
CatchIt, a Development Environment for Transparent
Usability Testing

Gaëlle Calvary Joëlle Coutaz
CLIPS-IMAG

BP 53
F-38041 Grenoble Cedex 9, France

Phone: +33 4 76 51 48 54
{Gaelle.Calvary, Joelle.Coutaz}@imag.fr

ABSTRACT
No existing tool addresses both the development and
evaluation process for interactive systems. Current
evaluation tools support either the predictive or the
experimental approaches to usability testing, and automated
tools that make possible experimental evaluation impose a
tricky manual instrumentation of the existing code. In this
paper we describe CatchIt, a development and usability
testing environment, to respond to these limitations using
work domain descriptions as the central foundation. Within
CatchIt, work domain descriptions define a reference model
that serves two complementary purposes: the model can be
used as reusable code from which a new application can be
built or it can be used as a standard against which new
applications can be tested. Evaluation, whether it be
predictive or experimental, consists of the automated
detection of deviations of the new application from the
norm defined by the reference model. The reference model
evolves over time based on the accumulation of past
experience. As such, it supports traceability and evolutivity
of the corresponding work domain.

Keywords
Usability testing, reusability, traceability, model-based
specifications.

INTRODUCTION
In recent years, usability testing has been the subject of
growing interest, resulting in an explosion of methods and
techniques. Although the HCI scientific and industrial
communities acknowledge the merits of user interface
evaluation, usability testing is still considered to be time
consuming, unreliable, and based on expert experience [18].
In practice, usability testing is, at best, summative, i.e.,
performed at the end of the development process under
temporal and financial pressure. For critical systems such
as those described in [15], the adequation of man-machine
interaction is not a luxury, but a necessity [14]. The
increasing complexity of on-board systems [3] exacerbated
by tight competition, militate in favor of rigourous
methods. Previous experience shows that domain
knowledge provides sound foundations for such methods.

We observe that knowledge about the work domain is used
explicitly at the specification and design stages of the
development process; it motivates technical decisions; it
shapes the definition of the final product. However,
important information about the work domain is lost on

the way between the early phases of the development
process and the implementation phases. As a result, the
design rationale may not be understood by or accessible to
the software development team [26]. Deviations from the
intended design may occur. In addition, developers tend to
view interaction as a set of functional issues rather than as
operational concerns situated in a context of use. These
problems result primarily from the lack of continuity in the
development process. They may be solved by a better
capitalization of knowledge and traceability along the
development process.

Capitalization can be improved through the formal
description of the work domain. Although the cost/benefit
of formal descriptions is still unclear to most designers
[16], reusability offers an attractive way for alleviating
costs. The industrial trend for specialization, the push of
the competition, and the advent of object-oriented
technology, all motivate the concept of reusability. Work
domain descriptions capture the current expertise of a
company for that particular domain. Reusability of work
domain descriptions supports the accumulation of expertise
across time. In turn, accumulation of expertise increases
competitivity. For critical systems whose complexity
continue to increase, reusability of work domain
descriptions is becoming vital.

As shown in Figure 1, work domain descriptions can be
exploited in many ways: as a reference framework for
designing new applications within that work domain, as a
mechanism for supporting traceability and reusability, as
the grounding material for usability testing.

Design
Reference Framework

Traceability
Reusability

Usability
testing

Work Domain
Knowledge

Figure 1. Work domain knowledge as a facility for
usability testing, reusability, traceability, and a reference

framework for new designs.

This article describes CatchIt [6], a Critic-based Automatic
and Transparent tool for Computer Human Interaction
Testing. As discussed in the next section, no tool so far
addresses both the development and the evaluation process
of interactive systems. With regard to evaluation, current
tools support either the predictive or the experimental
approaches to usability testing. Automated tools that
support experimental evaluation impose a tricky manual
instrumentation of the existing code. CatchIt is intended to
fill these limitations using work domain descriptions as the
central foundation.

In the next section, we address the state of the art on
approaches to usability using work domain descriptions
and motivate the requirements for CatchIt. We then present
the principles of CatchIt in details and close the discussion
with the perspectives for this work.

STATE OF THE ART
Usability testing of complex systems requires computer
support to fit the temporal and financial constraints.
Unfortunately, current commercial products for evaluating
user interfaces are too limited in scope to be relevant for
critical systems. Within the research community, pro-active
and reactive tools have been developed to address usability
issues: pro-active tools aim at supporting the construction
of high quality user interfaces whereas reactive tools are
concerned with the evaluation of interactive systems.

Within the pro-active approach, model-based interface
builders have demonstrated the power of work domain
descriptions. They rely on declarative specifications of the
semantics of the domain as well as on any source of
knowledge useful for generating the rendering and the
dynamic behavior of the target system. Model-based
interface builders gather as much work domain knowledge
as possible, and aim at identifying reusable software
components. By doing so, they minimize the amount of
procedural code that needs to be implemented [35]. UIDE
[12], ADEPT [19], MECANO [31], FUSE [23], AME
[25], HUMANOID [37] and MASTERMIND [38] have
demonstrated the technical feasibility of the approach.

Within the reactive approach, some tools evaluate system
use while others support evaluation. The first category of
tools, such as OPADE [9], FRAMER [22], CRACK [10]
and JANUS-CRACK [11], provides the end-user with
explanations about the appropriate way of using the
system. They do not fit our concerns. Tools for evaluating
a particular design may be predictive or experimental:

• Predictive evaluation techniques allow the detection of
usability problems without testing the system with users.
Predictive approaches may be based on a theory: the
GOMS [7] and TAG families [30], PUM [41] and ICS
[4], are good examples of theory-based evaluation
methods. Alternatively, HCI heuristics may be used to
evaluate a user interface without user testing [28].
Computer tools that best illustrate the predictive
approach include GLEAN [20] a computerized version of
GOMS, KRI [24], SYNOP [21], CritiGUI [29], AIDE
[33] and USAGE [5].

• Experimental approaches, on the other hand, involve
end users participation. Typical illustrations of
experimental approaches include: interviewing the user,
observing and monitoring users' behavior using various
supports (e.g., usability lab, paper and pencil, wizard of
Oz apparatus) combined to multiple complementary
techniques (e.g., measurement tests, thinking aloud,
etc.). Computer-based tools for experimental evaluation
vary widely in terms of their functional coverage. For
example, Playback [27], NEIMO [1, 8] and
Hammontree’s system [17] favor the electronic recording
of behavioral data; MRP [34] and EMA [2] cover the
analysis of behavioral data and VDDE [36] is targeted at
explanations for phone-based interaction.

The analysis of the state of the art calls for the following
remarks:

• First, automated tools adhere to a single paradigm:
construction vs. evaluation. Although the UIDE interface
builder attempts to include GOMS-based evaluation, it
supports predictive evaluation at the keystroke level only.
In particular, it does not include the automatic
monitoring of users behavior to feed into experimental
evaluations.

• The automated monitoring of behavioral data requires
the source code of the user interface to be instrumented.
This programming task can be avoided by using a
modified instrumented version of widgets classes as
those provided in current user interface toolkits (Cf.
Hammontree’s approach [17]). This technique fails at
tracking user’s actions on work domain objects that are
not implemented as widgets. It does not either cover
events at high level of abstraction such as the beginning
or the end of a task. Our experience with NEIMO [8]
shows that instrumenting the code by hand at various
levels of abstraction is not only a time consuming task
but a source of programming errors.

• The output of an automated evaluation tool may range
from the replay of behavioral data to the automatic
correction of design errors. While replay is at too low a
level of abstraction and forces humans to perform a heavy
evaluation task, auto-correction is still unrealistic (and
probably not desirable) [2,1]. Detection and explanation
of anomalies is a reasonable medium range goal to
consider.

CatchIt aims at filling some of the above limitations while
exploiting successful current approaches and mechanisms.

CATCHIT
CatchIt is intended to cover both the development and the
evaluation process of interactive systems. With regard to
evaluation, it aims at supporting the predictive and
experimental approaches to usability testing. Work domain
descriptions provide the foundations for these goals. As
discussed above, they serve as a central mechanism for
traceability and reusability within a particular work
domain. In the next sections, we present an overview of the
functional coverage of CatchIt followed by a detailed

description of each of its components. The approach is
illustrated on a military application provided by
THOMSON-CSF Detexis. For reasons of confidentiality
and pedagogy, the case study is reduced to a single user
task: the monitoring of a tactical situation. A tactical
situation provides information about the surrounding
environment: for example, the position and speed of
objects (tracks) that have been detected by the embedded
equipments. In case of danger, the operator has to deploy
the right tactic. A maintenance mode is available to
maintain equipments. The CatchIt facilities as well as their
limitations in the current Smalltalk [13] implementation
are illustrated on this example.

Functional Coverage
As shown in Figure 2, an executable work domain model
forms the heart of the CatchIt environment. This kernel,
which can be generated from high level specifications,
defines a reference model. This reference model serves two
complementary purposes: it can be used as reusable code
from which a new application can be built using a browser
or it can be used as a standard against which new
applications can be tested. Evaluation, whether it be
predictive or experimental, consists of the automated
detection of deviations of the new application from the
norm defined by the reference model.

Generation of
Version 0
of the application

Generation of the
executable
Reference Model

Browser

CatchIt

Editing

Reuse
Evaluation

Specifications

Executable
Reference

Model

Predictive
evaluation

Editor

Generation

Experimental
evaluation

Generation
of an environment
for simulations

Figure 2. The functional coverage of CatchIt.

Experimental testing requires two extra mechanisms: code
instrumentation at various levels of abstraction and realistic
simulation of the operational context. Because code
instrumentation is a time consuming and error prone
process, it is generated automatically by CatchIt in a
transparent way. Figure 3 shows the principles: just like an
electro-cardiogram, CatchIt probes the application without
requiring programmers to modify their code manually.
Similarly, a simulation environment can be generated to
control the operational coverage of the tests.

CatchIt
User

Interface

Transparent probe

Figure 3. CatchIt as a probe for instrumenting the
application to be evaluated.

The reference model evolves over time based on the
accumulation of past experience. A dedicated editor can be
used to update the model accordingly.

The Reference Model
The reference model is an executable description of a
particular work domain. It aims at making explicit
information that programmers typically embed in an
implicit manner within the application code.

The CatchIt reference model covers three classes of domain
knowledge: domain concepts, operator’s tasks, and
operator’s strategies. Whereas a task prescribes the
procedures to reach a goal, a strategy expresses the
conditions under which a task or a set of tasks is
performed. Clearly, preconditions supported in formalisms
like MAD [32] encompass the notion of strategies within
the task description. However, the variability of strategies
across contexts triggers the need for an explicit concept
distinct from that of a task. The following example shows
a simplified version of a reference model for monitoring a
tactical situation.

Domain concepts

TacticalSituation: tracks, equipments ...

Track: identification, position, speed, course, criticity ...

Equipment: identification, state ...

Mode: state (operational vs. maintenance)

Tasks

MonitorTacticalSituation:

- precondition: -

- procedure: MonitorTracks and MonitorEquipments

- postcondition: -

MonitorTracks: ...

MonitorEquipments: ...

InvigilateATrack:

- precondition: -

- procedure: EvaluateCriticity then ChooseTactic then
DeployTactic

- postcondition: theTrack isNotCritic

SwitchToMaintenanceMode: ...

SwitchToOperationalMode: ...

Strategies

IF a new track is detected THEN invigilate that track is
MANDATORY

IF a track is critic THEN switch to maintenance mode is
UNDESIRABLE

Figure 4 shows the main panel for specifying the concepts,
tasks and strategies of a reference model. In CatchIt
environment, a reference model can be viewed as a
specialization of a more general reference model. For
example as shown in Figure 4, the naval electronic warfare
(Guerre Electronique Marine) is defined as a specialization
of electronic warfare (Guerre Electronique).

Figure 4. The CatchIt environment for defining reference
models.

Whereas concepts are defined as object oriented classes
within the Smalltalk browser, tasks and strategies are
specified in dedicated panels. Figure 5 shows the form for
specifying a task. It is illustrated on the task Invigilate a
track. This task is decomposed into three subtasks :
EvaluateCriticity (Evaluer criticité) then ChooseTactic
(Choisir tactique) then DeployTactic (Déployer tactique).

Figure 5. The CatchIt environment for specifying a task.

Figure 6 shows the panel for specifying a strategy. It is
illustrated on the strategy “IF a new track is detected (une
nouvelle piste apparaît) THEN invigilate that track
(surveiller cette piste) is MANDATORY (impératif)”.

Figure 6. The form for specifying a strategy.

As shown in Figures 5 and 6, pre- and post-conditions
within tasks as well as predicates within strategies are
grounded on instruction blocks expressed in the context of
the reference model. For example in Figure 5, the post-
condition “theTrack isNotCritic” is expressed by the
Smalltalk instruction “unePiste estNonHostile”. In Figure

6, the condition “a new track is detected” is expressed by
the Smalltalk expression “CIPisteN new”.

Pre- and post-conditions within tasks as well as predicates
within strategies are evaluated either in the context of the
reference model or within the new application. This duality
is supported by the specification of explicit links between
the reference model and the application.

Connecting the Application with the Reference
Model
Connections between the application and the reference
model are specified by the application developer. This
declarative mapping is the only task that the developer
needs to perform in order to use CatchIt. The specification
gives birth to a dedicated software component, the adaptor.
This adaptor, which maintains the semantic links between
the application and the reference model, acts as a connector.
By doing so, connection is performed without polluting
the application nor the reference model with extra code.

Connecting the application to the reference model is
structured according to the three classes of entities
supported by CatchIt: concepts, tasks and strategies. The
mapping consists in linking the entities of the reference
model to entities of the application in terms of abstraction
and presentation. For example, in terms of abstraction, as
the concept of mobile tactical object does not explicitly
exist in the application, the class CIObjetTactiqueMobileN
of the reference model is linked to the class
CIObjetTactiqueA of the application. As shown in figure 7,
this mapping is refined at the level of attributes. The field
cinematic (cinématique) of CIObjetTactiqueMobileN is
connected with the field speed (vitesse) of the class
CIObjetTactiqueA.

Figure 7. The form for linking concepts of the reference
model to abstractions in the application.

Presentation entities of the application such as widgets,
working spaces, or a combination of user’s actions on input
devices are mapped to a task of the reference model when
they correspond to a task, or to a concept of the reference
model when these entities represent a concept. For
example, the class CIAroModeFctA of the application that
contains the radio buttons in charge of the mode switching
is linked to the task SwitchToMaintenanceMode (passer en
mode maintenance) of the reference model. The expression
of these links by the developer is performed within CatchIt
using form-based interaction (Figure 8).

Figure 8. The form for linking tasks of the reference model
to presentations in the application.

Each mapping is grounded on an instruction block that
connects together the software of the application and the
reference model. This set of instructions is modelled as a
“proxy” method within the adaptor. For example in Figure
7, the cinematic field of the reference model is updated
according to the Smalltalk mapping rule: cinematique
vitesse: vitesse.

Typically predicates that express properties related to
rendering such as observability, are evaluated within the
context of the application. Conversely, predicates that
address states about domain objects are evaluated within
the context of the reference model. Examples will be
provided in further sections to illustrate the power of this
facility.

In summary, a dedicated component, the adaptor, gathers
the semantic links between the application and the reference
model that are specified declaratively by the developer.
Based on the knowledge of these links, a predictive
evaluation can be performed.

Predictive Evaluation
CatchIt supports a predictive static evaluation based on the
completeness and correctness of the links. Any anomaly is
reported to the designer as warnings. Typically, CatchIt
checks that any relevant data in the reference model has its
counterpart in the application. It also tests the quality of
the application code by measuring the number of non-

bijective links. For example, CatchIt can detect that the
classes ReferenceApplication and TacticalSituation of the
reference model are both connected to the class Application
of the application. In other words, CatchIt checks the
balance between the application and the reference. Finally,
CatchIt can predict the operator’s overload in a given
context by counting the number of strategies that cannot
migrate to the system.

As of this writing, the predictive evaluation has been
partially implemented. It is currently limited to the
verification of links completeness. Instead, we have
focussed our attention on experimental evaluation.

Experimental evaluation
CatchIt uses the links specified by the developer to
automatically instrument the source code of the application.
The code generated by CatchIt results in the automatic
propagation of relevant events towards the reference model.
This notification mechanism sets the foundations for the
experimental evaluation of the application. Code
instrumentation and the exploitation of events notification
are presented next.

Propagation and Transparence
Every method in the application that performs a write
access to a linked object is automatically instrumented. The
instrumentation consists of inserting a spy instruction that
redirects an event to the adaptor (Figure 9). The insertion
occurs as the last instruction of the method. The method is
recompiled but the spy instruction is not observable to
developers even when browsing the source code. This is
our concept of transparence.

Tasks

expert
operator

Application

adaptor

Environment, remote devices and equipment, etc.

Context and
Interaction trajectory

confrontation

Critics

reference
model

Expected
Action/StateAction/State

Strategies

Concepts

Figure 9. Principles of the experimental evaluation in
CatchIt.

The CatchIt transparent code instrumentation allows every
modification of a linked application object to be echoed
within the reference model (Figure 9). Echoing is made
possible through the proxies maintained by the adaptor.
These proxies, which are linked to application objects, are
instances of classes defined in the reference model. Thus,
any modification on an application object is notified to the
adaptor which invokes the appropriate methods on proxies.
This set of proxies and their state across time define the

interactional context. The history of end-user’s actions
defines the interactional trajectory. (At the time of this
writing, the concept of interactional trajectory is partially
implemented.) The notion of interactional context coupled
with that of interactional trajectory makes it possible to
compare the operator’s intention with the manifestation of
the intention. This comparison is at the basis of our
evaluation technique.

Principles of the evaluation technique
As shown in Figure 9, every event, whether it comes from
a remote device such as a sensor or from the operator when
acting on application objects, is processed by the
application. In addition, when linked application objects
are modified, the event is automatically propagated to the
adaptor by the transparent instrumentation mechanism. In
turn, the notification results in the modification of the
interactional context and trajectory.

The state of the interactional context and trajectory allows
CatchIt to identify the operator’s intention. The operator,
i.e., a representative subject involved in the experimental
evaluation of the application, is supposed to be an expert.
This decision, which has been viewed as a shortcoming for
GOMS, is a reasonable choice for the work domain we are
interested in: by definition, users of critical systems are
experts. Since, by definition, the reference model defines
THE best developed solution for expert users, there should
be a direct mapping between the operator’s intention and its
reflection in the state of the reference model whose relevant
portion is modelled as the interactional context and
trajectory.

Therefore, the job of the critics is to compare the operator’s
action and application state with the expected action and
state maintained in the interactional context and trajectory.

The critics
The critics are based on the correctness, completeness and
conciseness of the user behavior (Figure 10). Whereas the
correctness checks that any task performed by the operator
is appropriate, the completeness checks that any expected
task is really performed. The conciseness measures to
which extent only mandatory tasks are performed.

From [10], we select two orthogonal dimensions for
characterizing the output of critics (Figure 10): the
publication mode (i.e., on the fly vs. off line) and the
polarity (i.e., positive vs. negative). Whereas on the fly
notification is disruptive for the subject, an off line
mechanism builds a log of warnings that can be analyzed
after the experiments. Positive polarity denotes conformity
to the reference while negative polarity points out
deviations from the reference.

Figure 10. The panel for launching an experimental
evaluation.

In the current implementation, the CatchIt critics lists the
deviations between the expected and perceived behaviors of
the application as well as possible explanations of the
deviations. For example, if although a track is critic, the
operator switches to maintenance mode, CatchIt detects the
transgression of a strategy (IF a track is critic THEN
switch to maintenance mode is UNDESIRABLE) and
suggests the non observability of either the track or the
mode. Figure 11 shows this example of negative critic
published on the fly.

In the future, the critics could check that a mapping
between the concept Track in the reference model has been
linked to a presentation item in the application. If so, it
could check that this presentation item is effectively
observable: to do so, it could check that a display
statement, tracked automatically by the instrumentation
process, has been performed in the application code.

Correction
CatchIt detects deviations but do not perform any corrective
actions. This task falls to the developer. However, for tasks
and strategies that do not conform to the expected behavior,
CatchIt could improve its contribution by providing an
ordered list of possible causes based on the concept of
variability. Typically, for a particular domain, concepts are
more stable than tasks which in turn are less variable than
strategies. Therefore, if CatchIt detected a conflict between
an object and a strategy, it would point out the strategy

first. This is a very speculative hypothesis that we need to
investigate further.

Figure 11. The panel for publishing an experimental critic
on the fly.

Simulation
Human resources such as subjects, are scarce and expensive.
As a result, scenarios used in experiments generally focus
on specific aspects of the system. In the CatchIt
environment, the purpose of the simulator is to generate
events that improve the operational coverage of
experimental tests. Typically, CatchIt builds a set of events
from the task preconditions as well as from the conditions
that trigger the strategies of the reference model. CatchIt
can simulate the occurrence of such events within the
application. By so doing, it provides another way of
validating an application against the reference model
without using effective users.

Browsing and Editing
In its current form, CatchIt reuses the browser and the
editor provided by the Smalltalk environment. As
mentionned above, these facilities are used by developers to
build new applications or to elaborate a new version of the
reference model.

Generating Reference Models and Applications
Building new applications or elaborating a reference model
for a particular work domain can be built by hand using
programming tools such as Smalltalk. Alternatively,
applications and reference models can be generated
automatically using a dedicated specification language. In
the current stage of its development process, CatchIt does
not offer any formalism to alleviate the programming task.
The definition of an appropriate formalism is one of the
action tasks of our research agenda.

LIMITATIONS AND FUTURE WORK
Although we have demonstrated the technical feasibility of
transparent instrumentation as well as the articulation of
predictive evaluation with experimental testing, we have
not explored yet the benefits and limitations of our
approach. In particular, we have not integrated all aspects of
properties such as insistance, honesty, reachability,
recoverability, and task migration [40]. We need to define
metrics for these properties in order to refine the deviations
detected by the critics. A model of deviations should be
developed to enhance the expressive power of the critics.
Finally, we need to verify that the reference model is rich
enough to capture knowledge structures [39] and investigate
its extension for supporting multi-user interactive systems.

The technical feasibility of our approach imposes two pre-
requisites: first, the application and the executable reference
model are implemented using an object-oriented language;
second, CatchIt needs to have access to the source code in
order to perform the instrumentation. With regard to the
first requirement, the industrial trend is the use of object-
oriented languages. As for the second problem,
programming by components as examplified by ActiveX
and OLE [42], makes it possible to interoperate CatchIt
with applications to be tested. In addition, we are currently
evaluating whether the AOP approach (Aspect Oriented
Programming) is appropriate for the implementation of the
probe.

CONCLUSION
Although CatchIt is still an experimental platform, its
current implementation has demonstrated the technical
feasibility of the approach to the development and
evaluation of realistic applications.

CatchIt offers a new way of approaching the software
development of interactive software through the
capitalization of work domain knowledge across time. So
far, the work domain covers the notions of domain
concepts, tasks and strategies. The executable form of this
knowledge defines a reference model from which new
applications can be elaborated and against which new
applications can be evaluated. Predictive and experimental
evaluations can be used in complementary ways. Both of
them are grounded on the declarative expression of
connections between items of the reference model and their
corresponding elements in the application. These
specifications, which are performed by the developer using
a form-based user interface, are used by CatchIt to
instrument the source code in a transparent way. This
transparency feature alleviates a time consuming and error
prone task.

Early experience with the use of CatchIt shows that
developers, guided by the reference model, tend to improve
the structure of their applications. Besides defining the
right programming patterns and a platform for evaluation,
an environment like CatchIt can be extended to other uses
such as training operators and computer-supported
assistance.

ACKNOWLEDGMENTS
We thank THOMSON-CSF Detexis for having supported
this work.

REFERENCES
1. Aublet-Cuvelier, L., Carraux, E., Coutaz, J., Nigay, L.,

Portolan, N., Salber, D., Zanello, M.L. NEIMO, un
laboratoire d’utilisabilité numérique : Leçons de
l’expérience. ERGO IA 96, pp 149-160.

2. Balbo, S. Evaluation Ergonomique des Interfaces
Utilisateur : Un Pas Vers l’Automatisation. Thèse de
l’Université Joseph Fourier de Grenoble, September
1994, 287 p.

3. Bares, M., Pastor, D. Principe d’un moteur
d’interaction multimodale pour systèmes embarqués.
Génie Logiciel, N°40, Juin 1996, 31-38.

4. Barnard, P. Cognitive Resources and the Learning of
Human-Computer Dialogs, in Interfacing Thought,
J.M. Carroll eds, The MIT Press, 1987, pp. 112-158.

5. Byrne, M.D., Wood, S.D., Sukaviriya, P.N., Foley,
J.D., Kieras, D.E. Automating Interface Evaluation.
CHI’94, Boston, April 1994, pp 232-237.

6. Calvary, G.: Proactivité et réactivité: de l’Assignation à
la Complémentarité en Conception et Evaluation
d’Interfaces Homme-Machine, Phd of the University
Joseph-Fourier-Grenoble I-France, Speciality
Computer Science, 1998, 250 p.

7. Card, S., Moran, T., Newell, A. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum
Associates, 1983.

8. Coutaz, J., Salber, D. and Carraux, E. NEIMO, a
Multiworkstation Usability Lab for Observing and
Analyzing Multimodal Interaction. In Proc. CHI96
conference companion, ACM publ., Tauber, M. Ed.,
1996, pp. 402-403.

9. De Rosis, F., Cozza, M.T., De Carolis, B., Errore, S.,
Pizzutilo, S., De Zegher, I. Adaptative Interaction With
Knowledge-Based Systems. AVI’94, Bari, Italy, June 1-
4, 1994.

10. Fischer, G., Morch, A. CRACK : A critiquing
approach to cooperative kitchen design. Proceedings of
the ACM International Conference on Intelligent
Tutoring Systems, pp 176-185, May 1988.

11. Fischer, G., Lemke, C., Mastaglio, T., Morch, A.I.
Using Critics to Empower Users. CHI’90, April, 1990,
pp 337-347.

12. Foley, J., Kim, W.C., Kovacevic, S., Murray, K. The
User Interface Design Environment. GWU-IIST-88-04,
Department of Electrical Engineering and Computer
Science, Scool of Engineering and Applied Science,
The George Washington University, Washington, D.C.
20052, January 88.

13. Goldberg, A. Smalltalk-80, The Interactive
Programming Environment, Addison-Wesley, 1984.

14. Gould, J.D. How to Design Usable Systems, Handbook
of Human-Computer Interaction. M. Helander ed.,
Elsevier Science B.V., 1988, pp 757-789.

15. Goodman, S.E. War, Information Technologies, and
International Asymmetries. Communications of the
ACM, December 1996, Vol. 39, Number 12, pp 11- 15.

16. Hall, A. Do Interactive Systems Need Specifications? In
Proc. 4th Eurographics Workshop on DSVIS’97, pp. 3-
14.

17. Hammontree, M.L., Hendrickson, J.J., Hensley, B.W.
Integrated data capture and analysis tools for research
and testing on graphical user interfaces. CHI’92,
Monterey, 3-7 May 1992, pp 431-432.

18. Holyer, A. Methods For Evaluating User Interfaces,
Cognitive Science Research Paper No. 301, Nov. 1993.

19. Johnson, P., Wilson, S., Markopoulos, P., Pycock, J.
ADEPT - Advanced Design Environment for
Prototyping with Task Models. InterCHI’93, 24-29
April, 1993, pp 56-57.

20. Kieras, D.E., Wood, S.D., Abotel, K., Hornof, A.
GLEAN : A Computer-Based Tool for Rapid GOMS
Model Usability Evaluation of User Interface Designs.
UIST’95, Pittsburgh, Pennsylvania, November 14-17,
1995, pp 91-100.

21. Kolski, C. Contribution à l'ergonomie de conception
des interfaces graphiques homme-machine dans les
procédés industriels : application au système expert
SYNOP. Thèse de l'Université de Valenciennes et du
Hainaut-Cambrésis, Janvier 1989.

22. Lemke, A., Fischer, G. A cooperative problem solving
system for user interface design. Proceedings of the
Eighth National Conference on Artificial Intelligence,
1990, pp 479-484.

23. Lonczewski, F., Schreiber, S. The FUSE-System : an
Integrated User Interface Design Environment,
CADUI'96, J. Vanderdonckt (eds), 1996, pp 37-56.

24. Löwgren, J. A Knowledge-Based Tool for User Interface
Evaluation and its Integration in a UIMS. Interact'90,
1990 , pp 395-400.

25. Märtin, C. Software Life Cycle Automation for
Interactive Applications : The AME Design
Environment. CADUI'96, J. Vanderdonckt (eds), 1996,
pp. 57-73.

26. Moran, T. and Carroll, J. Design Rationale, Concepts,
Techniques and Use, Lawrence Erlbaum Publ., 1996.

27. Neal, A.S., Simons, R.M. Playback : a method for
evaluating the usability of software and its
documentation. CHI’83, December 1983, pp 78-82.

28. Nielsen, J. and Molich, R. Heuristic evaluation of user
interfaces, Proceedings of the CHI’90 Conference on
Computer Human Interaction, Seatle, ACM New York,
1990, pp. 349-256.

29. Nitsche-Ruhland, D. Zimmermann, G. CritiGUI-
Knowledge-based Support fort the Interface Design

Process in Smalltalk. EWHCI’95, Moscow, Russia,
July 1995.

30. Payne, S.J. and Green, T.R.G. Task-Action Grammars:
a model of the mental representation of task languages.
In Human-Computer Interaction, Vol. 2, No. 2,
Lawrence Erlbaum Associates Publishers, 1996, pp.
93-133,.

31. Puerta, A. The MECANO Project : Comprehensive and
Integrated Support for Model-Based Interface
Development. CADUI’96, J. Vanderdonckt (eds), 1996,
pp 19-35.

32. Scapin, D.L., Pierret-Golbreich, C. MAD : Une
méthode analytique de description des tâches. IHM’89 ,
Sophia-Antipolis, Mai 1989, pp 131-148.

33. Sears, A. AIDE : A step toward metric-based interface
development tools. UIST'95, November 14-17, 1995,
pp 101-110.

34. Siochi, A.C., Hix, D. A study of computer-supported
user interface evaluation using maximal repeating
pattern analysis. CHI’91, New Orleans, May, 1991,
ACM New-York, pp 301-305.

35. Sukaviriya, N., Kovacevic, S., Foley, J.D., Meyers,
B.A., Olsen, D.R., Schneider-Hufschmidt, M. Model-
Based Interfaces, What are They and Why Should We
Care ?. UIST’94, November 2-4, 1994, pp 133-135.

36. Summer, T., Bonnardel, N., Kallak, B.H. The
Cognitive Ergonomics of Knowledge-Based Design
Support Systems. CHI’97, 22-27 march 1997, Atlanta,
Georgia, pp 83-90.

37. Szekely, P., Luo, P., Neches, R. Facilitating the
Exploration of Interface Design Alternatives : The
HUMANOID Model of Interface Design. CHI'92, May
3-7, 1992, Monterey, California, pp 507-515.

38. Szekely, P., Sukaviriya, P., Castells , P.,
Muthukumarasamy, J., Salcher, E. Declarative interface
models for user interface construction tools: the
MASTERMIND approach. EHCI’95.

39. Waern, Y., Hägglund, S., Ramberg, R., Rankin, I.,
Harrius, J. Computational advice and explanations -
behavioural and computational aspects. Interact’95, pp
203-206.

40. WG 2.7 (13.4). Design Principles for Interactive
Software, Gram, C. & Cockton, G., Eds.,
Chapman&Hall Publ., 1996.

41. Young, R.M. and Whittington, J. A knowledge
Analysis of interactivity, Proceedings of
INTERACT'90, D. Diaper, G. Cockton & B. Shackel
Eds., Elsevier Scientific Publishers B.V, 1990,
pp. 207-212.

42. Chappel, D. Understanding ActiveX and OLE, a Guide
for Developers and Managers, Microsoft Press, 1996.

