contextor may decide to send a “switch
off” command to C.

In addition,

a Data-In channel receives data from a Data-out channel whose data type
is compatible with that of the Data-In channel.

a Control-In channel receives data from a Control-Out channel whose
data type is compatible with that of the Control-In channel.

The connections between input and output channels may be static (i.e.,
wired by the implementer) or semi-static (i.e., computed at run time when
the system is launched), or transient (i.e., may be changed dynamically).
Given a contextor C, a source contextor is a contextor that provides C

with Data-In values, and a sink contextor is a contextor that receives Data-
Out values from C.

4.2 Taxonomy

By analogy with the software tools and concepts developed in Human

Computer Interaction, we propose a taxonomy for contextors based on the
recurrence of the functional requirements of context aware systems. Table 1
shows an overview of the different types of contextors that we present in
more detail in the following subsections.
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Table 1. Contextor types based on their functional core. X, Y, Z denote distinct data types, but
Z is at a higher level of abstraction that X and Y. {X} represents a set of values of type X.

Contextor Sensor con- | Number | Number Input data Output data
type nectivity of input | of output types types
channels | channels

Elementary Yes 0 1 - X

History No 1 1 X {X3}

Threshold No 1 1 X Boolean

Translator No 1 1 X Y

Fusionor No 2 or 1 X, X X
more

Abstractor No 1 or 1 XY Z
more

4.2.1 Elementary Contextor

An elementary contextor has no Data-In Channel. It offers a convenient
way to encapsulate a physical sensor such as a thermometer, or any compu-
tational component that can be used as a source of physical data.

Control-In

Data-Out X

) >

Meta-data-Out

Control-Out

Figure 5. The elementary contextor.

For example, suppose we encapsulate a video camera within an elemen-
tary contextor. Then, Data-out corresponds to the video flow of images,
Control-in allows other contextors to set the video rate, as well as the pan-
tilt-zoom factors of the camera. Meta-data-Out can be used to express the
resolution, the number of bits per pixel, and more generally, any factor that
qualifies the images delivered by the contextor. Control-out is used by the
contextor to acknowledge the execution of the commands received through
the Control-in channel.
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4.2.2 History Contextor

A history contextor saves the values and their meta-values that it has suc-
cessively received through its Data-In channel. For example, the Data-In
channel of a history contextor receives temperature values provided by a
Thermometer elementary contextor. By definition, the history contextor
saves the values it receives. Its Control-in channel allows other contextors to
set the number of values to be maintained or the time interval before initiat-
ing garbage collection. Through its Control-Out, the history contextor is able
to notify source contextors to slow down their emission flow rate because
out of memory is nearly reached.

Control-In

Data-in X Data-Out {X}

>

Buffer II

Meta-data-In Meta-data-Out

Control-Out

Figure 6. History contextor.

4.2.3 Threshold Contextor

A threshold contextor returns true if the Data-In value satisfies a threshold
condition, false otherwise.

Control-In

Data-In X Data-Out Boolean
Meta-data-In @ Meta-data-Out

Control-Out

Figure 7. The Threshold contextor.
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For example, suppose a threshold contextor receives temperature values
from a thermometer elementary contextor. Data-Out expresses the answer to
the question “Is it hot?”. The Control-In channel allows the sink contextor to
set the temperature threshold. Typically, in winter, the threshold would be
set to 22°C whereas 35°C would be more adequate for summer. Through the
Control-Out channel, the threshold contextor can notify its source contextor
to change the flow rate of its Data-Out channel.

4.2.4 Translation Contextor

A translation contextor performs type recasting but does not change the
meaning, nor the level of abstraction of the values received on the Data-In
channel.

Cont rol-In

Data-ln X Data-Out Y

>

Meta-dat a-In Meta-dat a-Out

Control-Out

Figure 8. The Translation contextor.

For example, a translation contextor is used to transform input tempera-
tures from one representation system to another (for example Celsius, Faren-
heit, Kelvin). The Control-In channel allows the sink contextor to set up the
desired data type for the Data-Out channel.

4.2.5 Fusion Contextor

The Fusion contextor has multiple Data-In of the same type, each one
with its own meta-data. The role of the fusion contextor is to produce a sin-
gle Data-Out of the same type whose quality has been improved over that of
the input data. Typically, a fusion contextor receives the number of persons
in a room both from a video tracker and an audio tracker. It renders the
number of people in the room but with a better confidence factor than that
provided by the video and the audio trackers. Control-In is used to express
the relative importance of the source contextors, whereas the Control-out
sends commands to source contextors such as start/stop sending values.
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Control-In
Data-In X, X |:> Data-Out X
Fusion ——
Meta-data-In |:> eta-data-Out

Control-Out

Figure 9. The fusion contextor.

4.2.6 Abstraction Contextor

The Fusion contextor has multiple Data-In. The role of the abstraction
contextor is to produce a single Data-Out whose type is at a higher level of
abstraction than that of the input data types.

Control-In

Abstraction)

Control-Out

Data-In X, Y Data-Out Z

>

Meta-data-Out

Meta-data-In

Figure 10. The abstraction contextor.

Example: A source contextor provides an abstraction contextor with the
weight of moving things on the floor of a museum room. Another one pro-
vides the abstraction contextor with the ambient temperature of the room.
From these two input streams, the abstraction contextor returns the level of
occupancy of the room.

So far, we have introduced the basic classes of interactors. In the follow-
ing section, we consider their composition.
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4.3 Composing Contextors

Contextors may be composed in two ways: through data channels connec-
tion and via encapsulation.

4.3.1 Data Channels Connection

Contextors are composed by connecting Data-In channels with compliant
Data-Out channels to form an oriented graph. Two channels are compliant if
they convey data of the same type. As shown in Figure 11, the resulting ori-
ented graph forms a colony of contextors. A colony of contextors is an ori-
ented graph where Data-In channels are connected to compliant Data-out
channels. Source interactors at the base of the graph are elementary contex-
tors. Contextors at the top of the graph provide applications with contextual
data at the appropriate level of abstraction.

Applicationl | | Application2

A

O

Figure 11. A colony of contextors.

We have not devised yet the connection rules between control channels. For now, we can
say that the Control-in channel of a contextor is connected to the Control-out channel of its
sink contextors. Consequently, the Control-out channel of a contextor is connected to the
Control-in channel of its source contextors.

4.3.2 Encapsulation

Encapsulation is used to group a colony of contextors as a new class of
contextor whose internal composition is hidden to other contextors. Figure
12 shows an example of an abstraction contextor built from a colony of sim-
pler contextors.
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Figure 12. A colony of contextors encapsulated as a reusable class of contextors.
4.4 Quality of Service and Properties

In a world of uncertainty, the system must be able to auto-evaluate the
quality of the services it provides in order to adapt its behavior. As a result,
contextors are capable of measuring their own QoS.

So far, we have identified metrics for elementary contextors. These in-
clude: resolution, latency, sample rate, stability, field of perception, field of
action, autonomy, etc. (see [16] for more details).

In addition, a contextor satisfies the following properties:

— Reflexivity: a contextor is auto-descriptive so that its class as well as its
input and output channels are discovered by other software components
(including other contextors). In addition, reflexivity provides the contex-
tor with the capability to adapt its behavior based on the QoS requests re-
ceived through its Control-In channel.

— Remanence: a contextor is able to disappear from its colony and, if nec-
essary, to restore its state when resuming its execution within the colony
(or within another colony).

— Mobility: a contextor may migrate within its colony by dynamically re-
configuring the connectivity of its input and output channels.

4.5 Illustration

To test our notion of contextor, we have implemented a server of contex-
tors in Java. In this environment, a contextor is an autonomous software
component with a life cycle that includes the following states: the contextor
exists as a file but is unknown from the server; the contextor is identified by
the server but is not running; the contextor is running; the contextor is sus-
pended. The details of the contextors server can be found in [16].

Figure 13 shows a simple contextor-based system that we have developed
as an answer to a real life experience. In our lab, coffee cups are shared re-
sources. As such, they are supposed to be kept in the cafeteria, at all time.
However, we often end up sipping our coffee in the office and forget to bring
the cups back at the appropriate location. As a result, flame messages are
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sent through email by the first person with no coffee cup available. Our sys-
tem is aimed at automatically sending a warning email message when the
number of cups available in the cafeteria is below a threshold.

Our contextor-based system includes 2 elementary contextors whose data-
Out channel is connected to the data-In channels of an abstraction contextor:
the first elementary contextor encapsulates a camera sensor whose function
is to count the number of cups in the cafeteria. The second elementary con-
textor computes the threshold whose value depends on the time of the day as
well as on the date. The abstraction contextor synthesizes a new variable
“cups will soon be missing” at the appropriate level of abstraction. The value
of the variable is sent to the application which in turn can broadcast a warn-
ing message to the people of the lab

Figure 13. On the right, the scene as captured by the video contextor. On the left, the small
red windows pops up to notify that cups should be brought back to the cafeteria.

5. CONCLUSION

In this article, we have presented a working definition for the notion of
context for the design and development of context-sensitive systems. This
definition draws upon the following key ideas:

— The distinction between the notion of an instant snapshot of “things” in
the form of a state vector (a situation a t), and the composition of these

state vectors over time (a context at t),



Foundations for a theory of contextors 301

— The distinction between the user’s view and the system’s view of context
(and situation), and their intersection to form the net context (situation).
In turn, the cardinality of the net context can be used as a basis for
evaluation,

— The distinction between the designer’s view (the observables) and the run
time view of context (the effectively observed variables) and their inter-
section usable as evaluation metrics,

— The transposition of the relations between the observables as software
abstractions (the contextors),

— A common I/O structure for all contextors including control channels to
ensure and express QoS (e.g., precision, stability), as well as common
properties such as reflexivity and remanence,

— The definition of core contextors serving recurring functional require-
ments in ubiquitous computing (sensor encapsulators, translators, ab-
stractors, etc.),

— The composition of contextors as oriented graphs or encapsulated into
higher computational units.

There are very few tools available for the development of context aware
systems. The Context Toolkit is a notable exception [17]. Although similar
in spirit, the contextor model applies in a more systematic way at every level
of abstraction. One important aspect of the contextor is the notion of meta-
data and control. Salber introduced similar ideas, but with subtle differences.
In particular, in the contextor model, meta-data are not sent on a separate
channel: they are decoration of the data in order to insure synchronicity. In
addition, we generalize the role of the control channels as a way to dynami-
cally express Quality of Service.

Although our model of context and contextors needs to be evaluated
against large scale applications, it sets the foundations for a systematic ap-
proach to context-aware computing.
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