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Abstract. This article is concerned with the development of software infrastructures for context-aware
computing. To clarify the diversity of approaches in this area, we propose a synthesis of the state of the
art using a reference framework derived from sound software engineering design principles. We then pre-
sent our own contribution, the Contextor Infrastructure. We describe its conceptual computational model
and provide implementation details.

1 Introduction

Context is an old friend. Since the early sixties, it has been modelled and exploited in many ways in the areas
of operating systems, linguistics, Al, and HCI. In ubiquitous computing, the scientific community has redis-
covered this concept and has debated for more than five years without reaching a consensus for an opera-
tional definition. It is however admitted that: 1) Context does not exist out of context: it is defined in relation
to a purpose; 2) Context is an information space that serves interpretation [1]; 3) Context evolves, is struc-
tured, and shared. The working hypothesis is that context-aware computing is key to the emergence of new
forms of services that can be intertwined with human activities at multiple scales. Because of the lack of
predictive theories for prescribing the appropriate use of context, the research community has adopted an
empirical approach with the development of small-scale concept demonstrators. As for many research areas,
this prospective phase has generated the need for new tools to explore the problem space and deploy full-
scale solutions.

In this article, we are concerned with the software tools that support the iterative and incremental develop-
ment of context-aware systems. The Context Toolkit (CTK) is the seminal example in this area [2]. Other
tools such as [3,4,5,6,7], address similar issues. To clarify the diversity of approaches, we propose a synthe-
sis of the state of the art using a reference framework derived from software engineering design principles.
We then present our own contribution, the Contextor Infrastructure, from its theoretical foundation to its
conceptual architecture and operational implementation.

2 Synthesis of the State of the Art

The problem is to provide developers of context-aware systems with software building blocks that support
their programming task in an effective manner. Like most conventional systems, context-aware computing is
concerned with heterogeneity, distribution, interoperability, extensibility, and functional decomposition.
Unlike conventional systems, context-aware computing has to support these aspects at multiple scales, from
the ultra-small to the planet-level, all of this exacerbated by the spontaneous occurrence of unpredicted phe-
nomena such as the migration, reconfiguration, uncertainty, maleficence, and failure of the physical world
(humans, and artefacts). In this section, we investigate how these aspects can be addressed reusing software
engineering design concepts and principles. In the light of these requirements and recommendations, we
analyse key examples of development tools from the state of the art in context-aware computing. Table 1
synthesizes our survey.

2.1 Requirements and Recommendations

Heterogeneity. In software engineering, heterogeneity is addressed by means of encapsulation. Encapsulation

creates an abstract barrier that hides the low level functioning of an entity and defines an interface through

which the entity can be used. However, in context-aware computing, adaptation is needed to cope with many

forms of spontaneity and uncertainty. Therefore, the entity should also be inspectable and controllable. Re-

flection provides this capability through meta-level interfaces [8]. In particular, meta-level interfaces can be
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used to express the quality of service expected from a particular component, as well as the quality of the
results provided by this component. In context-aware computing, data is not necessarily certain. Confidence
factors used in Al, as well as metrics such as latency, precision, stability, and resolution, can be usefully
exploited to express QoS through meta-level interfaces. As shown in Table 1, very few tools support both
meta-data as well as inspection and control.

Distribution and interoperability. Network technologies and standard communication protocols are key to
distribution and interoperability. Recent developments in ad hoc networks offer potential solutions to the
fundamental multi-scale spontaneity nature of context-aware computing. Wireless hosts can communicate
with each other in the absence of a fixed infrastructure. An ad hoc network forms a ‘connectivity island’
whose horizon can evolve dynamically: it can detect new comers and leavers; it can split into multiple is-
lands and two islands may merge dynamically. Therefore, tools for context-aware computing should draw
upon network services for topology control, message routing, broadcasting, multicasting, and geocasting.
However, we must remember that the very existence of ‘connectivity islands’ implies that the discovery and
use of context-oriented services cannot rely exclusively on the fixed planet-level infrastructure. Therefore, a
P2P model, rather than a conventional client-server approach, should be favoured to support distribution.

Table 1. Survey of infrastructures for context-aware computing. The 8th column corresponds to our own contribution.
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On top of the network infrastructure, communication protocols for context-aware computing need to cope
with an evolving set of data types whose instances correspond to possibly hypothetic phenomena: as stated in
the introduction, context is ill-defined, unbounded, built from a variety of data sets. Therefore, communica-
tion protocols for context-aware computing should 1) define or reuse standard communication protocols
based on XML-self-describing data, and 2) propose two approaches to data acquisition: the query-answer
method for applications that request for a precise thing right now on the spot, and the subscribe-notify
method for applications that are interested in things whose occurrences are hypothetic or unknown.

Functional decomposition. From early experiences, we know that ‘context’ ranges from simple raw data to
highly structured symbolic information. This means that context must be elaborated and exploited at multiple
levels of abstraction and complexity. A mature domain is characterized by the availability of canonical archi-
tectures that help structuring software systems. For example, in HCI, the Arch model makes explicit the lev-
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els of abstraction of interactive systems, from the low-level physical interaction to the high-level domain-
dependent functional core. In context-aware computing, no agreement has been found on a canonical decom-
position. However, we progressively observe a distinction between context sensing at the lowest level of
abstraction, followed by context transformation by interpretation and inference, and the expression of re-
quests for services using high-level language: liquid in [15], and first order logic in [7].

Orthogonal to these functions, service discovery and recovery, history management, security, trust and pri-
vacy, need to be addressed. In CTK for example, the programmer must explicitly compose the federation of
processes through the subscribe mechanism. When infrastructures go from local to global, they do so by
interconnecting service providers. Clearly, this straightforward solution, prone to service failure, need to be
improved with additional mechanisms such as redundancy used in IrisNet.

As for privacy, current solutions are still simplistic. The work on Confab provides an interesting approach,
but at a high level of abstraction only. IrisNet, on the other hand, supports privacy at the sensing level only
by filtering raw data.

2.2 Synthesis: Multi-scale Interoperable Run Time Infrastructures

Like Hong et al., we believe that the effective deployment of context-aware systems relies on the existence
of run time infrastructures [4]. A run time infrastructure is a middleware that runs reliably and permanently
to provide applications with ‘public utility’ services that would otherwise be developed for each application.
In the light of our analysis, an infrastructure for context-aware computing must provide context services that
are accessible and retrieved from anywhere on the planet, from the fix network infrastructure to spontaneous
‘connectivity islands’. Context services are not floating items in a cloud, but form a fabric structured into
multiple levels of abstraction.

Within a level of abstraction, the infrastructure must:

1. include mechanisms for on the fly creation of new services that do not disturb the existing fabric, that are
inspectable and controllable through meta-interfaces and meta-data;

2. provide service authors with a set of core abstractions that comply with a single computational model and
architecture style.

These general conceptual principles must be tuned and reconciled with practical considerations such as port-
ability (e.g., operating system and language independence) and computation cost (e.g., memory footprint,
latency, bit-rate communication, and power consumption). In ubiquitous computing, nodes range from small
computers such as motes [3] to high-end computers. Their topology and operating systems may vary widely
from TinyOS to conventional OS. Heavy-duty components are typically placed on high-end nodes. With
‘connectivity islands’, high-end computers may not be available. For small devices, a costly infrastructure is
impractical. Therefore, one size infrastructure for context-aware computing does not fit all. Instead, we be-
lieve in a variety of interoperable infrastructures where each infrastructure is designed to fit the scale and
functional coverage (i.e., level of abstraction) it is intended for.

3 The Contextor Infrastructure: Conceptual Aspects

The Contextor Infrastructure is a software concretization of the ontology presented in [11]. This model is
two-fold: the levels of abstraction that the infrastructure covers, and the computational model used for each
of the levels.

3.1 Levels of Abstraction
At the lowest level, the system’s view of the world is provided by a collection of physical sensors. These

sensors generate numeric values for observables. This corresponds to the Sensing layer (Cf. Figure 1). This
layer, which is dependent on the sensing technology, encapsulates the diversity of sensors.



Observables may be numeric or symbolic. In order to determine meaning from numeric observables, the
system must perform some series of transformations. This is the role of the Transformation layer. This layer
is independent of the sensing technology and provides observables at the “right” level of abstraction.

The Situation&Context Identification layer is able to identify the current situation and context from observ-
ables and detect conditions for moving between situations and between contexts. It is the reasoning and in-
ference layer.

The Exploitation layer acts as an adaptor between the application and the infrastructure. This is where appli-
cations express their requests for context services at a high level of abstraction. For performance reasons, the
exploitation layer may skip the Situation&Context Identification layer and exchange information directly
with the Transformation and Sensing layers. As for interactive systems, the slinky meta-model applies: some
layers may not exist, and functions may shift between layers.

At every level of abstraction, one finds mechanisms and facilities to support privacy, trust, and security as
well as history management, and discovery/recovery.

rivacy / Securitv / Trust
Historv
| Discoverv / Recoverv |

Context adapter

’ Situation and context identification ‘
’ Transformation : symbolic observables ‘

Sensing : numeric observables ‘

Fig. 1. Levels of abstraction for a complete general purpose infrastructure for context-aware computing.

According to our prescriptions from Section 2, layers define the scope for computational models and
architectural styles. We have devised the Contextor computational model to address the Sensing and
Transformation layers. This model is process-oriented. From the state of the art as well as from our own
experience with the development of augmented environments and plastic user interfaces [12], we believe that
the Situation&Context Identification and Exploitation layers are data-centric. In the following, we
concentrate the description on the contextor model for which we have more definitive results.

3.2 The Contextor Computational Model

First, we introduce the notion of contextor, then, we present how contextors are assembled to cover the sens-
ing and transformation layers of the infrastructure.

3.2.1 The Contextor

A contextor is a software abstraction that models a relation between observables. From the values of a set of
observables, a contextor returns values for an observable. A contextor is comprised of a functional core and
of a set of typed communication channels to receive and send values of observables.

Communication channels include the data and the control channels.

- Data channels are used to transfer values of observables between contextors: they are the interface of the
contextor. Every value (whether it be a data-in or a data-out value) is associated with a meta-data. Meta-
data is used to express the quality of the values exchanged between contextors. As mentioned in Section 2,
in a world of uncertainty, the system must be able to auto-evaluate the quality of the services it provides.
Therefore, every contextor evaluates its own behavior and exports this activity as meta-data.

- Control channels carry commands for inspecting and controlling contextors behavior: they are the meta-
interface of the contextor. Commands cover both the functional and non-functional aspects of a contextor.
For example, a contextor may receive a “Stop” command on its control-in channel because it has been
recognized to be faulty by another one. Or, it may receive a QoS request that expresses the precision of the
values expected on its data-out channel. Alternatively, based on the meta-data associated with the data re-
ceived on its data-in channel, a contextor may decide to send a “Stop” command via its control-out chan-
nel.



The functional core of a contextor implements the function of the contextor using the values received on its
data-in and control-in channels, delivers the result (decorated with meta-data) on its data-out channel, and
may send some commands on its control-out channel [9].

Contextors with both input and output data channels are called non-elementary contextors. A contextor with
no data-out channel is a contextor adapter. It is used as a bridge between an application (the Exploitation
layer) and the Contextor Infrastructure. A contextor with no data-in channel is called an elementary contex-
tor. It is used to encapsulate a physical sensor such as a thermometer, or any computational component that
serves as source of physical data. For example, a video camera is encapsulated within an elementary contex-
tor. Data-out corresponds to the video flow of images, its control-in allows other contextors to set the video
rate, as well as the pan-tilt-zoom factors of the camera. Meta-data associated to data-out values expresses the
resolution, the number of bits per pixel, resolution, and more generally, any factor that qualifies the images
delivered by the contextor. Control-out is used by the contextor to acknowledge the execution of the com-
mands received on the control-in channel.

Having defined the computational model of a contextor, we need now to specify how contextors are assem-
bled.

3.2.2 Federations of Contextors

In good software engineering practice, the assembly of software components is ruled by an architecture style.
In our case, the vocabulary is defined by the set {contextor, data-in, data-out, control-in, control-out}. What
we need to express through the composition of these vocabulary elements is sequences of transformations on
observables, from numeric data to symbolic information. This functional requirement maps easily onto the
data-flow model.

Contextors are composed by connecting data-in channels with compliant data-out channels. Two channels
are compliant if they convey data of the same type. A source contextor is a contextor that provides another
contextor with data-in values. A sink contextor is a contextor that receives data-out values from another con-
textor. In order to support sharing, the data-out channel can simultaneously feed into multiple sink contex-
tors. The control-in channel of a contextor is connected to the control-out channel of its sink contextors.
Consequently, the control-out channel of a contextor is connected to the control-in channel of its source con-
textors.

‘ Application 1 ‘ ‘ Application 2 ‘

Transformation layer

Fig. 2. Two federations of contextors assembled according to the data-flow architecture style.

Figure 2 shows examples of federations of contextors. Source interactors at the base of the federation are
elementary contextors. They form the sensing layer of the infrastructure. The other contextors are part of the
transformation layer of the infrastructure. Sink contextors at the top of the federation provide symbolic ob-
servables to applications via context adaptors or to any upper level of the infrastructure.

Connections between source and sink contextors may be static (i.e., wired by implementation), or semi-static
(i.e., computed at run time when the system is launched), or transient (i.e., may change dynamically). Static
connections correspond to well-packaged immutable compositions that work together in a tightly and opti-
mal fashion. Transient connections allow for the dynamic discovery/recovery of contextors. They support the
discovery/recovery functions for the sensing and transformation levels of the infrastructure.



In the next section, we show how the conceptual computational model has been turned into an operational
infrastructure for the sensing and interpretation layers.

4 Implementation of the Sensing and Interpretation Layers

Contextors are implemented as Java P2P components, using the UDP multicast communication protocol for
service discovery and TCP direct links once source and sink contextors have successfully negotiated their
cooperation. Messages are XML documents that ensure interoperability and extensibility. Contextors are
distributed over a network whose horizon can range from a single machine to the planet. Figure 3 illustrates
the life cycle of a contextor. In Section 4.1, we present the role of the components of a contextor as we go
through its life cycle. Then in 4.2, we discuss the geographical scope of the infrastructure.

State 1 State 2
Not running Launching the contextor from Running
Notsupplied its configuration file Notsupplied
Not Ready Not Ready Looking for Source
Notin activity Notin activity contextors : send
request for service on
State 5 the network
Running
Supplied
Ready New Sink client
Stop In activity connection Subscribing
command to
First Source
Sink client contextors
connection Last
Sink client
disconnected
State 4 yState 3
Running Running
Supplied Supplied
Ready - Not Ready
Notin activity Launching the FunctionalCore Notin activity
W aiting for Sink clients

Fig. 3. Life cycle of a contextor.

4.1 Life Cycle of a Contextor

At the beginning (State 1), the contextor resides on a node of the network (i.e., a machine) as an XML
document called a “configuration file”. This file specifies, among other things, the class name of the contex-
tor, the geographical location of the node it currently resides on, the network it belongs to, the control and
inspection commands it accepts, the data types (and meta-data) of its data-in channels as well as the desired
mode for data acquisition, the data type (and meta-data) of its data-out channel as well as the maximum
number of sink contextors it can serve simultaneously, a login and password to control the access right to the
data it delivers, and the mode of delivery of information. Data may be delivered/acquired once (the contextor
then returns to State 1); it may be delivered on request only to support the query-answer method, or on
change to support the subscribe-notify approach; it may also be delivered periodically or each time it is re-
computed by the contextor.

When the contextor is launched, its InternalContextorDescription component initializes the contextor from
its “configuration file”: if the contextor is not an adaptor, a DataOut object, its associated MetaData and
DataExchangeMode objects are created. These three objects model the data-out channel. Similarly, if the
contextor is not elementary, a Dataln, MetaData and DataExchangeMode are created for each one of the
data-in channels. The contextor is now in State 2: it is running but its data-in channels are not connected its
data-out channel has no sink client (the contextor is not supplied, not ready, and not in activity).

Our contextor (let’s call it C), now looks for source contextors to feed its data-in channels. To do this, its
DatalnManager broadcasts a request on the network using a UDP socket. This request specifies the contextor
identification, the data type of its data-in channels as well as the desired DataExchangeMode. Contextors of
the network that can satisfy one (or multiple) of the data-in channels, create a direct link with C. These direct
links are managed by the DatalnManager of C that dispatches the answers received from its potential source
contextors to the appropriate Dataln object. If it does not receive any satisfactory answer, a Dataln object
periodically broadcasts a request that describes its own need. A Dataln that receives an acceptable answer
from a contextor S, creates a SourceThread that manages the communication with S.



In State 3, C is running and fully supplied with input data. Therefore, its FunctionalCore can start computing
input data to deliver results. C enters state 4: it is running, supplied, in activity, but has no sink contextor yet.
It creates one DataOutThread per contextor it can potentially serve, then waits for the service requests that
are broadcasted on the network. When C receives a service request, this request is transmitted to a free
DataOutThread. In turn, this DataOutThread creates an InternalRequestDescription whose role is to check
the request description with the services that C can provide. If C can provide one (or several) of the re-
quested data, a direct link TCP socket is opened with the sink client as well as a ControlThread so that the
sink client can inspect and control C. When the link is opened, the DataoutThread sends a message to the
sink contextor. This message specifies the identification of C, the data it is able to support among the re-
quested data, as well as the DataExchangeMode that it can support among those requested by the sink. Then,
the DataOutThread waits for an “identification login-password” command to check that the sink contextor
has the right to use the data-out channel. If the verification is successful, C enters State 5: it is running, sup-
plied, ready, in activity. It returns to State 4 (running, supplied, ready, not in activity) when its last sink con-
textor disconnects. From there, it returns to State 1 if a “stop” command is received.

So far, we have described how the contextors that are installed and launched on a particular node build fed-
erations from contextors that belong to the same network. We now discuss the geographical scope (or hori-
zon/range) of this network.

4.2 Geographical Scope of the Infrastructure

In our current implementation, the scope of the infrastructure is defined by tuning the TTL parameter of the

UDP multicast protocol:

- TTL=0 corresponds to the machine where the contextors reside. This setting is used for embedded con-
text-aware systems such as the “Squeeze Me, Tilt Me” tangible user interface where a PDA augmented
with orientation and tactile sensors can be tilted and squeezed to control document scrolling.

- TTL=1 denotes a network whose horizon is limited to proximal areas (Local Area Network). Clearly, this
approach provides an approximate solution to the problem of ad hoc networks whose boundaries need
sometimes to be better specified. Although important, we have left this problem aside, and will reuse solu-
tions like the “proximity group” techniques as they will become available [14].

- TTL=2 or higher, corresponds to a large horizon. This is where an application is interested in source data
that is far from the current location. Although this option provides a simple mechanism, it may lead to
network congestion. To avoid flooding, we propose an hybrid P2P hierarchical architecture illustrated in
Figure 4. This solution is under implementation.

Higher Level Repeater

@
7’4. :/O ',ﬂ
",'/,'"/ Ou”,’\
&5 @ 5

Local Area Network 1 Local Area Network 2

—> Unicast transmission

w3 ¢ —mm-> Multicast transmission
Fig. 4. An Hybrid P2P hierarchical architecture inspired from [13]. a) An example of network topology at the planet
level. b) A mix of multicast transmissions at the local level, and unicast transmissions at the global level. Grey circles
denote contextors, whereas black circles represent repeaters.

As shown in Figure 4a), the planet is populated with repeaters that match the geographical structure of the
world in terms of Continent/Country/State/Province/City/District/... At the lowest level, a local area network
repeater is used as a gateway between the contextors of the area it serves and the planet. As shown in Figure
4b) the local area contextors use the UDP multicast TTL=1. Due to the nature of the protocol, they do not
need to have an explicit knowledge of the repeater. Repeaters use unicast transmission for long distances. As
specified in the previous section, the location attribute of a contextor (of the form Conti-
nent/Country/State/Province/City/District/...), allows repeaters to perform the appropriate routing.



5 Conclusion

In summary, we have proposed a set of criteria for comparing current infrastructures for context-aware com-
puting, we have proposed a four-layer functional decomposition as a tentative reference model, and we have
presented the Contextor Infrastructure (Cl) as a technical solution for the first two levels of abstraction: the
sensing and transformation layers. Cl is the result of a top-town design approach informed by the theoretical
foundations of a simple ontology [11], and an abstract computational process model.

Unlike previous work, in CI, 1) The horizon for contextors discovery is controllable, from the embedded
context-aware system to the planet level; 2) For local horizons, the full P2P discovery of contextors permits
to support ‘connectivity islands’; 3) privacy is provided in a fine-grained manner at the contextor level via a
login-password mechanism; 4) Data acquisition includes a rich set of parameters (once, onChange, onRe-
quest, periodically, etc.), 5) The automatic construction of contextors federations supports dynamic recon-
figuration in case of failure. Cl has been used successfully in the development of I-AM. Next steps include:
performance evaluation and development of situation&context identification layer applied to the adaptation
of Uls to platforms, places, and people.
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